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A semantical proof of De Jongh's Theorem

Jaap van Qosten

Abstract. In 1969, De Jongh proved the "maximality" of a fragment of intuitionistic predicate
calculus for HA. Leivant strengthened the theorem in 1975, using proof-theoretical tools
(normalisation of infinitary sequent calculi). By a refinement of De Jongh's original method (using
Beth models instead of Kripke models and sheafs of partial combinatory algebras), a semantical
proof is given of a result that is almost as good as Leivant's. Furthermore, it is shown that HA can
be extended to Higher Order Heyting Arithmetic + all true IT3-sentences + transfinite induction over
primitive recursive well-orderings.
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0. Introduction

In 1969, Dick de Jongh proved an iﬁteresting theorem. In order to state it, let us introduce the
following notation.

If A is a formula of intuitionistic predicate calculus IQC, and P a unary predicate symbol not
occurring in A, let A®) be A with all quantifiers relativised to P (i.e. replace Vx by
Vx(P(x)-...) and Ix by Ix(P(x)A...)), and A'=3xP(x)—>A®). HA denotes, as usual,
intuitionistic first order arithmetic.

Theorem 0.1. If HA proves every arithmetical substitution instance of A', then A'is
provable in 1QC.

The proof was an ingenious combination of Kripke semantics and realisability. However, De
Jongh never published it and his method remained unknown until N. Goodman [1978] presented
a very similar semantics, for different purposes (A theorem similar to Theorem 0.1, concerning
HA and propositional logic, was also proved by De Jongh by the same method. This theorem is
given by Smorynski in Troelstra [1973] with a proof that uses only Kripke models and some
proof-theoretic facts). |

By purely proof-theoretic means, D. Leivant was able to strengthen Theorem 0.1 considerably
(Leivant [1975]):

Theorem 0.2. There are Ty-predicates {Aij}i <o such that Aij has j free variables and for
any formula Fof 1QC with n;-ary predicate letters Pijnj’ j=1,...k, if HA"F[Ai,n,”"’Aiknk]
then 1QC P—F[Piml,...,Pikn 1.

The aim of this paper is to give a semantical proof of a slightly weaker version of Theorem 0.2.
Throughout the rest of this paper, we assume that languages contain relation symbols only, and
furthermore, that they admit an enumeration (A,);, Of their predicate symbols such that the arity

of the A, is a primitive recursive function of i.

Theorem 0.3. Let T be a recursively enumerable theory, formulated in a language % in 1QC.
Then for every j-place predicate letter Aij of & there is a j-place number-theoretic predicate Bij’
resulting in a translation (by substitution) (-)*: £—%(HA) such that for every sentence F of L:
TFF if and only if HA+(T)*F F*,

Note that Theorem 0.3 is contained in Theorem 0.2, so we do not claim a new result. We
believe, however, that our proof, which is a refinement of De Jongh's original one, has some



interest of its own, besides being much shorter than Leivant's.

The proof consists of the construction of a realisability model that "matches" the truth in an
appropriate Beth model: we will be using a "universal Beth model" for T.

We could, of course, have formulated Theorem 0.3 the same way as Theorem 0.2, without
reference to T (let T be the empty theory in a universal language); however, we would like to
point out that there is a mass of realisability models obtained in this way, one for each T, and this
is not immediately clear if one restricts attention to just the empty theory (if this paper has any
interest, it is the method , not the result). ‘

The reader will have noted that we didn't mention the complexity of our substitutions in the
statement of Theorem 0.3. We cannot have IT;-substitutions since our models will satisfy exactly
the true IT3-sentences, but classically they will be in IT§.

It is possible to replace HA in Theorem (.3 by certain extensions of HA. These extensions
will be easy corollaries of our proof and will be discussed in section 3. Section 1 gives
preliminaries; the actual construction of the model will take up section 2.

The author is grateful to D. de Jongh, A.S. Troelstra and I. Moerdijk for reading the
manuscript and for discussions.

1. Beth models and realisability

Definition 1.1.A (fallible) Beth model for a language £ in IQC consists of the following:

1) a tree P and a P-indexed collection of sets (this is, for every pe P a set Xp aswell as a
collection of functions (fpp.:Xp—->Xp.)p’p.G P, p<p' such that fpp is the identity and fp.p..ofpp.=fpp..
whenever p<p'<p");

ii) a specified upwards closed subset U of P such that for any pe P, if every path through p
meets U somewhere, then already pe U;

iii) for every n-ary relation symbol A of £ an interpretation A*=(A*p)pep with A*p;(Xp)Il
such that:

a) (d;,....dye A*p and p<p' implies (fpp-(dl),...,fpp.(dn))e A*p.;

b) If (d;,....d)e (Xp)n is such that on every path through p there is a p' with

(fpp-(dl),...,fpp-(dn))e A*p. , then (dy,...,d,)e A*p;

) A*p=(Xp)n for pe U.

Let us call a set R that is such that every path through p meets R eventually, a bar for p.
Given a fallible Beth model we can interpret, in any pe P, sentences of I(Xp) (constants for
elements of Xp added) as follows:

pkA(y,....dy) iff (dy,....d e A*p;

pFoAyiff pl-¢ and plk;

plF¢vy iff there is a bar R for p with VreR (I ¢ or riF);



pl o> iff for every p>p, if p'lF ¢ then p'lFy;

plF3x¢(x) iff there is a bar R for p with Vre R3de X, (rl ¢(d));

pFVx¢(x) iff for every p"2p and for all de Xp., p'lF ¢(d).
Here, if ¢=¢(d;,...,d,) with d;,....d € Xp and p<p', p'kd isread as p'F (])(fpp.(dl),...,fpp.(dn)).
From the definition it follows immediately that if pe U, pF ¢ for any formula ¢ (we take the
absurdity as a O-place predicate); this is why these models are called fallible. A fallible Beth
model is said to have a constant domain if all Xp are equal and the maps fpp. are identities.
The main result about fallible Beth models is the following.

Theorem 1.2. Let T be a recursively enumerable theory in a language & in IQC. Then there
is a fallible Beth model B with constant domain N and as underlying poset the binary tree P,
such that for every sentence A in the language of %: ol Aiff THA (3B is called a universal
Beth model for T). Moreover, there is an enumeration (A,); of & such that the relation
prAj(ny,....n) is X% in p,in.

This result can be found in Troelstra & Van Dalen [1988] chapter 13. It is an adaptation by the
authors of a proof by Friedman.

Definition 1.3. A partial combinatory algebra (pca) consists of a set A and a partial binary
operation ¢ on A, as well as elements K and S of A, for which hold:

i) For every x,ye A, Kex and (Kex)ey are defined and (Kex)sy is equal to x;

ii) For x,y,ze A, Sex and (Se¢x)ey are defined, and ((Sex)ey)ez is defined whenever
(xez)¢(y*z) is, and equal to it in that case.

The reader is referred to Barendregt [1981] for proofs of the following facts:

i) A-abstraction can be defined in A;

ii) A contains a definable system of natural numbers {nl ne N}, such that for every partial
recursive function f there is a definable element f of Aéwhich satisfies: f(n) is defined and equal to
m ¢ fen is defined and equal to m, for n,me N.

Now suppose we have a tree P and a specified upwards closed subset U as in definition 1.1.
Consider a P-indexed system of pca's: that is, a pca A is attached to every pe P, and functions
fpp p—>Ap are given for each inequality p<p' satlsfymg the same conditions as in definition
1.1, and furthermore:

i) the fpp. preserve the combinators K and S, and

ii) application: if asb is defined in Ap, then fpp.(a)c_t‘pp-(b) is defined in Ap. and equal to
fpp.(a-b)
(This ensures that every closed A-term retains its meaning under the fpp.).



Furthermore we fix a A-definable choice of natural numbers, denoted {nl ne N}, as well as
A-definable pairing and unpairing operators j, j;, j,. We will now define, for sentences A of
arithmetic, elements p of P, and a of Ap, what it meanis that a "p-realises A", by induction on A.
Let us call a set R such that RUU is a bar for p, a U-bar for p.

1) a p-realises t=s iff there is a U-bar R for p with Vre R (t=s is true and fpr(a)=f);

2) a p-realises AAB iff j;a p-realises A and j,a p-realises B;

3) a p-realises AVB iff the_re is a U-bar R for p with Vre RGl(fpr(a))=(_) and j2(fpr(a))

r-realises A, or jl(fpr(a))=1 and j2(fpr(a)) r-realises B);

4) a p-realises A—B iff for every p'2p and for every be Ap., if b p'-realises A then there is a

U-bar R for p' such that Vre R (fpr(a)ofp.r(b) is defined and r-realises B);

5) a p-realises IxA(x) iff there is a U-bar R for p with Vre Rdne N (jl(fpr(a))=ﬁ and

j2(fpr(a)) r-realises A(n));

6) a p-realises VxA(x) iff for every n there is a U-;bar R for p with VreR (fpr(a)oﬁ is defined

and r-realises A(n)).
When talking about f and n we mean, of course, their interpretations in the appropriate pca; but
since these are stable in the sense that, for p<p’', fpp.((f)p)=(f)p. for every term t of L(HA), we
suppress the reference to p.
We say that a sentence A is p-realisable iff there is an ae Ap that p-realises A. We say that A is
realisable iff A is 1-realisable, where L denotes the bottom element of the tree P. A trivial
induction on A shows that:

i) A is always p-realisable when pe U;

ii) if a p-realises A then fpp.(a) p'-realises A, for pSp';

iii) if ae Ap and R is a U-bar for p such that for every re R, fpr(a) r-realises A, then a
p-realises A.

Theorem 1.4. All axioms and rules of HA are p-realisable, for every peP.

The reader is referred to Goodman [1978] for a proof (some obvious modifications have to be
made); people familiar with topos theory may be satisfied with the remark that we have just
defined the internal logic of the natural numbers object in an appropriate realisability topos
defined over the topos of sheaves on a closed subset of Cantor space. Finally, one may note that
a P-indexed system of pca's is just a Kripke model of an intuitionistic theory of pca's, and that
the normal soundness theorem is entirely constructive (note, however, that there is a difference

from the constructivist's point of view between working with U-bars and simply cutting U out).

Definition 1.5. Let a system of pca's and functions be given as above. We say that this system
is a sheaf iff the following two conditions are satisfied:



i) For every p and every minimal U-bar R for p (meaning that no proper subset of R is a
U-bar for p), for every family (a,€ A)) g there is a unique ae Ap with VreR(f, (a)—ar),

ii) For every p, every a,be Ap, if there is a U-bar R for p with VreR(f, pr(a) pr(b) is
defined), then aeb is defined.

Suppose the system of pca's given in the definition of realisability is a sheaf. Then the clauses for
implication and universal quantification in the realisability definition can be simplified into:

4" a p-realises A—B iff for all p2p and all be Ap., if b p'-realises A then fpp-(a)Ob is defined
and p'-realises B;

6" a p-realises VxA(x) iff for all ne N, aen is defined and p-realises A(n).
Furthermore, an induction on A shows that in this case, A has a p-realiser iff there is a U-bar R
for p with Vre R(A has an r-realiser).
Since a similar property holds for fallible Beth models (plFA iff there is a U-bar R for p with
Vre R(rFA)), and we are we are steering towards realisabilities that match the truth in certain
Beth models, it is clear that we need sheafs of pca's.

2. Construction of the model

The structure of the proof of Theorem 0.3 will be the following. Given a recursively enumerable
theory T, we have a universal Beth model for T (i.e. the model given by theorem 1.2); this model
will be used to define a sheaf of pca's, as well as substitutions for the predicates of £, such that
the following will hold: for any formula A in the language £ with, say, n free variables, for any
pe P and for any n-tuple y;,....,y,€N, A*(y,,....,y,,) has a p-realiser if and only if

PlFA(Y Yy

We start with a P-indexed system of pca's of the following form. Consider an acceptable
Godel-numbering (i.e., satisfying enumeration and smn-theorem, see Odifreddi[ 1989]) of Turing
machines that are enriched with two types of standard instructions, namely ask for values of F
and G at a certain argument, where F and G are abstract partial oracle functions. A pca will be
obtained by providing interpretations for F,G, i.e. concrete partial functions f and g: N—IN. The
interpretations f,g will vary with pe P and since we will declare a computation to diverge
whenever a value of F (or G) is asked at an argument not in the domain of f (resp. g), in order to
satisfy the conditions for a P-indexed system of pca's we must have f(p)cf(p") and g(p)cg(p")
whenever p<p'.

Let Fp be the pca (N, {- }{P):8P)(-)) where {x}f@)’g@)(y) will denote the outcome (if there is
any) of a computation of machine x with input y, and f(p) and g(p) interpreting F and G.
Transition mapS'F —)F are identities. This gives a system of pca's which is not a sheaf;
therefore we let the system (A )pEP be the sheaﬁﬁcatlon ofit: Ap consists of equivalence classes
of partial functions o T(p)—-auq>p q that satisfy:



i) ge dom(o) = ou(q)e Fq;

ii) ge dom(c), q'2q = q'edom(a) and ou(q") =qu.(oc(q));

iii) there is a U-bar R for p such that R cdom(c)).
Two such functions are equivalent iff there is a U-bar for p at which they are both defined and
equal. In Ap an application is defined by: [cc]*[B] is defined iff there is a U-bar R for p with
Vre R ({ou@) J{O:8OB (1)) is defined in F)), and in that case [o]*[B] is the equivalence class of the
function that assigns {o(r) }f(r)’g(r)(B(r)) to r (note, that this does not depend on the choice of
representatives).

Now for the choice of the functions f(p) and g(p) we need a recursion-theoretic fact.

Theorem 2.1. Let u be a numerical function in 0, i.e. u is the characteristic function of some
non-recursive Xi-predicate. Then there is a 2-place number-theoretic predicate D(x,y)e0" such
that (putting D (x)=D(x,n), D™(x,n)=D(x,n+sg(n+1-m))), D, is not recursive in u, D" (the
sequence D, is called recursively independent ).

This is Theorem 2 of Kleene & Post [1951]. We owe the use of this theorem to De Jongh[1969].

Suppose 3 is a universal Beth model for T as given by theorem 1.2. Let (A;l i=0,1,...) be an
enumeration of £, such that for some primitive recursive f and #, Rj=Af(j) and A, has exactly #(i)
free variables. Furthermore, we suppose that the enumeration (A;l i=0,1,...) is such that, for

instance, AiAAj=A ) for primitive recursive g, etc. Then the function u defined by:

i,
u(p,i,y)=1if yjiyjl,...,y#(iy and plI-Ai(yl,...,y#(i)), and O otherwise,
isin 0' by theorem 1.2. Let D be a 2-place predicate as given by theorem 2.1. For pe P define
the predicate D® by: DO)(xy) iff y=d,y;,.... Yy and u(p,i,y)=1 and D(x.y). Then D®) is
obviously recursive in u,D; and if u(p,i,<w1,...,w#(i)>)=0 then D®) is recursive in u,
DY Waiy, So Dy is recursive in D® iff y=<i,y1,...,y#(i)> and u(p,i,<y1,...,y#(i)>)=1; for if
not (y=<i,y1,...,y#(i)> and u(p,i,<y1,...,y#(i)>)=1), then D® is recursive in u,DY, and Dy is not.

We are now ready to define the partial functions f(p),g(p) and the substitutions ¢j for the

predicates Rj.
Put f(p)(i,y) = 1if y=<i,y1,...,y#(i)> and pII-Ai(yI,...,y#(i)), and undefined otherwise.
Put g(p)(y,x) = undefined if y is not of form «,y, »esYH(G)> OF y=<i,y1,...,y#(i)> and

P""Ai(yl’---’y#(i));
= 1if y=<i,y1,...,y#(i)>, PFA{(Y 155l ’#(i)) and D(x,y);
= 0if y=<i,y1,...,y#(i)>, pII-Ai(yl,...,y#(i)) and not D(x,y).
For j=1,... let Cj(x,yl,...,y#(f(]-))) be a negative formula, expressing D(x,<f(j),y1,...,y#(f(j))>),
and put q)j(yl,...,y#(f@)) EVx(Cj(x,yl,...,y#(f@))vﬂ Cj(x,yl,...,y#(fo)))).



By a partial term we mean something that is built up from: free variables, primitive recursive
functions, A-abstraction, and {-}F-G(:). If t is a partial term we denote by t its (possibly
undefined) meaning in F_, interpreting F,G by f(p),g(p) respectively. t represents an element of
Ap if tis defined on a U-bar for p. We express this by "te Ap".

Lemma 2.2. For every negative formula C(x;,...,x) of £(HA) there is a partial term t(C),
whose free variables are contained in {x,,...,x; }, such that for all pe P and all ng,...,n;.:

i) C(ny,...,ny) is true in N = (t(C)(ﬁl,...,ﬁk))p eAp and (t(C)(ﬁl,...,ﬁk))p p-realises
C(ny,....np);

ii) C(n;,...,ny) has a p-realiser and pg U = C(n,...,n; ) is true in N.

Proof. Standard. ®

The translation (-)*: £—>X(HA) is given by substituting <[>j for Rj.Theorcm 0.3 will now follow
from the following lemma:

Lemma 2.3. For every formula A of £ there is a parti I term t, with the same number k of free
variables, such that the following holds: for every p and all y,,...,y €N,

DpFA®Y -y =t A(yl,...,yk)pe-: Ap &t A(yl,...,yk)p p-realises A*(yq,....yy);

ii) A*(yy,....y) has a p-realiser = pl A(yy,....yp)-

Proof. By induction on A. We define t, and prove i) and ii) simultaneously. The main step is
the one for prime formulas.

IfA= RJ let tA(yl’""y#(f(_]))) be Ax. {j(O,t(CJ)(X,yI,...,y#(fo)))) if G((f(j), yl,...,y#(fﬁ))),)():l
j(19t(_'CJ)(x7y17-"ay#(f(])))) if G(<f(i)’y1,"wy#(f(_])))’x):o

here the expressions t(Cj) and t(—|Cj) are as defined in lemma 2.2.

Then i) is immediate; for ii), suppose [a] p-realises Vx( Cj(x,yl,...,y#(fq)))v—.
Cj(x,yl,...,y#(f(j))))and plF Rj(yl’""y#(f(i)))' There is a U-bar R for p such that R cdom(c) and
for at least one re R, rl Rj(yl""’y#(f(i)))’ so we may as well assume pe dom(at). Then for all n,
[a]en is defined and [a]en p-realises Cj(n,yl,...,y#(f(i)))v—. Cj(n,yl,...,y#(f(i))), so for all n there
is a U-bar R | for p with VreR (jl(a-ﬁ)(r)=ﬁ & jo(aen)(r) r-realises Cj(n,yl,...,y#(f(i))) or
j1(aen)(@)=T & j,(cten)(r) r-realises —:Cj(n,yl,...,y#(f@))).

But since Cj is negative and pe¢ U (because p - Rj(yl,...,y#(f(i)))), exactly one of Cj,—|Cj is
realised at p, according to whether C, is true or not. So if B=An.j;(0wen), then B is a decision
function for D 56).y..y#(G)>- BUtif B needs G(<f(i),yl,...,y#f0-)>,n) for some n then Ben can never

be defined. So D<f(i) VHE()» is recursive in DW)Ys-Y#£G5y, contradiction.

’ylv .



2) If A=BAB, put t) =j(tg ,tp,).
3)If A=B,—B, put t Askx.th.
4) If A=B,VB,, say B;=A;, By=A,, #(k)<#(l) and A<—>Bl(y1,...,y#(k))sz(yl,...,y#a))
(Otherwise, permute the variables). Let e be a code such that {e}F’G(i,y) ~F(,y); and f such that
{f}F’G(Yp---’Y#(D) =j(6,t}31()’1v-wy#(k))) if

TEC(e, K, <y 1Yy M2 (TEO (€ 0y 1510 Y11V TE O (€L Y1)

~ j(T,th(yl,...,y#(l))) if

TEG(e, 1, <y Yy M2 (TFO(E Ky Vi)V TE O (€LY 1Y)
Then if pl- A there is a U-bar R for p with VreR (ri-B, or rl-B,), so it is easy to see that then
{f }F’G(yl,...,y#(l)) is defined at p and p-realises A.
For ii) suppose e I[Ak*vAl*llp. Pick a U-bar R for p such that VreR (a(n){ & (j;(ou())=0 —
joar-realises Ap*) & (jl(a(r))=T — joour-realises Aj*)). Then VreR (A * has a r-realiser or Aj*
has a r-realiser), so by induction hypothesis pl- A} VA,.
5) A=VxB(x). Similar to 3).
6) A=3xB(x). Similar to 4): say B(x)=Ak(y1,...,y#(k)) and x is y;.Put
t A(yz,...,y#(k)) =j(n,t Ak(n,yz,...,y#(k)), where n is j1(uz.TF’G(e,k,qlz,yz,...,y#(k)>,jzz), with e
as in case 4).&

To conclude the proof of the theorem: = is obvious. Suppose HA+(T)*F A*, then A* has a
o-realiser, so by lemma 2.3 o I A, which means T+ A by the property of a universal Beth
model.®

3. Extensions of HA; some corollaries

A casual glance at the model will convince the reader taat it satisfies all true IT3-sentences;
moreover, we have remarked that our model is part of a topos (this has not been explained, but
since this is a general phenomenon we prefer to leave this for a separate treatment). So it is
immediate that HA, in theorem 0.3, can be replaced by HAH+all true IT;-sentences, where
HAH is Higher Order Heyting Arithmetic.

We now want to show that transfinite induction over all primitive recursive well-orderings
holds in our model. Let HA™ be the expansion of HA in a language that contains an extra partial
function symbol e, and with additional axioms asserting that (N,e) is a partial combinatory
algebra. Since the sheaf of pca's constructed in the model has the sheafification of N as
underlying sheaf, it is an ordinary sheaf model of HA*. Moreover, the realisability definition in
our model is the sheaf model interpretation of Kleene realisability with . So if F is some
arithmetical principle or schema that holds in the model, and we have, for every instance A of F,
a proof in HA+F that A is Kleene-realisable such that the proof doesn't use any particular
property of the pca of partial recursive application, then the proof can be carried out in HA,



doing realisability with e, and consequently the principle will be realised in our model, if it is
valid in it.

Let us apply this to the transfinite induction schema TI, which is:

Yu(Vv<uA(®v) —>A))— VuA(u),
where < is a primitive recursive well-ordering. It is easy to convince oneself that this schema is
valid in a sheaf model, so what remains to prove is the following:

Proposition 3.1. For every instance F of TI, HA++TI<|- dn(nrF), where r means
realisability with .

Proof. This is a slight adaptation of the proof given in Troelstra [1973], 3.2.23. Let F be
Yu(Vv<uA(v) = A(u)) — VuA(u) for some formula A, and suppose w realises the premiss. This
means:
(@) VuVw' (Vv (v<u - Vk (w'ev)ekr A(v)) = (weu)ew'r A(u)).
We want a g that realises VuA(u) or Vu(geu r A(u)) or, with T,

Yu(Vv<u gevr A(v) = geur A(u)).
Take a number G such that for all g,u:
Go<g,w> = (Wou)o(Av. Ak. gev),
and find with the recursion theorem for ¢, a number g such that for all u:
geux Gecg,w.
Now Vv<u gev r A(v) implies Vv<uVk ((Av. Ak. gev)ev)esk r A(V), so with (D):
(weu)e(Av. Ak. gev) r A(u), which is geu r A(u). Note, that HA* need not prove anything
about<!®
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