Institute for Language, Logic and Information

INVESTIGATIONS INTO
CLASSICAL LINEAR LOGIC

Dirk Roorda

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-89-08

%
&
%

University of Amsterdam



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte

(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

INVESTIGATIONS INTO
CLASSICAL LINEAR LOGIC

Dirk Roorda
Department of Mathematics and Computer Science
University of Amsterdam

) Research partly supported by
Received October 1989 Esprit Basic Research Action 3175 DYANA



Investigations into Classical Linear Logic

Dirk Roorda
October 25, 1989

Abstract

We investigate for which elementary fragments C {—, —, 4, ®, U, N, &, 1, 1, T,
0, !, 7} of classical linear logic interpolation holds. The first thing we need is a cut
elimination theorem. Girard gives an unconventional, complicated proof in [Gir87],
but a more standard proof is also possible. A method due to Dragalin [Dra87| is
adapted to CL; this method yields also strong normalization. The first part proves cut
elimination and strong normalization; the second part contains proofs for interpolation
for some fragments of classical linear logic; the third part is concerned with another
question, of which the answer uses a corollary of cut elimination: decidability.

1 Prologue

Linear logic is a new subject, that attracts unconventional minds. Exploring an untouched
area is exciting enough, but sooner or later a lot of more conventional work has to be done.
I am concerned here with some down to earth questions about classical linear logic. In this
report they are answered by (long) existing methods. I found it a pleasure to see that a
decidability argument for relevance logics by Dunn ([Dun86]) was general enough to be of
use in the case of linear logic; I thank prof. Johan van Benthem for drawing my attention
towards it; it was prof. A.S. Troelstra who gave me the proof of cut elimination with
strong normalization in classical logic by Dragalin ([Dra87]). There are also some results
about interpolation in this paper; for some kinds of fragments of linear logic interpolation
holds, but the question whether interpolation holds for fragments where negation is not
definable and where implication is present, is left open. These fragments are interesting,
because the Lambek Calculus falls into these.

2 Cut Elimination and Strong Normalization for CL

2.1 Introduction

In [Dra87] Dragalin gives a nice method to prove cut elimination together with strong
normalization for classical predicate logic. I shall use this method, with a few adaptations,
for CL.

Let me first describe the system CL. We use a sequent calculus, of course. Language:
formulae are built up from proposition letters pi, ps, .. ., and constant symbols 1, L, T,0,
by means of the unary connective *, and binary connectives —, —, ®, LI, M, @, and modal-
ities ! and ? . The constant symbol L for falsum is different from the unary connective +
for negation. Sequents are denoted by ' - A, where I', A are multisets of formulae. The



sequent A;,...,AnF By,...,Bp will be interpreted as A1 ®---® Ap,== BiU-:-U Bp,
(the connectives ® and LI are interpreted by associative and commutative operations).
The axioms and rules are as follows: '

P AFA
THA
THA
o) T,0FA T(r) TFT,A
o1 DABFA or DiFAA TikBA,
T,A®BF A T,,[:F A® B, Ay, A,
41 DwAFA, TyBhA, 4y LDFABA
I'h,I['s,AUBF Ay, A, 'HAuB,A
- T,AF A I,BFrA _  T[FAA THBA
12 T,ANBF A T.AnBFA ' T TFANB,A
o1 DLAFA T,BRA or THAA THB,A
T, A©BF A 2 TF4A®B,A TFA®B,A
L Iraa L, LArA
T,ALF A TF AL A
oy DiF4A 0,BEA .. LArBA
T1,T2,A—BF Ay, A, TF4A—B,A
; DBFA4,A T'i,AF A, T,F B,A,
" T,A=BFA o I,T:FA— B,ALA,
i THA T,AF A . ITrcC o TAAFA
Yeb TTAF A T.JAFA T TFC ° TT,1AFA
THA THAA CF?A T F?4,74,A
b e el el 71 o ?¢ S8
> TFTA,A TF74,A 7CF7A TH74,A
cut Ti1FAA Ty AFA,

Iy, T2 b A, A,

The proof proceeds as follows:



1. Describe reductions on proofs, where a reduction removes a cut at the cost of cuts
of a lesser degree; or it permutes a cut with a rule application in one of its premises.

2. Show that if a proof is not reducible, then it is cut free (also called normal).
3. Show that every reduction sequence terminates.

In order to perform 1. , we carry out an extensive diagnosis of the cut rule application;
for every different case we supply a primitive reduction. After that we can easily see that
every non-normal proof has a terminating reduction sequence, so, together with 2. , this
establishes the eliminability of the cut rule. In order to prove 3. , we define an auxiliary
notion of inductive proof and a measure for the complexity of cut applications. Then
we show that every proof is inductive, by induction on the rank of the cut formula and
the complexity of the cut application, nested in that order. It follows easily from the
definition of inductive proof, that an inductive proof is strongly normalizable. However,
there is certain restriction on the kind of admissible reductions, which has to do with
contractions. Let me illustrate this point. Consider an application of cut of the following
form:

T1 F?4,74, A, :
T1F?A, A, 7AF7A,
T1F Aq, 74,

cut

This should reduce to

T1F?74,74,A1 ?AF?A, cut :
T1 74, A, 70, 7AF7A,
T1F Aq, 7Ag, 70,

cut

9.
N PN

TiFALLTA;

But then we can reduce ad infinitum by permuting both cuts that are shown, in wich
process the figure does not change. For a way out of this complication, I shall follow
[Dra87): we add stronger (but derivable) cut rules:

T,k (PA)" A, Ty?4F A,

cut rl) -F2 F Al, A2
and
cut T: HA,A, Ty, (1A)"F A,

', Tk Ay, A,

Then we can apply cut to the premiss of the contraction.

There is another lack of freedom: when a premiss of an application of cut ends itself in
a cut. Then we do not allow a permutation of these two cuts, since that could go on for
ever. This may not seem a substantial lack of freedom, but it complicates case 3e. in the
list below.



2.2 Preliminaries

In an application of a rule, the formulae that match the I',T'1,I'2,A,A;, Ay are called
stde formulae, the others that occur in the conclusion major formulae, and the others that
occur in the premises minor formulae.

Lemma 2.1 Every proof of a sequent T, 1+ A (resp. T+ L, A) can be transformed into a
proof of T - A with ezactly the same structure, but with the difference that all occurrences
of 1 (resp. 1) that are connected to the occurrence in the conclusion, are removed.

PROOF: The occurrences of 1 (L) in question are introduced by 11(_Lr) , skip those
introductions. The rest of the occurrences are merely side formulae, it is not harmful to
remove them.

O

2.3 Case analysis of cut applications

Consider the two premises

(DT1F A4 (r) T2, AF Az
of a cut application. The following list of cases and subcases is complete:
1. (1) or (r) is an axiom of the form A+ A
2. ()isklor(r)is L+
3. in at least one of () and (r) all occurrences of A involved in the cut are not major
formulae; the last rule applied there, is:
a.0or T
b. a rule with one premiss, not !r, not 71
c. a parallel rule with two premises: ®r, L1, —1, —r; (cut is excluded)
d. a sequential rule with two premises: Mr, ®1
e. Iror 71
4. in both (/) and (r) A is major formula; in at least one of () and (r) the last rule
applied is
a. 7r, or !l,
b. ?l‘b or !lb
c. 7. or !l
5. in both (I) and (r) A is major formula; and in both A is introduced according its

principal connective ®, LI, M1, @, —, — or *. So here there is only one occurrence of
A at either side involved in the cut.



2.4 Primitive reductions

According the distinctions above we shall give reductions of proofs that end with a cut
application. If there are symmetrical cases, we treat only one representative.
1.

AFA Ty A Ay oy ~ T2 AF A

Ty, Al A,
2.
F1 T3,1F Ay oy ~ IFA bylemma21
TFA
3a.
T;,0FAA; Ty, AFAj oyt ~ T1,T2,0F A A
I‘I)P2)0}_A1:A2
3b.
THAA - : . T[FEA4A T5AFA ot
TiFAAr ~ T2 AF Ay T,TsF Aq, A
T1,T2F Ar, Ay TLT:FALAg
3c.

TiF p,4,A] T}k ¢,A :
TLTL,Fpot, A, ALAT ™ Ty AF A,
PLP%’ P2 '_ @ o ¢)A%aA%aA2

cut

Tl p,A,Al T3, AF A, :
I‘{a F2’}_ ‘PaA%’AZ F% F 'l” A% rx
I‘iar‘%’r2 l—goot,b,A%,A%,Az

cut

For this reduction it is immaterial wether the ¢, 1, and ¢ o ¢ occur left or right.
3d.

IibpAA TiF, A0 :
T1Fpoy,A A I3, AF A,
I, Takpoy, Ay, A

cut

TiF p,A,A1 Ty AF Ay cut T1F¢,4,A1 Ty AF Ay
[, T2k @, A1,A2 T1,T2 - 4,A1,A,
Flar2 }“QOOQI),A]_,AQ

cut

X




For this reduction it is immaterial wether the ¢, ¥, and ¢ o ¢ occur left or right.

3e. InTy - A, A; the last rule applied cannot be !r if A is not major. So we have the
following situation:

CF (24)", 74, :
7CF ZA),7A;  T3,7AF A,
7C, T F7A1, Az

cut

If we try to permute the cut with the 71 then we encounter the problem that after the cut
we do not have a good premiss for 71. So, in this case we are forced to permute on the
other premiss. But that could be a problem in three cases:

1. the situation in the second premiss is the mirror image of the first premiss. But then
!r must be the last rule applied there, and ? A should begin with a !, which is not so.

2. the second premiss ends with a cut. Then we do not provide any reduction for this
cut, but there is at least one other cut to apply a reduction to.

3. in the second premiss ?A was just introduced. But then we have a situation in which
it is possible to permute on the left premiss !:

CF (24)",7A, AT, W CF(A)™2A; 74174, oy

7CF (7A)",7A, TAFTA; cut CHF?A1,7A,
C F7A1,7A2 7C F7A1,7A;

4a. We have ?r, in (I) or !1; in (r). Note that in (r) ?A was just introduced.
Case 1: ?A occurs in Ay and such an occurrence is involved in the cut:

Iy F (24)"1, A, :
I'i F?A, (?A)"+1, Ay 7AF?7A,
T1F A1, 74,

~ Ty F (PA)™L A1 2AF?A; cut
cut Fl [ Al,?Az

Case 2: otherwise we have the following situation:

Ik A : TikA

—_— : ~>
? 2AF? : :
T1F?A A ?7AH74, Loy,
Ty Ag,7A, T1F AL 7TA;

4b. We have ?r; in (I) or !I, in (r). Note that in (r) ?A was just introduced.
Case 1: ?7A occurs in A; and such an occurrence is involved in the cut:

TiF A4 A AF?A,
T1F74,PA) 1 A, TAFTA,
T, F A %Az

cut




TiF A,(?A)™1, Ay 7AF7A, et :
I'i-AA1,7A2 AF?As
T1F Ag, 70, 1A,

cut

i
-.c.

I'1 F Ay, %A,
Case 2: Otherwise we have the following situation:
i FAA  ARA,

TiF74,A; 7AFA,
TiF AL A,

[ Pl I— A, Al A |_?A2 cut
cut ToF Ar, 78z

4c. We have 7, in (/) or !, in (r). We have the following situation (note that in (r) 74
was just introduced):

T1 F?74,74,(24)", A, :
T; F74, (PA)", A 2A 74,

~ T1F?24,74,(24)", A1 ?AF?A; cut

cut I'iH AL, ?A
T:1F A ?A; 1oL
5. We combine the proofs II; of (!) and II; of (r) into ¢(Ily, IT,):
Hl HZ
+ trivial
® IOk A,A9 TlF B,Al T3,4,BF A,
IO, TLE A® B, A, Al I2,A® BF A,
: r? I— A,A9 I';,A,B |— A
H I'I — : 1 =1 2,41, 2
Mo T8) = 1 p,a] 17,05, BF A A,
IY,TL T2 - A, AL Ag
L analogously

_s’_,easy

n TiF A A T: F B, A Ty, AF Ay

I‘II—AHB,AI I';,ANBF Ay
¢(Ily, M) = Ty F 4,4, T, Al A,

I, T2 - Ay, A



the other case likewise

@ analogously

2.5 Strong normalization

A (one step) reduction of a proof II is a proof X, obtained by applying an appropriate
primitive reduction to an instance of the cut rule in II. Notation IT > ¥ or ¥ < II.

Lemma 2.2 If no reduction applies to a derivation Il then II s cut free.

PROOF: As long there is a cut in II, then it falls in one of the cases listed above; in all
those cases a reduction is described, either on the designated cut, or on a related cut (cf.
case 3e.).

O

Let us define a few notions, in order to get a measure of complexity for cut applications.
Define, for II a derivation terminating in a cut with premises II; and II,:

o(IL;) = 0 if the cut formula is just introduced, but not by ?43, !4,p,1r,11,T,0
/71 1 otherwise

a(IT) = a(I1;) + a(11y)

r(IT) = the number of symbols in the cut formula

Definition 2.1 We define the notion inductive proof by induction:

(1) AL A;F1; L, T,0FA; THT,A are inductive proofs;

(2) —%— X # cut 18 inductive if all premises are inductive;
II; I, .. .. .. .
(8) M= TE A Cutis inductive if every ¥ < Il is inductive.

Note that for any II there are only finitely many X < II. For inductive derivations IT we
define the size ind(-) by (the cases match the cases in definition 2.1):

(1) ind(I) = 1;
(2) ind(IT) = 3=, ind(IL;) + 1;
(3) ind(Il) = Y pcgind(X) + 1.
Lemma 2.3 IfII s inductive, and ¥ < II, then ¥ 1s inductive.

PROOF: Induction on the structure of II: if II is inductive by clause (1) or (2) then &
is of that form, and the result follows easily from induction hypothesis. If IT is inductive
by clause (3) then it follows by the definition of inductive.



O
Lemma 2.4 Every inductive proof is strongly normalizing

PROOF: Induction on ind(IT). If ind(IT) = 1 then no reductions are possible. If II
is inductive by clause (2) then every reduction is inside one premiss. Apply induction
hypothesis. If IT is inductive by clause (3) then the result is built into the definition.

O

The following lemma is the crucial step towards strong normalization.

Lemma 2.5 If in a proof that ends with a cut, the premises are inductive, then II 1s
inductive.

PROOF: Define a complexity of cut applications as follows: given the application with
premises I'; - A;A; and I'2, A+ Az then

h(I) := w - a(IT) + ind(I1;) + ind(I12).

We induct first on r(IT), and inside on h(II).

Case 1. X arises by reducing a cut in II; or in II;. Then we see that a(X) < o(IT) and by
definition of ind(:) :ind(X) < ind(IT). So h(X) < h(II) and X has inductive premises by
lemma 2.3. Then by h-induction hypothesis, ¥ is inductive.

Case 2. X arises by reducing the last cut of II. Then we inspect all possible primitive
reductions.

Reduction 1. ¥ is one of the premises, and thus inductive by assumption.

Reduction 2. ¥ is nearly one of the premises; it is easy to verify that the removal of 1
(resp. L) does not affect inductiveness.(See the proof of lemma 2.1).

Reduction 3a. ¥ is inductive by clause (1).

Reduction 3b. The situation is (schematically)

I I I
m, I, cut ~ I’ cut
o )]

The original cut has complexity
h(IT) = w- (1 + a(M2)) + ind(IT;) + ind(I12)
and the new one
B(IT') = w - (a(IT') + a(Tly)) + ind(IT}) + ind(TTy)

Now a(IT') < 1 and ind(IT}) < ind(I1;) so h(II') < A(II). So by h-induction hypothesis IT’
is inductive, and then by definition ¥ is inductive.
Reduction 3c, 3d and 3e. In the same way as in case 3b: One verifies easily that the new
cuts have lower h-values then the original one, and concludes that the resulting proof is
inductive. For clarity I show case 3d.: '

II'1 I'I{' my 11, Y I,
L = cut ——;;—-—1 cut
I, I, cut ™ IT§ In;
II b3



h(IT) = w - (1 + a(I12)) + ind(I1;) + ind(IT;)
h(I1$) = w - (a(1}) + a(Ilz)) + ind(11}) + ind(T1,)
R(IT8) = w - (a(I}) + a(112)) + ind(11}) + ind(IT;)

Now ind(IT}),ind(IT¥) < ind(IT;) and a(I1}),a(I1¥) < 1 so h(I1$),A(I1}) < A(IT). By
h-induction hypothesis IT¢ and I are inductive, and by definition ¥ is inductive.
Reduction 4a. Case 1 is easy, like 3b. Case 2 is easy, because the cut disappears.
Reduction 4b. Case 1. We have the following situation:

H’I I,
m I m " m
lTI-1- ﬁ2‘ cut ™~ T cut
S .
b

It is easy to see that the upper cut has lower h-complexity; so IT’ is inductive. The lower
cut has lower rank (its cut formula is A, while the cut formula of the original cut is 7A),
so by r-induction hypothesis IT” is inductive. So ¥ is inductive.

Case 2: easy.

Reduction 4c. Easy.

Reduction 5. Every new cut has lower rank, apply r-induction hypothesis.

Olemma 2.5
Corollary 2.6 Every derivation is inductive.
Theorem 2.7
(1) The system CL is equivalent to the system CL without cut;

(2) Every sequence of reductions, applied to a CL-proof, terminates.

PROOF: From corollary 2.6, lemma 2.4 (2) follows immediately. From this and lemma
2.2 follows that every proof can be transformed to a cut free proof of the same sequent.

O

This theorem is not an adamant result on strong normalization, because of the lack of
freedom in applying the primitive reductions and the way contraction is treated.

3 Interpolation in CL

3.1 One-sided calculus, elementary fragments

We are interested in interpolation properties of fragments of CL. A fragment of CL is a
subset of the formulae of CL. Let 7 be a fragment of CL. We say that interpolation holds
Jor ¥ if for all provable sequents I' - A in ¥ there is a formula M € ¥ such that T' - M
and M F A are provable and the material of M is a subset of the material of T and A,
i.e. every proposition letter that occurs in M occurs both in ' and A.

In order to study interpolation in fragments containing negation and implication , it is
convenient to work with an one-sided calculus CL!. The language of CL! consists of the
symbols 0,1, L, T, p1, pi-, P2, P35 .- - ,—,—,1,®,®,,!,2. Negation is defined:

10



(rr)* =n
(L)* =1
(M)t =0

(A® B)t= Al nBt
(AuB)t= Al @ BL
(A— B)‘= A1 —~ B!

(1At =74% (?4)r =14t

Remark

In fact, —, — are definable in the other connectives:
A—B = A*uB
A—B = A'®B

The axioms and rules are:

p - A, At
FT
1 F1 L FoT
T FT,T
o AT _FBIy L t4,B,T
FA®B,T,,T, FAUB,T
 FAT _FBT o, AT _FBT_
FAMB,T 12 FAeB,T HA®B,T
. FALBT FATT,  F BT
"A—*B,I‘ o |_A‘_'-B,I‘I,I‘2
. FT FA,T F?74,?4,T , FCT
“a,b,ec F—‘?A,I‘ |—-?A,]_" I—"A,I‘ : l‘!C,?F

An elementary fragment 7 is a subset of the set of formulae of CL based on a subset
Cs € {0,1,1,T,—,—,M,®&,®,U,",!,?} ie. the constants of C7 and the proposition
letters are in F, and F is closed under the connectives and modalities of C7. We distinguish
between three kinds of elementary fragments:

Type I: elementary fragments without * (negation) and without —, —
Type II: elementary fragments with negation, or — together with L (falsum), or — to-

gether with 1

11



Type III: other elementary fragments

So negation is defined or definable in type II fragments, and in type III fragments negation
is absent, while one of — — must be present there.

If 7, based on C7 is an elementary fragment, then 7* := {Al | A € 7} is called the De
Morgan dual of 7. It is the elementary fragment based on C% := {c¢* | ¢ € C7} where

0 =T, T*:=0,
1* =1, 1*:=1,
mn* =, o =0,
®* =1, u* :=eQ,
ake—_ =
=—, =2

¥o=?, ?7* =)
L* .1

Notation

N
FT'§ I <= (i) For T, T, (ii) Fcr T, N, (i) For Ni T

and (iv) the material of N is contained in I'' and in I'".
When we work in a two sided calculus, we define

N
A <= ()T kcL A, (ii) T koL N, (i) N ko A
and (iv) the material of N is contained in I' and in A.

3.2 Interpolation for type I fragments
Theorem 3.1 For every type I fragment 7 interpolation holds.

PROOF: We work in a two sided calculus. Let a cut-free proof IT of I' - A be given,
I'; A C 7. We construct an interpolant for I' - A by giving interpolants for the axioms in
IT, and constructing interpolants for the conclusions from interpolants from the premises
of every application of a rule in II.

P AF A
Th A
i —— 1r [y
T,1FA
TFA
IR B Ir  —
THL1,A
0 T
0 T,0F A T TrT,A

12



T ABIlfA T IIXA A T lAfB A
®l 9 41y ~ r 1 ]:Igj\:}{ 2 y =22
A BF A r'',Te F A® B,A;, A,
N M N
I'i,AF A, I';,BE A, '+A,B,A
L1 NUM Ur -~
rh,I';,AUB + A, A, 'HAUB,A
N N N M
T AFA I'BFA TFA,A T FBA
Ml 2 N N nr NOM
' ANBFA ', ANBF A ' W AnNB,A
N M N N
' AFA TI,BFA 'HAA T'B,A
ol NoM Ory —y——— ~
I'AeB +F A 'rAe® B,A 'rA®e B,A
N N N N
TFA T,AFA . Tkc . L,L41AFA
Lp —w— —~ 't —5— e T F—
T, JAF A T,JAF A T +!IC T,JAF A
N N N N
TFA THAA . CF?A , TF?4,24,A
rap N A 1 —5 — e —x ——
T'F?4,A IF'F?4,A C F A T'F?4,A

All verifications are easy, in particular thar the interpolation formula stays in the given
fragment.

]

3.3 Interpolation for type II fragments
Theorem 3.2 For every type II fragment ¥ interpolation holds.

PROOF: We try again an induction on a cut-free proof, but we have to “load” the
induction hypothesis. Suppose, for provable - T in 7, that for every partition T'',T" of T

there is an N € 7 such that - I ]j}r I'".(This is not so easy to express in the two sided
calculus).

Let II be cut-free proof of - I'. Then an induction on the length of II shows that every
sequent of Il is in # U 7*, but 7* = 7 because negation is definable in 7. That is also the
reason why we do not have to consider linear implication — and its De Morgan dual —.

N
The following list shows how to construct an interpolant N such that - T § T'". Remark:
the position of § in the premises is dictated by the position of § in the conclusion, while
the formula above § in the conclusion is constructed from the formula(e) above the § in

the premises. So the construction requires an upward walk followed by a downward walk
through II.

13



1 A
P Hf AL, A FALH A
main formula left
1
1 g1
N
FT' g T
1 N
FT,L g
0
T kD, THI”
N M
® FT', AT FA',B ¢ A"
NUM
FTL,A'A®@B ¢ T", A"
FT' A B ];i] "
Ll 9 k) N
FT',AUB §TI"
N M
FT', A4 T" FT',B g IT"
M NoM
FT',AnB § TI"
N
FT',A4T"
® N
FT', A® B § TIT"
N N
” FT' g T" FT',AgT"
*ab N N
FT,?2ZA4T" FTL,72A4T"
N
? FT',?2A,7A 4§ T"

N
FT,74 § T

N
F9T, ¢ {71

7N
21,10 f 27"

L
FAL A
main formula right

L
F1tg

oy

N
FTg L,

;
FT' ¢ T,I

N M
FI'§AT"  FA'E B,A"
NoM
FILA'f A®B,I", A"

N
FT't A, B,T"
N
FT'§ AUB,T"

N M
FI'§ A"  FT'§ BT
NnM
I’ ANB,I"

N
FT'} AT
N
FI'§ A® B,T"

FTf T

N
FT' §?A,T"

N
FT'§ A,T"
N
- T §24,T"

N
T §74,74,T"
N
T’ §74,T"

N

LT § €, 7T
IN

2T §1C, 7T

Again, all verifications are readily made; in particular, note that whenever a connective
or constant is introduced in the interpolation formula, it or its De Morgan dual occurred
in the accompanying sequent, soit isin F U 7* = 7.

14
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3.4 Interpolation for type III fragments

In order to prove interpolation for type three fragments, we have to be much more careful
about the interpolation formula, since ¥ # 7*. I have no results for this fragment yet;
it is possible that interpolation does not hold for all type III fragments; my conjecture is
that it does hold for fragments without ! and 7, and that there are counterexamples when
! or 7 are admitted.

4 Decidability

The method described in [Dun86] to show decidability for various relevance logics can also
be put to work in the case of CL. But for technical reasons it is better to let the method
tackle a stronger system, namely CL¢ i.e. CL! with the ?. rule replaced by unrestricted
contraction:

- A,A,T
FAT

The problems come from the fact that in CL the formulae that may be contracted are
syntactically different from those that may not. It causes then problems in the definition
of the cognation classes; for example should - A,T' and A, A,T' belong to the same
cognation class? On the one hand, they are not contractions of each other (in general),
on the other hand, both are reducible to F?A,T.

In [Dun86] the systems in consideration have intuitionistic sequents; but the place of the
I is immaterial to the method. So I expect that this method is adaptable to intuitionistic
linear logic as well.

The method of [Dun86] yields for each sequent a finite proof-searching tree. If a sequent is
unprovable in CL¢, then it is a fortiori unprovable in the weaker system CL!; if a sequent
is provable in CL® then the decision method yields a finite number of possible CL*-
proofs. If there is a CL!-proof, then a certain transformation of it must occur among
those CL*-proofs, which is a decidable question. Below, I shall consider this point in
detail. It is convenient to summarize the method first.

1. Start with CL¢. Remove the contraction rules, and allow a bit of contraction in
those operational rules that do not commute with contraction. Call the resulting
system CL°t,

2. Prove a Curry-lemma: if a sequent A is a contraction of a sequent I', and T is
derivable in < n steps in CL%, then A is derivable in < n steps in CL*.

3. Define notion of cognation : two sequents are cognate, if they are contractable to
the same sequent (by unrestricted contraction).

4. Show that there are finitely many cognation classes in every derivation ( using the
subformula property)

15
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AT, kBT,
FTA®B,T1,Ta] _
FA

Case 1: a corresponding contraction was already possible on one of the premises. Then
apply induction hypothesis.

Case 2: otherwise, i.e. the two contrahenda are distributed over I'; and I'; or one of the
contrahenda is the main formula of the conclusion. But then the rule ® is constructed in
such a way A matches - [A® B,T'1,T].

O
Corollary 4.1
(i): F T provable in CL® <=> I T provable in CL*.

(ii): if there is a derivation for - T' in CLt then there is an irredundant derivation for
the same sequent.

PROOF: (i)(from left to right) All rules of CL® are rules of CL°¥, except the c-rule.
But if that rule is applied, we can apply Curry’s lemma.

(from right to left) The rules of CL°* are derived rules of CL*.

(ii) Induction on the length of derivations: If there is a redundancy not involving the
conclusion, we can remove it by induction hypothesis. If there is a redundancy

FA

F T where |- T is a contraction of - A,

then we have by Curry’s lemma a derivation of I T' in CL* of the same length as the
given derivation of - A. Then by induction hypothesis we have an irredundant derivation

of FT.
O
Theorem 4.2 CL€ 1s decidable.

PROOF: We apply Dunn’s method:

For each sequent - I' we can build a complete CLC-proof searching tree. It suffices to
look for cut free proofs, regardless whether cut elimination holds in CL€¢ or not. This is
because we are only interested in provability in CL!, and thus only in CL¢-proofs that
are transformations of CL!-proofs, the so-called linear CLS-proofs. We shall see that this
transformation carries cut free proofs to cut free proofs, and we know that cut elimination
holds in CL! (cf. definiton 4.1, lemmas 4.4, 4.5). From this it is clear that the proof
searching tree is finitely branching.

The next thing to show is that every branch in this tree is finite. We can make another
restriction on proofs: we only search for irredundant proofs. This is justified by Curry’s
lemma (corollary 4.1). We define: two sequents are cognate if they are equal as sets.
Because the tree searches only for cut free proofs, for which the subformula property
holds, there are only finitely many cognation classes in the complete proof searching tree.
Then we can apply Kripke’s lemma:

17



Lemma 4.3 If a sequence of cognate sequents is irredundant (meaning that earlier se-
quents are never contractions of latter sequents), then the sequence is finite.

The branches of our complete proof searching tree try to build up irredundant (cut free)
proofs, from the conclusion upwards. If there was an infinite branch then it would con-
tain infinitely many sequents from a certain cognation class. These sequents form an
irredundant sequence. So the branch must be finite.

Now we have both premises for Konig’s lemma, so the complete proof searching tree is
finite.

O theorem 4.2

4.2 Decidability of CL!

We shall show that the decision procedure for CL€, that follows from the method described
above, leads to a decision method for CL!.

Definition 4.1

A contraction of two formulae with principal connective 7 is a linear contraction.

A CL*_proof in which all contractions are linear, is called a linear (CLt-) proof. (This
relates to the contractions built into the operational rules)

Lemma 4.4 every CL!-provable sequent has a linear CL*-derivation.

PROOF:

Induction on the proof-length, analogously to the proof of corollary 4.1(i)(from left to
right). It is necessary to use a sharpened Curry lemma:

If a sequent A 1is a linear contraction of a sequent I', and T 1s derivable in < n steps by
a linear derivation in CLE, then A is derivable in < n steps by a linear derivation in
CLt. This is easier to prove than the Curry lemma itself, because there are less cases
to consider, for main formula are not linearly contractable (except when a ?-formula is
introduced).

O
Lemma 4.5 Every linear CLt-proof can be transformed into a CL!-proof.

PROOF: Every contraction in a linear CL*-proof can be replaced by applications of
the ?.-rule.

O
Theorem 4.6 CL! is decidable.

PROOF:

Let - T' be given. By the method of theorem 4.2 we are provided with a complete, finite
(possibly empty) set of CL*-proofs of it. If there are no CL*-proofs, then I T is not
provable in CL¢, and clearly the same holds for CL!. If there are CL*-proofs for I T
then the question whether there are linear ones among them, is decidable. If there is a
linear one, then by lemma 4.5 - T' is CL!-provable; if there is no such proof, then by
lemma 4.4 we know that there is no CL!-proof for |- T'.

a
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