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Chapter 1. Introduction and preliminaries

This paper contains some results obtained in the course of our
quest to prove or disprove the extension of OSolovay's
completeness theorem to bounded arithmetic. In the standard
proofs of both Solovay's theorem and Rosser's theorem, the
provability of Z-completeness is essential. In Chapter 2 we will
show that, under the compexity theoretic hypothesis NP=co-NP,
2-completeness is not provable in the system of bounded
arithmetic that we investigate, IAg+ Q.

However, both Rosser's theorem and a very restricted version of
Solovay's completeness theorem can be proved using a weak
reflection principle introduced in another context by Svejdar
(Svejdar[831]). In Chapter 3, we will present a proof of Svejdar's
principle in IAg+£4, and we will give Svejdar's (short) proof that
Rosser's theorem follows from his reflection principle. A
discussion of Solovay's theorem will be postponed to a subsequent
paper; a preliminary version can be found in Verbrugge[88].

In order to be able to explain some of the concepts cccurring in
this paper, we will first, by way of a few definitions, introduce
some of the more popular fragments of Peano arithmetic that fall
under the name of bounded arithmetic.

Bounded arithmetic.
The language of bounded arithmetic consists of:

0 zero constant symbol

bl successor

+ addition

: multiplication

L%XJ “shift right function®, i.e. the entier of 1§x

Il = [2log(x+1)], the 1ength of the binary representation of x

xzy = 2KV the "smash" fuction
< less than or equal to
(The notation[al denotes the least integer > a.)



In Chapter 3, we will be more parsimonious and use a language
containing just 0, 3, +, -, and <

We call quantifiers of the form ¥x or 3x unbounded gquantifiers.
Bounded quantifiers are of the form Vx<t or 3x<t, where t is
any term not involving x. The meaning of Vx<tA is Vx(x<t—-A),
and, likewise, Ix<tA means 3Ix(x<tAA). Sharply bounded

quantifiers are of the form Vx<|[tl or Ix<|[tl. A formula is
bounded iff it contains no unbounded quantifiers.

The principal feature distinguishing bounded arithmetic from
Peano arithmetic is that the induction axioms of the former are
restricted to bounded formulas. For some theories of bounded
arithmetic, induction is even restricted to a special class of

bounded formulas from the hierarchy of bounded arithmetic
formulas; we will now define this hierarchy.

(1) Z% = TT% =Ag is the set of formulas with only sharply bounded
quant1f1ers
(2)Zk+1 blS defmed inductively by:
(a) Zk”Qﬂk
(b) If A is in zﬁ” then so are 3x < tA and Vx ItIA
(c)IfABEe ZE” then A/\B and AVB are in Zk+1
(cl) If Ae ZE” and B e le+1 then 7B and B—A are in ZE”
(3) 1T|<+1 is deflned inductively by:
(a) ﬂk+1 Zk
(b) If A is in Hﬂ” then so are Vx <tA and Elx ItIA
(c)IfABe 1Tk+1 then A/\B and AVB are in 1Tk+1
(d) If Ae ﬂi” and B e Zk” then 7B and B— A are in ﬂi”

(4) Zk+1 and HE” are the smallest sets which satisfy (2),(3).

If R is a theory and A a formula, we say that A is A with respect
to R iff there are formulas B € 7_ and C e 1T such that RFAe B and
RFAeC.

The bounded arithmetical hierarchy is related to the polynomial
hierarchy of complexity theory (for a definition, see e.g. Buss



[86], Ch. 1) in the following way: if k> 1, then 3} (respectively,
ﬂp) is the class of predicates which are defined by formulas in
Zk (respectively, TTK) In particular, NP is the class of predicates
which are defined by formulas in 21 , and co-NP is the class of
predicates defined by TT1—formulas (see Buss [86],Thm. 1.8).

Each theory of bounded arithmetic which we consider here
contains (a subset of) BASIC, a finite set of true open formulas of
arithmetic defining the basic properties of the function and
predicate symbols contained in the language of bounded
arithmetic. See Buss (Buss [86], pg. 30/31) for a list of these 32
formulas.

The different theories of bounded arithmetic are individuated by
their induction axioms. Moreover, some of them contain an axiom
stating that certain functions are total. At this point, we are
ready to introduce the theories relevant in the context of this
paper.

55
These theories have been introduced by Buss [86]. For every i, 512
contains the followmg scheme of induction, called Z -PIND:

A(0) A Vx( A(L-x_|) — A(x)) = VxA(x),
where A is a 2 j—formula (note the unusual form of the
antecedent). The theory most extensively used in Buss [86], and in
fact the only one of the S;-theories mentioned in the remainder of
this paper, is S, .

IAg+ 24
[Ao+Q+ , a system introduced by Paris and Wilkie [87], will be the
leading theory in this paper. In Chapter 2 we use a "generous”
version, which contains, in addition to the BASIC axioms, the
scheme of bounded induction

A(0) A Yx( A(x) = A(SX)) - VxA(x),
where A is a bounded formula.
In this version, IAg+ 1 is the union of the S; (see Buss [86] Thm.
2.11).



The definition of IAg+Q4 given above does not coincide with the
version of Paris-wilkie [87], which we will follow in Chapter 3.
Their language L contains just 0,5,+,- and <; in particular, ## is
not included. The theory 1Aq+ Q¢ as defined by Paris and Wilkie
contains the BASIC axioms for 0,5,+,- and <, but not those in
which = occurs; also, their system only contains induction
axioms over Ag-formulas without . Paris and Wilkie did
however introduce a function w+q defined by

w1(x) = x¥
with a growth rate approximately equal to that of z. The relation
w4¢(x) =y can be expressed by a Ag-formula @ in which 2 does
not occur. Therefore, the axiom Vx3y@(x,y) (called £24), stating
that w4 is total, can be expressed in the #-less language L. Paris
and Wilkie include this axiom in their theory IAq + Q1.
Because 2 grows approximately as slowly as w., we can
conservatively add 2 to the language L, add the extra BASIC
axioms containing #, and allow induction for Ag(#)-formulas;
thus, our name of IAg+4 for the extended system, as we use it
in Chapter 2, is legitimized.
Another difference between Buss and Paris and Wilkie is that the
latter use a different classification of formulas. The R: -
formulas which play an important part in Paris-wilkie [87] define
exactly the same class of predicates as Buss's Zt;-formulas,
namely NP.

IAo+EXP

IAo+EXP is a stronger extension of IAg+ 24 . It contains the axiom
EXP = VxVy3z w(x,y,z), where g is a Apo-formula expressing the
relation x¥ = z (see Pud1dk[83], for such a Ag-formula).

124
124 is the strongest system that could reasonably be called a
theory of bounded arithmetic. Its induction scheme is

A(0) A Vx( A(x) - A(Sx)) - VxA(x),



where A is a Z%—formula. Because 124 proves every primitive
recursive function to be total, IZ4 is sometimes called PRA for
primitive recursive arithmetic.

In order to prove Gdédel's incompleteness theorems for 812, Buss

arithmetizes the usual notions of metamathematics (Buss [86],

Ch. 7). It turns out that all predicates and functions needed can be

At{—defined in 812; moreover, these definitions are intensionally

correct in the sense of Feferman [60], i.e. the usual connections

between these predicates can be proved in 5;. Here follows a list

of some predicates used in the sequel.

Seq(w) < "w encodes a sequence”

Len(w)=a < "if w encodes a sequence, than the length of that
sequence is a; otherwise a=0.,

Term(v) < "v is the Godel number of a term"”

Fmla(v) < "v is the Gddel number of a formula"

Prf(u,v) <> Fmila(v) and "u is the Godel number of an IAg+ 2¢-
proof of the formula or sequent with Godel number
v"

Prfi(u,v) < Fmila(v) and "u is the Gédel number of an Siz-proof of
the formula or sequent with Gédel number v*

Thm(v) & JuPrf(u,v)

Thm'(v) & JuPrfi(u,v)

Instead of the usual numerals SKO of Peano arithmetic, Buss
introduces the canonical term Ix to denote the natural number k. Iy
is defined inductively by:

Ip =0

Iok+q1 =1 +(S0)

Io+1)=(350) - (Ix4+1)
Note that the length of the term Iy is linear in the length of the
binary representation of k (a fact which obviously does not hold
for 5X0). The "shortness" of the canonical terms plays a crucial
réle in the proof of Zt;—completeness.



Buss proves a property even stronger than Eﬂ—completeness for
S; (see Buss [86],Thm. 7.4), but we will follow the usual
definition:

For any Ae 22, with a4,...,a¢ all free variables occurring in A,

there is a term ta(as,...,ax) such that

51k Alar,...,a) — 3w <talar,..,adPrft (w,"Allay,...,Ia) ).
In particular, because Prf!can be At;-(anl:l thus Zﬁ-)defined in 812,
this result implies that the third L6b condition holds for S;_:
53k Thm'("A™) = Thm'("Thm (Irp~)").
It is not difficult to see that all three L6b conditions hold for 8;
and for the extensions we consider. Because we also have Godel's
diagonalization lemma for 512 and its extensions, we can prove
Godel's first and second incompleteness theorems in the usual
way.
5o far, it seems as if 812 and IAo+ Q¢ do not differ greatly from
their stronger extensions IAg+EXP and 1Z4: Lob's provability logic
L is arithmetically sound with respect to all of them. However,
there are considerable differences already between I1Ag+ 24 and
IAo+EXP, especially in the realm of interpretability (see Nelson
[86], Paris and Wilkie[87], Visser [88]).

At this point, we will ramify our remarks about Z-completeness
which we made at the beginning of the introduction.
It is well-known that Z? -completeness is provable in 124, i.e.
If A€ 3, , then I3, F A — Thmyz,("A") , and in fact
IZ1FA > Thmg("A™)
and it is clear that essentially the same proof can be executed in
IAo + EXP, thus we have
If Ae Z? , then TAg+EXP A — Thma . exp (TA™) and
IAg+EXPFA - Thmg(TA") (folklore).
On the other hand, we will prove in Chapter 2 of this paper that:
If NP = co-NP, then
IAg+ 1 ¥ Vb,c (Fa(Prf(a,c) A Yz <a TIPrf(z,b)) —»
Thm("3a(Prf(a,I¢) A Vz<aPrf(z,Ip)™).
Although we haven't yet done so, it seems highly probable that
this result can be strengthened to:



If NP = co-NP, then there are sentences @,y such that
Ao+ ¥ Ja(Prf(a," ") A Vz<a TPrf(z,"y ™)) —
Thm("3a(Prf(a,Irg~) A Vz<a Prf(z,Iry))7),
or abbreviated:
[Ap+Qq ¥ Op<Oy->0O(0O@<0Oy).

As the reader may have noticed, some notions from complexity
theory keep cropping up in this discussion of bounded arithmetic.
In fact, the two areas are so tightly knit together that many open
problems in bounded arithmetic are equivalent to famous open
questions in complexity theory (cf. Krajitek, Pudlak, Takeuti).

At this moment, we will turn our attention to the main problems
considered by us.

Is Rosser's Theorem provable in IAg+ Q¢ ?
Define R by Gddel's diagonalization theorem as follows:
IAp+Q2qFRe3Ja(Prf(a," TR™M)AVYp<aPrf(p,"R™)),
or, abbreviated, as:
IAg+ Q1FReORKOR.
wWe would like to prove the formalized version of Rosser's
theorem in IAg+ 4. Thus, we want to prove for R defined above:
IAg+{H(OR->0OL)A(OR—-0OL).
The usual proof of Rosser's theorem in PA hinges on the fact that
Guaspari and Solovay's logic R~ is sound with respect to PA.
R™ is the extension of L in which the language is augmented with
witness comparison symbols, i.e. binary modalities <,< which
are applicable only to those formulas having O as the principal
connective. Here follows a list of the additional axiom schemata
of R™ over L:

(01) Op - (Oe<Oyw)Vv(Ow<Oe)

(02) Op<x0Oy - O

(03) (Op<OY)A(Oy<0Ox) - (Oe<0OX)

(04) (Op<0Oy) « (Oe<Oy)A 1 (Ow<0Op)

(2) (Oe<0Ow)- O(0Oe<0Oy)

(2) (Oe<0Oyw)-0O(0Oe<0Oy).



The arithmetical analogues of all but one of the principles of R~
can straightforwardly be proved in any theory of bounded
arithmetic from S; upwards. The only principle which presents
difficulties is (). For IAg+EXP and IZ,, we do have the
arithmetical analogue of (Z), and thus we can prove Rosser's
theorem in these stronger systems. However, as we argued before,
it is highly unlikely that Z-completeness could be proved in
IAo+ 2. Therefore, we cannot straightforwardly adapt the usual
proof of Rosser's theorem to the case of IAg+ 2.
One course of action we can take in order to remedy this problem
is to look for a weaker theory than R~ which is arithmetically
sound with respect to IAp + 241 , but can still prove Rosser's
theorem for IAg + Q1 . A subtheory of R™ that comes to mind is 27,
a system introduced by Svejdar [83] in the context of generalized
Rosser sentences. 2~ almost coincides with R™, but instead of
the troublesome Z-completeness axioms it contains the scheme
(5v) O » O(Owx0O¢ - ).
One can think of these axioms as saying that we can prove
reflection (i.e. F Oyw—y) for "very short" proofs. Albert Visser
conceived of the idea to use partial truth predicates (as described
in Pudlék [861,[87]) to prove Svejdar's principle (Sv) in IAg+ Q4.
¥e work out his idea in Chapter 3. As 2~ proves the formalized
version of Rosser's theorem, the result of Chapter 3 implies that
this theorem holds for IAg+ Q1 .

Solovay's first incompleteness theorem and IAg+ Q4

e will make a few remarks about the more difficult- and as yet
not solved- problem of extending Solovay's completeness theorem
to bounded arithmetic. Proofs for some of the remarks can be
found in Verbrugge[88].

In order to state our problem formally, we need one definition.

An interpretation ( )* of the language of modal logic into the
language of IAg + Q¢ is a function which assigns to each modal
formula @ a sentence @* in the language of IAg+ Q41 , and which
satisfies the following requirements:



N(Ly*= 0=1
2) ( )* commutes with the propositional connectives, i.e.
(p-oy)*=@*->y*, etc.
3)(Oe)*=Thm("@*"). (When we consider arithmetical
theories T other than I1Ag + 4, this becomes:
(O@)*=Thmy("@*").)
We are concerned with the question whether the following
statement holds:

For any modal formula ¥,

Fux if and only if IAg+Q4 F X* for every interpretation ( )*.
Or, less formally, is Lob's provability logic L arithmetically sound
and complete with respect to 1A+ ?

One part of the question has already been answered: as every
theory of bounded arithmetic from 812 upwards satisfies LOD's
conditions, L is arithmetically sound with respect to each of
them, and to IAq + 21 in particular.

For the other direction, we will investigate whether we can adapt
Solovay's proof of arithmetical completeness of L with respect to
PA. we assume that the reader is familiar with the method of
proof as described in e.g. Solovay [76] or Smoryfiski [85]. The only
feature of the proof we need at the moment is the following. The
proof uses the theorem stating that if L¥X, then there exists a
finite tree-like Kripke model against X. This model is used to
construct an interpretation ( )* for which PA ¥ x*; the
interpretation in turn is dependent on a specially constructed
function h from IN to the nodes (numbered 1,...,n) of this
countermodel. The fact that certain conditions on the "1imit" 1 of
the function h can be proved in PA (e.g. PAF 1=i - Prov("T11=j"),
if i,j e€{1,...,n} and not iRj), is crucial for the proof that the
interpretation works.

Solovay's proof as he presented it does not make clear how much
of PA is actually needed for the result. Recently however,
Jumelet, following an idea of Franco Montagna and Dick de Jongh,
(de Jongh, Jumelet, Montagna [89]) provided a formalized version
of the proof in which the fixed point theorem is used to construct
sentences which play the r6le of the expressions 1=1i of Solovay's



proof, and whose defining equations exactly mimic the conditions
governing Solovay's function h. (The precise definitions can be
found in Chapter 2 of this paper.) The alternative proof of
Solovay's first completeness theorem shows that for L to be
arithmetically complete with respect to some theory of
arithmetic, it is sufficient that Guaspari and Solovay's logic R~
be sound with respect to the arithmetical theory in question (see
Guaspari-Solovay [79]).

As in the case of Rosser's theorem, the usual proof of Solovay's
completeness theorem can thus be adapted to IAg + EXP and IZ4.
Also, just as before, the unprovability of Z-completeness in
IAo+ 21 prevents adaptation of the proof to the case of I1Ag+ 2.
However, if we use Svejdars principle, we can find a proof of
Solovay's completeness theorem only for a very limited class of
Kripke countermodels (Verbrugge[88]).

10



Chapter 2. Z-completeness and the NP = co-NP problem

In this chapter we will prove that, under the assumption that

NP = co-NP, the following holds:

IAg+ ¢ ¥ Vb,c (a(Prf(a,c) A Vz<a T1Prf(z,b)) —»
Thm("3a(Prf(a,I.) A Vz<a TPrf(z,Ip))™) .

In the proofs of the lemmas leading up to this result we will
frequently, often without mention, make use of the following fact
and its corollary.

2.1 Fact {Buss [86])

Suppose A is a closed, bounded formula in the language of S;, and
let R be a consistent theory extending S;.

Then RFA iff NEA.

2.2. Corollary (Buss [86], Prop. 8.3)

Suppose Al @) is a bounded formula in the language of Sé,and let R
be a consistent theory extending S;.

If REFVXA(X), then NEV X A(Y).

In order to prove the main theorem of this chapter, we need to
prove a few seemingly far-fetched lemmas. Their proofs borrow
heavily from the formalization carried out in Buss. To make these
lemmas understandable, we will go a little bit more into the
formalization of the predicate Prf than we did in the introduction.
Buss uses a sequent calculus akin to Takeuti's (see Takeuti [75]),
and considers a proof to be formalized as a tree, of which the root
corresponds to the end sequent, and the leaves to the initial
sequents of the proof. Every node of the proof tree is labeled by an
ordered pair <a,b>. The second member of this pair codes a
sequent, and the first member codes the rule of inference by
which this sequent has been derived from the sequents
corresponding to the sons of the node in question (for leaves, the
first member of the corresponding ordered pair codes the axiom of
which the initial sequent is an instantiation).

11



The only extra fact we need here is that logical axioms are all
numbered O; in particular, for all terms t, the tree containing just
one node labeled <0," - t=t"> is a proof for —» t=t. Because of a
peculiarity in the encoding of trees, by which 0 and 1 are reserved
as codes for brackets, the proof just mentioned is encoded by
<0," »t=t">+2

In the sequel, we will sometimes abuse Buss's conventions in
order to keep the formulas legible. Thus, we will write

<0, " > Ig=I4"> for <O, (OxArrow )xx(" I3 xEquals )xx "I147 > +2.

2.3. Definition.
Let yw(d,b) be the formula
Vz<£<0," »Iq=14"> TPrf(z,b).

2.4. Lemma.
The predicate represented by ¢ is co-NP complete.

Proof.

Straightforwardly, g is a ﬂ?—formula, hence it represents a co-NP
predicate (Buss [86]1, Thm. 1.8)

For the other side, viz. co-NP hardness, begin by supposing
Alaq,...,a) € 113. By Zq-completeness (see Ch. 1, pg. S or Buss[86],
theorem 7.4), there is a term r( @) such that

1Ag+ 1 FTA(TE) » 32<r(7) Pri(z,” TA(Iay,....,1a) "),

and thus

NETA(E) > 3z <r(7) Pri(z,” TA(lay,....,Ia) 7).

Because r(@) < "Ixz)” < <0,"—>Inz)=In7)">, we also have
(1)NE TA(E) > 32 <<0," > I(7)= Inz) OPri(z,” TAlay,..,Ia) ™).
On the other hand,

(2YNE3Iz <0, " = Iz7)=I(7) >Prf(z,” "IA(Ia1,...,Iak)-') — AT );
this follows by the consistency of IAg+Q¢ from Fact 2.1.

From (1) and (2), we conclude that

NEA(T ) e VZ <<0," = Iz = Iz) "> Pri(z,” TA(Lay ..., Ia) ™).
This means by the definition of g that

NEA(T) & yl r(?),"‘lA(Ia1,...,Iak)") .

12
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As both " T1A(Iay,..,Ia,)" and r(@ ) can be computed from @ by
polynomial time functions, we have reduced the co-NP predicate

Atoy. X
2.5. Lemma.

Let B(a,,...,ax) be a Trb1-formula representing a co-NP complete
predicate.

IT NP = co-NP, then
IAg+ Q2 ¥V @IB(3)> Thm(" B(Ia1, ,Iak) )]

Proof.

(The proof of this theorem is similar to a part of the proof of
theorem 8.6 of Buss.)

ouppose NP = co-NP, and suppose

Ao+ FV @[B(@)— Thm("B(lay,..,Ia) ™)1

Then by Parikh's theorem, there is a term t( 2 ) such that
IAO+Q1 I—V [B( )-3Iw K t( YPri(w, rB(Ia1, ,Iak) )]
By corollary 2.2,

NEVYZIB(Z)—-3w<t(T)Pri(w, B(lay,..,Ia)™)]

On the other hand, by fact 2.1, we have the other direction:
NE V3 [3w <t( @)Prf(w,"B(la,,...,Ia) ") = B( )]

Therefore we have shown that our co-NP complete predicate
B( @) can be represented by a Zt;—formula, and thus belongs to
NP, contradicting the assumption that NP = co-NP. X

2.6. Lemma.

If NP = co-NP, then

[Ap+2q ¥ VbVdIVz <<0, "> Ig=I4" >Prf(z,b)
> Thm("Vz <I¢o ro 192107 > Prf(z,1) "]

Proof.
Directly from Lemma 2.4 and Lemma 2.5. X
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2.7. Lemma.
IAg+Qq FVbVd Thm(™3a(Prf(a,Ir L 1g=14a") A VZ <a TPrf(z,Ip) ")) —
Thm("Vz < Lo, r o 19167 TPrf(Z,Ip) ™M1

Proof.

It is not difficult to see that for Buss's formalization of Prf, we

have the following:

IAg+Q2q FVdValPrf(a,"—» Ig=1Ig")—>a><0, "> Ia=14">1,

and thus

IAog+ 21 F VbVd[3a(Prf(a,”" = Ig=14") A Vz<a TPrf(z,b)) -
Vz <<0, "> Ig=14">Prf(z,b)l

This in turn immediately implies

IAg+ Q1 F VbVdI Thm("3a(Prf(a,Ir L 4=14") A VZ < a TPrf(z,Ip) ")) >
Thm("Vz <I¢o, r 5 19=147> TPrf(z,I5)")]. X

2.8. Theorem.

IT NP = co-NP, then

IAo+ 21 ¥ Vb,c (Ja(Prf(a,c) A Vz<a TPrf(z,b)) —
Thm("3a(Prf(a,ls) A Vz<aPrf(z,Ip))™)).

Proof.

Suppose that NP = co-NP, and suppose, in order to derive a

contradiction, that

IAp+ Q1 F Vb,c (Fa(Prf(a,c) A Vz<a TPrf(z,b)) -
Thm("3a(Prf(a,ls) A Vz <aPrf(z,Ip)™)).

Then, in particular,

(1) TApg+Q1EVb,d[Prf(<0," > Ig=I4">,"=Ig=Ig")A
Vz<<0, "> Ig=14"> Prf(z,b) -
Thm(™3a(Prf(a,Ir L 14=14") A YZ <aPrf(z,Ip)) ")

we know that

IAg+ Q21 YA [Prf(<0, "= Ig=I3">, "= Ig=14" )1

Combined with (1), this implies

[Ag+Qq FVb,d [Vz<<0, "— Ig=I4"> Prf(z,b) -»

Thm("3a(Prf(a,Ir ,19=14") A YZ <aPrf(z,15)) ™)1
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Now we apply Lemma 2.7 to derive
IAg+ Q1 FVb,d[Vz<<0, "> Ig=Iq"> TPrf(z,b) »
Thm("Vz < I<o, 7> 19=1a"> Pri(z,Ip) )],
in contradiction with Lemma 2.6. X

wWe can prove that provable 21—completeness fails already for a
much simpler 1T -formula x(a,b,c) defined as

Vx<cVy < c(ax2 + bysc).

For the proof of this fact, we use the following lemma, which was
pointed out to us by A. Wilkie.

2.9. Lemma. (Manders-Adelman[781)
The set of equations of the form ax2 + by=c (a,b,ceN o), solvable
in natural numbers, is NP-complete.

Note that this result means that the formula

< c3y <cl(ax2 + by=c) represents an NP-complete predicate, and
thus that X as defined above represents a co-NP complete
predicate.

2.10. Theorem.
If NP = co-NP, then
[Ap+ 21 #Va,b,c[Vx<cVy <clax2 + by=c)—
Thm("Vx < I VY <Ic(Iax2 + Ihy=1:)")]

Proof.
Directly from Lemma 2.9 and Lemma 2.5. X



Chapter 3. Evejdar's principle is provable in IAg + 1

In this chapter, we will present a proof of the fact that IAg+ Q24

proves Svejdar's principle, i.e. for all @,y:

[Ag+QqFThm("@™")—
Thm("3a(Prf(a,"y " )AVz<aPrf(z,"@™"))—>wy™"), in this

chapter abbreviated as IAg+Q2¢ FO@ - O(Op<O@ - y).

The idea of the proof is Albert Visser's. In the proof, we will use
the existence of a partial truth (or satisfaction) predicate Sat,
for formulas of length < n. The intended meaning of Sat,(x,w)
will be "the formula of length < n with G6del number x is
satisfied by the assignment sequence coded by w". Similarly, we
will need a predicate Sat, o with as intended meaning: " the Ag-
formula of length < n with Gddel number x is satisfied by the
assignment sequence coded by w".

Pudlék [86] has constructed partial truth predicates much like the
ones we need . (An analogous construction, where Sat, is related
to quantifier depth instead of length, can be found in Pudlak [87].)
In order to be able to adapt his construction, we need a few more
assumptions and definitions.

First of all, when formalizing, we view IAg+¢ in a restricted
way more akin to Paris and Wilkie [87] than to Buss [86]. Thus,
our language contains symbols O, 5, +, -, but not 2. Additionally,
it contains relation symbols = and <, logical symbols 71, -, &
and V, and variables vq,vs,,... . (The at first sight superfluous
appearance of < will be explained in the proof of Lemma 3.6.)
With regard to logical axioms, we will use a Hilbert-type system
as in Paris and Wilkie [87], including extra axioms to relate & to
— and 7. As non-logical axioms we will consider a set
containing: a finite number of open formulas defining the basic
properties of the function and predicate symbols of the language;
a formula VxVy3ze(x,y,z), where @ is the Ag-formula properly
expressing the relation x#y=z; and finally the scheme of
induction for Ag-formulas.
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For this adapted system, we can define the appropriate /_\.D1—
predicates Term(v), Fmla(v), Sentence(v), Prf(u,v) as in S, , using
Buss's Godel numbering.

In this chapter, we denote concatenation of sequences sloppily by
juxtaposition, and we leave out some outer parentheses; thus, for
example, y" — "z stands for Buss's

(OxLParen )=x(y= Implies )xx(zxRParen ).

3.1. Definition.
w=iw = Vt{t <Len(w)At=i- p(t,w)=p(t,w'")) (where p(t,w)
denotes the t-th value of the sequence coded by w)

Fmilap(v) ="v is the Gddel number of a formula of length < n" i.e.
Fmla(v) A Len(v) <n

Fmilap a(v) ="v is the Gddel number of a Ag-formula of length
<n"

Evalseq(w,x) = Seq(w) A (Fmla(x) v Term(x)) A
Yi("the variable v;occurs in the term or formula
with Gédel number x"— Len(w)> i)

wWe can, by the method of p-inductive definitions, define a
function Val such that, if t(viq,...,vi,) is a term of the (restricted)
language of IAg+ Q4 and w codes a sequence evaluating all
variables vi,,...,vi, appearing in t, then Val("t",w) gives the value
of t(Bliq,w),...,Blin,W)).

3.2. Definition.
Let Val satisfy the following conditions:

T Term(t) v TEvalseq(w,t) — Val(t,w)=0
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Term(t,w) A Evalseq(w,x) —
(t="0" AVal(t)=0)Vv
Ji(t="v;" A Val(t,w)=p(i,w)) Vv
3t43t(Term(tq) A Term(to) A
((t="5"t A Val(t,w)=5(Val(t,,w))) Vv
(t=t4"+7"to A Val(t,w)=Val(t,,w) + Val(t,,w)) v
(t=t1r.1t2 A Val(t,w)=Val(t1,w).Val(tg,w))))

By induction, we can show that tsw will be a bound for Val(t,w).
Thus, by Theorem ?2.3 of Buss[861, Val is 3;-definable in Sy;
furthermore, the definition of Val in 512 is intensionally correct in
that properties of Val can be proved in 812 (and thus also in
[IAo+£21) by the use of induction.

In the sequel, we will freely make use of induction for Ag(Val)-
formulas in I1Ag+Q4, as is justified by the I1Ap+ 2¢-analogues of
Buss's Theorem 2.2 and Corollary 2.3.

We will especially need the following lemma.

3.3. Lemma.
If t is a term with free variables among viq,...,Vip, , then
[Ap+Q1FEvalseq(w, "t )—-Val("t™, w)=tI[p(i,w),...,Blim, W)

Proof.
Straightforward by induction on the build up of t.

3.4. Definition.

s(i,t,w) = (Subseq(w,1,i)xVal(t,w))=xSubseq(w,i+1,Len(w)+1)
Thus, if w is a sequence of length> i, s(i,t,w) denotes the
sequence which is identical to w, except that Val(t,w) appears in
the i-th place.

3.9. Definition.

We say that Sat,(x,w) is a ial definition of tr formulas
of length < nin IAg+ Q4 iff



IAg+ 21 F Fmlan(x) A Evalseq(w,x) = { Sat(x,w) «
[Tttt <x(Term(t)ATerm(t YA x=t"="t" A Val(t,w)=Val(t' w))v
it <x(Term(t)ATerm(t)Aax=t" < "t'Aval(t,w) < Val(t',w))v
<x(x="71"y A T1Satply,w)) Vv
Ey z <x(x=y" > "z A(Satp(y,w)—> Saty(z,w)))V
Jy,z < x(x=y" & "z A(Satp(y,w)e Satp(z,w)))v
Jy,i <x(x="Vv;"y AVw'(w=;w'> Satp(y,w))v
Jy,i,t <x(Term(t)Aax="(Vv;<t") 'y A
Vw' <s(i,t,w)(w=;w'AB(i,w) < Val(t,w)- Sat,(y,w))]}
We denote the part between brackets [] on the right hand side of
the equivalence by Z(Satn,x,w); note that these are just Tarski's
conditions.

Similarly, we say that Sat, a(x,w) is a_partial definition of truth
for Ao-formulas of length < nin IAg+ Q4 iff
IAo+ 21 F Fmlay a(x) A Evalseq(w,x) = {Saty alx,w) &

[3t,t' <x(Term(t)ATerm(t')A x=t"="t' A Val(t,w)=Val(t' w))v

Ittt <x(Term(t)ATerm(t)Aax=t" < "t'AVal(t,w) < Val(t',w))v

<x(x="7T1"y A T13aty aly,w)) V

Ely z < x(x=y" > "z A(Saty aly,w)—>Satpalz,w)))V

Jy,z <x(x=y" & "z A(Satp aly,w)e Satpalz,wl)V

Jy,i,t <x(Term(t)Aax="(Vv;<t7) 'y A

Vw' <s(i,t,w)(w=;w' AB(i,w) < Val(t,w)- Sat, aly,w)IN]}
we denote the part between brackets [] on the right hand side of
the equivalence by Za(Saty a,x,w). Note that the only difference
between Z(Satp,x,w) and Za(Saty a,x,w) is that in the latter the
disjunct for the unbounded quantifier V is left out.

In the proof of the main theorem of this chapter, we will reason
inside IAg+ 4, and we will need the existence of Gddel numbers
standing for formulas 3at, that provably satisfy the conditions of
the preceding definition.

Therefore, in the proofs below, which are given in an
unformalized way, we take care that the formulas Sat, and the
proofs that they have the right properties be bounded by suitable
terms. The following lemmas provide us with such formulas.
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Pudidk [86] proves similar lemmas for a language without
function symbols; cf. also Pudldk [87]. Below, we sketch the
adaptation of his method to our case. The paraliel construction of
a Ao(Val)-formula Sat, o which works for Ag-formulas is peculiar
to this paper. We use the formula Sat, A only in our proof that Sat,
preserves the Ag-induction axioms, but there its use is essential.

3.6. Lemma

There exist formulas Satny(x,w) for n=0,1,2,... of lengths linear in
n, and such that I1Ag+ Q4 proves by a proof of length linear in n
that Satn+1(x,w) & Z(Satn,x,w).

Proof.
Satp is constructed by recursion. We can define Sato arbitrarily,
as there are no formulas of length < 0. If we have the formula
Saty, we obtain Saty.q by substituting Saty for Sat, in the formula
2(Sat,,x,w) defined above.
Remember that we have to ensure that the length of the formula
Satn grows only linearly in n. However, if we straightforwardly
used 2 as defined above, the length of 3at, would grow
exponentially in n, as 2(Sat,,x,w) contains more than one
occurrence of 3aty.
Therefore, we use a general technique described in Ferrante -
Rackoff [?9, Chapter 7] to replace Z(Sat,,x,w) by a formula
2'(Satn,x,w) equivalent to X(Sat,,x,w) in predicate logic, which
contains only one occurrence of Sat,. (In our case, we actually
need a little bit more than predicate logic, e.g. we need 30=0;
this is so because we want to take care that all newly introduced
bound quantifiers are bounded by the term 30, in contrast to
Ferrante-Rackoff. We assume in the sequel that all proofs of
Ferrante-Rackoff are adapted to the bounded quantifier case.) The
idea behind the technique can be exhibited by a simple example.
Suppose we want to find an equivalent with only one occurrence
of Sat, for the following formula:

Satn(u,w) A T1Sat,(v,w).
This formula is easily seen to be equivalent to
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3y1,y1'.y2.y2 <S0((y1=y1" Aya=y2) A
(y1=y1' « Satp(u,w)) A (ya=y2' & Satylv,w))),
which formula we can in turn replace by
(=) 3y1,y1',y2,y2' <80((y1=y1' Aya=y2) A
Yy, y' €£80,Vzq,z2 <max(u,v,w)
(((y=y1AY'=y1'AZ1=UAZ2=W)V
(Yy=Y2AY'=Y2' AZ1=V AZ2=W)) >
(y=y' & Satn(z1,22)))
Notice that we have introduced eight new bound variables (namely
y1,¥Y1,Y2.Y2'.Y,Y',21,22) in the construction of the formula (x)
containing only one occurrence of Sat,. At first sight, it may seem
that we have to introduce new bound variables at every step from
Satn(x,w) to =(Sat,,x,w) in order to avoid clashes of variables.
However, if we introduced new variables at every step from
Satn(x,w) to Z(Saty,,x,w), then the length of Sat, would be at least
of the order of n.2logn, because the length of variables increases
as “logn. Let's 1ook at an example to see how we can be thrifty and
“recycle” our bound variables.
If Juav(x) were our >(Sat,,x,w), we would have to substitute
Satk(zq,z,) in constructing Saty.q from Saty. Suppose, still as an
example, that for a certain k 3Saty is the formula
Vz1Vzo(z1 <xV za<w). By the usual methods, we would have to
take an alphabetical variant of Saty in which z4,z2 are free for x,w
in order to be able to use the substitution instance Sat.(z¢,z2).
However, we use an economical technique from Ferrante-
Rackoff[?79, Chapter 7], taking for Saty(z,,z2) in the example above
the formula VxVwi(x <z, VvV w <2zp).
More general, we substitute, instead of Satx(z4,z2), the logically
equivalent formula Saty 21.22%W (x,w), obtained by replacing all
free and bound occurrences of z4, resp. z;, by x, resp. w, and vice
versa. In this way, clashes of variables are avoided without
introducing new bound variables. Thus, the only variables that
will occur (free or bound) in any of the alternative Sat,'s are
X,W,U,V,Y1,Y1,Y2,Y2.Y.Y',21,22 and the variables occurring in Satg

21



22

Remark. Perhaps surprisingly, the above proof uses the inclusion
of « in the language in an essential way. There is no way to
rewrite the formula («) in such a way that < is replaced by an
equivalent using only —,71, and such that Sat, still appears only
once.

We will write Z'(Sat,,x,w) for the equivalent of Z(Satp,x,w)
resulting from an application of the techniques described above.
The 1ength of Sat, thus constructed via iterated application of 3'
to Sato is indeed linear in n (see Ferrante-Rackoff[79, Chapter
71); moreover, for all n, the shape of the proof of

>(Sat,,x,w) & Z'(Sat,,x,w) is the same. Thus, the proofs of
2(9aty,x,w) & Z'(Sat,,x,w) grow linearly in n. Hence, as
Satn+1(x,w) =3'(Sat,,x,w), we have

(A) 1A+ F Sath.1(x,w) & 3(Sat,,x,w) by a proof of length
linear in n. X

3.7. Lemma.

IAo+ 4 proves by a proof of length of the order of n? that the
formula Satn(x,w) as constructed in Lemma 3.6 is a partial
definition of truth for formulas of length < n.

Proof.

we want to prove that Sat, is a partial definition of truth for
formulas of length < n in IAg+ 24, i.e. that

[Ao+ 21 FFmlan(x)AEvalseq(w,x)— (Sat,(x,w) e Z(Sat,,x,w)).

By (A) above (in the proof of Lemma 3.6), it suffices to show that
Ao+ 21F Fmlan(x) AEvalseq(w,x) = (Satn(x,w) e Satn+1(x,w))

by a proof of length of the order of n2.

This can be proved by induction on n (see Pudlék [86]). In fact,
when we define

d, = VXV w(Fmlan(x)AEvalseq(w,x)— (Satn(x,w) e Sat.+1(x,w))),
the length of the proofs of &, —» &,.1 inIAg+ Q1 will have a shape
which does not depend on n. This will be elucidated by an example.
Suppose we want to prove IAg+ Q4 F &, > &,.1. We reason inside
IAo+ 4, and we assume &,, Fmlan.1(x) and Evalseq(w,x).



Now we have to show that Sat,.q(x,w)e Saty.o(x,w). By (A) above,
we have proofs of 1length linear in n of

(1.a) Saty+q(x,w)e 2(Sat,,x,w) and

(1.b) Satnp+2(x,w)e Z(Satp.q1,x,w).

Thus, we can proceed by distinguishing the cases.

Atomic formulas provide no difficulties.

If x=y"—> "z we reason as follows. By (1.a) and (1.b) we have
proofs of length linear in n of

(2.a) Satp+1(x,w) & (Satn(y,w) — Satn(z,w)) and

(2.b) Satn.+2(x,w) & (Satn.(y,w) = Satn.q(z,w)).

Because Fmlan+¢(x) and Evalseq(w,x), we have Fmlan(y), Fmlan(z),
Evalseq(w,y) and Evalseq(w,z). Therefore, we may apply &, twice
to conclude

(3.a) Satn(y,w) & Satp.q(y,w) and

(3.b) Satn(z,w) & Satn.q(z,w).

Combining (2) and (3), we see that the right hand sides of (2) are
equivalent, and thus the 1eft hand sides are equivalent as well.

The other cases are analogous. We can observe that every proof in
IAog+ 21 of &, —» &4 is really the instantiation of a single proof
scheme; Thus, the length of the proofs of &, —» &,.¢ increases only
linearly in n, so that the length of the proof of
VxVw(Fmlan(x)AEvalseq(w,x)— (Sat,(x,w) & Satp+1(x,w)))

in IAg+ 4 is of the order n2. ]

3.8. Lemma.

There exist formulas Sat, a(x,w) for n=0,1,2,... of lengths linear
in n, and such that IAy+Q1 proves by a proof of length linear inn
that Satn+q a(x,w) & 3a(3aty a,x,w). The resulting formulas
Satn alx,w) are Ag(Val)-formulas.

Proof.

Completely analogous to the proof of Lemma 3.6. Because
>a(Satp A,x,w) contains only bounded quantifiers, and because all
bound quantifiers introduced by the Ferrante-Rackoff method are
bounded as well, the resulting formulas are indeed Agp-Val.
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3.9. Lemma.

IAo+ 2, proves by a proof of length of the order of n? that the
formula Sat, a(x,w) as constructed in Lemma 3.8 is a partial
definition of truth for Apg-formulas of length < n.

Proof.
We adapt the proof of Lemma 3.7, incorporating the fact that we
are concerned with Ag-formulas only. Thus instead of &,, we
define
Bp A= VXV W(Fmlap a(x)AEvalseq(w,x) —

(Satn a(x,w) & Satn.q alx,w))).
The proof of @, A— ®n+1,A runs along the same lines as the proof of
&,— ®p.q, Using the extra fact that if x=y"— "z and Fmlap.q,a(x),
then Fmlap A(y) and Fmlap a(2), etc. X

we now show that the partial definition of truth can be proven to
be really a partial truth definition in the standard sense, by
proofs of quadratic length.

3.10. Lemma (cf. Pudlak [861,[87])
There exists a constant K such that for every formula @ with free
variables among viy,...,Vip, and for every n with Len("@™) < n:
a) IAp+Qq FVw(Evalseq(w, @) -
(Satp("@7,w) & @[B(i1,w),...,Blim,w)])
by a proof of length < K.n2.
b) Moreover, if @ is a Ap-formula, we also have
Ao+ Q1 F Vw(Evalseq(w, @) -
(Satna("@7,w) & @[p(i1,w),... Blim,w)]))
by a proof of length < K.n2

Proof.
By cases. If @ is an atomic formula t <t' of length <n and with
free variables among viq,...,Viy,, Lemma 3.3.1 gives
IAg+Qq F Vw(Evalseq(w,"t <t'") -

(Satp("t <t'7,w) & Val("t7,w) <Val("t' 7 ,w))
by a proof of length linear in n. By Lemma 3.3, we can then
conclude that
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IAo+ 2q F Vw(Evalseq(w, "t <t'") -
(Satn("t <t'7,w) e t <UIRGI,W),...,Blim, WD)
by a proof of length linear in n. Similarly if @ is t=t".
For the non-atomic cases, we define
T (p)=Vw(Evalseq(w, "y ) —
(Sat("y 7, w) o wlplig,w),...,Blim,w)).
Every formula @ of length <n is built up from atomic formulas in
at most n steps. Therefore, if we can prove by proofs of length
linear in k that

Pr-1(w) - T(Ty) if Len(" g ™") <Kk

P (WAT (X)) > T ly—>X) if Len("yp-x") <Kk
T 1 (PAPy-1(X) > Py o X) if Len("l.|J<—>x")<k

T (@) » Tp(Vviy) if Len("Vvijp ') <
T-1(g) = P ((Vvi < )y) if Len("(Vv; < t)l.|J )<

then we have for every formula @ of length <n a proof of Po(p)
of length of the order of n2?, and we are done.
We will give the proof for the first case only; the other three are
proved in a similar way.
Suppose Fmlay(Ty)AEvalseq(w,” 7y ™), and suppose Ty-1(y). By
Lemma 3.6, we have a proof of length linear in k of
(1) Evalseq(w,” g ") > (Sat(" 97, w) & T1Sat-(Tw T, w)).
Because Evalseq(w,” 77y ")—Evalseq{w, "y "), we have, by By_¢(y),
(2) Evalseq(w,” g )= (18at-1("y ", w)e PR, w),...,Blim,wW)D).
Combining (1) and (2), we have a proof of length linear in k of
Vw(Evalseq(w," ¢y ")—

(Sat (" g7 w)e Tlplig,w),... Blim,w)]), ie. B (Ty). K

3.11. Lemma.
IAg+ Q¢ proves by a proof of length of the order of n? that Sat,
preserves the logical rules (Modus Ponens and Generalization) for
formulas of length <n, i.e.
IAp+Q1FFmlap(y™ — "z)AEvalseq(w,y™ — "z)ASatn(y,w)A
Satn(y™ > "z,w)—> Saty(z,w)

IAo+Qq1FFmlay(" Vv y)AEvalseq(w, Vv y)A

Vw'(w=;w'-> Satn(y,w'))—> Sat,("Vv; y,w)



Proof.
Immediately from Lemma 3.7. X

3.12. Lemma.

IAo+ 1 proves by a proof of length of the order of n? that Sat,

preserves the logical axioms and the equality axioms for formulas

of length <n, e.g. axiom scheme (1) of Paris-Wilkie[871:

(1)IA0+Q1Flean(y'—>(“z"—>"y")")/\
Evalseq(w,y" = (72" > "y")")-
Satply" = ("z"->"y")",w)

Similarly for the other propositional axiom schemes (2) and (3)

and the extra axioms relating & to — and 7.

Corresponding to axiom schemes (4), (5) and (6) we have:

(DIAg+ QFFmlap("Vv; y— Subly,"vi",t))A
Evalseq(w,"Vv; y—- Sub(y,"v;",t)ASubOK(y, v ,t)—
Satn("Vv; y—Subly,"v;7,t),w)

(where SubOK(y,"v;",t) is Buss's formalization of "the term with

G6del number t is free for the variable v; in the (term or) formula

with Gédel number y")

(S)Ag+ QqFFmlap("Vvi("y" = "z") - Ty "5V z") M)A

Evalseq(w,"Vvi("y" = "z" )= (Ty" > Vv;7z") M)A

"vijdoes not appear free in the formula with Godel
number y"—
Satp("Vvi(Cy" 572 ) (Ty" Vv "z") T, w).

(6)IAo+ QqFFmilan(v,™ ="vq)AEvalseq(w,v1™="vq)—>Saty(v " ="vq,w)

and
IA0+Q1I—lean(vi"="vj"—>("y"—>"z")")/\

Evalseq(w,vi"="v;" > (Ty" = "2")")A
SubOK(y, v, vy )ASomesub(z,y,"vi7,"vi )=
Satp(vi"="v;" =Ty ">"2")",w)

(where Somesub(z,y,"v;7,"v;") is the formalization of "the

formula with G6édel number z is the result of substituting the

term v; for some of the occurrences of v; in the formula with

Godel number y")
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Proof.
For the propositional axiom schemes (1),(2) and (3) and the extra
ones, the results follow almost immediately from Lemma 3.7.
For (4), we need proofs in IAg+ 4 of length of the order of n? of
Fmlan("Vv; y— Sub(y,"vi " ,t))A
Evalseq(w," Vv y— Sub(y,"v;",t)ASubOK(y, "v; " ,t)—
Satn(Subly,"vi",t),w)e Sat,(y,s(i,t,w))
("Call by name / call by value"). This can be proved by induction on
n, in a way similar to the proofs of Lemma 3.7. The rest of (4)
then follows by Lemma 3.7 itself.
For (5), we need proofs in IAg+$24 of length of the order of n? of
Fmlap("Vvi('y" > 72" )Ty "> Vvi"z") M)A
Evalseq(w, " Vvi(y "= 7z") = (Ty" 5 Vv;"z") M)A
"vijdoes not appear free in the formula with G6édel number y"A
w=iw'—>[3aty(y,w) e Sat,(y,w)l
This can also be proved by induction on n; again, the rest of (5)
follows by Lemma 3.7.
The first equality axiom of (6) is proved immediately by Lemma
3.7. The second one has a proof similar to that of (4). X

3.13. Lemma.

IAg+ Q2 proves by a proof of length of the order of n? that Sat,

preserves the basic non-logical axioms for formulas of length

<n, e.q.

[Apg+Q1FFmMlan("0 < 0A 180 <07 )AEvalseq(w,"0 <0AT1S0<L0™)
—3at ("0 <0ATIS0<07).

Similarly for the other 5 basic axioms relating the symbols

0,3, +,- and <of the language.

Proof.
Immediately by Lemma 3.7 and Lemma 3.3. X

3.14. Lemma.

IAo+ 2 proves by a proof of length of the order of n? that Satn A
agrees with Sat, on Ag-formulas of length <n, i.e.

IAg+Q FFmilapa(x)AEvalseq(w,x)—[Sat, al(x,w) e Satn(x,w)]



Proof.

By induction on n as in the proof of Lemma 3.9. Here, we take
B,=VxVw(Fmilan a(x)AEvalseq(w,x) - (Satp alx,w) & Satp(x,w))).
As in Lemma 3.3.2.a.,, we use the fact that if x=y"—> "z and
Fmlap+q,a(x), then Fmlap A(y) and Fmlap aA(2), etc. X

3.15. Definition.

s*(i,x,w) = (Subseq(w,1,i)=x)==Subseq(w,i+1,Len(w)+1)

Thus, if w is a sequence of length> i, s*(i,x,w) denotes the
sequence which is identical to w, except that x appears in the i-th
place (cf. Definition 3.4.).

3.16. Lemma.

IAo+ 2 proves by a proof of length of the order of n? that Sat,
preserves the A,-induction axioms of length <n, i.e.

IAg+ Q1|—Fm]aA(Y)A

Fmlan(Sub(y, v, 7,0)" AWV ("y"™ = "Sub(y, v, 7,8v¢)")- Vv, Ty)A
Evalseqg(w,Sub(y,"v,7,0)" AVv("y" = "Subly,"v17,3v¢)" ) Vv y)—>
Satn(Subly,"v,7,0)" AVV("y"™ = "Subly,"v,7,5v¢) ) > Vv, Ty, w).

Proof.

We work in IAg+ 4 and assume

Fmlaa(y)A
Fmlan(Sub(y,"v,7,0)" AWV (Ty" - "Sub(y, v, 7,5v1)" )= Vv Ty)A
Evalseq(w,Sub(y,"v,7,0)" AVv4("y"™ = "Sub(y, v, 7,3v¢)" ) > Vv y).

Because Sat, is a partial satisfaction predicate for formulas of
length <n, we can, using a proof of length of the order of n2, prove
that Sat,(Sub(y,"v,7,0)" AWV (Ty" = "Subly, v, 7,8v)" )= Vv, ly) is
equivalent to the following formula:

Satn(Subly,"v,7,0),w)A

Vw'(w'=1w— (Saty(y,w')— Sat,(Subly, v, 7,5v¢),w')))—>
Vw'(w'=,w— Sat,(y,w")).

This formula in turn is equivalent to:

Satp(Subly,"v4,7,0),w)A
Vx(Satn(y,s*(1,x,w))— Satn(Subly, "v,7,5v¢),8%(1,x,w)))—

Vx Satn(y,s*(1,x,w)),
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where s*(1,x,w) is as defined in Definition 3.15.

This last formula is then, by a proof of length of the order of n2 of
a call by name / call by value lemma analogous to the one proved
in Lemma 3.12(4), equivalent to:

Satn(y,s*(1,0,w))AVx(Satp(y, s*(1,x,w))— Sat,ly,s*(1,5x,w)))—>
Vx(Satn(y,s*(1,x,w)).

This 1ooks almost like an instance of induction. However, because
Satp is not Ag, we replace it by its Ag(Val)-equivalent Saty A, as
is allowed by Lemma 3.14 and the assumption Fmlaa(y), and we
obtain the equivalent formula

Satn,aly,s*(1,0,w))A

Vx(3atp aly, s*(1,x,w))— Satp aly,s*(1,5x,w))—>

Vx(Saty aly,s*(1,x,w)).

As a true instance of Ag(Val)-induction, the formula above is at
last provable from the assumptions. X

Now that we have the partial truth predicates in hand, we can
proceed with the proof proper of the main theorem of this chapter.
we need only a few more definitions and lemmas.

3.17. Definition.

An IAg+ Q4 -cut is a formula J which defines a set of natural
numbers such that

[Ag+ Qq FJO)AVYVZ(JZ)AY <z > Jy)) AVY(Jly) - J(Sy)).
Sometimes we will write xed for J(x) and K& J for

IAg+ 21 F VX(K(x) = J(x))

3.18. Lemma (Shortening lemma, Solovay).

Every IAo+S¢-cut can be closed under addition and multiplication,
i.e, if Jisan IAg+S2+-cut, then there is an IAg+24-cut K such that
IAg+ Q1 F Vy(K(y) - Jy)AVYVz(K(y)AK(Z) = K(y+Z)AK(y-Z))

Proof.

Define P(y)= Vz(J(z)— J(y+2)), and subsequently

K(y)= Vz(P(z)—>P(y-z)).

It is easy to verify that K is a cut closed under addition and
multiplication. X



3.19. Lemma (Paris-wilkie, Pudlék)

If K is an I1Ag+Qq-initial segment, i.e. if

IAg+ Q1 FK0)AVYVz(K(y)AK(Z) > K(Sy)AK(y+2z)AK(y-2)), then
IAO+ Q1 FYx Thm('K()’()"),

where X stands for the "efficient numeral” Iy defined on page 5
(we change notation to improve ease of reading).

Proof.

The complete proof can be found in Kalsbeek[89, Lemma 4.5].
Essentially, in the proof of K(kX), we follow the [x| steps it takes
to build x from 0. At every step, we instantiate either the proof of
Vy(K(y)—>K(Sy)) or the proof of Vy(K(y)—>K(530y)) with the
appropriate efficient numeral. By using Modus Ponens a total of |xl
times, we derive K(x). The length of the proof can be bounded by a
polynomial in [x|.

(Remark: in this case, the proof will be of length of the order Ix|2.
In the formalized context in which we will use the result, the
length of the formula K and the length of the proofs of
Vy(K(y)—=K(Sy)) and Vy(K(y)—-K(S50y)) also play a part in the
computation of the length of the total proof, thereby making the
length of the total proof of the order Ix|S.) [

3.20. Definition.
Priy(u,"Xx") ="u codes a proof of X in IAg+ Q4 involving only
formulas of length < v".

3.21. Lemma.
IAo+ QY Thm("Vy < % (Prily," @ " ) e Prigly, @ " )™)

Proof.
A formalization of the following observation: if a formula v
occurs in a proof y where y <x, then Len(v) <Ivl <Ixl. X

3.22. Theorem.
For all sentences @:
IAo+QFVXx Thm("Vy < (Pri(y,"@ ") - @)™)
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Proof.

By Lemma 3.21, it suffices to prove

IAg+ Q1 VX Thm("Vy <k (Prigly,"@")>@)")

We reason inside IAg+ 21, and we take an x.

The idea behind the proof is to find a Goédel number Ky standing for
a formalized "Thm-initial segment” such that we have
Thm(Ky(X)" > Vy <k (Pri(y,"@)—>@)")

(by abuse of notation we write Ky(x) for the Gédel number that
results by the appropriate application of the substitution function
to Ky).

In the construction of the Thm-initial segment Ky, we will need
the formalized versions of the lemmas which we proved above
about the existence and the properties of partial satisfaction
predicates for formulas of length smaller than some standard
numeral n. In our formalized context, Ix| plays the réle of
"standard numeral”, as will become clear when we define Ky. Again
by abuse of notation, we let Saty(v,w) stand for a Gédel number
instead of a formula; we will use the appropriate formalizations
of lemmas we proved about the formulas Sat,(v,w) to derive
formalized facts about the Godel number Saty(v,w).

Keeping these cautionary remarks in mind, we start the proof by
defining the Gédel number Jy of a formalized "Thm-cut” (1ater to
be shortened to the Thm-initial segment Ky that we need) as
follows:

Jx(s)= "Vy,v <s(Prfiyly,v)—> Vw(Evalseq(w,v) - "Satj(v,w)"))".

By the formalized version of Lemma 3.6, we may assume that this
Godel number exists, because the length of Sat)y(v,w) is linear in
Ixl. (Notice that we are reasoning inside IAq+ 4 all the timel)

It is not difficult to prove directly from the definition of Jy (and
from the fact that Jx is small enough) that:

Thm(Jy(0)" AVYVZ( T Jy(2)" Ay <z- Tdy(y)") 7).

To prove that Jy is closed under successor, we remark that
Thm(Prf(y,v)—=Len(v) <Ixl).

Therefore, we can formalize Lemmas 3.11,12,13 and 3.16 to
conclude by a proof of length of the order [x|2 that Sat;y(v,w)
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preserves all logical and non-logical axioms and rules for
formulas of length <Ixl|, and thus indeed,
Thm("Vy( " Jy(y)" —= "J(Sy)), proving Jy to be a Thm-cut.

By a formalization of the proof of Lemma 3.18, we can shorten the
Thm-cut Jy to a Thm-initial segment Ky of length linear in Ix| such
that, by a proof of length of the order Ix2,
Thm("Vy("Ky(y)™ = Tdy(y)T)A T I(0)" A

VyVz("d(z2)" Ay <z- "d(y)T)A

VyVz( dy(y)" AT (Z)" = TIi(Sy)" AT Ii(j+2)T AT dxly-2)7) 7).
Carefully formalizing the proof of Lemma 3.19, we find, by proofs
of length of the order IxI3,
Thm(Ky(x))A Thm(Ky(" @ ™)).
And thus, because we have Thm("Vy( Ky(y)™ = "Jy(y)™)7), we
conclude that, by definition of Jy,
Thm(™Vy <x (Priy(y,"@™")—>

Vwi(Evalseq(w, @ ")— "Sat("@,w)™)7).
Because we have Thm("Vy <x (Prfi(y,"@ " )>Fmlay( @), we can
apply the formalized version of lemma 3.10, taking note that ¢ is
a sentence. Therefore,
Thm("Vy < % (Priyly," @ ") > Vw(Evalseq(w, @ ) - @))").
This in turn is equivalent to the desired
Thm("Vy <k (Prily,"@ ") - @)").
Stepping out of IAg+ 24 again, we conclude that indeed
Ao+ Q1 FVXThm("Vy <k (Prigly,"@ ™) > @)"). X

Remark. Looking carefully at the proof of Theorem 3.22, we
notice that it is also possible to derive the following result,
which is a littie bit stronger:

[Ag+ QqFVv(Sentence(v)-> VxThm("Vy <k (Prily,v)— "v7)™).
Theorem 3.22 and its proof can also be adapted for the case that
(¢ is a formula instead of a sentence (or in the stronger result
mentioned above: Fmla(v) instead of Sentence(v))
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3.23. Corollary (Svejdar's principle is provable in IAg+ Q).
For all sentences @,y
Ao+ 1 FOp -» O@Oyp<O@->y), ie.
IAg+ Qq FVX(Prf(x,"@")—
Thm("3y(Pri(y,"p " )AVz <y TPrf(z,"@ N> y™))

Proof.
We work inside IAg+ Q¢ and suppose Prf(x,"@ 7). This implies
Thm("Prf(x,"@")") (by provable Zﬁ—completeness). Hence, we have
Thm("3y(Pri(y,"$ " )AVz <y TPri(z," @ ™)) =3y < kPrf(y, ¢ ™)),
Theorem 3.22 gives Thm("3y <xPrf(y,"w™)—>y™); therefore, we
have
Thm("3y(Prily,"p )AVz <y TPrf(z,"@ ")) -y ™).
Jumping outside IAg+ 21 again, we conclude that
IAo+Qq FVX(Pri(x,"@")—

Thm("Ay(Pri(y,"$ " )AVzZ <y TIPrf(z,"@ " ))»y ") &

The proof of the soundness of Svejdar's system 2~ (and of Z; for
appropriate frames F) with respect to Ao+ ¢ has now been
completed (see Theorem 2.5).

Svejdar introduced his system 2~ in order to study generalized
Rosser sentences, and he derived the formalized version of
Rosser's theorem in it. As a welcome byproduct of the soundness
of 2~ with réspect to IAg+ 24 , Rosser's theorem thus holds for
IAo+$2¢. Because Svejdar's proof is not very long, we will give (a
variant of) it here.

3.24. Theorem (formalized Rosser, Svejdar[83]
IAg+Q1FO(R—OR<KOR)—(OR - OL)A(OR — O1).

Proof.

We reason inside IAg+ 1, and assume that O(R— O R<XOR). Then
OR—-O(OR<OR). Corollary 3.23 gives

OR—-O(ORsOR — TR). Combined, these two yield

OR-0™R, ie. OR—-0OL.
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Working under the same assumption O(R— O R<0OR), we have
O7R - OO7R; and thus by (01) (see Ch. 2, above def. 2.3) and
soundness of Svejdar's system 2~ with respect to IAg+Q,

O7R - O(OR<KOR v OR<KO™R). By the initial assumption,
OR - O (OR<0OR), and therefore we have

O7R —» O(OR<O™R). Corollary 3.23 gives

O R - O(OR<O™R — R), and thus, as above,

O R-0R ie. OR->0O1. X
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