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Isomorphisms and non-isomorphisms of graph models
Harold Schellinx

Department of Mathematics and Computer Science
University of Amsterdam

In this paper the existence or non-existence of isomorphic mappings between graph
models for the untyped lambda calculus is studied. It is shown that Engeler's D 4
is completely determined, up to isomorphism, by the cardinality of its ‘atom-set’
A. A similar characterization is given for a collection of graph models of the Pw-
type; from this some propositions regarding automorphisms are obtained. Also we
give an indication of the complexity of the first-order theory of graph models by
showing that the second-order theory of first-order definable elements of a graph
model is first-order expressable in the model.

1. Introduction

Among the set-theoretical models for the untyped lambda calculus that were
introduced in the seventies and early eighties there is a class of which the members
are particularly easy to describe. We will refer to these as graph models. They can be
characterized as follows.

1.1 DEFINITION: A graph model is a pair (P(X),s), where P(X) is the powerset
of some infinite set X and e a binary operation on P(X) defined by means of an
embedding (+,) into X from the Cartesian product X <% x X of the collection of finite
subsets of X and X such that, for all a,b € P(X), we have

aeb={m|3pCb.(u,m)E a}. m]

In the literature graph models appear in two main variants. The first construc-
tion is originally and independently due to G. Plotkin and D.S. Scott and uses the set
IN of natural numbers. An embedding (-,-) : N<“ x IN — IN is obtained by means of
an injective (but not necessarily surjective) coding p : IN x IN < IN of pairs of natural
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numbers as natural numbers and a bijective coding e : IN — IN<“ of finite sets of
natural numbers by natural numbers, as follows:

IN<“ x IN 5 (e, m) — p(e™(a),m) € IN. (1)

Putting e, for e(n) we then can rewrite the definition of application through an
embedding by codings p and e as:

zeoy={m| e, C y.p(n,m) € z}. (2)

1.2 DEFINITION: A P(IN)-structure is a graph model [p,e] := (P(IN),e) with
application defined by the codings p and e as in (2).
Pw denotes the structure [p*, e*] defined as follows:
for all n,m € IN : p*(n,m) = 3(n+ m)(n +m+ 1) + m;
foralln € N : ef = {ko,k1,...,km_1}iffn= > 2% (ki #£k;ifi+#j);
i<m

eg = 0. 0

Note that the codings p* and e* defining Pw are such that a natural number
always is smaller than any code of a finite set containing it and greater than or equal
to the left and right projections of the pair it encodes.

1.3 DEFINITION: Injective codings p of pairs of natural numbers as natural num-
bers and bijective codings e of finite sets of natural numbers by natural numbers are
called basic codings if and only if (iff)

Vk. = € e, =z < k;

Vm,n. m,n < p(n,m). O

For all basic codings, by definition the empty set is coded by 0; also p(0,0) =0
whenever 0 is in the range of p.

Iterated pairing p(z1, p(z2,p(z3,...,p(Tk,y)-...))) will be written as
p(z1,22,23,...,Zk,Y).

A second paradigmatic construction of graph models, due to E. Engeler, is such that
actually X<“ x X C X : we may take the identity mapping as our embedding.

1.4 DEFINITION: Let A be any non-empty set of which none of the elements is
written as a pair (—,—). Then put:



Go(A) = A
Gnt1(4) := Gn(4) U(Gn(4)™* X Gn(4))
G(4) = | Gn(4).

n€EN
D, will denote the graph model (P(G(A)), o). a

So G(A) is the smallest set X D A such that for all finite 3 C X and b € X we
have that (5,b) € X.

In view of the construction described above graph models sometimes are referred
to as Plotkin-Scott-Engeler (PSE)-algebras (see [Lo)).

Any graphmodel (P(X), o) is a model for the untyped lambda calculus, because
(P(X), Q) is a reflexive cpo through the continuous (w.r.t. the Scott-topology) map-
pings F : P(X) — [P(X) — P(X)] and G : [P(X) — P(X)] — P(X) given
by

F(a)(b)=aeb

and

G(f) ={(8,b) | b € £(B)}-

For more details we refer the reader to e.g. chapter 5 of [Ba).

Now, given this huge amount of models (one for each pair of codings (p,e) and
one for each non-empty set A), one naturally asks whether and in which sense they
are different or alike.

As any graph model is an applicative structure we may apply the usual definition
of homomorphic and isomorphic mappings.

1.5 DEFINITION: Given two graph models (P(X),e) and (P(Y),*) we will call a
1-1 mapping 9 of P(X) onto P(Y) an (applicative) isomorphism iff we have for all

a,be P(X):
B(aob) = B(a)  $(b).

If such a mapping % can be found, we say that the graph models are isomorphic. This
is written as (P(X),e) = (P(Y), *). O

We can talk about applicative structures in a first-order language £, defined in
terms of a countably infinite set of variables, the usual logical symbols (parentheses,
connectives, quantifiers), a binary relation symbol = for identity and a binary function
symbol A for application. (Actually we will never use the symbol A but always write
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“gy” for “A(z,y)”; for nested applications we adopt the convention of association to
the left, i.e. wzyz := ((wz)y)z.)

As any applicative structure is an £-model the concept of “applicative isomor-
phism” coincides with that of “isomorphism of £-models”. So for applicative structures

(A,e) and (B, *) we have
(A,e) 2 (B,x) = (A,e) = (B, *), (3)

meaning that whenever two applicative structures are isomorphic, they are elementary
equivalent as £-models (i.e. an L-sentence ¢ is valid in (4, e) iff it is valid in (B, *);
this will be written as (4,e) = ¢ iff (B, *) = ¢).

The main part of this paper is devoted to questions of existence or non-existence
of isomorphic mappings between graph models. Furthermore attention will be paid to
the first-order theory of graph models which, because of (3), often provides us with a
means to quickly refute isomorphism.

As far as we know in the literature notes as to the isomorphism of graph mod-
els are limited to the observation that representatives of Engeler’s variant are never
isomorphic to P(IN)-structures defined through surjective codings (see e.g. [Lo], or
chapter 20 of [Ba]). The proofs however seem to blur the basic reason for this non-
isomorphism. We will give a simple argument in the next section. After this we show
that the lattice-structure of a graph model M is first-order definable in M. We use
this to characterize isomorphic mappings between graph models and to show that En-
geler’s D 4 is, up to isomorphism, completely determined by the cardinality of the set
A. We then end the section by showing the second-order theory of first-order definable
elements of a graph model to be first-order expressable in the model.

Baeten en Boerboom showed in [Ba,Bo] how changes in the codings determining
a graph model of the Plotkin/Scott-type may change the set of equations between
A-terms valid in the model. In the third section we use the characterization of iso-
morphism obtained to take a look at the relation between codings and the possibility
of isomorphism between P(IN)-structures. We introduce the concept of frame for
such structures and use it to show the existence of uncountable many non-isomorphic
representatives of the Plotkin/Scott-variant. Also we show structures definable by
means of ‘rather well-behaved’ codings to be, up to isomorphism, completely deter-
mined by their frames. From this we obtain some propositions regarding automor-
phisms of P(IN)-structures. Finally we note that many properties of frames of P(IN)-
structures are in fact first-order properties. This enables us e.g. to show the existence
of uncountable many non-elementary equivalent represenatives of graph models of the
Plotkin/Scott-type.

The work in this paper was part of the author’s master’s thesis, written under
supervision of prof. Anne Troelstra, who posed the initial questions and read and
commented upon many of the drafts and preliminary answers. Also we’d like to
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thank Kees Doets and Johan van Benthem for their useful suggestions regarding the
first-order theories. We are indebted to Ingemarie Bethke, whose proposition on the
L-definability of the lattice-structure of graph models plays a major role.

2. Isomorphism between graph models

Atoms

The next lemma will be of use in what follows.

2.1 LEMMA: Let (P(X),e) be a graph model. Then, for all a,b,c € P(X):

(i) bCc=>aebCaec,
bCc=beaC cea;
(ii) (aUb)ec=(aec)U(bec),
ae(bUc)D(aeb)U(asec);
(iii) (anbd)ecC(aec)N(bec),
ae(bNc)C(aoebd)N(aec).
Proof:  Left to the reader. O

Though any embedding gives rise to a structure that is alambda-model, generally
different embeddings will result in models with different properties.

2.2 DEFINITION: Let M = (P(X),e) be a graph model defined by means of an
embedding (+,+) : X<¥ x X — X. An atom of the model is an element of X that
is not in the range of (-,-). The set of atoms in M is denoted by AT (M). A graph
model M is atom-free iff the embedding that defines it is onto. Elements of the model
are called atom-free iff they do not contain atoms. a

2.3 LEMMA: Let M = (P(X),e) be a graph model. Then aez = 0 for allz € P(X)
iff a CAT(M).

Proof: If a C AT(M) then a e z = 0 by definition of e and AT (M). Conversely,
if c € a and ¢ ¢ AT(M) we have ¢ = (f3,b) for some 8 € X<¥,b € X. But then
ae33b. O

2.4 PROPOSITION: Let M, N be graph models. Suppose AT (M) is finite and
|[AT(N)| > |AT(M)|. Then M £ N.

Proof:  Let ®(z,z) be the L-formula Vy.zy = 2. Suppose |AT(M)| = n, for some
n € IN, and consider the L-formula ¥,(¢t) := ®(¢,t) A “there are precisely
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2™ — 1 elements u such that u # t and ®(u,t)”. By lemma 2.3 the empty set satisfies
¥, in M, so M | 3t¥,(¢). If for some b we have that in A it is true that bey = b,
for all y, then write b = b’ U a, where a C AT (N) and b' N AT(N) = 0. Let c be an
arbitrary subset of AT(N), ¢ # a. We have, by lemmas 2.1 and 2.3, for all y,

(d'Uc)ey =1,

and if c1, cz are two different subsets of AT (N), then b' U c; # b' Uc,. So in N there
are at least 2A7(M) — 1 > 27+1 _ 1 elements u # b such that u e y = b, for all y. But
this means that N [ 3tT,(2). O

Note that in a P(IN)-structure, whenever p is a bijective coding of pairs, the
embedding as given by (1) is onto. Consequently the graph model [p, e] will be atom-
free, for all bijective codings p,e. This as opposed to D4, for which by definition
AT (D4) = A # 0. The following then is immediate from proposition 2.4.

2.5 COROLLARY: For all A # 0 and all bijective codings :

Dy # [P, e]' O

It also follows that for all graph models M, N such that at least one of the
atom-sets is finite, we have M =X N = |AT(M)| = |AT(N)|.

This last implication turns out to be true for arbitrary atom-sets and in fact this
will be our proposition 2.8. But for its proof we need a deeper understanding of the
expressive power of first-order sentences over graph models.

The lattice structure of graph models is £-definable

In any graph model (P(X), o) the (operations of taking) unions and intersections
of two elements are representable: just take u = {(3,(v,d)) | d € BU ~},
i={(3,(v,d) | de€ BN~} and check that for all z,y we haveuez ey =z Uy and
iezey=zNy.

2.6 LEMMA: Let M = (P(X),e) be a graph model. Then

5
M = FuIidt3b \ o,

k=1
where

p1 1= Ve(izz = z A uzz = z);



w2 1= VeVy(izy = iyz A uzy = uyc);

3 1= Ve(izb = bA uzt =t Azt = A uzb = z);

s 1= VzVyVz(izy = z — (i(2z)(2y) = zz A i(z2)(yz) = z2));

s 1= VeVyVz.uzyz = u(zz)(yz).
Proof: Taket = X,b =0 and v = u,? =1 as above. It is easy to verify that now
©1,...,p5 are satisfied. O

The next proposition as well as its proof were kindly communicated to us by
Ingemarie Bethke.

2.7 PROPOSITION: Let M = (P(X),e) be a graph model. If p1,...,p5 as given
in the previous lemma are satisfied by u,i,t,b € P(X), then t = X,b = 0. Moreover
uezey=zUyandiezey=zNy, for all z,y € P(X).

Proof: First we show:
Vz,y (iezey=z =z Cy). (*)

Suppose not. Take zg,yo € P(X) such that iezgeyy = z¢ and zo Z yo. Let p € zo\ 7o
and put z := {({p}, k) | k € t}. As t and b satisfy ¢4, 92, s we have

t=zexg=ie(zezg)e(zeyy)=ieted=ieDet=0.

So, by ¢3 and lemma 1.1 (i), for all z we have z =iezet Ciezeb =b,ie. b= X.
Then, again using 1.1, we find that for all z, y,

z=uezebDuezey (by ¢s),

and
y=ueyebDuezey (by @3,92).

So
zNyDuezeydue(zNy)e(zNy)=zNy (by ©1)-

This means that uez ey =z Ny for all z, y.
Now take v,v',w € X,v # v' and put

g :={({v},w)},r:= {({v'},w)}, s := {v,v'}.

Then
uegeres=(gNrjes=0es=40.

On the other hand, by ¢5 :
uegeres=ue(qges)e(res)=_(qes)N(res)={w}.
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This is a contradiction.
But then by (%) and ¢35 we have b C z for all z; so b = 0. Also  C t for all ;

this means that t = X.
Then , forall z,y: c =iezet Diezeyandy=ieyet Diezx ey, whence

zNyDiezeyDie(zNy)e(znNy)=zNy.
Also, forall z,y: z =uezebCuezeyandy=ueyeb C uezey whence

zUyCuezeyCue(zUy)e(zUy)=zUuy. O

From proposition 2.7 it follows that also set-inclusion is L£-definable, as ¢ C y
will be true in the graph models M = (P(X),e) if M = ¢ Ny = z. This in turn
leads us to the fact that we may express in £ that a € P(X) is a singleton: “a is a
singleton” iff

M = One(a),
where One(z) is the L-formula

e #£0AVy(z Cy—y=zVy=0).

We therefore conclude that the atom-set AT(M) of a graph model M = (P(X),e) is
L-definable: it suffices (see lemma 2.3) to put

Atom(a) < One(a) A Vz.az = 0.
From this we obtain

2.8 PROPOSITION: Let M, N be graphmodels and M = N. Then |[AT(M)| =
|AT (V).

Proof:  Let 9 be an applicative isomorphism M < N. Then M = Atom(a) iff
N E Atom(y(a)), i.e. ¥ induces a 1-1 mapping of AT (M) onto AT (N). ]

A characterization of isomorphisms between graph models

From the remarks above it is also immediate that isomorphisms of graphmodels
(P(X),e) and (P(Y),*) are monotonic w.r.t. the set-inclusion relation, and induce
a 1-1 mapping of the singleton-sets in P(X) onto the singleton-sets in P(Y). So we
have

2.9 PROPOSITION: Let 9 : (P(X),e) — (P(X),*) be an isomorphism of graph
models. Then ¥(z) = U{({a}) | @ € z}, for all z € P(X). m]
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We leave it to the reader to convince her/himself that in fact it follows that an
isomorphism of graph models is a homeomorphism w.r.t. the Scott-topologies of the
cpo’s involved and that each such homeomorphism between (P(X),C) and (P(Y), <)
may be considered as being the natural extension of a bijective mapping X — Y.

2.10 DEFINITION: If a 1-1 mapping of P(X) onto P(Y) canonically extends the
bijection ¢ : X — Y we will denote it by ¢. So in that case for all z € P(X) :

#(z) = {4(a) | a € z}. o

By proposition 2.9 we have that ¢ : (P(X),e) — (P(Y),*) is an applicative isomor-
phism only if ¥ = ¢ for some 1-1 mapping ¢ of X onto Y.

Now let M = (P(X), o) be a graph model for which the application e is defined
through an embedding (-,-) : X<¥ x X — X.

Let N = (P(Y),*) be a graph model for which the application * is defined
through an embedding (-,-) : Y<¥ x Y < Y.

The next theorem tells us that M and A are isomorphic as applicative structures
iff there is a 1-1 mapping ¢ of X onto Y such that the following diagram commutes:

x<v x x U3 x
[
vy<¢ x v &y

2.11 THEOREM: A mapping ¢ : (P(X),e) — (P(Y),*) is an applicative isomor-
phism iff
(i) ¥ = ¢ for some 1-1 mapping ¢ of X onto Y;
(ii) VB € X<“¥be X. ¢((B,b)) = (6(B), (b))
Proof: (<) For all M, N € P(X) we have:
(M o N) = 6(M o V)
= {o(b) | 38 C N.(8,b) € M)
= {p(b) | 35(B) € B(N)-((8,b)) € G(M)}
= {p(b) | 35(B) € #(N).(3(B), (b)) € $(M)}
= ¢(M) *x ¢(N) = (M) * p(N).
(=) Let 9 be an applicative isomorphism. We already saw that then necessarily
¥ = ¢ for some 1-1 mapping ¢ of X onto Y .
Now suppose there is a B € X<% such that there exists an element b € X for
which #((8,5)) # (#(8), #(b)). Then there will be a finite set 3 having this property
while every proper subset of 8 does not.



.y (1% First let $((83,b)) be in the range of (-,-), i.e. #((8,)) = (a,c) # ($(B), $(b)).
ow calculate:
$({(8,5)} ¢ B) = $({8}) = {¢(8)}.

As ¢ is an applicative isomorphism we also have:

$({(8,5)} # B) = {{e,c)} * $(8) = { %,c}, i C Wi(f);

If ¢ # ¢(b) this is a contradiction. So ¢ = #(b). But then a has to be a proper subset

of ¢(B), say a = §(B'). Clearly, if ¢(8') is a proper subset of ¢(3), then 8' is a proper

subset of 8. So ¢((8',b)) = (a,c) = ¢#((B,b)), which contradicts the injectivity of ¢.
(i) If #((B,b)) = a, and a is not in the range of (-,-) (i.e. @ is an atom), then

$({(8,8)} o B) = {¢(8)}, contradicting {a} * $(8) = 0. o
2.12 COROLLARY: The correspondence between embeddings X<¥ x X — X and

the applications they define on P(X) is 1-1.

Proof :  For, suppose (-,-) defines the application ¢ on P(X), the application * on
P(X) is defined by (-,-) and @ = x. Then the identity mapping is an applicative
isomorphism. So, by theorem 2.11, Va € X<“Va € X.(a,a) = (@,a). Therefore

(.,.) = <,) 0
The following now is immediate.
2.13 PROPOSITION: For all non-empty sets A, B:

D,~Dp iff |A|=|B|

Proof: (=) As AT(D,4) = A and AT(Dp) = B, this is just (a special case of)
proposition 2.8. (Note that 2.8 may also be obtained as a corollary to theorem 2.11 :
by 2.11 an applicative isomorphism M — AN maps the pairs of M 1-1 onto the pairs
of N; consequently the isomorphism induces a 1-1 mapping of AT (M) onto AT (N).)
(<) By definition of Engeler’s graph model any 1-1 mapping of A onto B can be
extended to a 1-1 mapping of G(A) onto G(B) in accordance with condition (ii) of
theorem 2.11. This extension then obviously defines an applicative isomorphism. O

2.14 COROLLARY: For all non-empty sets A, B such that min{|A|,|B|} is finite:
Dy=Dp if Dy=Dp iff |A|=|B|.
Proof: By propositions 2.13 and 2.4. O
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The second-order theory of an L-definable element of a graph model
is L-expressable.

Corollary 2.14 leaves open the question of elementary equivalence of Engeler’s
graph models D 4 for infinite atom-sets A.

Now note that, as our language £ is countable, there are 2¥° ways to assign
different first-order theories to D 4. The collection of all D 4’s forms a proper class,
so there are certainly more than continuum-many non-isomorphic D 4. We conclude
that there have to be infinite sets A and B such that D4 = Dpg, but D4 % Dp.

It is however not the case that D4 and Dp are elementary equivalent for all
infinite sets A and B: the construction of D 4 as a powerset enables us to use first-order
sentences over D 4 to express essentially second-order properties of the set A.

Let us first, more generally, show that given a graph model M = (P(X),e) we
can find representations in M for all n-ary relations over L-definable subsets of X.

2.15. LEMMA: Let M = (P(X),e) be a graph model with application defined

through (-,-), n > 0 and R C B™, where B C X is definable by some L-formula ¢g(z)
(ie. a C B if M |= ¢B(a)). Then there is an element vg € P(X) such that

M|=/\q&B(a;)/\/\One(ai)/\VRoal#@AuRoaloagaé@/\...

=1 =1

...AVReajeaze...0a, 1 #DAvRpea;eaze...0a, 10a,=10 (4)

iff a; = {bz} and (bl,. .. ,bn) € R.
Proof: =~ 'We proceed by induction on n. For n = 1, put

VR = X\{({a},m),(@,m) |a € R,m¢€ X}
Suppose our claim has been proved for n > 0 and let R C X™*1. Then define
R, = {0,1 | 30,2, . ,an+1(a1,a2, cee ,an+1) € R} C X,

RZ‘I = {(a,z,... ,an+1) | 3“1(“’17“27"‘)‘17&-}-1) € R} Cc X"

By induction hypothesis there exists vgr, € P(X) satisfying (4). Now put

vg :={({a},m) |a € R;ym € VR, }- O

Conversely, for each k € P(X), we have that

11



{(a1,...,a) | M = /\(ﬁB(ai)A/\One(ai)Akoal £0A...

...ANkeaje...0a, 1 #0ANkeaje...0a, ;0a, =0}
determines a relation R C B™.

Let £, be the second-order language obtained from £~ (i.e. £ without the
binary function symbol for application) by adding for all n > 0, all ¢ € IN, second-
order variables X as well as quantification over these variables. Let B C X be
definable by means of an L-formula ¢p.

Now define L-sentences R%(z):

RE(z) == Vyl,...,yn(/\ éB(yi) A /\ One(y;)ANzeoy; #OA...
=1 =1

coAzey e... 0y, 1 £DANzey e...0y,_ 10y, =0),

and a translation (-)B : L, — L as follows :

(2:)% 1= @2
(X7)? := Rp(22it1)
(zi = a:j)B = T2; = T2; A One(zz;) A One(z2;) A dB(z2:) A dB(T2;5)
(X7 = X})? := RE(z2i41) = RE(22541)
(X7 (iry-->2i,))7 = Rp(22i4)[(2i)® /9155 (22,) 7 /9]
(xA9)P := xP A YP
(=% = —(x)?
(Va:i.x)B = V(:cgi)((One(azz,') A dB(z2:)) — (X)B)
(VX7T.x)B := Voo 01 (x)B.

Then the following holds:

2.16 PROPOSITION: Let M = (P(X),e) be a graph model and let B C X be
definable by means of an L-formula ¢p. Then, for all L, -formula 1,

B E$[Ry,...,Ruyb1,. .. b] iff M= (¥)B[vRy,.. svry, {01}, - -+ {bm}],
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where R; C B* for some k; > 0,b; € B and vpg, as in 2.15.
Proof: Induction on . O

In particular we have that the second-order theory of £-definable elements of a
graphmodel M is expressable in M by means of L-sentences.

2.17 COROLLARY: There are infinite sets A, B for which D 4 # Dp.

Proof: Given lemma 2.15, it is routine to express in £ that v represents a dense
linear ordering of the atom-set A and that v has a gap (i.e. there is an # C A which
is bounded above, but has no least upper bound). As is well-known, every countable
dense linear ordering has gaps, while there are dense linear orderings of the continuum
without gaps; so taking A and B to be sets such that |A| = Rq and | B| = 2%¢ we clearly
have D4 # Dp. m]

In any graph model M = (P(X), o) the infinite set X is L£-definable (proposition
2.7) and by proposition 2.16 we can embed the second-order theory of X in the first-
order theory of M. As the second-order theory of X is very complex (it contains e.g.
true arithmetic), this gives us a glimpse of the complexity of the first-order theory of
graph models.

Finally we note that, given some infinite set X and an embedding (-,-) : X <% x
X — X that is second-order definable over X, we have a converse to proposition
2.16: in the second-order theory over X we may define (an isomorphic copy of) the
graphmodel M = (P(Y),e) (with Y any set such that |Y'| = |X| and the application
e defined by (some suitable variation on) the embedding (:,-)) in which we then may
interpret the first-order theory of M. This can be done e.g. for all models of the
D 4-type: (an isomorphic copy of) D4 is second-order definable over G(4), or, for
infinite A, even over the atom set A.

On the other hand, given some infinite X, for trivial reasons there are uncount-
ably many embeddings X <* x X < X that are not second-order definable over X; so
in general the converse to 2.16 will not hold.

3.  P(IN) - structures

A simulation of D4 in P(IN)

In the previous section we saw that for surjective codings p of natural numbers
a P(IN)-structure [p, €] can never be isomorphic to a graph model D 4, for the simple
reason that surjective codings result in atom-free models. However, non-surjective
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codings give rise to P(IN)-structures that are not atom-free. The next proposition
shows that this enables us to consider Engeler’s graph model D 4, for countable A, as
a P(IN)-structure.

3.1 PROPOSITION: Let e be a basic coding of finite sets of natural numbers, and
let A # 0 be countable. There is a (non-surjective) coding q4 of pairs of natural
numbers such that D4 = [ga,e€].
Proof: (1) First let A be finite, say 4 = {ag,a1,...,0k-1}, (a; = a; iff 1 = j).
Define a mapping ¢ : IN x IN — IN by
qk(nam) = p*(n,m)—l—k = %(n+m)(n+m+ 1) +m+k,
for all n,m € IN. Note that the range of ¢ is IN\{0,1,...,k —1}.
Then define inductively a mapping ¢ : G(4) — IN by
(1) ¥(a;) =1, for all a; € Go(A);
(ii) Suppose ¥ has been defined for all z € G,(A4). Then, for z = (8,b) €
Gn+1(A)\Gn(A)’ put ")b((ﬁa b)) =4k (e—l({¢(z) l z € ,8})’ 1»b(b))
An easy induction (note that n,m < gx(n,m) and use that e is a basic coding)
shows that 9 is a well-defined 1-1 mapping of G(A4) onto IN.

GA = GA)“ x GA) C GA)

s v v

N<Y &£ N x N X N

By the definition of 3 the diagram commutes. So % is an applicative isomorphism
D4 < [gk, €] (theorem 2.11).
(2) Next let A be countably infinite, say A = {ag,@1,...}, where (a;);ew is an
enumeration of A without repetitions.
Define a mapping g, : IN x N — IN by ¢,(n,m) = p*(n,m) + n+ m + 1, for all
n,m € IN. Note that the range of g, is N\{3m(m +1) + m | m € IN}.
Then define inductively a mapping ¥ : G(A) — IN by
(i) ¥(a:) = 3i(i + 1) +14, for all a; € Go(A);
(ii) Suppose 9 has been defined forall z € G,(A). Forz = (5,b) € Gnt+1(4)\Gn(4),
put $((8,0)) = gu (e ({$(X) | = € B}), ()
Again, by induction (n, m < g,(n,m) and e is a basic coding), it is easy to show
that 1 is a well-defined 1-1 mapping of G(A) onto IN, and by the definition of ¢ and
theorem 2.11 again % is an applicative isomorphism D 4 — [qy, €] O

Note that if [p, €] is such that | AT ([p, ¢])| = |A|, for some non-empty countable
set A, it will not always be the case that [p,e€] is isomorphic to D 4: one easily con-
structs a non-surjective coding p such that p(0,m) = m for some m € IN. If ¥ were
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an applicative isomorphism D4 — [p, €] (e a basic coding) this would mean that
m = P(O,m) = p(e_l(@),m) = ¢(0"¢'_1(m))7
so ¥~ 1(m) = (0,9~ *(m)), which clearly is impossible in D 4.

Isomorphism

By theorem 2.11 two P(IN)-structures [p, e] and [p',e'] are isomorphic iff there
are x, % € S(IN) (i.e. the set of all 1-1 mappings of IN onto IN), such that the following

diagram commutes:

N<Y £ IN x N ‘&% N

R

’

N<“ & IN x N -2

The next proposition just spells out the conditions corresponding to the com-
muting of the diagram.

3.2 PROPOSITION: [p,e] = [p,€'] iff there are x,v € S(IN) such that
(i) Vr,m. p'(x(n),¥(m)) = ¢(p(n,m)),
(ii) Vn. € ) ={¥(z) |z € en}. o

The mapping x accounts for a certain amount of redundancy: whereas the cor-
respondence between embeddings IN<“ x IN — IN and the applications they define
on P(IN) is 1-1 (see corollary 2.12), this is not true for the correspondence between
applications and pairs of codings: different codings may very well induce the same
embedding IN<“ x IN — IN.

3.3 DEFINITION: If codings p, e and p', e’ induce the same embedding IN<“ x IN «—
IN (i.e. whenever the identity mapping is an isomorphism of the corresponding P(IN)-
structures) we call [p, e] and [p', '] compatible. (Notation: [p,e] ~ [p',€']). O

This situation is represented in the following commuting diagram:

N<Y (& IN x N & NN



Clearly compatibility of P(IN)-structures just boils down to a re-indexing of the
finite sets:

3.4PROPOSITION: ([p,e] ~ [p',e'] iff thereis a x € S(IN) such that for alln,m € IN:
(i) €, = ex(n),
(ii) p'(n,m) = p(x(n),m). O

Proposition 3.4 shows that the indexing of the finite sets is not very relevant for
the properties of the corresponding P(IN)-structure, in the sense that given any model
[p,e] and any bijective coding €' of finite sets there is a coding p' of pairs such that
[p',e'] ~ [p,e]. (Note however that the properties of p' may be very different from
those of p: e.g. if p is a basic coding generally p' is not.)

The same is not true for the coding of pairs: given [p, e] and a coding p' we may
have that [p,e] ¥ [p, €], for all e'. We will encounter an example below.

It also follows from 3.4 that, given some [p, €], there are conti-nuum-many differ-
ent P(IN)-structures compatible with [p, e] (‘different’ meaning that they are defined
by means of different codings). As the remainder of this section will show, in fact we
have for each ¥ € S(IN) continuum-many different P(IN)-structures [p',e'] such that
9 is an isomorphism [p, €] — [p', €'].

3.5 DEFINITION: Let [p, €] be some P(IN)-structure. For each ¢ € S(IN) we define
[p¥,e¥] by
Vn, m € IN. p’p(n,m) = "/’(P(na"»b—l (m)))

and

VneN. e¥=d(en) = {t(z) | z € en}. m|

Clearly p¥ and e¥ are well-defined. Observe that a € AT ([p,e]) iff ¥(a) €
AT ([p?, ¥]). By proposition 3.2 9 is an applicative isomorphism [p, e] — [p?, e?].

Now suppose ¢ is an applicative isomorphism [p,e] — [p',e']. Let o be the
application on P(IN) defined through p?,e?; let the application defined through p,e
be o, and * the application defined through p',e'. Then, for all a,b € P(IN) :a0b =
3G (a) o 31(8)) = ax by ic. [p#,e*] ~ [7/,€'].

This gives us

3.6 PROPOSITION: [p,e] = [p,€'] iff [p', '] ~ [p¥, e¥] for some ¥ € S(IN). ]

Frames

In section 2 we showed that members of the class of Engeler’s graph models
D4 are up to isomorphism determined by the cardinality of their atom-sets. We
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cannot possibly expect to have the same characterization for the collection of all P(IN)-
structures. Of course it is necessary for isomorphism that | AT ([p, €])| = | AT ([p',€'])|,
but in general this will be far from sufficient; indeed, it is an easy exercise to produce
codings p and p' such that |AT([p,e*])| = |AT([p',€*])|, but for no x,% € S(IN)
conditions (i) and (ii) of proposition 3.2 are fulfilled (see e.g. the remarks following
3.1).

3.7 DEFINITION: Let [p,e] be some P(IN)-structure. For all & > 1 and each
Tk = (n1,...,nk) € IN* we define the Tig-frame fg’e’e] of [p, e] by

(zl,o--,mk,y) E f%}::e] _C_ INk+1 iff

(1) P(wl,---,mk,y) =Y
(ii) forall 1 <1< k: |es;| = (Tkr)i ;
(ii1) p(25,2j41y+++92j4(k—j)>Y) F Y, forall1 < j < k,forall 0 <: < k — j, for all
Zjti-

By Xi}-%;,e] (1<i<k)and Y]—'g:e] we denote the k + 1 projections of the
nk-frame of [p,e]:
X.]: _{mz | (mla wi,-..,z;c,y) 6'7:1_[1,!;:6]}’
Yj-'[p,e] ={y | (z1,...,2k,y) € }-g:,e]}_

By the frame F1P€] of [p, €] we mean the union of all 72;-frames and the atom-
set:

Ard=YUrR? v AT(e).
k g

We will write Y FPel X FlP:e] for the obvious unions of projections. O
Observe that for all 7, all 1 <z < k:
XA < Y AR = | AR,

Also, if 7ig # Tixs, then Y2l N YF2) = 0.
Note, that the set 1Pl is independent of the coding e of finite sets. Still we

will always explicitly mention e; thus we implicitly pr0v1de Firel with a ‘memory’ of
its constituents.

The frame of a P(IN)-structure may be empty, it may be very big, all depending
on the specific coding at hand. As an example the reader may verify that for Pw

(= [p*,€*]) we have F"<'] = {(0,0)}.
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The next lemma explains our interest in these frames.

3.8 LEMMA: Let ¢ : [p,e] — [p',€'] be an isomorphism. Then, for all k > 1, all
ng € IN®.

AR = XA, 1<i<h
|Yf{’,_;‘1:e]| — IYf{ﬁl:,e ]I;

Vo € X FED: () YY) |y € ea} € XaFE <.

Proof: Take (z1,...,%k,y) € ]_—{Ez:,e’]’ ie. p(z1,...,2k,y) =y and |e;| = (7g):, for
all1 <:<k. : :

Let x(z;) := (¢')™ o ¥ o e(x;). As 1 is an isomorphism we then have ¥(y) =
P'(x(z1),- > x(zk), ¥(y)) and € (, ) = {¥(v) | y € ez, }.

From this the claims of the lemma follow directly. a

So the importance of the frame of a P(IN)-structure is that it determines sets
which, like the sets of atoms, are in a way invariant under isomorphic mappings.
Comparing frames of P(IN)-structures therefore prow}ides us with a means to quickly
refute the existence of isomorphisms.

As an example, consider the code r, obtained, like p*, by enumerating IN x IN
along the diagonals, but in the opposite direction:

r(n,m) = 3(n+m)(n+m+1)+n.

One easily checks that FI™¢l = {(0,0),(0,1)}, for any bijective coding e of finite
sets. As on the other hand we have that FI1?"¢'l = {(0,0)} for all bijective codings €'
of finite sets, we conclude , by lemma 3.8, that for all e,e': [p*,e'] % [r,€].

We will now apply lemma 3.8 to produce continuum-many non-isomorphic P(IN)-
structures, so the number of non-isomorphic P(IN)-structures is at least 2¥°. As this
number also obviously is at most 2%° we have

3.9 PROPOSITION:  There are 2% non-isomorphic P(IN)-structures.

Proof:  We’ll exhibit 2% P(IN)-structures with different frames. For this there are
many possibilities. One of them is the following:

Take e* for the coding of finite sets.

Let {m; | ¢ € IN} be the set of all prime-numbers without repetition. Define a
mapping s : IN — IN by

0, if n = 0;
_ n—1

s(n) = D2, ifn>o0.
=0



Note that |e] )| = n, for all n € IN.
Let A be any subset of IN5¢g. Now define a coding p4 of pairs as follows:

* pA(0,0) - 0;

x if a € A put pa(s(a), s(a)) = s(a);

 for the remaining pairs (n,m) and numbers k put psa(n,m) = k in such a way
that n < k and m < k.

For each subset A of INs the resulting code p4 will be a (basic) coding of pairs
of natural numbers as natural numbers. Now, if A,B C INyy and A # B, then we
may assume that there is a number b € B\A. But by definition then we have that
Yf,EPB - {s(b)}, while Yf,Ep“ <19, Therefore, by 3.8, [pa,e*] # [pB, e*], which
finishes the proof. O

P(IN)-structures through basic codings

The sets ‘invariant’ under isomorphic images as provided by the frame of a P(IN)-
structure suggest the idea of trying to characterize P(IN)-structures up to isomorphism
precisely by their frames. For this we would have to prove some kind of converse to
lemma 3.8. Clearly then first of all it is necessary to be able to define an isomorphism
‘near the frames’. This notion is made precise in the following definition.

3.10 DEFINITION: Let [p,e],[p',€'] be P(IN) -structures. We will call the frames
Floel and Fl2'¢'l similar (written as FlPel ~ FlP''l) iff there exist (possibly not
everywhere defined) 1-1 mappings 3 and x such that
(o) % is defined on AT ([p, ¢]) and onto AT ([p',€']);
(i) ¢ is defined on YF?] and onto Y FIPe'l; y is defined on X FlPel;
(ii) for all 4, all = € X;F:
¥(y) is defined for all y € e, and x(z) = (¢') " H{¥(y) |y € e} € Xi]:%:’ell;
(iii) if ¥(n) is defined and n = p(z1,...,zk, m), then x(z;) (1 < i < m) and ¥(m)
are defined and ¥(n) = p'(x(21),- .., x(zk), ¥(m)).
We say that ¥ and x witness the similarity of F1P¢l and Fl#'e'l, O

The reader may verify that from (i) - (iii) it follows that y is onto X F1?"¢'] and
m € Y]:%i’e] implies ¥(m) € Y]—‘%}; e,

A converse to lemma 3.8 should state that a partial isomorphism as given by
frame-similarity of the P(IN)-structures [p,e] and [p',e'] can be extended to an iso-
morphism. Now, unfortunately, in general this is not true. Though frame similarity
of course is necessary for isomorphism (if ¢ is an isomorphism [p, e] — [p',€'] then 3
and (e')™! 0 9 0 e witness the similarity of F{?¢l and FI#’¢']), it still is not sufficient.
The reason is that there are ‘invariants’ not captured by our concept of frame. We
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will clarify this by giving an example. From this it also will be clear that extending
the concept in order to capture all possible invariants really is not feasible.

Let [p, €] be a P(IN)-structure of which the code p of pairs includes the following
data:
p(2,3) = 1,p(1,3) = 2,p(4,2) = 3.

Then p gives rise to the repetitive pattern
1=p(2,3) =p(2,4,2) = p(2,4,1,3) = p(2,4,1,4,2) = p(2,4,1,4,1,3) = ...

Let [p',€'] be a second P(IN)-structure and suppose ,x € S(IN) satisfy the
conditions of proposition 3.2 . Then the reader may easily convince him/herself that
this pattern is mapped to a similar ‘p’-pattern’: the sets of all such ‘cycles’ also will
in some sense be invariant under isomorphic mappings. These invariants are not
accounted for by our concept of frame.

On the other hand, if we restrict our attention to a collection of codes that are
moderately well-behaved, then we do have the desired converse to 3.8. And even more.

For this we will consider the collection of P(IN)-structures defined by means of
basic codings, i.e. the bijective codings e of finite sets satisfy ¢ € e, = = < k, and
for the codings p of pairs we have m,n < p(n,m) (see the introduction).

Observe that restricting ourselves to basic codings excludes the occurence of
the above-mentioned repetitions. Also, P(IN)-structures [p, e] defined through basic

codings have comparatively small frames: if & > 1, then fg; el = Q; for, suppose
p(z1,...,%k,y) = Y, then p(z2,...,2k,y) < y implies p(za,...,zk,y) = y. Therefore,
in fact already p(zk,y) = .

3.11 THEOREM: Let [p,e] and [p',€'| be defined through basic codings. Then
[p,e] = [p,e'] iff Flel ~ Floe,

Moreover, every isomorphism is induced by a unique extension of witnesses of frame
similarity.

Proof:  As we already made ample remarks as to (=), we will confine ourselves to a
detailed proof of («).

Let the (partial) mappings ¥ and x witness frame-similarity of the P(IN)-
structures [p, e] and [p',€'].

If 4(z) is defined, put ¢(z) := 9(z); if x(z) is defined, put {(z) := x(=).

We will show that the fact that [p, e] and [p’, ¢'] are defined through basic codings
allows us to extend ¢ and ¢ inductively to mappings in S(IN), in a way that is uniquely
determined by the conditions given in proposition 3.2 as being necessary and sufficient
for isomorphism of [p, €] and [p', ¢'].

(1) First we show that ¢(n) and £(n) can be defined in accordance with proposition

3.2 for all n € IN, in a unique way.
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As p is a basic coding either (0,0) or 0 € FiP¢l. So £(0) = 0(= x(0)) and
#(0) = 4(0), which is in accordance with 3.2 by definition of frame similarity. Suppose
now we already succeeded in defining ¢(k) and {(k) for all k¥ < n. Then we may assume
that 9(n) is not defined (for otherwise ¢(n) = 3(n), etcetera). But then n ¢ Y FIPel,
so n = p(ny,n) for some ny, < n and ¢(n;) is defined by induction hypothesis. Also
we may assume that x(n) is not defined (otherwise £(n) = x(n), etcetera). Then, in
order to keep up with the conditions of proposition 3.2, we have to put

&(n) := (') 7 {() | y € en},

which is well-defined by induction hypothesis, as y € e, implies y < n. As n; < n we
therefore have that {(n) is defined, either by induction hypothesis or because n; = n.
To go on in accordance with 3.2 we necessarily have to put

é(n) := p'(é(n1), d(n2))-

(2) Next we show that for the mappings ¢ and ¢ thus defined we have, for all n, for
all k, k' < n:
(i) €(k) = £(K") V $(k) = $(k) = b = '
(i) p(k') € YFIPe'l — k! ¢ YFlPel,
We once more proceed by induction. The claims are trivial for n = 0. Therefore
let » > 0 and suppose (i) and (ii) have been proven for all k, k' < n. Now let k, k' < n.
From £(k) = (k') we have that

eery ={8(2) | 2 € er} = {4(v) |y € ew} = €y

But, as a € e implies a < k, we find £k = k' by induction hypothesis and injectivity

of ¢'.

Now let ¢(k') € YFP'l. Suppose k' = p(n,y) € YFPel; then ¢(k') =
P'(£(n),4(y)) = é(y) € YFP*l and y < k'. Therefore y € YFI?l by induction
hypothesis; let’s say that y = p(m,y).

Then ¢(y) = (E(m),6(3)) = #(E(n),d(3)), 50 &(m) = &(n). This implies
m = n by the preceding part of our proof. So k' = y, contradicting our assumption.

Finally suppose ¢(k) = #(k').

(*x) If k € AT([p,€]) or k' € AT([p,€]), then (k) = ¢(k') € AT([p',€']). It is easy
to see that this is possible only if ¢(k) = (k) and @(k') = ¥(k'); then also
P(k) = (k') € AT([p',€']), so k = k' by injectivity of .

(%) If k € YFIPel or k' € YFIPel then ¢(k) = ¢(k') € YFIP¢l. By (i) then k and
k' € YFIPel. Therefore ¢(k) = 9(k), d(k') = ¢(k') and ¥(k) = ¥(k'), so again
k = k' by injectivity of 1.

(%) Otherwise k = p(k1,k2),k' = p(21,22) and k2 < k, 25 < k'. The result then follows
by induction hypothesis and the first part.
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(3) We finish the proof by showing that ¢ and £ are onto IN.
In order to do so, suppose there is an n € IN such that ¢(k) # n, for all
k € IN. Let n be minimal with that property. Then of course n = p'(ny,n2) for some
ny,ny € IN. Also necessarily n, < n, so by minimality of n we have a k, such that

#(k2) = ny. Suppose e, = {z1,...,Zm}. For z; € e, we have z; < n; < n, so
again by minimality of n there are y; such that ¢(y;) = z;, for all 1 < i < m. Say
{y1,--+yYm} = €k,. As { and ¢ have been defined in accordance with the conditions

given by proposition 3.2 we have eg(kl) ={d(y) |y € er,} = e,,. So {(k1) = n; and
&(p(k1,k2)) = p'(n1,n2) = n. This is a contradiction.
The surjectivity of £ follows directly from that of ¢. a

Automorphisms

Applications of theorem 3.11 can be found in the proofs of the following two
propositions on automorphisms of P(IN)-structures.

Obviously, for all codings p and e, the identity mapping is an applicative auto-
morphism of [p, e]. For some it is also the only one.

3.12 PROPOSITION: There are no non-trivial automorphisms of Pw.

Proof: Puw is defined through the basic codings p* and e*. Furthermore we have
that FlP™e’l = {(0,0)}. The partial mappings x and 9 defined by x(0) = ¥(0) =0
witness the similarity of F?"¢*] and F1*"¢"]. Any automorphism of Pw necessarily
extends these witnesses. By theorem 3.11 such an extension is unique. O

On the other hand it is certainly not true that all P(IN)-structures have trivial
automorphism-groups. Let S,, for n € N5, denote the symmetric group of n ele-

ments, and write Aut([p,e]) for the automorphism-group of a P(IN)-structure [p, €].
We then have

3.13 PROPOSITION: Suppose( is an arbitrary direct product [[;-, G; of groups G;
such that each factor G; is either (isomorphic to) S, for some n € INsq, or (isomorphic
to) S(IN). Then there is a basic coding pg such that Aut([pg,e*]) = g.

Proof: 'We apply a strategy similar to the one followed in the proof of proposition
ITL.9. Again, {m; | i € IN} is the set of all prime-numbers without repetition and s a
mapping IN — IN defined by

0, if n = 0;
. n—1

s(n) = 22"‘, if n > 0.
1=0

Let G = [[2, G; be fixed.

22



To produce a code pg such that Aut([pg,e*]) = G we proceed as follows:

* pg(0,0) = 0; pg(0,m;) = =;, for all j € IN;
* then, for all 2 € IN5:
if G; = S, put pg (s(i),s(i) + 7rj) = (i) + mj, for j=0,...,n—1;
if G; = S(IN), put pg(s(3), s(s) + 7;) = s(i) + 7}, for all j € IN;
* for the remaining pairs (n,m) and numbers k put pa(n,m) = k in such a way
that n < k and m < k.

Obviously the resulting code pg will be a basic coding of pairs of natural numbers

as natural numbers and, as Ie:(n)l = n, we have X FiporeTl {s(n)}, for each n € IN.

Define ¢ : YFIPoe'] «, Y FIPore®] through arbitrary permutations of Yf.,[lp 9:¢’]
forn > 1 and by {(z) =z forall z € Yf([,m’e ]; then

(1) 7HEW) |y € ey} = ()7 {E(mo), -, €(mim1)} = s(d).

Put x(z) =z for all z € XF! [pa1e*], Tt now is clear that ¢ and x witness the similarity
of Flrare®] and Flroe*], By theorem 3.11 we can extend ¢ and x uniquely to an
automorphism of [pg, €*].

Conversely, as X FiP 0"l _ {s(n)}, given any automorphism $, the witness
(e*)™! 0 ¢ o * necessarily maps s(n) to s(n), for all n € IN; it is easy to see that
this is possible only if ¢(z) =z for all = € Yf([,p" el Also, ¢ will induce a permuta-
tion of Yf',[,pg ’e*], for all n > 1. a

In what follows we will characterize the mappings 3 of IN onto IN such that
is an applicative automorphism of [p, e], for some codings p and e.

3.14 DEFINITION: Let 9 be any bijective mapping IN — IN and k¥ € IN. By the
¥-order of k (notation: |k|,) we will mean the smallest natural number n > 0 such
that ¥™(k) = k; if such a number does not exist we put |k|y = co. An n-orbit in 3
is any set {1)*(a) | k € IN}, wherea € N and |a|y =n (n € IN5o) U {o0}).

O

3.15 LEMMA: Suppose for some codings p and e the mapping 'qb~ is an applicative
automorphism of [p,e]. Then, for all n € N5 U {0}, there is an n-orbit in ) iff there
are infinitely many distinct n-orbits in .

Proof: Ifisan applicative automorphism of [p, ], then, by proposition 3.2, there
is a bijective mapping x : IN — IN such that

Vn € N.ey(n) = {¥(z) | z € en}, (1)
Vn,m € IN.9(p(n, m)) = p(x(n), b(m)). (2)
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Then clearly for all k£ € IN we have e(, () = {¥*(z) | = € en} and ¥F(p(n,m)) =

p((x)k(n),¢k(m)) Note that, if ex = 0, then x(k) = k.

First let n be finite. Obviously it is sufficient to prove that there is an a € IN of
-order n if and only if |a|y = n for infinitely many different @ € IN. So let a € IN
and |a|4 = n. We show that a can’t be the only natural number of ¥-order n:

(i) if n > 1, then |¥(a)]y = n and ¥(a) # a;
(ii) suppose n = 1. Let e, = 0. Then x(s) = s, so ¥(p(s,a)) = p(s,a). But also, if

e: = {a} then x(t) = t, so ¥(p(t,a)) = p(t,a), contradicting the uniqueness of a.

So let there be k > 1 natural numbers a of i-order n. From (1) we have
(x)"(a') = a', where a' = e~!({a}), and then (2) implies that we have at least k?
natural numbers of ¥-order n. As k2 > k this is a contradiction.

Finally we take n to be co. Let {¢*(z) | ¢ € IN} be an co-orbit in ¢ and let k', k €
IN be such that x(k) = k # k'. Then {p(k,%'(z)) | i € IN} and {p((x)'(k"),%*(z)) |
t € IN} are disjunct oco-orbits in . From this it easily follows that there can’t be just
finitely many distinct co-orbits in . O

Fix some coding e of finite sets of natural numbers as natural numbers and let
1 be a bijective mapping IN «— IN. For ¥ to be an applicative automorphism of
[p, €] for some coding p of pairs of natural numbers as natural numbers we need a
bijective mapping x : IN — IN satisfying conditions (1) and (2). This mapping of
course is completely determined by (1), so given e and ¢ we have x and only need
to determine whether there exists a coding p satisfying (2). For such a map to exist
1 has to fulfil the condition given in lemma 3.15. But this is not enough. For let
la|x = » and |_b_|¢ = m, then |p(a,d)|y = lem(n,m): for any occurring ¥-order n
and any occurring x-order m there has to be a number such that its -order is the
least common multiple of n and m.

3.16 PROPOSITON: Let e be a coding of finite sets, 1 : IN — IN a bijective mapping
and x : N — IN the mapping determined by e and 1 through

x(n) = e ({$(z) | = € en}).

There is a (bijective) coding p such that 1 is an applicative automorphism of [p, €] iff

(i) for each n € IN U {co} the number of n-orbits in v is zero or

infinite;

(ii) if there is an n-orbit in ¥ and an m-orbit in x, then there is an

lem(n, m)-orbit in .
Proof: (=) This has been done in lemma 3.15 and the remarks preceding this
proposition.
(<) We will give an informal argument: let e and 3 satisfy (i) and (ii) and, for all
n € IN, let E,, be an enumeration of all n-orbits in ¥; also let P = {ag,a1,a2,...} be
some enumeration of IN x IN (all enumerations of course without repetitions).
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Say ag = (b,b'). Determine |b|y, |’ |4 and lem(|b]y, [b'|¢) =: n. Then put p(ag) = k,
where k is the first number in the first n-orbit in ¢ enumerated in E,,. Delete a¢ from
P. Next put p(x(b),¥(d')) = ¥(k) and delete (x(b),(d')) from P. Going on in this
way (if n = oo also working backwards) we will eventually have found pairs for all k
in this first n-orbit. Then delete that orbit from FE,. Let ax be the first pair in P not
yet deleted and repeat the procedure.

If ||y = k and e; = {z}, then [t], = k and lem(|t]y, |x|y) = k; so, as there are
infinitely many k-orbits in 1, the above procedure will infinitely many times call for
such a k-orbit. Also clearly the presence of infinitely many oco-orbits in 9 will lead to
infinitely many calls for an co-orbit, for if |z], = 1 and y;, y, are in different co-orbits,
then p(z,y1) and p(z,y,) will end up in different co-orbits.

So eventually this procedure results in a (bijective) mapping p : IN x IN — IN that
satisfies (2). Then ¢ is an applicative automorphism of [p, e]. 0

Of course when there are oco-orbits in 1 the procedure to determine p used in
the proof of proposition 3.16 is highly non-constructive. On the other hand, if there
are only m-orbits in ¥ with n finite, then also there are no oo-orbits in yx: for if
k=lem{|z]y | © € en}, then (X)k(n) =n, so |n]y <k < oco. In that case the above
procedure may be used to effectively determine a code p such that % is an applicative
automorphism of [p, e], though this code is not unique: different enumerations of n-
orbits and pairs will lead to different codes.

The first-order theory of P(IN)-structures

For P(IN)-structures [p,e] it turns out that many properties of the codings at
hand are L-expressable in [p,e]. This implies that a lot of the properties of P(IN)-
structures studied above (e.g. properties of the frames) are in fact first-order prop-
erties. As a result, we will show that the proof of proposition 3.9 actually gives us
continuum-many non-elementary equivalent P(IN)-structures.

Observe that, given [p, €], any coding ¢ of pairs is representable in [p, €]. For let
q be some coding, take

pa = {p(e 7 ({a}), e ({8}),9(a,8)) | a,b € N} € P(N).
Then p, represents g in [p, €] in the sense that for all a,b € IN we have {q(a,b)} =

pq @ {a} o {b}.

Similarly any coding €' of finite sets is representable. For, given €', take

per 1= {p(e({n})s2) | = € €, | € P(I).
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Then for all n € IN we have p.r o {n} = el,.
The fact that p € P(IN) represents a coding of pairs can be expressed in L: “p
represents a coding of pairs” iff

[p, €] = Code(p),
where Code(z) is the L-formula

VyVz(One(y) A One(z) — One(zyz)) A

4
AN Vzizozszs (/\ One(z;) A One(zz z2) = One(zzszs) — 1 =23 A T2 = :c4).
=1

To show that also the fact that p € P(IN) represents a coding of finite sets can
be expressed in £ we only have to do a tiny bit more. Given the representability of any
binary relation on IN it is routine to write an £L-formula N(z) such that [p,e] = N(v)
iff “v € P(IN) represents a well-ordering R of IN such that each natural number has a
smallest R-successor and each natural number, except the R-first one, has a greatest
R-predecessor.”

Using e.g. this formula N(z) we can express in £ that a € P(IN) is a finite set:
“a € P(IN) is finite” iff

[pye] = Finite(a),

where Finite(z) is the £-formula
E;L(N(y,) A 3z(One(z) A Vu(One(u) A u C z) — pu # O A puz = 0))

This is all we need to show that the fact that p represents a coding of finite sets
can be expressed in £: “p represents a bijective coding of finite sets” iff

[p, ] = Setcode(p),

3
where Setcode(z) is the L-formula /\ p; with
i=1
¢1 = Vy(One(y) — Finite(zy)),
P2 1= ‘v’sz(One(y) A One(z) A Finite(zy) Azy =2z — y = z),
@3 := Vy(Finite(y) — 3z.0ne(z) A zy = 2).

From this we derive

3.17 THEOREM: Let [p,e] be a P(IN)-structure. There is an L-formula Ap(z,y)
that is satisfied by p',e' in [p,e] iff p' and €' are (representations of) codes that define
the same application on P(IN) as p and e, i.e.

[p,e] = Ap(p',€') iff [p,e] ~[p),€'].
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Proof: Define Ap(z,y) to be the L-formula

Code(z) A Setcode(y) A
A Va¥b¥m(One(m) Am C ab «
— Indt.t C b/\One(n)/\yn=t/\znm§a). O

The formula Ap(z,y) as given by theorem 3.17 enables us to express properties

of frames in L, e.g. for each n € IN the fact that FPel — 0 is £-definable. In order to
see this observe that

Firel = 0 & Vp'Ve'.[p,e] ~ [p', '] — FIP'<'1 = 0.
So, by definition of the n-frame of [p, ¢] we have that ]-",[zp el — 0 iff
[p, €] = VzVy(Ap(z,y) — Vz(One(z) A “ | yz |= n” — Vu.One(v) — zzu # u)).
The following proposition now is immediate from the proof of proposition 3.9.

3.18 PROPOSITION:  There are 2®° non-elementary-equivalent P(IN)-structures.
O

As another application of theorem 3.17 we show

3.19 PROPOSITION: Let [p,e] be a P(IN)-structure. The fact that [p, e] is isomor-
phic to some P(IN)-structure [p°,e®] with p°,e® basic codings, is L-definable.

Proof: We claim that [p,e] = [p°, €°], with p°, e® basic codings iff there are p', e’ and
p such that in [p, e] we have

Ap(p',e') AN(p) A Vz\/y((“y € e'z” — pyz) A pz(p'zy) A py(p'zy)),

where N(p) as above expresses that p represents an ordering R of IN of type w.

For, let p°, e® be basic codings and suppose [p, €] = [p°, €°]. Then this L-sentence
holds in [p®, €°], so it holds in [p, €].

Conversely, suppose the sentence holds in [p,e]. Then let 3 be the order-
isomorphism (IN, R) — (IN, <). Now put, for all =, y:

e'(z) = P(e'(¥7(2)))
and

P’(z,9) = (' (¥ (=), ¥ (v))).

Then [p°, e’] = [p',e'] ~ [p, €], and p° and €° are basic codings. O
From this we obtain
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3.20 PROPOSITION: Let [p,e] be such that [p,e] = Pw. Then [p,e] & Pw.
Proof: Consider the following L-sentences:
@0 := Jple(Ap(p,e) A Ix(One(z) A pzz = z) A VyVz(One(y) A One(z) A pyz = z —
y=zANez= @));
Py 1= Vp‘v’e(Ap(p, e) — Vi, (One(a:l) — Jzaz3(One(z2) A One(zs) A prazs = zl))).

(1 says there are no atoms.)

We leave it to the reader to check that Pw = g A 1.

As application on Pw is defined through basic codings, we may assume, by the
previous proposition and elementary equivalence of [p,e] and Pw, that p and e are
basic. Also, [p, €] = @0 A 1. We claim that from this it follows that FiP¢l = {(0,0)}.
For ¢ says there is [p',€'] ~ [p,e] such that p'(z,y) = y iff z = y and e}, = 0; from
o and the fact that p is a basic-coding we know that otherwise the frame is empty.
By compatibility we have that p(x(y),y) = y and e,(,) = 0 for some x € S(IN). As e

is a basic coding then x(y) = 0, so F**) = {(0,y)}. Again by ¢ and the fact that

p is a basic coding we know that (0,0) € f([,p ¢l Therefore y = 0. Now obviously
Firel ~ FlP"e"] and [p, €] = Pw by theorem 3.11. O

3.21 CORCLLARY: For all P(IN)-structures [p, €]:

[pe] 2 Pw iff [p,e] = Pw. m]

A note on categorical lambda-models

Models for the untyped lambda calculus always are combinatory algebras, i.e.
there are elements k and s satisfying kzy = z and szyz = z2(yz) for all z,y,2. If,
given a combinatory algebra C, there are unique elements k,s that determine C to be
also a lambda model, then C is called categorical.

In [Lo] it is shown that for graph models ‘categorical’ just means ‘atom-free’.
So e.g. all P(IN)-structures defined through surjective codings are categorical. It is
easy to see that for categorical lambda-models M and N the categoricity enables us
to define unambiguously a translation of equations between A-terms into L-sentences
and vice versa: i.e. for any term-equation A = B there is a sentence ¢(4—p) € £ such
that

M pa=p) iff MEA=B.

(The sentence expresses the unicity of the elements k and s, replaces occurences of
the constants K and S in the equation by occurrences of the L-variables k and s,
and for occurrences in the equation of variables we put universal quantification over
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L-variables.) So for categorical lambda models we have that elementary equivalence
implies equational equivalence: in the models the same equations between (interpre-
tations of) A-terms are valid. Our previous observations on P(IN)-structures enable
us to show that the converse is not true.

In Pw (the interpretations of) two A-terms are equal iff they have the same
Bohm-tree. The proof of this fact makes use of successive approximations (z), :=
{m € z | # < n} of z € P(IN) and a set of so-called ‘basic equations’, stating
properties of these approximations (see [Ba], chapter 18/19):

@) 2 = J@)n; (#)n),, = @)min(nm);

(i) Doz = Az.0 = 0 = (0)n;
(iii) (z)oey=(z)oe0 = ((z)o o 0)0 = (z 0 0)o = ()o;
(iv) ()nt1 0y = ()nt1 0 (¥)n = ((T)n+10(¥)n), C (z o (¥)n),,-

3.22 LEMMA: Suppose that p and e are basic codings such that p(0,0) = 0, and
for all z,y we have that p(z,y) = y implies z = y. Then [p, e] satisfies (i) ... (iv).
Proof:  Left to the reader. O

Take for example basic codings p,e such that FI»¢l = {(0,0),(1,1)}. Lemma
3.22 says that [p, e] satisfies (i)...(iv). This implies that in [p, €] (the interpretations of)
two A-terms are equal iff they have the same Bohm-tree. But then we have that [p, €]
and Pw are equationally equivalent. On the other hand F{?"¢"1 = {(0,0)}, and by our
earlier observations we know that this difference in frames is a first-order property.
Therefore [p, €] # Pw.

So we proved

3.23 THEOREM: There are categorical lambda-models that are equationally, but
not elementary, equivalent. O
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