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The Axiomatization of Randomness

Michiel van Lambalgen!

Department of Mathematics and Computer Science
University of Amsterdam

Abstract We present a faithful axiomatization of von Mises' notion of a random sequence, using an abstract
independence relation. A byproduct is a quantifier elimination theorem for Friedman's "almost all" quantifier
in terms of this independence relation.

0. Introduction Characterizing randomness has always been understood as providing
explicit definitions of what a random sequence is or should be. The literature contains
examples using recursive place selections (CHURCH [1940]), recursive sequential tests
(MARTIN-LOF [1966]) and (variants of) Kolmogorov complexity (e.g. KOLMOGOROV and
USPENSKY [1988]). Below, we present an axiomatic treatment of randomness. We believe
that the notions that are customarily involved in characterizations of randomness, such as
irregularity, complexity or independence, are best treated as primitive, in the sense that they
need not have a unique, privileged, interpretation. These notions can sometimes be
paraphrased, i.e. in some cases we can give explicit definitions of the primitive notions in
terms of familiar mathematical concepts. But this does not mean that a particular paraphrase
exhausts the content of randomness.

An example is the emphasis on computability in the modern definitions. Without further
analysis (cf. KOLMOGOROV and USPENSKY [1988]) it is taken for granted that laws, rules
or regularities as they occur in the context of randomness should be identified with rules as
studied by recursion theory. By contrast, in our treatment we axiomatize one fundamental
aspect of randomness (independence) and we then investigate models of these axioms. It
turns out that a model for a sizable part of the axioms is definable in recursion theoretic terms
(corresponding to the paraphrase of independence given in section 5 of VAN LAMBALGEN
[1987a]). There exist, however, also models of an entirely different kind; and the
completeness theorem given in section 2 points to a fundamental role for forcing rather than
computability.

The object of the axiomatization is the notion of randomness introduced by VON MISES
[1919].

According to his intuitive characterization, a sequence is random if (a) the limiting relative
frequencies within the sequence exist and (b) these limiting relative frequencies are invariant
under the operation of "admissible place selection”. An admissible place selection is a
procedure for selecting a subsequence of a given sequence x in such a way that the decision

1 The author is indebted to Georg Kreisel, Ieke Moerdijk and Johan van Benthem for helpful comments. The
author is a Huygens — fellow of the Netherlands Organization for Scientific Research (NWO).
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to select a term x;, does not depend upon the outcome xj itself. Evidently, independence is a
fundamental concept here, so the main task confronting us will be the axiomatization of
independence. We do not wish to imply that the resulting axiom system captures all there is
to randomness; there is, e.g., also the only vaguely related idea that random sequences
should satisfy "all" strong limit theorems of probability theory. But von Mises' axioms
occupy a special position in that they describe the minimum properties randomness should
satisfy to qualify as a foundation for probability theory (for more on this topic, see VAN
LAMBALGEN [1987b]).

We now proceed to give a brief description of the contents of this paper. It consists of two
parts: the first (sections 1 and 2) deals with the notion of independence and has a set
theoretical emphasis, the second (sections 3,4 and 5) adds axioms for randomness and has a
more probabilistic flavour.

In section 1 we state the axioms for independence and we sketch some interpretations. In
section 2 we show that there is a close connection between the independence notion
introduced in 1 and Friedman's "almost all" quantifier (STEINHORN [1985a,b]). We prove,
using Boolean valued models and some measure theory, that any first order theory can be
conservatively extended with the axioms for independence or, equivalently, the axioms for
"almost all". We then proceed to show that the "almost all" quantifier can be eliminated in a
first order theory which has an independence relation satisfying our axioms. This elimination
allows us to prove that the theory of independence is complete with respect to a semantics
given by forcing with Solovay reals.

In section 3 we present the formal analogues of von Mises' axioms for randomness and we
give an informal argument to the effect that the axioms indeed say everything that can be said
about admissible place selection. Section 4 contains the proof that the axioms for
randomness and independence can be added consistently to second order arithmetic, thereby
showing that a consistent probability theory on the basis of a notion of randomness is
possible. In section 5 we investigate to what extent some familiar (explicit) definitions of
randomness can be used to define models of the axioms; in particular, show that the theory
of independence developed in VAN LAMBALGEN [1987a] (based on relativized prefix
complexity) can be used to construct a model for (a considerable part of) the axioms.

1 Axioms for randomness and independence Von Mises proposed the following
axioms for random infinite binary sequences. For ease of notation, we consider only the case
of the uniform distribution on {0,1}, i.e. sequences generated by a fair coin.

Definition 1.1 A sequence x € 29 is random if

n
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(2) Let (xny), be an admissibly chosen subsequence of x, i.e. a selection of subsequence

which proceeds as follows: "Aus der unendliche Folge [x wird] eine unendliche Teilfolge
dadurch ausgewihlt, dap iiber die Indizes der auszuwéhlenden Elemente ohne Beniitzung

m
der Merkmalunterschiede verfiigt wird." Then also limm e 3 Xny = $.
k=1

The condition of admissibility is slightly enigmatic, so some examples may be helpful:

(a) Choose xj, if n is prime.

(b) Choose xq if the n-9th,.., n-15t terms of x are all equal to 1.

(c) Take a second coin, supposed to be independent of the first in so far as that is possible
(no strings connecting the coins, no magnetisation etc.) Then choose xj, if the outcome of the
nth toss with the second coin is heads (we code "heads" as "1").

Intuitively, axiom (2) is satisfied in all three cases, although in (c) a heavy burden is put
upon the word "independent"”. We shall call selections of type (a) and (b) lawlike (since they
are given by some prescription) and those of type (c) random. Evidently combinations of the
two types are possible. We shall prove below that, in a sense, all admissible place selections
are combinations of random and lawlike selections (see theorem 3.3.5).

It will be observed that the second axiom consists in fact of two parts. The first part tries to
explain admissibility in terms of some concept of independence ("ohne Beniitzung der
Merkmalunterschiede"); the second part says that limiting relative frequencies are invariant
under admissible place selection. We shall follow the same procedure: in 1.1, we first
axiomatize a notion of independence; in 3.2, we then define admissible place selection in
terms of this notion and state axioms on the invariance of the limiting relative frequencies.

1.1 Axioms for independence The literature contains various discussions of abstract
independence relations; e.g. in algebra (VAN DER WAERDEN [1940]), combinatorial
geometry (WELSH [1976]), recursion theory (METAKIDES and NERODE [1982]) and stability
theory (BALDWIN [1988]). Another example is furnished by the theory of lawless sequences
(TROELSTRA [1977]), where independence of lawless sequences is a fundamental concept,
although it can be shown that in this case independence can be defined explicitly as
extensional inequality #.

We show how to introduce an independence relation R(x,¥) in a countable first-order
language L. Here, ? denotes a vector, of unspecified length, of variables; hence R is a
relation of indefinite arity. In analogy with linear algebra, the second parameter in R(x,Y)
should be thought of as denoting a set; cf. axiom R3 below. (The introduction of R is of
course equivalent to the introduction of infinitely many independence relations Ry, one for
each arity n.) One may think of x, ¥ as ranging over (vectors of) sequences in 29, but the
set up is in fact completely general. The intended interpretation of R(x,y ) is: "x is

independent of ¥ " or "y has no information about x". y may be empty; in that case we



write R(x,8) =: R(x) and we may think of x with R(x) as random sequences (cf. also the
fifth remark below).

All independence relations that arise naturally in our context satisfy the properties R1 - R5
(examples will be given below); furthermore we shall work in classical logic.

RO. Axioms and inference rules for classical predicate logic
R1. 3xR(x), VY3IxR(x,Y)

R2. R(x,Y7Z) = R(x,2)

R3. R(x,')_/)) — R(x,my) for any permutation 7

R4. —R(x,XY)

R5. R(y,Z) ARX,yZ) = R(yXZ).

Before stating the last axiom, we give an example of an independence relation on infinite
binary sequences that satisfies the axioms given so far.

1n
Put LLN(x) := VedngVn=ng |;Z Xk — %I < ¢ and define a partial operation /: 20x2® —
k=1

29 by: (X/y)n = Xm if m is the index of the nth 1 in y and undefined if there is no such index.
(X/y is defined if y has infinitely many 1's.) Then define R(x,¥) as: LLN(x) & Vye Y Xy
defined — LLN(X/y)).

Definition 3.1.2 The partial operation /: 20x2® — 20 is defined by: (¥/y)p = X if m is
the index of the nth 1 in y and undefined if there is no such index. X/y is defined if y has
infinitely many 1's.

The last axiom, the first to establish a relation between the language L and the independence
relation R, is less straightforward. It is suggested both by the connection of R to Friedman's
"almost all" quantifier and by the example of Solovay forcing (see below) and leads to a
completeness theorem for the whole system. To formulate this axiom, we first define a
subclass of the formulas in the language LU{R}.

Definition 1.1.1 The class IF of independence formulas is the smallest class of formulas
in the language LU{R} such that

() if ¢ is a formula in L, then ¢ is in IF

(i) IF is closed under A, -,V

(iii) if ¢(x,¥) is in IF (all free variables are indicated), then Vx(R(x,Z) — §(x,7)) is also
in IF, where Z contains _)? .

We are now in a position to state the last axiom, which is a kind of homogeneity principle.



R6. Suppose ®(x,) is in IF, and z does not occur free in ¢. Then
VX(R(xz Y ) = 6(x,Y)) = VxRX,Y) = 6(x,Y)).

Some remarks on the meaning of these axioms follow. 1. Axiom R3 expresses that the
argument 'i) behaves as a set.

2. The axioms for independence R1 — R5 form a subsystem of the axioms for infinite
dimensional combinatorial geometries. Usually these axioms are formulated in terms of a
relation of dependence, but if we formulate them instead using the independence relation
R(x,¥) we get a system which is almost equal to R1 — RS (e.g. RS corresponds to the
Steinitz exchange principle), except that R2 is replaced by the stronger postulate

R2'. R(x,Z) = R(x,Y) v Iye YR(y,2).

The meaning of R2' becomes more transparent if we formulate it in terms of —R, or
dependence; we then get

R2'. —R(x,Y) AVye Y-R(y,Z) = = R(x,Z),

in other words, the transitivity of the relation of dependence.

It might seem surprising at first sight that we do not require that the dependence relation
corresponding to our notion of independence is transitive. The paradigm example of the
dependence relation that is axiomatized by combinatorial geometry is linear dependence; so in
this context, —|R(x,?) means that there exists a functional relationship between x and Z.
However, our case is more akin to statistical dependence and allows the following situation:
we have a random binary sequence y and subsequences x and z consisting of the odd and
even coordinates of y respectively. Then for any reasonable concept of randomness, x and z
are independent; but y depends on x as well as on z. Hence R2' fails.

3. Irreflexivity (R4) is slightly implausible from a purely probabilistic point of view; for
instance if x represents a two-valued random variable which takes its values with
probabilities 0 and 1, then x is (probabilistically) independent of x. We therefore think of our
random sequences as sequences in which the limiting relative frequencies are distinct from 0
and 1.

4. The usual probabilistic definitions of independence are symmetric. However, in the
presence of monotonicity (R2), the symmetry condition R(x,y) — R(y,x) is too strong,
since we would then have R(x,y) — R(y).

5. The meaning of R6 will be clarified in the proof of the consistency theorem 2.1.3, where
it is shown that R6 holds in virtue of the fact that random sequences are "indistinguishable".
As an illustration of the meaning of R6 we shall show here that random sequences are not
"nameable" (by closed terms of the language L).



The hypothesis that random sequences are not nameable and, even stronger, are independent
of any nameable object, can be expressed by the formula

(*) R(x,Y) = R&Y )
where T is a sequence of closed terms of L.
A scheme version of (¥) can easily be derived from R6: if ¢(x,?,§)) is an IF formula, T is a
sequence of closed terms of L and Z does not occur free in ¢, then we have

VZIVX(RX,Z Y ) = 0,T,7) = VxRE,Y) = 6, T, ¥))]
hence in particular

VX(RGT Y ) = 06T, 7)) = VxREK,Y) = 0,7, Y)).
Therefore R(x) = R(x,d) should be interpreted as implying: x is independent of all objects
denoted by closed terms of L. (This is also brought out by corollary 2.2.4 below.) Thus R6
embodies the intuition that random sequences (relative to L) cannot be constructed (with
means available in L).

Henceforth, the system of axioms RO - 6 will be called R. The proof that these axioms are
consistent is nontrivial, especially when we want to establish consistency of R with a given
theory T (say, second order arithmetic); in other words, that the addition of R to a theory T is
conservative. The consistency proof is deferred until section 2, where we study the system R
by means of Friedman's theory of Borel structures and the quantifier "almost all".

Example 1.1.2 (a) (SOLOVAY [1970]) The paradigm example of an independence
relation that satisfies R is provided by forcing. Let M be a countable transitive model for ZF
plus the Axiom of Constructibility (V = L). For any sequence y of elements of 29, M[Y ]
is well defined via relative constructibility.

We say that x € 29 is Solovay random over M[?] if x is contained in all Borel sets of full
Lebesgue measure which have a Borel code in M[Y]. Put R(x,Y) iff x € 29 is Solovay
random over M[?]. For this interpretation, R1 - 4 are trivially satisfied and R5 expresses the
product lemma for forcing. The verification of R6 is less trivial; we need the machinery of
Borel structures developed in the next section. (Cohen forcing (where "set of full measure"
is replaced by "residual set") also furnishes an interpretation of RO - 6, but is less suited to
interpret the randomness axioms given in 3.2.)

(b) Let L be the language of second order arithmetic (with variables over ® and 29). It is
possible to establish the consistency of R by means of an interpretation into the intuitionistic
theory of lawless sequences LS (for unexplained notions from intuitionism, see TROELSTRA
and VAN DALEN [1988]).

If ? denotes the vector <y1,..,yn>, #(x,¥) is defined as: X#Y1 A .... A X#yp. We interpret
the variables x,y,.. as ranging over lawless sequences. Extend the Godel - Gentzen negative
translation * by means of the following clause for R: (R(x,?))* = #(x,?). Then RF ¢



implies LS F ¢*. All cases are easily checked, except axiom R6, for which we need the
axioms of density and open data. In this way the consistency of R can be established, but
since we want consistency of R over an arbitrary first order theory we present a different
consistency proof below (2.1.4). The details of the extended Godel - Gentzen interpretation
will be given in VAN LAMBALGEN and MOERDIIK [1997].

2. Friedman's quantifier "almost all" It turns out that the axiom system R can be
studied profitably in an alternative formulation, by adding the quantifier "almost all"
introduced by Harvey Friedman (see STEINHORN [1985a,b]) to the language L. If Q denotes
Friedman's quantifier, and ¢ is a formula of the language L\ {Q}, then we can think of the
formula Qx¢x as meaning "{x | $(x)} has Lebesque measure 1". Alternatively, Qx¢x can be
read topologically as "{x | ¢(x)}¢ is first category". Friedman exhibits a set Q of axioms for
Q which is complete for both interpretations.

For us, the interesting point is that there is a close connection between Q and the axioms for
independence listed in 1.1. Below, we shall define a translation * from LU{Q} into LU{R}
such that ¢ is derivable in Q if and only if ¢* is derivable from R. The advantages of this
construction are threefold:

1. We obtain consistency proofs for R and RS (over a suitable base theory) by measure
theoretic techniques;

2. Friedman's completeness proof for Q is transformed into a completeness result for R,
relating R to Solovay forcing;

3. It brings to the fore an intimate connection between measure on the one hand, and
randomness and independence on the other.

2.1 The system Q The axioms for Q given below are taken from STEINHORN [1985a],
except that Steinhorn uses the existential analogue of Q ("{x | ¢(x)} is non - null") and does
not add the nontriviality condition Q1. Again, we start with a countable first order language
L.

QO Axioms and inference rules for classical predicate logic
Q1 —Qx x#x

Q2 Qy x#y

Q3 Qxod(...x,..) = Qyd(..,y,..) provided y is free for x in ¢
Q4 Qxd A Vx(¢ - y) - Qxy

Q5 Qx¢ A Qxy — Qx(d A )

Q6 QxQy¢ & QyQx¢



The existential analogues of axioms Q1 - 5 describe the quantifier "there are many" studied
by KRIVINE and MCALOON [1973]. Q1 - 5 are clearly satisfied for the intended
interpretation(s); but the consistency of the full system is a delicate matter. Without the non -
triviality condition Q1, consistency is easily established: interpret Qx¢ as Vx(L — ¢), where
1 denotes falsum. Q1, however, excludes this possibility. The intended interpretation of Q,
be it measure theoretic or topological, is not very helpful in establishing consistency either.
For if L is the language of second order arithmetic, L is sufficiently rich to define projective
sets. But it is consistent to assume that some projective sets are non measurable and in that
case we run into trouble with Q6, which is more or less a definable analogue of Fubini's
theorem (but not quite, since in Fubini's theorem the measurability of {<x,y> | ¢(x,y)} is an
assumption). For instance, assuming V = L there is a projective ¢(x,y) defining the graph of
a wellordering < of 2® of length w; but then we have QxQy¢d(x,y) and QyQx—d(x,y).
Continuing this line of thought, one would seem to need a model in which all definable (with
parameters) sets of reals are measurable; but this implies that 1 is inaccessible in the
constructible universe, a most unwelcome assumption.
One way out of this predicament is to switch to the topological interpretation. Shelah has
shown that if ZF is consistent, so is ZF + "every set of reals has the Baire property". We
then get the consistency of Q by applying the Kuratowski - Ulam theorem, the topological
analogue of Fubini's theorem (see theorem 15.1 in OXTOBY [1980]). While this result might
set the reader's mind temporarily at rest, it is not very helpful in settling the consistency of
additional assumptions with Q. For instance, we would like to have that QxLLN(x) is
consistent with Q; but of course this is false if Q is interpreted topologically (and LLN(x) has
the standard interpretation).
There is, however, yet a third way to interpret Q, and that interpretation is the main reason
for our interest in Q: read Qx¢(x,”y’) as "for all x independent of ¥, ¢". A little reflection
shows that Q6 is now obvious (if x and y are supposed to be independent, then it does not
matter which one is chosen first), whereas Q4 is more problematic. (This interpretation of Q
is formalized by the elimination theorem 2.2.1, which shows that there is an embedding of Q
into R.) Furthermore, using a statistical concept of independence it becomes fairly easy to
prove the consistency of both Q and R over arbitrary first order theories (2.1.3 and 2.1.4).
The proofs use Friedman's theory of Borel structures.
Let M be a model for L, with domain a subset of 2® of positive Lebesgue measure. The
satisfaction clause for Q is:

M |= Qxo0(x,a1,...,an) iff A{ x IM |2 &(x,a1,....,an)} = 0, where A = (3,$)® is
Lebesgue measure on 2%,
The other logical constants have standard interpretation. A structure whose domain is a
subset of 2® and all of whose relations and functions are Borel is called a Borel structure (or
model). A Borel structure for LU{Q} is called totally Borel if any relation defined using a
formula from LU{Q} (possibly with parameters) is Borel. Evidently the axioms for Q are



valid on a totally Borel model. Henceforth we shall consider only totally Borel structures
whose domain is a full subset of 2®; this is justified by the completeness theorem 2.1.2
below. Interestingly, Friedman has shown that if a theory in the language LU{Q} is
consistent with Q, then it has a totally Borel model. It is somewhat hard to construct such
models, since it is usually the case (e.g. for second order arithmetic) that the primitive
relations must have a nonstandard interpretation. We therefore prefer a Boolean valued
approach, where the primitive relations can be interpreted straightforwardly, while by
contrast Q has a nonstandard interpretation, in terms of an independence relation.

Theorem 2.2.1 (See STEINHORN [1985a,b]) Let T be a consistent theory in L with an
infinite model. Then T has a totally Borel model with domain 2.

Theorem 2.1.2 (See STEINHORN [1985a]) Let T be a theory in LU{Q}. Then T has a
totally Borel model whose domain is a full subset of 2% iff T is consistent in Q.

Using 2.2.1 and a Boolean valued interpretation of V, 3 and Q we show that any consistent
theory T in L, with at least one infinite model, can be consistently extended with Q, or,
equivalently, with R. (This technique will allow us to show the consistency of RS in section
3.1.) The proof of the consistency theorem proceeds by defining an independence relation
that satisfies the Boolean valued analogue of R and showing that Q can be defined explicitly
using this relation. This procedure suggests a quantifier elimination theorem for Q that will
be stated and proved in 2.2.

Theorem 2.1.3 Let T be a consistent theory in L with an infinite model. Then TUQ is
conservative over T.
Proof We construct a Boolean valued model on a universe defined as follows. (For general
information on Boolean valued models, see BELL [1977].) Consider (29)X, where ¥ = ;.
We equip (2®)¥ with the product topology and the product measure AX defined on the Borel
o - algebra B((2®)X). Let I denote the G - ideal of AX nullsets, then the quotient algebra B:=
B((29)%)/1 is a complete Boolean algebra. B will be our space of truth values. The domain of
the Boolean valued model consists of the (Borel) measurable functions f: (29)K — 20,
Let A be a totally Borel model for T with universe 29. If y is in L and quantifier free, we
put

[ YELf)llg = (E€ QOXIA |= YEIE), - faE))/L;
the interpretation of the Boolean connectives is obvious and V and 3 are interpreted using the

infimum /\ and the supremum V, respectively.

On the space of (Borel) measurable functions (2®)X — 2@ there are several natural

independence relations that can be used to interpret Q. We choose the following option (but



see remark 1 after corollary 2.1.4). Say that a < x is in the support of f (denoted o €
supp(f)) if there are &, &' € (29)X which differ only at coordinate o and such that f(§) #
f(€". If f is Borel measurable, supp(f) is countable. For a < K, let wy: (2®)X — 20 denote
the projection on the ath coordinate. It now makes sense to define a relation (of indefinite
arity) R(g, f1,...,fn) as follows:

R(g, f1,....fn) if there is & < K such that g = g and o & supp(fi)u...usupp(fn).

We now define [[ Qxy(x,f1,....fn)]]B as

[[ Qxy(X,f1,..f)11B = A\ {[[ W(g.f1,....f)118 | R(g, f1,....fn)},
and we have to show that the Boolean truth value of the sentences T and the axioms of Q is

1p.
1. T is valid in B. Since A is a model for T, it suffices to show that for any formula yin L,

[ y(f1,f)llg = { £ € COXIA l= y(E1(5),....5n(EN}/L

The proof is by induction, and the only case of interest is where y is 3x¢. By the maximum

principle, [[Fx¢(x,)]1p= \/g[[¢(g,f)]]3 = [[¢(g,f)]1]B, for some particular measurable g:
20)x — 20,
Hence, by the induction hypothesis [[¢(g,0)]]p={ & € QO)XI A l= o(g&) fFENII <
(Ee QOXIAl= IxoEE))L
For the converse we need a uniformity principle, the von Neumann measurable selection
theorem (see, €.g., PARTHASARATHY [1972]).
Since { <x,E> € 20x Q®)X| A |= ¢(x,f(§))} is Borel, we can apply the selection theorem
to obtain a uniformizing measurable g: (29)¥ — 2® which satisfies:

for AX a.a. £ € 20)%, A = 0(g(§),£(§)) iff A I= Ixdp(x,£(E)).
We then have { £ € 29)¥1 A |= Ix¢(x,f(E)}/1 = { £ e 2O)¥I A I= ¢(g(&).fENM =
[[o(g,D]1B < [[3x0(x,D]]B -
2. Q is valid in B. All axioms are trivially satisfied except (somewhat surprisingly) Q4. We
have to show that

[[ Qxox.2)118 A As ([ 6E]I — [ WEM]IB) < [[ Qxy(x,h)]15 .

Evidently, it suffices to show that if g does not occur in y,

A ([l y(ma,)]lp | o & supp(g)usupp(h)} = A ([ Y(ma,h)]lp | o ¢ supp(h)}.
For notational convenience we do not distinguish between an element of the Boolean algebra
and a representative Borel set. Choose o < ¥ with o ¢ supp(h). Let E be a Borel set such

that the support of the characteristic function of E is contained in supp(h) and such that

(*) A*([[w(re,M)]1lp | E) = 1, AX([[w(ne,h)]1p | E€) < 1.
That such an E exists can be seen as follows. We may consider [[y(wy,h)]]p to be a Borel
subset of (2@)® x (20)®, where h is supported by the second coordinate and 7, lives on the

10



first coordinate. (One has to be careful here: usually (a representative of) [[y(g,h)]]lB is not
measurable with respect to the ¢ - algebra generated by g and h. This is the analogue of the
nonmeasurability of {<x,y> | y(x,y)} in the Boolean valued case.) By differentiating (A®)2,
we obtain the conditional probability (A®)2( F | h), where F ranges over Borel subsets of
(29)®, Then define E as
E:={ye 291 A2 [[w(ne)]] | h(y)) = 1}.

E is determined up to a nullset and its support is contained in supp(h). Furthermore we may
assume that 1 > AXE > 0, for otherwise we are done. Hence the conditional probabilities in

(*) are welldefined.

Obviously (*) is true for any o ¢ supp(h), since any two such projections can be
transformed into each other by an automorphism of <(2%)¥, B((2®)X), A¥> that is the
identity on supp(h).

It follows that for any o ¢ supp(h), E < [[y(tg,h)]]B.

By distributivity, we have A {[[ y(ng,h)118 | o0 ¢ supp(g)usupp(h)} =

(A {[lv(me.h)]11p o € supp(g)usupp(h)} AE) v (A {[[ y(ng,h)1lpla ¢

supp(g)usupp(h)} A E€). However, the second disjunct must equal zero: let 0oty 5eees Totpsees

be a countable set of projections on coordinates not contained in supp(g)Usupp(h), then by

independence, O = /\n [[W(Tq,1)T15 A E¢ 2 A{[[ y(ma,h)]l5 | o & supp(g)Usupp(h)} A
EC.

Therefore A {[[ y(rno,h)118 | @ & supp(g)usupp(h)} = (A {[[ y(re.h)]lp o &
supp(g)usupp(h)} AE) < E < [[y(rg,h)]], for any o & supp(h). 0

Since the proof of 2.1.3 in effect constructs an explicit independence relation satisfying RO -
6, we get

Corollary 2.1.4 Let T be a consistent theory in L with an infinite model. Then TUR is

conservative over T.

Remarks

1. While the above simple interpretation of R works for the purpose of showing consistency,
it has an important drawback. Since mixtures (see BELL [1977]) of projections are not
themselves projections, the Boolean valued model for TUR constructed above does not
satisfy the maximum principle: if ¢ is a formula in L'U{R }, then we do not necessarily have
[[Fxo(x,D)1]lp = [[d(g,0)]]p, for some measurable g: (2®)K — 2®, This means that the
(Boolean valued) universe of random "sequences" is not closed under nontrivial operations.
For instance, a statement like VxVy(Rx A R(x,y) = 3z(z = X[y A Rz)) is false (observe that
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this statement is not an IF formula). Models which do satisfy the maximum principle will be
studied in VAN LAMBALGEN and MOERDIIK [1997].

2. It follows from 2.1.4 that R has no consequences in, e.g., set theory. This contrasts with
the approach taken by FREILING [1986], whose axioms for randomness contradict the
continuum hypothesis in the form 2R0= x 1 (albeit not in the aleph free formulation). This
difference should be no cause for surprise, since Freiling's axioms use abstract concepts like
"countable" and "nullset", whereas our axioms only involve the far more concrete notion of
independence.

3. It is perhaps worth emphasizing that while the monotonicity axiom Q4 is innocuous on
the "almost all" interpretation of Q, it is far from obvious on the "independence"
interpretation. On the latter interpretation, Q4 turns out to be true because an independence
structure has many symmetries.

2.2 Eliminating Q We define a translation * of LU{Q} into LU{R} as follows:

* is the identity on L formulas

* commutes with A, =, V

QO YN* = VR, Y) = 6(x,7)%) .
Theorem 2.2.1 * is a faithful relative interpretation of LU{Q} into LU{R}, i.e. for all ¢ in
Lu{Q}: QF ¢iff R F d*.

Proof. = RI1 ensures that * is correctly defined as a relative interpretation. The remainder
of the argument proceeds by a routine induction on the length of proofs in Q. That the
axioms for Q are derivable in R can be seen as follows:
- (—Qx x#£x)* = 2Vx(R(x) = x#x) = IxR(x), hence Q1 corresponds to R1 under *
- (VxQy xzy)* = VxVy(R(y,x) = x#y) = Vx—R(x,x) hence Q2 corresponds to R4
under *
- Q3 holds trivially
- (Qx0(xY) A VXOKY) = W(x,2) > Qxy(x,2))* =
VXRE,Y) = 00,Y)*¥) A VXOEY* = Y(x,2)*) = VXRE,Z) = Wx,2)*);
the antecedent implies that Vx(R(x,‘y’E’) - \y(x,?)*), hence by R6 also
Vx(R(X,Z) = Y(X,2)*)
- (Qx0(x,Y) A Qxy(x,Z) = Qx(O(X, Y)AY(X, Z)))* =
Vx(R(X,Y) = 0(x,7)*) A Vx(R(x,Z) = Y(x,2)*) >
Vx(R(X, PZ) = 0(x,7)*Ay(x,Z)*), hence (Q5)* can be derived in R using R2
- (QxQyd(x,y,Z) & QyQxd(x,y, 2))* =
VXVy(R(X,Z)AR(Y,XZ) = 0(x,y,Z)*) ¢ VyVxR(y,2)AR(K,YZ)> 0(x,y,2)%),
hence (Q6)* can be derived in R using RS and R2.
The induction step is trivial, since both in the case of Q and R the inference rules are those of
classical predicate logic.

12



& We present two proofs. The first proof leads to a two valued interpretation for R and a
completeness theorem for R with respect to a forcing semantics. The second proof exploits
the construction in the proof of 2.1.3.
First proof. Suppose that Q ¥ ¢, then by the completeness theorem 2.1 there exists a totally
Borel model A for QU{—6¢}. We may assume that the domain of A is a full subset of 29.
Let M be a model of ZF + V=L. We expand A to a structure <A,R> by defining: RKx,Y) iff
x € 29 is Solovay random over M[y ] and we show that <A ,R> satisfies R and —¢*. We
observed in example 1.1.2(a) above that <A ,R> satisfies RO - 5. To show the validity of R6
and —¢*, we need a
Lemma 2.2.2 Forall y and y: A |= y(¥) iff <A R> |= y*(¥).
Proof of lemma The cases of the ordinary logical operations are trivial, since * commutes
with these. So let W(?) be of the form Qxe(x,-i)); the induction hypothesis gives:

A 1= () iff <A,R> |= 0%(F).
Assume A |= Qx8(x,¥); we then have A{ x | Al=6(x,¥)} = 1. But since { x | A |=
8(x,Y))} is a Borel set with code in M[¥], we have, by the definition of Solovay
randomness: VX(R(x,Y) = A |= 0(x,7)).
Hence by the induction hypothesis <A,R> |= Vx(R(x,¥) = 0*(x,Y)).
On the other hand, if A l# Qx08(x,¥), then A{ x | A |= 8(x,¥)} < 1. Since the set of
Solovay random reals over M[?] has measure 1, we have Hx(R(x,?) &Al= —.G(x,?)),
whence by the induction hypothesis <A,R> |= Eix(R(x,?) A —.9*(x,§))). The lemma is
proved.
We are now in a position to verify the validity of R6 in the structure <A,R>. Suppose
<AR> |= Vx(R(x,?z) - \y(x,?)), where v is an IF formula and z is not free in . Let 6
be the formula such that 8% = y. Then by the previous lemma for all x such that R(x,Y2):
A |= 8(x,¥). Since M{x | R(x,Yz)} = 1, it follows that A |= Qx0(x,¥), whence again by
the lemma <AR>I= (QxO(x,?))* ; and this is equivalent to <A,R> |= Vx(R(x,?) -
\|f(x,§7)). Hence <A ,R> satisfies R and —¢*.
Second proof. As above, let A be a totally Borel model for QU {—¢}. As in the proof of
the consistency theorem 2.1.3 , we lift A to a Boolean valued model on (2®)X, where x >
®].
Let B be the complete Boolean algebra on (2®)X, where the latter set is equipped with
product topology and product Lebesque measure AX. Let I be the G - ideal of A¥ nullsets.
If v is a quantifier free formula and fj, ..., f; a sequence of measurable functions: 2®)X —
20, then [[ Y(f1,....fn)11B = { € € RO)XI A |= y(f1(§),...,fn(§))}/I. The quantifiers V and

3 are interpreted using /\ and V respectively.
In the proof of 2.1.3 , we saw that [[ Qxy(x,f1,....fn)]]p could be interpreted as

[[ QXW(X,fl’--nfn)]]B = Ag {[[ W(g’fl"",fn)]]B I R(g’ fl’---,fn)},
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where R(g, f1,...,fn) is defined as

R(g, f1,...,fn) if there is & < x such that g = ny and o & supp(fi)U...Usupp(fy),
where T (29)X — 2@ denotes the projection on the aith coordinate.
Hence if we put [[R(g, f1,....fn)]]1B = 1B if R(g, f1,...,fn) and equal to O otherwise, we
get

[[ Qxy(x,f1....f)]1B = Ag(IR(E, f1....f)llB = [[W(g:f1,...E0]18 ).
Applying the von Neumann measurable selection theorem as in the proof of 2.1.3 , we
obtain for any formula Wy in LU {Q}: [[ ¥ (f1,....fn)11B = { & € (Q®)XIA |=
Y(£1(6),....fn(EN L.
An easy induction then shows that for y in LU{Q}, [[ w(f1,....fn)1lB = [[ v*(f1,....fn)]11B.
Hence we have obtained a B - valued model of R and —¢*. 0

In fact, the second proof of theorem 2.2.1 proves a slightly stronger result.

Corollary 2.2.3 The addition of R7: R(x,?) A R(x,?) - R(x,??) is conservative
over R for IF formulas, i.e. it leads to no new identities for Q.
Proof The R defined in the second proof satisfies R7. 0

Corollary 2.2.4 The addition of RS8: R(x,?) - R(x,?'t") (where P is a sequence of
closed terms of L) is conservative over R for IF formulas, i.e. it leads to no new identities
for Q.

Proof The R defined in the first proof satisfies R8. 0

Remarks 1. Let N be a generic extension of M obtained by generically adding w; Solovay
random reals. Using the absoluteness properties of Borel sets, we can perform the
construction of (the first proof of) theorem 2.2.1 inside N, in this way obtaining a countable
standard interpretation of R.

2. Although we shall not pursue the matter here, we remark in passing that theorem 2.2.1
can be used to set up a natural deduction system for Q. In natural deduction systems for the
predicate calculus, the rules for introduction of V and elimination of 3 have side conditions
(on the non-occurrence of variables or constants) which are primitive recursive. By contrast,
both the introduction and elimination rules for Q have also side conditions in terms of an
independence relation R satisfying R, but otherwise unspecified. In a sense, then, the rules
for Q are more complicated than the rules for V and 3. This fact gives some substance to the
intuition that probabilistic reasoning (for Q read: "almost surely") is more complex than
ordinary logical reasoning. The subject will be explored in greater detail in VAN LAMBALGEN
and MOERDIJK [1997].
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2.3 Completeness The elimination theorem 2.2.1, together with the Borel completeness
theorem 2.1.2 imply the following completeness theorem for R:

Theorem 2.3.1 Let T be a consistent theory in LLU{R} and suppose the formulas of T are
either R axioms or IF formulas. Let M be a countable model of ZF + V = L. If T has an
infinite model, than it has a (not necessarily totally) Borel model in which R is interpreted as
Solovay forcing over M.

Proof By hypothesis, T can be identified with a theory in LU{Q}. This theory has a totally
Borel model A by 2.1.2, and we may apply the construction of 2.2.1 to obtain the desired
interpretation of R. Since M is countable, R is Borel, hence <A,R> is a Borel model for T.
Lemma 2.2.2 shows that <A,R> is totally Borel with respect to IF formulas. o

3. Randomness Having obtained a theory of independence, we may now formalize von
Mises' axioms for random sequences as stated in definition 1.1. We do this in two stages:
first we give a simplified version which highlights the role of independence (3.1) and then
we present the full version (3.2). In nsection 3.3 we consider the resulting system RS from
the viewpoint of stochastic processes.

3.1 Axioms for randomness: simplified version In this section, L is a language for
second order arithmetic with function variables. In this language, we can express that a
sequence satisfies the law of large numbers:

1n
Definition 3.1.1 LLN(x) := VedngVn2ng Igz Xk — %I <E.
k=1

We could of course define a more general predicate LLN(x,p), but we take p = 4 throughout
for notational convenience. To formulate place selection, we have to introduce a defined
operation in the language.

Definition 3.1.2 The partial operation /: 20x2® — 2@ is defined by: (X/y)p = X if m is
the index of the nth 1 in y and undefined if there is no such index. X/y is defined if y has
infinitely many 1's.

Von Mises first axiom is expressed by

RS1 Vx(R(x) = LLN(x))

We first give a weak form of the second axiom, to emphasize the role of independence.

RS2' VxVyVz(R(x) A R(x,y) A X/y =z = LLN(z))
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Observe that by axiom R2, R(x) can be dropped. This axiom generalizes the case that
LLN(X/y) for random x and recursive y; here, we require only that y has no information
about x. Note that RS2’ already implies (using RS5)

VxVy(R(x) A R(y,x) = LLN(X/y)),
which is the formal expression of the third example of admissible place selection (selection
by means of a second coin independent of the first).

3.2 Axioms for randomness Von Mises description of admissible place selection:
"Auswahl ohne Beniitzung der Merkmalunterschiede" is purely negative, hence difficult to
formalize. The main idea of the axiomatization given here is that the negative condition "the
decision to select xp does not depend upon the value of xp" is replaced by the positive
condition "the decision to select x, depends on (at most) x(n—1) and (perhaps) on some data
which do not contain information about x". The italicized phrase can be made precise by
means of the independence relation introduced in 1.1.

In other words, admissible place selection can be viewed as a "machine” which takes as
input the random sequence x and additional (independent) information represented by an
infinite binary sequence z; this machine produces an output y in such a way that the
"computation" of y(n) uses at most the first n—1 bits of x, and an arbitrary, but finite,
number of bits of z. The output y determines the subsequence X/y of x. We may think of the
oracle z as produced by a stochastic mechanism such as coin tossing, but there are other
possibilities, e.g. choice sequences.

The essential property of these "machines" is isolated in part (1) of the following definition:

Definition 3.2.1 A (possibly partial) continuous function F: 20x2® — 2® is gdmissible
if (1) for all n and all x, x' and y: x(n—1) = x'(n—1) and F(x,y), F(x',y) defined
implies F(x,y)(n) = F(x',y)(n) and (2) A{ y | F(x,y) defined} = 1 for all x, where A =
(3,$)9 is Lebesgue measure on 29,

Part (2) of the definition might seem strange at first sight, but it is not difficult to see that an
F not satisfying (2) can be extended to an F' which does satisfy (2) and such that range (F) =
range (F").
The three examples of admissible selection mentioned after definition 1.1 can be represented
as admissible functions. There exist, however, more general ways to construct admissible
place selections.
Let ¢: 2<@ — {0,1} be any function, then define an admissible function F: 20x2® — 20 35
follows:

0 if ¢(x(n-1))=0

F(x,z)p = {
z, otherwise
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F may be used to represent the following process: to decide whether to choose xp, we first
"compute” ¢(x(n—1)); if the result is 1, we then toss a fair coin and choose x;, if the outcome
is heads. The resulting subsequence of x is X/F(x,z) (when F(x,z) has infinitely many 1's)
and the selection procedure may be viewed as a combination of lawlike and random
selection. Intuitively it seems clear that the combination of an admissible function with some
mechanism generating y is a general description of admissible place selection, since all
information additional to x can be coded into one infinite binary sequence y. For instance, it
would not make a difference if the decision to select x, depends on tosses with several coins.
There is, however, one possibility of generalizing the description, by varying the order in
which the x, are chosen, so that, for some k > n, xx may be chosen before x,. We shall not
consider this possibility here. Barring this possibility, we have in fact a kind of completeness
theorem: in a sense to be made precise in section 3.3, any admissible selection procedure can
be seen as a combination of an admissible function together with a random oracle.

To formulate the final axiom, we need a slight extension of the language of second order
arithmetic used in the previous subsection. In addition to the sorts for w and 2® we use a
subsort of 2® consisting of the "lawlike" or "given" elements of 2. One may think of the
latter sort as being of the form 29~M, where M is a countable model of second order
arithmetic. Corresponding to these three sorts, we have quantifiers Vn,m,.. over the natural
numbers, Vx,y,.. over 2®@ and Va, VF over the lawlike objects. The choice of this language
is intended to bring out that we regard admissible selection procedures as "given", whereas
random sequences are considered to be "incomplete” objects (cf. also the Boolean valued
model constructed in 3.1).

Observe that admissible functions in the sense of 1.3.1, being continuous, can be coded into
an infinite binary sequence; furthermore the condition of admissibility itself can be
formulated in second order arithmetic. We may therefore state the final axiom as follows:

RS2 VF(F admissible — VxVyVzVz'(F(x,z) = y A R(x,z) A X/y = z' = LLN(z))).
The system consisting of the axioms R0-6, RS1-2 will be denoted RS.

3.3 Admissible place selections as stochastic processes

In 3.2 we gave an informal argument to the effect that admissible place selection can be
represented by an admissible function in the sense of definition 3.2.1, together with an
oracle satisfying an independence condition. Here, we prove a kind of informal
completeness theorem: we show that, in so far as admissible place selection can be
represented as a stochastic process, RS2 is indeed an exhaustive description of the situation.
An admissible selection procedure, viewed as a stochastic process, can be represented as a
measure on 2@, Because the condition of admissibility entails the dependence of the measure
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on the random sequence X, the admissible place selection must in fact be represented as a
parametrized measure.

Def. 3.3.1 For w € 2<0, [w] := {x | x(Iwl) = w}, where Iwl is the length of w.
Def. 3.3.2 A random measure on 2®is a family of finite measures {lix | x € 29}, where
x is defined on 29, such that for each w, the function x — px[w] is Borel measurable.

There seems to be only one reasonable definition for a measure to represent an admissible
selection process, if the decision to select xp, is determined only by past values of x.

Def. 3.3.3 A family of probability measures {vx | x € 2®} is called admissible if for all x
and x' and all n: if x(n—1) = x'(n-1), then for all w, Iwl = n: vx[w] = vy [w]. (If a family of
measures {Vyx | x € 2®} is admissible, we have automatically that for all w, the function x —
vx[w] is Borel measurable. Hence admissibility is a strengthening of the random measure

condition.)

The intuitive picture behind the definition is that the properties of the process at time n are
completely determined by the values of x up to time n—1. A few examples will make this
clearer.

Example 3.3.4 The admissible place selections mentioned after definition 1.1 can be
represented by admissible random measures:

(a) vx is concentrated on the sequence z € 2® defined by: z; = 1 iff n is prime (that is,
vx[z(n)] = 1 for all n and x);

(b) vx is concentrated on the sequence z* € 2® defined by: zﬁ = 1 iff xq.9,....., Xp-1 are all

equal to 1 (this means that vx[zX(n)] = 1 for all n and x);

(c) vx = A for all x.

(d) More interesting examples are constructed as follows. If F is an admissible function in
the sense of 3.2.1, then {vx | x € 2@} defined by vy := lF;l is an admissible random

measure. (There is nothing special about A here; any probability measure would do.)

The next theorem is a converse to example 3.3.4 (d).

Theorem 3.3.5 Let {vx} be an admissible random measure. Then there exists an
admissible function F: 20x2® — 20 gych that vy = KF;I.
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Proof. By admissibility, vx[0] and vx[1] do not depend on x. Choose disjoint open sets
A", AT such that LAy = v4[0] and LAT” = v4[1]. (One of the Ay, AT may be empty,
namely when either vx[0] or vx[1] equals zero.) Then F will be defined such that ViVxVy €
Ai<> (F(x,y) € [i]). Again by admissiblity, for Iwl = 2, vx[w] depends only on x;. Choose
disjoint open subsets AJ?O, Ajl of AJ.<> such that kA}‘é = vy[jk], for i,j,k in {0,1}. F will be

defined such that ViVx € [i]Vw(lwl =2 — Vy e A;, (F(x,y) € [w])).Continuing in this

way, we construct a sequence of open sets {A‘: | v,w € 2<0, |v| = Iwl-1} with the following

properties:

1. Forie {0,1} and Ivl = Iwl-1, A:vio, A:;il are disjoint open subsets of A_ ;
2. If m = lwk-1, AAX™ = vy w].
Put W:= {<x,y,w>|3n (y e A:V("))}, then we can define F by:

F(x,y) = z=Vn (<x,y,z(n)> € W).

Obviously F is continuous on a domain of full measure and satisfies

3. VvVx e [VIVw(iwl = Ivi+1 - Vy e A}, (Fx,y) € [w])).

It follows from 3. that F is admissible. |

The preceding theorem shows that the examples of admissible place selection given after
definition 1.1 in a sense constitute a complete description: every admissible selection can be
viewed as a combination of lawlike and random selection. It also follows from the theorem
that the oracle can be taken to be independent of the random sequence in a strong sense: we
can think of the oracle as being generated by a fair coin. It must be emphasized, however,
that this is true only on the assumption that admissible selections can be represented
stochastically.

4 Consistency of RS in second order arithmetic A probability theory in the style of
von Mises consists of a theory of random sequences together with a base theory which
allows one to manipulate infinite sequences and real numbers. For the base theory one may
take second order arithmetic.

Consider again the three sorted language L of section 3, with sorts for m, 2® and the lawlike
elements of 29. In this language, second order arithmetic Z has the following form:

- basic arithmetic, i.e. defining equations for 0,S,+ and -

- an induction scheme: ¢(0) A Vn(dp(n) — ¢(n+1)) — Vnd(n), where ¢ is a formula of L
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- 2 comprehension schemes
- JaVn(ap = 1 & ¢(n)) if ¢ has only numerical and lawlike parameters
- IxVn(xy = 1 & ¢(n)) for arbitrary ¢ in L.

We now construct a Boolean valued model for Z, + RS. We slightly alter the construction
used in the proof of 2.1.3. 2@ is again represented by the set of Borel measurable functions
(29)¥— 20 The sort of lawlike elements is represented by the constant functions (2®)¥X—
29 @ is represented by itself (alternatively we could have taken functions (29)X— ).

The Boolean interpretations of the basic arithmetical relations are as follows.

-[[ n+m=k]] =1p if n + m =k and 0p otherwise; likewise for 0,S and -;

- if a: (2W)¥— 2@ g constant (i.e. lawlike), we put [[ap = 1]] = 1p if n is in the range of a;
and Op, otherwise;

- if f: (2®W)X— 29 is measurable, then [[f, = 1]]1= {{E € QO)XIfE)n=1}/1

The independence relation R is interpreted as in the proof of 2.1.3; and the quantifiers and
connectives have the obvious interpretation.

The Boolean validity of Zp now follows. The validity of basic arithmetic and the induction
scheme is trivial. To establish lawlike comprehension, it suffices to note that the Boolean
algebra B is homogeneous, so that for any ¢ with only numerical and lawlike parameters,
[[¢]] is either O or 1; for then we may define a lawlike a: (29)X— 29 by putting for any &:
a(§)n = 1 iff [[¢(n)]]p = 1p. Finally, the validity of the second comprehension scheme is
shown by defining a measurable f: (2®)X— 2® such that [[f; = 1]]5 = [[¢(n)]]B.

We now turn to the validity of RS in this model. That R is valid was shown in 2.1. Consider

first RS1. [[Vx(Rx — LLN(x)]]lg = /\n[[LLN(n)]]B, where T ranges over the projections

(2W)x— 20, But since the quantifiers in the defining expression for LLN have standard
interpretation and the projections are measure preserving, we have [[LLN(m)]]g = {Ee (2®)¥I
LLN(n&)}/I = 1p for any 7.

The verification of RS2 is more involved. We have to show that

[[VE(F admissible — VxVyVzVz'(F(x,z) =y A R(x,z) A X[y = z' = LLN(z)))]13 = 1.
This follows if we can show for any admissible function F and any projection © and f:
(29)K— 2® gych that supp(r)Nsupp(f) = @: [[LLN(Y/F(x,H]ls = 1B.

Lemma 4.1 Let f: (29)X— 2® be measurable, so that f can be identified with a function
(20)0— 20 Then AXAQ{<x,{> e 20x(2®)® | F(x, f({)) defined, X/F(x,f({)) defined and
€ A} <AA for all Borel sets A.

Proof: For the sake of brevity we write AXA®{<x,{> € 20x(2®)® | X/F(x,f({)) € A} for:

AXAO{<x,0> € 20x(20)® | F(x, f({)) defined, X/F(x,f({)) defined and € A}.
We then have

20



AXAO{<x,[> € 20x(20)® | X/F(x,f({)) € A} < J'k{xlx/F(x,f(C)) e A}drAo(D).
(29)®
By the properties of F, for fixed { the function ®/F(e,f({)): 29 — 29 is a place selection in
the sense that the choice of x depends only on x(n—1). Hence, by a result of Doob (see VAN
LAMBALGEN [1987a], p.758), we have A{x | X/F(x,f({)) € A} <AA for each {; and the
result follows by integrating over (29)®, 0

Since A{x | LLN(x)} = 1, we have AX{§ € (2®)X| F(n&, f(§)) defined, nE:/F(n&,f(i))
defined and LLN(TE/E(RE.£(E)))} = AAO{<x,{> € 20x(2®)® | LLN(X/F(x,£§))} = 1.
Hence Z> + RS is consistent.

5 Recursion theoretic interpretations of R and RS  With the axiom system RS,
we have tried to isolate some essential features of randomness and independence. We will
now investigate how these axioms are related to the most widely known explicit definitions:
in terms of recursive sequential tests (MARTIN-LOF [1966]) and the definition using the
variant of Kolmogorov complexity called prefixcomplexity (cf. KOLMOGOROV and
USPENSKY [1988] and CHAITIN [1987]). Since these approaches are essentially equivalent
(compare theorem 5.4 below), we shall concentrate on prefixcomplexity.

The definitions of Martin-L6f and Kolmogorov differ essentially from that of von Mises in
that they do not presuppose a notion of independence. Our first task will therefore be to
introduce an explicit notion of independence using prefixcomplexity. It turns out that we can
take the notion defined in VAN LAMBALGEN [1987a] . We first give a quick introduction to
prefixcomplexity and Martin-Lof's definition of randomness. For more information see VAN
LAMBALGEN [1987a].

Definition 4.1 (KOLMOGOROV and USPENSKY [1988]; CHAITIN [1987]) A set E < 2<®
is called prefixfree if no w € E is an initial segment of some v € E. A prefixalgorithm is a
partial recursive function A: 2<® — 2<® which has prefixfree domain. Let A: 2<® — 2<®
be a prefixalgorithm with Gédelnumber " A”. We define a universal prefixalgorithm U by the
following condition: on inputs of the form q = 0"A™p, U simulates the action of A on p. The
prefixcomplexity I(w) is defined as I(w) := {Ipl | U(p) = w}.

Definition 4.2 x € 29 is irregular if 3mVn I(x(n)) > n —m.

Definition 4.3 (MARTIN-LOF [1966]) A recursive sequential test N is a Hg subset of 20,

N =(My0p, Oy in Z(l), such that AQp < 2-1 for all n. A sequence x € 29 is random (denoted

x € R) if it is not contained in any recursive sequential test. (Obviously AR = 1.)
Theorem 4.4 ImVn I(x(n)) > n — m iff x € R (in other words, randomness (4.3) and

irregularity (4.2) coincide).

21



Remark It should be noted that the analogue of 4.4 for ordinary Kolmogorov complexity K
is false; as MARTIN-LOF [1971] has shown, no sequence x satisfies 3mVn K(x(n)) >n —m.

The following alternative characterization of Martin-Lof randomness is due to Solovay.

Theorem 4.5 x € R iff for any r.e. sequence of 2(1) sets Op such that Z?»On <oolX &
MpOp.

We are now in a position to define a complexity theoretic independence relation. Let IV be
prefixcomplexity as defined above, except that we now use the oracle y, thus replacing the
universal Turing machine U by UY. Similarly, we may relativize Martin- Lof's randomness
concept R (4.3) to RY. Relativizing the proof of theorem 4.4 we obtain

Theorem 4.4' (a) ImVn I¥(x(n)) > n — m iff x € RY; and hence (b) A{ x | ImVn I¥(x(n))

>n-m} = 1.
The promised complexity theoretic characterisation of independence is given by

Definition 4.6 If x is random (or irregular, cf. 4.4), then y has no information about x if
ImVn IY(x(n)) > n — m. Similarly for ¥.

The following two theorems are proved in VAN LAMBALGEN [1987a]. The first shows that
almost no sequence contains information about a given random sequence x, whereas the
second shows that axiom RS2' (cf. section 1.2) is valid for the notion of independence
introduced above.

Theorem 4.7 If x is random, then A{y | y has no information about x} = 1.

Theorem 4.8 If x is random and y has no information about x and contains infinitely
many 1's, then X/y is also random. A fortiori, LLN(X/y).

The main question now confronting us is: does the relation of independence defined in 4.6
satisfy RS.? R1 - 4 are trivially satisfied, but RS is not so easy. In section 2 we saw that R5
could be used to interpret the "Fubini axiom" Q6 for Friedman's quantifier "almost all'. The
validity of RS for our present notion of independence is also connected to Fubini's theorem,
but in this case we have to use the effective analogue of Fubini proved in VAN LAMBALGEN
[1987b].

First some notation. If A is a subset of 2@x2®, we define (A)Y := { x| <x,y>€ A} and (A)x
:={ yl<x,y>€e A} (the more customuray notation AY being used for relativization).
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Theorem 4.9 Let N < 29x2® be a recursive sequential test with respect to AxA, where N

=(Op, Op in Z(l), such that AOp < 271 for all n. Then we have

(a) y € R implies ), A(Op)Y < co.
n=0
(b) (Effective Fubini) {y | A(N)Y > 0} is contained in a recursive sequential test (with respect

to A).
Proof We first prove (b) from (a). It suffices to show that if y € R, A({MyOp)Y = 0. We

have (MpOn)Y < (MnUienOk)Y = M Uken(Ok)Y and A x>n(Ox)Y < ZX(Ok)Y — 0 for
k=n

k — oo, It remains to prove (a). Let Oy = \Uj[wpilX[vnil. Define for each n a sequence of

functions fhk, where k = 0, as follows:

fro(y) =0 forall y

fok(y) = D AMwnil | ye [vail, i <k}, k> 1.

The fyx are computable stepfunctions and fpk < frk+1); moreover fpk+1)(y) — fnk(y) =
A[Wn(k+ D] for y € [vnx+1)] and fpx+1)(y) - fnk(y) = 0 otherwise.
Clearly

k
k
[fnted = E [Guitago1)dh = X Mwail A[vail <20,
i=1 i=1

Define Bpm = { y | 3k<m fpi(y) > (n+1)~2} and By = { y | 3k fpk(y) > (n+1)-2}. Obviously

B := MB,is Hg. Moreover AB; < (n+1)2.2-1: since fpx < fn(k+1), we must have, for all

m, ABpm = Ianmd)‘ < n2J’fnmd7u < (n+1)2-2-0, Hence B is (contained in) a recursive

sequential test.
Since the functions fhx are nondecreasing in k, we can define fy(y) = limg—yoofpk(y). We then

oo

have Y A(Op)Y < D Mwnil ly € [vail} = T fa(y).
n=0 5 i=0 n=0
n=

Now ify € R, theny ¢ B, hence Z?L(On)y <Y faly) < 211*2 < oo, a
n=0 n=0 n=1

Theorem 4.10 If 3mVn I¥(x(n)) > n — m and y is random, then ImVn IX(y(n)) > n —m.
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Proof Let RY denote Martin-Lof's randomness notion relativized to y; hence (4.4") x € RY
iff 3ImVn IY(x(n)) > n — m. Let R2 denote Martin-L6f's randomness notion in 29x2® (with
respect to AxA), and let (R2)Y, (R2)x be the sections of R2 as defined above.

It suffices to show that x € RY & y € R = <x,y> € R2. For if <x,y> € R2, theny €
(R2),; and the following argument shows that we must have (R2)x c RX.

The proof of theorem 4.4 establishes that {y | Vm3n I(y(n)) < n - m} is a recursive

sequential test (and in fact the universal recursive sequential test). It follows by relativizing
that proof to y that {<y,x>| Vm3n IX(y(n)) < n - m} is a recursive sequential test with
respect to AXA: clearly, {<y,x> | Vm3n I*(y(n)) < n - m} is Hg ,and for each m,

AxA{<y,x> | dn X(y(n)) <n-m} = J. Ay ! 3n *(y(n)) £n - m}dA < j 2nd) =21,
Hence <y,x>| Vm3n IX(y(n)) <n - m} is contained in (R2)¢ and therefore (R2)x c RX.

So suppose y € R and <x,y> ¢ R2. Since (R2)C is a universal recursive sequential test (see

Martin-Lof [1966)), it is of the form (MpOp, Op in ZO, such that AOp <271 for all n. Now if

<x,y> ¢ R2, then x € ((RZ)C)Y = My(Oyp)Y. We have assumed y € R, hence by part (a) of

the preceding theorem ZK(OH)Y converges. By using the relativized version of 4.5, we
n=0
obtain x ¢ RY. 0

Theorem 4.10 is perhaps interesting in its own right. As an illustration, we shall give an
application to Turing degrees. Let <1 denote Turing reducibility. We prove a weaker version
of Sacks' result that A{x | y <T x } = O for nonrecursive y. Suppose y is a random
sequence. and y <T x. We then have VmIn IY(x(n)) < n — m, for if 3mVn IV(x(n)) > n — m,
in virtue of 4.10 we would also have 3mVn I*(y(n)) > n — m, which is impossible because
of y <1 x. Hence it follows from 4.4' that A{x | y <T x } = 0 for random y.

In particular, we have A{x | @' <T x} =0, for @' contains the random sequence €, the
halting probability of the universal Turing machine as defined in CHAITIN [1987].

We now return to the relation between independence as defined in 4.6 and RS. The validity
of RS1 and RS2' for our notion of independence follows from theorems 4.4 and 4.8

respectively. Moreover, if the admissible function F is Zf on its domain, we also have: x €

R & y has no information about x & F(x,y) is defined and has infinitely many 1's —
X/F(x,y) € R. This is so because for such F, F(e,y) is a place selection recursive in y.

Summarizing the discussion so far, we have
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Theorem 4.11 The independence relation defined in 4.6 satisfies R1 - 5, RS1 and RS2

when the quantifier VF is restricted to F which are 2(1) on their domain.

It can also be shown that R6 is true when restricted to the EZ formulas as defined by

GAIFMAN and SNIR [1983], but we shall not go into the details.

4.12 Concluding remarks In accordance with von Mises' slogan "Erst das Kollektiv
[i.e. random sequence], dann die Wahrscheinlichkeit", RS does not refer to a probability
measure, only to limiting relative frequency. This contrasts with the (more common)
approach that takes random sequences to be sequences that satisfy all ("effective") strong
limit laws of probability theory. It will be observed that R, the independence part of RS, is
complete with respect to a semantics in which randomness is indeed defined as satisfaction
of a large class of properties of Lebesgue measure 1 (2.3.1). Does this mean that, after all,
the proper concept of randomness is "satisfaction of all effective strong limit laws of
probability theory" ? It does not, because RS by no means singles out a unique measure. R
can be intepreted using any continuous Borel measure and to interpret RS1 and RS2 we
only need a product measure [I5(1-p,pn) such that p,— 4 for n — oo. Therefore Ville's
theorem, which says that Church random sequences need not satisfy the law of the iterated
logarithm, has an analogue in our situation: it does not follow from RS that Vx(R(x) — x
satisfies the law of the iterated logarithm), as can be shown using the arguments in section 4
of VAN LAMBALGEN [1987a].
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