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Abstract

Let T be an arithmetical theory. We introduce a unary modal operator
‘D’ to be interpreted arithmetically as the unary interpretability predicate
over T. We present complete axiomatizations of the (unary) interpretabil-
ity principles underlying two important classes of theories. We also prove
some basic modal results about these new axiomatizations.

1 Introduction

The language £(0) of propositional modal logic consists of a countable set of
proposition letters po, p1, ..., and connectives =, A and 0. £(O,>) is the
language of (binary) interpretability logic, and extends £(J) with a binary
operator ‘>’. (‘A > B’ is read: ‘A interprets B’.) The provability logic L
is propositional logic plus the axiom schemas (A — B) — (04 — OB),
0A — OOA and O(OA — A) — OA, and the rules Modus Ponens (- A4,
F A — B = | B) and Necessitation (F A = - 0A). The binary interpretability
logic IL is obtained from L by adding the axioms

(J1) O(A—-B) - A> B

(J2) (A> B)A(B>C)— (AD> C)

(J3) (A>C)A(B>C)— (AVB)>C

(J4) A> B — (OA— OB)

(J5) OAD A4,

where & = —[O-. IL is taken as the base system; extensions of IL with one or
more of the following schemas have also been studied:

(F) A OoA—-O-4

(W) A> B— A (BADO-A)
(Mo) A> B— (OAADOC) > (BADOC)

(P) A>B—0O(A> B)

(M) A> B— AAOC > BADOC.

*Research supported by the Netherlands Organization for Scientific Research (NWO).



We use ILX to denote the system IL + X, where X is the name of some axiom
schema. ILMP denotes the system IL + M + P plus the additional axiom
AD> B — AAN(CD> D)> BA(C > D). Let ILS be one of the systems
introduced above; the system ILS“ has as axioms all theorems of ILS plus all
instances of the schema of reflection: [JA — A. Its sole rule of inference is
Modus Ponens.

Recall that an L-frame is a pair (W, R) with R C W? transitive and con-
versely well-founded, and that an L-model is given by an L-frame F together
with a forcing relation I~ that satisfies the usual clauses for = and A, while
ul- Aiff Vo (uRv = vl A). A (Veltman-) frame for IL is a triple (W, R, S),
where (W, R) is an L-frame, and S = {S,, : w € W } is a collection of binary
relations on W satisfying

1. S, is a relation on wR
2. S, is reflexive and transitive

3. if w', w"” € wR and w’ Rw"” then w'S,w".

An IL-model is given by a Veltman-frame F for IL together with a forcing
relation I that satisfies the above clauses for -, A and O, while

ulF A> B & Vv (uRvandv - A = Jw(vS,wandw I B)).

An ILP-model is an IL-model that satisfies the extra condition: if wRw’' RuS,v
then uSyv. An ILM-model is an IL-model satisfying the extra condition: if
uS,vRz then uRz. A model is an ILM P-model if it is both an ILM- and an
ILP-model, while it also satisfies the condition: if £ RyS; zRuSyv then uS_v.

In the sequel T denotes a theory which has a reasonable notion of natural
numbers and finite sequences. The theories we consider are either £¢-sound es-
sentially reflexive theories (like P A), or £¢-sound finitely axiomatized sequential
theories (like GB).

An arithmetical interpretation (-)T of £(0J, ) in the language of T is a map
which assigns to every proposition letter p a sentence pT in the language of T,
and which is defined on other modal formulas as follows:

1. (LT is ‘0= 1%

2. (-)T commutes with = and A;

3. (OA4)7 is a formalization of ‘T’ (A4)T;

4. (A> B)T is a formalization of ‘T + (A4)7 interprets T + (B)T".

So the operator > is interpreted arithmetically as the binary interpretability
predicate over T. Interpretability over T may also be studied as a unary pred-
icate on finite extensions of 7. Obviously, the modal analysis of the unary
interpretability predicate in the spirit of Solovay’s analysis of provability has to
be undertaken using a unary modal operator. It was Craig Smorynski who first
introduced an operator to be interpreted as the unary interpretability predicate.
(The present investigations were inspired by questions of his.) Svejdar was sub-
sequently the first one to introduce a binary operator to be interpreted as the
binary interpretability relation.

It is clear that interpretability as a binary relation is the basic notion, since
unary interpretability is reducible to it. On the modal side this leads to the
following definition:



Definition 1.1 Define in £((J,>) the unary interpretability operator ‘I’ by
IA:=Tp A, and let £(0,I) extend £(0) with L

So z I IA4 iff Vy(zRy — 3z (ySzz A z I A)). And given a theory T, it
follows from the definition of an arithmetical interpretation that (I4)7 is a
formalization of ‘T" + (A4)7 is interpretable in T".

Definition 1.2 The unary interpretability logic il is obtained from the prov-
ability logic L by adding the axioms

(I1) 1ML

(12) O(A — B) — (1A — 1B)
(I3) I(AV OA) — 14

(I4) TAAOT — OA.

Several axioms have special names:

(f) IOT - 0OL
(m) TA - I(AADL)
(p) 1A — CIA.

We use ilm to denote the system il + m, and ilp to denote il + p. For other
axiom schemas S we will simply refer to ILS N £([0,I) as ils. Let ils be one
of the systems il, ilm or ilp. The system s* has as axioms all theorems of ils
plus all instances of the schema of reflection: [JA — A. Its sole rule of inference
is Modus Ponens.

In Section 2 we prove that il = ILNL(0,I), ilm = ILM N £L(0,I) and ilp =
ILP N £(0O,I)—thereby establishing that ilp is the unary interpretability logic
of all finitely axiomatized sequential theories that extend IA¢ + SupExp, and
that i¢lm is the unary interpretability logic of all essentially reflexive theories. It
will turn out that ¢lm is in fact the unary interpretability logic of all ‘reasonable’
arithmetical theories. We end Section 2 with some remarks on the hierarchy of
extensions of ¢l.

Next, in Section 3 we study the closed fragment of £([], I), and investigate
the modalitiesin this language. We then state and prove Interpolation Theorems
for il, ilm and ip—from this we obtain Fixed Point Theorems for these logics
in a standard way.

We end this section with two useful Propositions. Let ils be one of the
systems i, ilm or ilp, and let ILS be the corresponding binary system. We
first show that ils C ILS N £(O,I):

Proposition 1.3 Let A € £(O,I). Ifils A then ILS | A.

Proof. It suffices to show that for S = T, P, M, we have ILS | ils. We only
show that IL I I1 and that ILM F+ m.
By J1, J5 and J3 we have

ILFOLvOOL>OL (1)
Furthermore

ILFO(T - (TAOL) VO(TADOL) = ILFO(T —OLvOOL)
= ILFTo0OLvOOL, by J1
= IL+Top0OL, by J2 and (1).



To prove that ILM + m, we use the fact that in ILM we can derive
AD> B— Ap> BADO-A. (Cf. [9].) Therefore ILM - m. QED.

Here are some theorems and a derived rule of the unary systems:

Proposition 1.4 1. Ifilt A then il - 1A. In particular, il - IT.
2. id+0A4 - IA.
3. il F1IA - I(AADO-A).
4. i+ fCimCilp.

Proof. Items 1, 2 and 3 are left to the reader. To prove item 4, note

ilpk 14 014

O(OT — OA), by I4

OAAO-4— AADOL)
I(AANO-A)AO(AADO-A— AADOL), by 3.

— I(AAOL), by I2.

Ll

That is, ¢lp F m. This establishes the inclusion ilm C ilp. The inclusion
il + f C ilm is immediate. QED.

Assuming that il does indeed axiomatize IL N £([J, I), we find that - I4A =
F A is not a derived rule of il: we have il - ICIL, but ¢ {/ 0L because IL I/ L.

2 Completeness

In this Section we prove il to be modally complete with respect to finite IL-
models. We also prove modal and arithmetical completeness results for ilm and
ilp. To prove the arithmetical completeness of ilm (ilp) we first show that ilm
(ilp) is modally complete with respect to ILM- (ILP)-models; after that we
appeal to the existing arithmetical completeness results for ILM (ILP).

2.1 Preliminaries

Our modal completeness proofs use infinite maximal consistent sets instead of
the finite ones used, for example, to prove L or IL complete (in [6] and [2]
respectively.) Our approach has the advantage that it can do without the large
adequate sets employed there. In this subsection we establish some results that
will provide us with the building blocks for constructing counter models in our
modal completeness proofs.

We start with some definitions. For the remainder of this subsection let ils
denote either il, ilm or ilp.

Definition 2.1 Let I', A be two maximal ils-consistent sets.

1. A is called a successor of ' (T' < A) if
(a) A€ AforeachOJA €T
(b) OA € A for some A ¢ T

2. A is called a C-critical successor of T' if
(a) T<A
(b) IC¢T



(c¢) =C,O-C € A.

Note that successors of C-critical successors are C-critical successors as well.
Moreover, any successor is a L-critical successor.

Definition 2.2 A set of formulas & is adequate if

1. if B € ®, and C is a subformula of B, then C € &
2. if B € @, and B is no negation, then =B € &.

Let & be an adequate set. Then we say that a formula $B is almost in &, if
OBedorIBE®or B=T.

Proposition 2.3 Let T' be a mazimal ils-consisient set such that OC € T.
Then there is a mazimal ils-consistent successor A of T' with C, 0-C € A.

Proof. Well-known (or cf. [6]). QED.

Proposition 2.4 Let T be a mazimal ils-consistent set with -IC € I'. Then
there is a mazimal ils-consistent C-critical successor A of T with[Ol € A.

Proof. Let A be a maximal consistent extension of
{D:0ODeT}u{-C,O-c}u{0OL}.
Note that if such a A exists, it must be a C-critical successor of I': since
{D:0ODeT}u{0OL}CA

it is a successor of I'; and because {—C, O0~C} C A it is also C-critical.

We only have to prove {D : OD € T}U{-C} U {OL} consistent, since
0L implies [(J-C. Now, suppose that this set is inconsistent. Then there are
Dy,...,D,, such that Dy,..., Dy, =C, 0L F L. Then

Dy,...,Dpt0L—C = 0ODy,...,0D, +FOOL - C)
= 0ODy,...,0Dpy + IC, by I1 and I3.

So I’ - IC. This contradicts the consistency of I QED.

Proposition 2.5 Assume that IC € T, and that A is a mazimal ils-consistent
E-critical successor of I'. Then there is a mazimal ils-consistent E-critical
successor A’ of T' such that C, O-C € A’.

Proof. Assume that there is no such A’. Then there are O0Dy,...,0D, € T
such that
D,,...,D,, ~E,0-E, C,O0-C} 1,

SO

Dyy....,D, + CAO-C—EVOE
ap,...,0D, + O(CAO-C — EV OE)
r + O(CAO-C— EvOE). (2)

Since IC € T, it follows from 1.4 that I(C A O-C) € T. By (2) and I2 it
follows that I' F I(E vV OE), which, by I3, implies T + IE and IE € T'—but
this contradicts the fact that IE ¢ T' by the existence of an E-critical successor
of ' QED.



2.2 Modal completeness of il

Given some (infinite) maximal il-consistent set I' and a finite adequate set ®, we
define the structure (Wr, R), which consists of pairs (A, 7). Here, the maximal
consistent sets A are needed to handle the truth definition for formulas in I'N &.
And the sequences of (pairs of) formulas T are used to carefully index the pairs
we add to Wr. In this way we make sure that (W, R) will be a finite tree.

For the time being, let I' be an infinite maximal il-consistent set, and let &
be a finite adequate set. We use w, 7,... to denote pairs (A, 7). If @ = (4,
7), then (@)o = A, (@)1 = 7. We write o C 7 for o is an initial segment of 7,
and o C 7 if o is a proper initial segment of 7. Finally, (@);" (7)1 denotes the
concatenation of (); and (%);.

Definition 2.8 Define Wr to be a minimal set of pairs (A, 7) such that

1. (T, (())) € Wr

2. if (A, ) € Wp, OB € A is almost in & and C € @, and if there is a
maximal il-consistent C-critical successor A’ of A with B, O-B € A/,
then (A, 77((B, C))) € Wr for one such A’.

Define R on Wt by putting @R iff (@), C (7). Define S on Wr by putting
9S4 iff for some B, B, C, 7 and o:

()1 = (@)17((B, C))"7 and (@), = (@)1 ((B', C)) 0.

Remark 2.7 In 2.6 the pairs (B, C) code the following: if (A’, 7~((B, C))) €
Wr, then for some <A, 1') € Wp, A’ is a C-critical successor of A, and (A’,
77((B, C))) was added to Wr because OB € A is almost in @.

Proposition 2.8 1. Wr 1s finite.

If (@)1 = ()1 then @ = 3.

If ®R% then (W)o < (¥)o.

(Wr, R) is a tree.

(Wr, R, S) is an IL-frame.

If (A, ) € Wr and E occurs as the second component in some pair in
T, then ~FE, O-FE € A.

S ;s ode

Proof. 1. Since |®| = m for some finite m, it follows that for some finite =,
[{OBET : OB is almost in }| = n. So T gives rise to adding at most n-m
new elements to Wp. Now each of these new elements contains at most n — 1
formulas of the form & B, where B is almost in ®. Hence, each such element
will give rise to adding at most (n — 1) - m new elements to Wr. Continuing in
this way we see that |[Wp| < 14 0% ((n— i) - m) < w.

2. Induction on lh((w)1) = 1h((%)1).

3. Use item 2 to prove 3 with induction on max (1h((®)1),1h((7)1))-

4. To prove that (Wr, R) is a tree, note first that transitivity and asymmetry
are straightforward, so we only prove that for each @ € Wr the set of its R-
predecessors is finite and linear. Finitiness is immediate by item 1. To prove
linearity, assume that @Rw and 9R®@. Then (@); C (@) and (3); C (@)1, so
(@)1 C (9)1 or (3)1 C (@)1. If (@)1 = ()1 then & = by item 2, and we are
done. If (@); # (9)1 then either (@), C (9)1 or (¥)1 C (@)1, that is: @R or
vRa.

5. Left to the reader.

6. Induction on the construction of Wrr. QED.



Theorem 2.9 Let A € £(O,1). Then il - A iff for all finite IL-models M we
have M = A.

Proof. Proving soundness is left to the reader. To prove completeness, assume
that il Y A. We want to produce an IL-model that refutes A. Let @ be a finite
adequate set containing — 4, and let I' be a maximal il-consistent set containing
—A. Construct (Wr, R, S) asin 2.6. We complete the proof by putting @ I p
iff p € (@)o and by proving that for all F € ® and @ € Wr we have @ I F iff
F € (@)o. The proof is by induction on F. We only consider the cases F = OB
and F =IC.

If F = OB € (w)o we have to show that 35 (0R% A B € (¥)o). Note first
that OB is almost in @, and that 1 € ®. By 2.3 there is a successor A of
(@)o with B, O-B € A. Moreover, A is a L-critical successor of ()o. For,
OB € (w)o implies OT € (@)o, so IL € (w)o would imply OL € (@)o, by
axiom I4—which is impossible; therefore, IL ¢ (w)o. Furthermore, it is clear
that =L, O-L € A. Put 7 := (A, (@)1 ((B, 1))). Then we may assume that
% € Wrp. It is clear that WR% and B € (¥)o as required.

If F = OB ¢ (w)o then (B € ()0, and we have to show that V3 (wR? —
—B € (7)o). But this is obvious from the definitions.

Assume IC ¢ (@)o. Then -IC € (@), and OT € (w)o. By the induction
hypothesis we have to show that 35 (W RIAVEG (0S54 — —~C € (u)o)). Apply 2.4,
with I' = (@)o, to obtain a C-critical successor A of (@w)o, and define 7 :=
(A, (@)1 (T, C))). Since OT € (@)o is almost in &, we may assume that
9 € Wp. Furthermore, if 9S54 then C occurs as the second component in some
pair in (%);, hence ~C € (#)o, by 2.8.(5).

Assume IC € (w)o. By the induction hypothesis we have to show that
Vo (DR% — 3 (vSzaAC € (©)o)). Solet 5 € @R. Then ()0 > (®)o by 2.8.(3),
so OT € (@)o, and therefore OC € () by axiom I4. By construction 3 is
E-critical for some E € . Now, apply 2.5, with T’ = (@)o, A = (7)o, to obtain
an E-critical successor A’ of (@)o that contains C, O-C. Since OC is almost
in &, we may assume that @ = (A', (@)~ ((C, E))) € Wr. Clearly, @ does the
job. QED.

Proposition 2.10 Let A€ £(00,T). Then IL+ A iff i+ A.

Proof. By [2] we have for all A € £(0O,>), IL + A iff for all finite IL-models
M, M |E A. From this and 2.9 the Proposition follows. QED.

2.3 Modal and arithmetical completeness of ilm

To prove the modal completeness of ilm we need to adapt the construction
used in proving il complete somewhat. The counter model we will construct
in the completeness proof will consist of pairs (A, 7), where A is a maximal
ilm-consistent set, and T is a sequence of triples of formulas.

For the the time being we fix a maximal ilm-consistent set I' and a finite
adequate set P.

Definition 2.11 Define Wr to be a minimal set of pairs (A, 7) such that

L (T, (())) € .

2.If (A, 1) € Wr, OB € AN(2U{OT}), C € & and if there exists a
C-critical successor A’ of A with B, [J-B € A’, then for one such A’,
(A, 7((B, L, C))) € Wp.



3. If (A, 7y € Wr, IB € AN®, C € ¢ and if there exists a C-critical
successor A’ of A with B, (0L € A’, then (A', (L, B, C’))) € Wr, for
one such A’.

Define R on Wr by putting @R if (@); C (¥)1. Define S on Wr by putting
9S4 iff for some B, B, E, E', C, o and o’

(9)1 = (9)1”((B, E, C))" 0o and (@)1 = (@)"((B, E', C))" o’
and

if B=1 then B'= 1,
and

if '=1then B =B,E'=F and o C o'.

Remark 2.12 In 2.11 the triples (B, E, C) code the following: if (A’, 77 ((B,
E, C’))) € Wr, then there is some (A, 7') € Wr such that A’ is a C-critical
successor of A, and if B # L then (A’, T~ ((B, E, C))) was added to Wr
because OB € AN(@U{OTY); if B= L then E # L and (A, 77((B, E,
C))) was added to Wr because IE € AN ®.

Proposition 2.18 1. Wr is finite.
2. If (v)1 = (w)1” ((B, E, C))" o then either B= 1 or E = L (but not
both); and if B = L then OL € (¥)o and o = ().

. If (@); = (7)1 then @ = v.

. If DRY then (W)o < (¥)o-

. (Wr, R, S) is an ILM -frame.

. If 5 = (A, ) € Wr and C occurs as the third component in some triple
in T then =C, (0-C € A.

D G

Proof. Items 1, 2, 3, 4 and 6 are left to the reader. Let us check that (Wr, R,
S) satisfies all the conditions to be an ILM-frame:

e it is easily seen that R is transitive and irreflexive—so by item 1 it is also
conversely well-founded;

e S; C WR x WR is immediate;

to show that Sy is reflexive and transitive, use item 2;
o to show that WR5R% implies 5551, use item 2;

e finally, we have to show that S WRZ implies 5RZ; so assume that 3S1.
By definition there are B, B’, B", E, E', E", C, C", o, o' and ¢" such

that
(1 = (@)1~ ((B, E, C))" o
(@1 = (@1~ (B, E', C))"0o’
(21 = (@an"((B', E', C))"d""((B", E”, C")) 0"

Obviously, B’ # L, for otherwise, by item 2, (0L € (@)o, and, by item 4,
1 € (2)o. Therefore, by item 2, E' = 1L —but then B = B/, E = E’ and
o C o'. In other words: (7)1 C (Z)1, which means that Rz. QED.

Theorem 2.14 Let A€ L(O,I). Then ilm t+ A iff for all finite ILM -models
M we have M = A.



Proof. As before we only prove completeness. Assume ilm I/ A. Let ® be a
finite adequate set that contains — A4, and let ' be a maximal ilm-consistent set
with -4 € T. Construct (Wr, R, S) as in 2.11. Define a forcing relation I- on
(Wr, R, S) by putting @ I+ piff p € (@)o. As before, we prove by induction on F
that for all F € (U{OT }) and @ € Wr we have w I- F iff F € (0)o. We only
consider the case F = IB. (The case F = OB is similar to the corresponding
case in the proof of 2.9.)

Assume F = IB ¢ (w)o. By the induction hypothesis we have to show that
35 (wR? — Va(9Ss2 — —B € (4)o)). Now IB ¢ (@)o implies OT € (w)o.
Moreover, by 2.4 there exists a B-critical successor A’ of (w)o. Since OT €
(@)oN (2 U {OT}), we may assume that € Wp, where

3:= (A, (@)1 (T, L, B))).

Clearly, wR%. Finally, if 9Sg @ then (%), = (@), ((B’, E', B)) o for some B’,
E' and 0. Therefore, by item 6 of 2.13, =B € (@)o, as required.

Assume that F = IB € (@)o. By the induction hypothesis we have to
show that Vo (wR? — 3u (S A B € (4)o)). So assume that ¥ € wR. Then
(8)1 = (@)1”((B', E', C))" 0 for some B, E’, C and o. By item 6 of 2.13, (%)o
is C-critical. Now IB € (@)o implies I(BAOL) € ()0, by axiom m. Apply 2.5
to find a C-critical successor A’ of (w)o with B, (0L € A’. Since IB € (@)oN®,
we may assume that & € W, where

a:= (A, (w)o~((L, B, C))).
Obviously, we have 5S3% and B € (#)o as required. QED.
Proposition 2.15 Let A€ £(O,>). Then ILM + A iff ilm} A.

Proof. By [2] we haveforall A € £(O,>), ILM + Aiff for all finite ILM-models
M, M = A. From this and 2.14 the result follows. QED.

Theorem 2.16 Let A€ £(0,1), and let T be a £%-sound essentially reflezive
theory. Then ilm b A iff for all interpretations ()T of £(0,I) in the language
of T, T+ (4)T.

Proof. By [1, Theorem 3.8] we have for all A € £(O,>), ILM + A iff for all
interpretations (-)7 of £(00,>) in the language of T, T+ (4)7. From this and
and 2.15 the result follows. QED.

Proposition 2.17 Let A € £(O,I). Then the following are equivalent:

1. dm“ F A
2. ILM“}| A
3. idmt ADBeSub(A)(DB — B) A /\IDESub(A) OT) -4

Proof. The implication 1 => 2 is trivial. By (the proof of) [1, Theorem 6.5]
ILM“ |- A implies

mwmM+-( A @B-BA A (€-O0) A
DBeSub(A) C>DeSub(A)

Since A € £(0,I) this is equivalent to

IZM+-( A @B-BA A OT)-a
OBeSub(A) IDeSub(A)



Together with 2.15 this yields the implication 2 = 3. The implication 3 = 1
is straightforward since im* OB — B for all B € £(0,I), so in particular
dm“F0OL — 1, ie,dm“ - OT. QED.

Theorem 2.18 Let A € £(0,I), and let T be a £9-sound essentially reflezive
theory. Then ilm“ & A iff for all interpretations (-)T of £(OJ,X) in the language
of T, (A)T is true in the standard model.

Proof. By [1, Theorem 6.5] we have ILM“ I A iff for all interpretations (-)T of
£(0,>) in the language of T, (A4)7 is true in the standard model. By 2.17 this
implies the Theorem. QED.

Proposition 2.19 Let A€ £(0O,I). Then ILW I A iff ilm I A.

Proof. Since m is a substitution instance of the axiom W, the direction from
right to left is immediate from 2.10. Conversely, if ilm If A, then ILM If A
by 2.15. Recall from the proof of 1.3 that ILM + W, i.e. that ILM D ILW. It
follows that ILW I A. QED.

Let us call an arithmetical theory a reasonable theory if it is £¢-sound, R} -
axiomatized and its natural numbers satisfy IAg + Q1. (Cf. [8] for details and
motivation.)

Theorem 2.20 The system ilm is the unary interpretability logic of all reason-
able arithmetical theories.

Proof. In [8, Section 6.2] it is shown that ILW is valid for arithmetic interpre-
tations in all reasonable arithmetical theories, hence by 2.19, the same holds
for ilm. Therefore, the unary interpretability logic of all reasonable arithmetics
contains #lm. Since, by 2.16, ilm is the unary interpretability logic of P A, the
converse inclusion holds as well. QED.

2.4 Modal and arithmetical completeness of ilp

In stead of proving ilp modally complete with respect to ILP-models we prove
a stronger result, notably the modal completeness of ilp with respect to ILM P-
models. The proof of this result is a slight variation on the modal completeness
proof for ilm.

As before we fix a maximal ilp-consistent set I' and a finite adequate set &.

Definition 2.21 Define Wr to be a minimal set of pairs (A, 7) such that

1 (T, () € Wr.

2. (A, 1) € W, OB € AN(RU{OT}), C € & and if there exists a
C-critical successor A’ of A with B, (0-B € A’, then for one such A/,
(Aa', 7((B, L, C))) € Wr.

3. If (A, 7) € Wr, IB € AN @, C € & and if there exists a C-critical
successor A’ of A with B, 01 € A’, then <A’, ™ ({1, B, C))) € Wy, for
one such A'.

Define R on Wr by putting @R iff (0)o C (9)o. Define S on Wr by putting
9S54 iff for some B, B’, E, E', C, T and &
()1 = (@)1 7 ((B, E, C)) and (@), = (@)1" 7 ((B', E', C))" o
and
if B= 1 then B'= L
and
ifE'=1then B=B,E' =E.
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Proposition 2.22 1. Wr is finite.
2. If (v)1 = (@), 7" ((B, E, C)) 0o then either B= 1 or E = L (but not
both); and if B = 1 then OL € (7)o and o = ().

L If (‘lfl)]_ = (‘5)1 then @ = .

If @R then (‘lf))o < (ﬁ)o.

(Wr, R) is a tree.

(Wr, R, S) is an ILM P-frame.

If 5= (A, ) € Wr and C occurs as the third component in some triple

in T, then =C, O0-C € A.

Proof. We only prove item 6. The proof that (Wr, R, S) is an ILM-frame is
similar to the proof of 2.13.(5); to prove that (Wr, R, S) is also an ILP-frame,
we have to show that @WR®' RuS5 v implies 4Sy 5—but this is immediate. So it
remains to be proved that z RyS; 2RuSyv implies uS,v. Reasoning as in 2.13.(5)
we find that £ RyS; zRu implies z RyRzRu. Now, if y = z then we trivially have
uS;v, and if yRz then we have uS,v because (Wr, R, S) is an ILP-frame.
QED.

Theorem 2.28 Let A € £(O,I). Then ilp - A iff for all finite ILM P-models
M we have M |= A.

SN

Proof. As before we only prove completeness. Assume that ilplf A. Let ® be a
finite adequate set that contains — A, and let I' be a maximal ilp-consistent set
with -4 € T'. Construct (Wr, R, S) as in in 2.21. Define a forcing relation I-
on (Wr, R, S) by putting @ I p iff p € (w)o. As before, we prove by induction
on F that forall F € U {OT} and @ € Wr we have w |- F iff F € (w)o.
The case F = OB is similar to the corresponding case in the proof of 2.9. So
we only consider the case F' = IB.

The case that F = 1B ¢ (w)o is entirely analogous to the corresponding case
in the proof of 2.14.

Assume that F' = IB € (@)o. By the induction hypothesis we have to show
that Vo (WR% — 34 (S uA B € (@)o)). So assume that 3 € wR. Since (Wr, R)
is a tree, we can find a unique immediate R-predecessor @’ of 3. By axiom p we
must have IB € (@')o, and so by axiom m, I(BAOL) € (@’)o. By construction
there are B/, E', C' € ® such that

(O = (@)~ (B, B'C)),
that is: (7)o is a C’-critical successor of (@')o. By 2.5 there exists a C’-critical

successor A of (@')o with B, OL € A. Since IB € (@')oN ®, and C’' € & we
may assume that & € Wr, where

a:= (4, (@')17((L, B, C"))).
Obviously, we have Sz % and B € (@)o as required. QED.
Proposition 2.24 Let A € £(0,I). Then ILMP | A iff ilpt A.

Proof. If ilp - A then by 1.3 ILP F A, and hence ILMP I A. Conversely,
if ILMP + A, then for all (finite) JLM P-models M, M = A. So by 2.23,
ilpk A. QED.

Proposition 2.25 Let A€ £(O,I). Then ILP+ A iff ilpt A.

Proof. The direction from right to left follows from 1.3. To prove the other
direction, note that ilp I/ A implies ILM P I/ A, by the previous Proposition,
and this in turn implies ILP I/ A. QED.
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Theorem 2.268 Let A € £(0,I) and let T be a £9-sound finitely aziomatized
sequential theory that eztends 1Ag + SupExp. Then ilpt A iff for all interpre-
tations ()T of £(0,X) in the language of T, T+ (A4)T.

Proof. By 2.25 we have ilp Aiff ILP F A, for all A € £(0,I). By [9, Theorem
8.2] this is equivalent to: for all interpretations (-)T of £(0J, >) in the language
of T, T+ (A)T. This implies the Theorem. QED.

Proposition 2.27 Let A€ L(0O0,I). Then the following are equivalent:

1. idp“F A
2. ILP“| A
3. iphk /\EIBGSub(A)(DB - B) A AIDGSub(A) <>T) — A.

Proof. The implication 1 = 2 is trivial. By [4, Proposition 1.8.(1)] ILP“ - A
implies
1p+-( A\ @B-BA A (€C-00) A
OB€Sub(A) C>DeSub(A)
Since A € £(0O,I) this is equivalent to
1Zp-( A @B-BA A OT)-a4a
OBeSub(A) IDeSub(A)

Together with 2.25 this yields the implication 2 => 3. The implication 3 = 1
is straightforward since ilp“” OB — B for all B € £(0,I). QED.

Theorem 2.28 Let A € £(0,I), and let T be a Aj-sound finitely aziomatized
sequential theory that extends 1Ao + SupExp. Then ilp” F A iff for all inter-
pretations (-)T of £(0,1) in the language of T, (A)T is true in the standard
model.

Proof. By [4, Theorem 3.2] we have ILP“ |- A iff for all interpretations (-)7 of
£(0,>) in the language of T, (A4)7 is true in the standard model. By 2.27 this
yields the Theorem. QED.

2.5 On the hierarchy of extensions of il

In [2], [8] and [9] the following extensions of IL in £(0J,>) are considered:

ILP

ILCILF CILW C ILWM, C CILMP
ILM

(All inclusions are proper.)

As a corollary to 2.19 and 2.24 we find that this hierarchy partly collapses
when we only consider formulas 4 € £(0, I):

il Cidf Cilw = dlwmg = ilm C ilp = ilmp.

(Recall that ilz = ILX N £(0,I).)

To see that there is no total collapse we prove the following result:

12



Proposition 2.29 1. im # ilp

2. idf £ilm

3. i #£ilf
Proof. 1. It suffices to show that ilm I IA — JIA. Consider Figure 1 below.
Note first that the model is an ILM-model, but not an ILP-model. We clearly
have w I Ip. However, b does not force IP, for it has an R-successor (notably
a) that is not Sy-succeeded by a point at which p holds—so w I OIp.

2. To prove ilf # ilm we use a construction due to Svejdar. (Cf. [7].) It
suffices to show that ILF I m. Consider Figure 2. We claim that w I~ F, i.e.,
that wiF A > OA — O-A, for all A € £(O0,I). Suppose that w - 4 > OA.
Then

(a) ifbl- Athenal- A

(b) dIf A—otherwise d I A, which is impossible

(c) for each B, al- B iffcl- B

(d) ¢l A—otherwise ¢ I & A, which is impossible

(e) alff A, by (c) and (d)

(f) b A, by (a) and (e)

(8) wlF-0O-A4, by (b), (d), (¢) and (f).
On the other hand, w If IA — I(A A L), for we have w I+ Ip while w I
I(p AOL), since b has no S,,-successor at which p A 0L holds.

3. We have ilf I f, i.e,, ilf F IOT — OL, but il I/ f, as is clear from the
model in Figure 3. QED.

p
Sw
aO—-—~—=+0c a O a O
| [ : [
b O b O c O—-——=0d b O
wO w QO wQ
Figure 1. Figure 2. Figure 3.

(Plain arrows denote R-links; dashed arrows denote Sy, -links; reflexive S-links
and S-links induced by R-links have been left out.)

3 Answers to some standard questions
In this Section we answer some questions that come naturely with any extension
of L. Notably, what are the closed formulas and the modalities in £(I) and

L(0,X)? We also prove interpolation and fixed point theorems for il, ilm and
ilp.
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3.1 Closed formulas and modalities

As usual we start with some definitions. A formula C is called closed if it does
not contain any proposition letters. Let F be a frame. Define the depth d(w)
of w € F by d(w) = sup{d(v) +1: wRv}.

Proposition 3.1 Let w, v be two points (not necessarily in the same model).
Ifd(w) = d(v) then wi- C iff v C for all closed formulas C € £(OJ).

Proof. This is by induction on d(w) = d(v). QED.

Proposition 8.2 Let C be a closed formula in L(J). Then L+ C iff C is valid
on w*. (Le., iff for every w € w* and every I on w*, wi-C.)

Proof. The direction from left to right is obvious. To prove the other one,
assume that L I/ C; then for some finite L-model M with root w, w I C. Let
n = d(w), and let -’ be any forcing relation on w*. It is clear that, in w*, the
element n has depth n. So by the previous Proposition, n |t/ C. QED.

Proposition 8.3 Let C be a closed formula in £L(O). Then Lt (CV OC) &
OFT, for some k€ wu{w}. (Here, O¥T = 1.)

Proof. By the previous Proposition it suffices to show that for all closed formulas
C in £(0O), there is some k € w U {w} such that (CV OC) & OFT is valid on
w*. This is left to the reader. QED.

Proposition 3.4 Let X be a logic that extends il+f. Then every closed formula
in L(I) is, provably in X, equivalent to one of OT, 0L, L or T. Hence, every
closed formula in £(0O,I) is equivalent, over X, to a closed formula in L£(OJ).

Proof. Thisis by induction on the closed formula C. The only non-trivial case is
C = 1B, where B is a closed formula in £(I). Now, by the induction hypothesis,
B is a closed formula in £(0J). Furthermore, il F IB « I(B V OB). So,
il F IB & IOKT, for some k € wU{w}. If k = 0, then IOXT = IT, and
XFIBo T.Ifk=uw, then IOFT =11, and

dFIL —» (=OTVOL), by I3
— (OALvOl)

— [OL

— I, by 1.4.

So XFHFCe~OL If0< k < w, then

XFIO*T — IOT, by axiom A — O0OA
— 04, by axiom f
— OOkT
— IOFT, by 1.4

SoXFC«~0OL. QED.

By the Normal Form Theorem for closed formulas in £(0) it follows from 3.4
that in extensions of il + f every closed formula in £([J,I) is equivalent to a
Boolean combination of formulas of the form 0" L, for some n € w U {w}.

Below il + f the situation is more complicated. Note for example that there
are infinitely many pairwise non-equivalent closed £(O, I)-formulas, none of
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which is equivalent to a (closed) formula in £(O). To see this, let Ay :=IOT,
Api1:= O(An AO™IT), and consider the following Veltman-frame F:

as az a ag a3

...... ye) e e) »O—+ O

...... — 0 » O » O 'O<__ O
b3 ba by bo S, b_1

Let I be any forcing relation on F with, for all i € wU {1}, a; I p iff b; I~ p;
then for all B € £(O), a; I+ B iff b; I+ B. On the other hand, we have for all
1€ w\{0}, a; IV 4; and b; I A;. This shows that none of the A;s is equivalent
to an £(0)-formula. To see that il If A; & A;, if ¢ # j, note that for all 7, and
all j > 1, b; IF A; /\-iAj.

It is still open whether there exist reasonable normal forms for closed for-
mulas in subsystems of il + f.

We now examine the modalities in £(I) and £([J, I). (Recall that a modality
is nothing but a sequence consisting of modal operators and/or dual versions of
these operators.) We say that two modalities a and [ are equivalent over ils if
for all A € £(0,I), ils - aA — BA. A modality « is called a constant modality
(over ils) if there is a closed formula C such that for all 4, ils - a4 « C (i.e.,
if for all A4, B, ils - aA « aB). We use I as an abbreviation for —I-.

We start with the modalities over extensions of il. Unlike modalities in
more traditional modal languages almost all modalities in £(I) are constant.
For example:

Proposition 3.5 Let A € £(O,I). Then

1.idFIMA T
2. idFA & L;
3. dFIOAT;
4. dFIOA & L.

Proposition 3.8 Let A € £(0,1). Then il IIA & IOT (- IOT).
Proof. One direction is almost immediate:
d-MA — IOT
— IIT, since i F OIT « T).
To prove the other one, we show that il - IITA — IIT:
dFITIAA-IOL — IOTAIOT
— IOTAIOT, since il FOIT  OT)
- IOTAYOT — OOT), by axiom I4.

Now il F IOTAXOT — OOT) — L, by 1.4, and il F IOL & TIL. Therefore
d+I0A—TIL. QED.
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As a corollary we find the following result:
Proposition 8.7 Let X be a logic that extends il. Then

1. every modality in L(I) is equivalent (over X ) to one of (), 1, III IO,
I, I, I, III or II; o

2. if X is il then the only non-constant modalities in L(I) are (), I, I, II
and II.

Proof. Note first that if «, 8 are one of the modalities mentioned in item 1, and
if & # B, then o and (3 are not equivalent over il. Let o be a moda.lity in C(I).
Then either a € {(), I, I 1, II}, and we are done, or for some o’ we have
a € {IIo/, Mo/, OIe/, Oa', e/, IIIa'}. In the latter case an application
of 3.5 or 3.6 ylelds item 1.

To prove item 2, note first that (), I, I, II and II are indeed non-constant
modalities; that they are the only such modalities in £(I) is immediate from
3.5, 3.6 and item 1. QED.

Proposition 3.8 Let X be a logic that eztends il. Then every modality in
£(0O,1) is equivalent (ove’r X) to a modality of the form a1fi...cnfn, where
the a;s are modalities in £(0J) and for 1 <i<n, i € {(), I, I, IO, IO}, while
ﬂﬂe{()IIIIHIIIIII[I]IIII]II}

We continue with a somewhat simpler case: the modalities over extensions
of ilm. Here there are even fewer non-constant modalities in £(I). For a start,
we have the following stronger version of 3.6.

Proposition 3.9 Let A, B € £(0,I). Then ilm+ IIA « OL.

Proof. Since ilm F OL — DT_A, we have ilm - 001 — IIA, by 1.4. To prove the
converse, note that ilm - C(IAADOL — 1). So since ilm - IIA — I(IAADOL),
by axiom m, we have ilm F+ IIA — I, by axiom I2. Thus imt+ IIA — OL.
QED.

Proposition 3.10 Let X be a logic that eztends ilm. Then every modality in
L(X) is equivalent (over X ) to one of (), I, I, II, II, IT or II. Moreover, if X
is ilm or ilp then the only non-constant modalities in L(I) are (), I and I.

Proof. Immediate from 3.5 and 3.9. QED.
Proposition 3.11 Let A € £(0,I). Then

1. idmFIGA - 0L
2. idmEFI0OA - OT.

Proposition 3.12 Let X be a logic that extends ilm. Then

1. every modality in £(O,T) is equivalent (over X ) to a modality of the form
af, where o is a (possibly empty) modality in £L(O), and B € {(), I
o, oI, IO, IO, I}
2. if X is ilm or ilp, then the only non-constant modalities in £L(0,>) are

Ok, OF, O*I and OFI.

Proof. We only prove item 2. Let v be a non-constant modality in £(0J, >); by
item 1 we may assume that v = a3, with af as described in item 1. Since v is
assumed to be non-constant, 3 € { (), I, I}. Moreover since [1> and O are
constant we may assume that o = OF, or o = [OF, for some k.
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If 8= (), then v = OF or v = O0%; in both cases v is non-constant for all k.

If B=1, then v = OFI or 4y = OFL Since ilm F OIA & OT, we have that
¥ is constant for all k > 1; on the other hand, for any k, (OJ*I is non-constant,
as the reader may verify.

Similarly, if 8 = I, then v is non-constant iff y = OFI.  QED.

For the remainder of this section let T be a L{-sound essentially reflexive
theory. (Modulo some obvious changes most of the remarks in the sequel hold
equally well for £¢-sound finitely axiomatized sequential theories that extend
IAo+ SupExp.) Let Or be a formalization (in the language of T') of provability
in T; O is short for =Op—; I is a formalization (in the language of T') of
the unary interpretability predicate over T.

Assume that ¢ is a sentence in the language of T' that is not of the form
(—)Ir% or (—)Or1. We want to know what the theory T can say about sentences
of the form By, where § is (the arithmetical version of) a non-empty modality
of the form (—)IF'. By 3.12 we only have to consider 8 cases.

Note first that no formula of the form —Iry can be provable in T. For, we
have ilm  O-IA4 — OL, for all 4 € £(0,I). So T'+ Ogp-Ire — Or(0 = 1),
for all sentences ¢ in the language of T'. Therefore, if T - —Irp then T +
Or(0 = 1). Since T is assumed to be I¢-sound, this implies that for no ¢,
TF =Ire.

Similarly, since ilm IO A — OL and ilm + IIA — OL, we can not have
T+ IrOre or T F IpIrep, for any sentence . Moreover, we do have for all
sentences ¢, T'+ IrIrp, because ilm F ILA. The only remaining case, then, is
B =1 Here we have the following possibilities:

Tt ¢, and then T F Iz, T I Ir—p;
T+ -, and then T lf Inp, T+ Ip—yp;
TWH o, TH @ and TF Irp, T F Ip-p;
TW o, TW —pand T+ Irp, Tl Ir-p;
Tl o, TW ~¢and T Irp, Tt Ir—y;
TWe, T ~pand Tl Irp, T i/ Ir—e.

By our previous remarks no strengthening of this classification is possible by
replacing ‘T'l/’ by ‘T =’ somewhere.

We leave it to the reader to supply examples of items 1 and 2; the sentence
Or(0 = 1) is a sentence that satisfies item 4, and its negation satisfies item 5;
below we will provide examples of sentences that satisfy items 3 and 6, respec-
tively. Recall that an Orey sentence for T is a sentence v such that both 1 and
—1p are interpretable in T. So a sentence satisfying item 3 is an example of a
sentence that is provably in T an Orey sentence for T. Our example below of a
sentence satisfying item 6 is also an example of a sentence that is—unprovably
in T—an Orey sentence for 7.

SR o A

Example 3.13 There is a sentence ¢ that satisfies item 3.

Proof. Put A = -OpA -0O-p A OIp A OI-p. We prove that ilm® I —A; then,
by 2.18, there is an interpretation (-)7 of £(0,I) in the language of T such that
(—4)7T is false in the standard model. Hence (A4)7 is true. Put ¢ = (p)T and
we are done.
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Now, to prove that ilm“ If - A we show that

amy (N @B-B)A N\ OT) — -4, (3)

DOBeSub(~A4) ID€eSub(~A4)

Define M as in Figure 4:

O +«-—---=+0

Figure 4. Figure 5.

We leave it to the reader to check that w I+ /\mes“b(_,A) OT and that w -
AoBesub(-4)(OB — B); from this and w - A we obtain (3). QED.

Example 3.14 There is a sentence ¢ that satisfies item 6, and such that ¢ 1is,
unprovably in T, an Orey sentence for T.

Proof. Put A = -OpA-O-pA-OIpA—-OI-pAIpAI-p. We only have to show
that slm® If - A, then we find an interpretation (-)7 of £((J,I) in the language
of T such that (A4)7 is true. Put ¢ = (p)T and we are done.

We leave it to the reader to check that the model depicted in Figure 5 shows
that ilm“ If =A. QED.

Note that the model used in 3.14 is not an ILP-model. Therefore, the
sentence ¢ given there works only for essentially reflexive theories T. We leave
it to the reader to find a ¢ that satisfies item 6 if T is a £¢-sound finitely
axiomatized theory that extends IA¢+ SupExp. He or she won’t be able to find
a sentence ¢ that satisfies 3.14 for such T. For, let T be such a theory, and
assume that 7't/ Irp while T'+ ¢ is interpretable in 7. Then w = I7¢. Hence,
w | OrIrp (since w | Irp — OrpIrep), and so T + Irp—a contradiction.

An inspection of the arithmetical completeness proof of ILM shows that the
sentences ¢ found in 3.13 and 3.14 may be taken to be L3-sentences.

3.2 Interpolation and Fixed Point Theorems

Our proof of the interpolation theorem for il, ilm and ilp extends Smorynski’s
proof of the interpolation theorem for L. (Cf. [5].)

Definition 8.15 Let A € £(0,I). Then L4 is the sublanguage of £(0J, 1)
consisting of all formulas having only proposition letters occurring in A. A set
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X C L4 is maximal ils-consistent in L4 if for all C € L4, either C € L4 or
-C € L4.

A pair (X, Y) with X C L4, Y C Lp is called separable if for some C €
LaNLp,C€ X and ~C €Y. If (X, Y) is not separable it is inseparable.

A pair (X, Y) with X C L4, Y C Lp is called a complete pair if

1. (X, Y) is separable.
2. X is maximal ils-consistent in L 4.
3. Y is maximal ils-consistent in Lp.

Our proof of the interpolation theorem for il (ilm, ilp) is in fact nothing but
another modal completeness proof for il (ilm, ilp)—using complete pairs instead
of plain maximal il (ilm, ilp)-consistent sets. The construction of a counter
model is entirely analogous to the constructions in 2.6, 2.11 and 2.21. The main
difference is the result that supplies us with the input for our construction. That
is: 2.3, 2.4 and 2.5 have to be restated and reproved for complete pairs.

Definition 3.16 Let (X, Y), (X', Y’') be complete pairs.
1. (X,Y) < (X", Y') ((X', Y') is a successor of (X, Y)) if
(a) Ae X'UY ' foralldA€e XUY
(b) DA€ X'UY' for some OJA¢ X UY
2. (X', Y’) is called a C-critical successor of (X, Y) if
(a) (X, Y) < (X", Y')
(b) ICEXUY
(c) -C,0-Ce X'uY’
Proposition 3.17 Let Xo C L4, Yo C Lp be such that (Xo, Yo) is an insep-

arable pair. Then there exists a complete pair (X, Y) with Xo C X C L4 and
YoCY C Cp.

Proof. See [5], Lemma 1.1. QED.

Proposition 3.18 Let (X, Y) be a complete pair such that OC € XUY. Then
there exists a complete pair (X', Y') = (X, Y) with C,O0-C € X'UY"'.

Proof. See [5], Lemma 1.2. QED.

Proposition 8.19 Let (X, Y) be a complete pair such that IC ¢ XUY. Then
there ezists a C-critical complete pair (X', Y') » (X, Y) withOL € X' UY".

Proof. Assume that no such (X', Y') exists. We distinguish 3 cases.
Case 1. IC € L4\ Lp. Then by 3.17 and compactness there are OF},...,0F, €
X, 0G,,...,0G, €Y and D € L4 N Lp such that

Fi,...,Fp,~C,0-C,0L + D (4)
Gi,...,Gn, 0L + =D. (5)

By (4) we have OF,,...,0F, -O0OL — (-D — C Vv OC)). Now
i F-ICADOOL - (-D - CVvOe)) —» -00L — -D).

So X + =0(OL — —D). On the other hand, (5) yields Y I O(OL — —D). So
X and Y are separable—a contradiction.
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Case 2. IC € Lp \ L4. Similar to Case 1.
Case 8. IC € L4NLp. By 3.17 and compactness there exist OF,...,00F, € X,
0G,,...,0G, €Y and D € L4 N Lp such that

Fi,...,Fm,~C,0-C,0L + D (6)
G1,...,Gn,~C,0~-C,0L F =D. (7)

Now il F -ICAOOL — (-D —» CVv OC)) —» -O0EL - (D — C Vv OO)).
So (6) yields

ory,...,0F, +F O0OL — (=D —CVOLC))
OFy,...,0F,,-IC + -0l — (D —CVO0))
X + -00OL - (D—-CVvOO)).

On the other hand (7) gives Y - O(OL — (D — CV {OC)). Hence X and Y
are separable—a contradiction. QED.

Proposition 3.20 Let (X, Y) be a complete pair with -IC € X UY and
IE € X UY. Then there exists a C-critical complete pair (X', Y') = (X, Y)
with E, 0-E € X' UY'.

Proof. Assume that no such (X', Y') exists. We distinguish 9 cases.
Case 1. IE € L4\ LB, IC € L4\ Lp. By 3.17 and compactness there exist
OrF,...,0F, € X, 0G4,...,00G, €Y and D € L4 N Lp such that

Fy,...,Fp,~C,0-C,E,0~E + D (8)
Gi,...,G, + -D. (9)

Now (8) yields

OF,...,0F,,0-D F O(EAOE — CV OC)
OF;,...,0F,,0-D F KEAO-E)—I(CVOC), by axiom 12
Or,...,0F,,0-D + IE — IC, by 1.4.(3) and axiom I3
0Or,...,0F, + IEA-IC — -[-D
X + -O-D.

On the other hand (9) yields Y - O0-D. So X and Y are separable—a contra-
diction.

Case 2. IE € L4\ LB, IC € Lp\ L4. Then by 3.17 and compactness there
exist O0F,...,0F, € X, 0G,;,...,00G,, € Y and D € L4 N Lp such that

Fi...,.Fo, EE,0RE + D (10)
Gi,...,Gy,0C,0-C + =D (11)
As before (10) yields
Ofy,...,.0F, + O(E AO-E — D)
Ofy,...,.0F, + I{(EAO-E)—-1D
Or,...,0F,,IE + 1ID
X + ID.
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But (11) yields

0Gi,...,0G, + OD —Cv3OO)
0G4,...,0G,,ID + IC,by axioms I2 and I3
0G,,...,0G,,-IC + -ID
Y + -ID.

And X and Y are separable after all—a contradiction.
Case 8. IE € L4\ LB, IC € L4 N Lp. Then by 3.17 and compactness there
exist OFy,...,0F, € X, 0G4,...,0G, € Y and D € L4 N Lp such that

Fi,...,Fp,~C,0~C,E,0-E + D (12)
Gi,...,Gny~C,0-C + =D. (13)

By (12) we find OF,,...,0F, F O(E AO-E — (-D — C Vv $C)). Now
il F-ICAIEAQO(EAO-E - (-D - CVOC)) - -0(D — CVv O0),

so X F =0(D — CVC). On the other hand, (13) yields Y - O(D — CVvOC).
Again, this implies that X and Y are separable—a contradiction.

Case 4. IE€ L\ L4,IC € Lp\ L4. Similar to Case 1.

Case 5. IE € L\ L4, IC € L4\ Lp. Similar to Case 2.

Case 6. IE € Lp\ L4, IC € L4 N Lp. Similar to Case 3.

Case 7. IE € LoN Lp, IC € L4\ Lp. Then by 3.17 and compactness there
are OFy,...,0F, € X, 0G,,...,00G,, € Y and D € L4 N Lp such that

Fy,...,Fp,~C,0-~C,E,0-E + D (14)
Gi,...,Gn, E,0-E + -D. (15)

By (14) we have OF,,...,0F, F O(E AO-E — (-D — C V {C)). Now
i+ -ICAIEATO(EAO-E - (=D — C Vv {C)) — -0O(E AO-E — -D),

so X + ~O(EAO-E — —D). On the other hand, (15) yields Y - O(EAO-E —
-D). So X and Y are separable—a contradiction.

Case 8. IE € L4NLp,IC € Lp\ L 4. Similar to Case 7.

Case 9. IE € L4NLp,IC € L4 N Lp. Then by 3.17 and compactness there
exist OFy,...,0F, € X, 0G,:,...,0G, €Y and D € L4 N Lp such that

Fy,...,Fm,—C,0-C,E,0-E + D (16)
Gy...,Gp,~C,0-C,E,0-~E + -D. (17)

Now il F mICAIEAQO(E AO-E — (-D — CV OC)) —» -O(E AO-E —
(D — C Vv OQ)), so (16) yields

OF,...,0Fn,IE,-IC + -0O(E AO-E — (D — CVvOC)
X F ﬂD(EAD'ﬂE—)(D—»CVOC)).

But (17) yields Y - O(E AO-E — (D — C VC)). And again, X and Y are
separable—a contradiction. QED.

Theorem 3.21 (Interpolation Theorem) Let ils be one of il, ilm or ilp. If
ils - A — B, then there is a formula C having only proposition letters occurring
in both A and B such that ilst- A — C and ilst+ C — B.
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Proof. The proof is by contraposition. Fix A and B and assume that no inter-
polant exists. We will show that ils I/ A — B by constructing a counter model
to the implication.

Note that the assumption that no interpolant between A and B exists,
means: { A} and {—B} are separable. So by 3.17 there exists a complete
pair (X, Y) with {A}C X CLgpand {-B} CY C L.

Put T := (X, Y) and construct Wr as in 2.6 (or 2.11 if ils = ilm, and
2.21 if ils = ilp)—starting with (T, (())) and adding pairs (A, 7) consisting of
complete pairs A and sequences 7 of pairs (or triples) of formulas. Using 3.18,
3.19 and 3.20 one can then mimic the proof of 2.9 (or 2.14 or 2.23) to find a
counter model to the implication A — B. QED.

To state Beth’s Theorem and the Fixed Point Theorem for i, ilm and ilp,
we first introduce some notation and terminology. We use A(p) for a formula
in which p possibly occurs; p is said to occur modalized in A(p) if p occurs only
in the scope of a [0 or a I. A(C) denotes the result of substituting C' for p in

A(p)-

Theorem 3.22 (Beth’s Theorem) Let A(r) € £(0,I) contain neither propo-
sition letter p nor q. If ils - A(p) A A(g) — (p « q) then, for some C €
Lany\{r} dlst+ Alp) = (p~ C).

Proof. The Theorem may be derived from 3.21 in a standard way. Cf. [5].
QED.

Proposition 3.23 1. i1+ 0(A & B) - (IA ~ 1IB)
2. i+ 0O%(B & C) — (A(B) « A(C)).

If p occurs modalized in A(p) and B is a conjunction of formulas of the form
OF and O E then

3. dFDO(C & D) — (A(C) « A(D))
4. idF B— (OA — A) impliesil B — A
5. dFDO%(p o Ap)) AT (g < A(g)) — (P 9)-

Theorem 3.24 (Explicit Definability of Fixed Points) Let p occur modal-
ized in A(p). Then there is a formula B with only those proposition letters of
A other than p and such that il - B — A(B).

Proof. The Theorem may be derived from 3.22 and 3.23 in a standard way. Cf.
[5]. QED.

4 Concluding remarks

In [6] the bi-modal provability logic PRL; is defined in a modal language
£(0O4,0;) with two provability operators. Besides Modus Ponens it has as
a rule of inference Necessitation for [J;; its axioms are the usual L-axioms for
[_—_ll plus Dz(A g B) g (DgA — DzB), D]_A — DzA and DzA — D1D2A.
Define a translation (-)* : £(0,I) — £(Oy,0,) by

t

p = p
(_‘A)t — _|At
(AAB)* = A*AB?
(DA)t = [0;,0,4°
(T4 = O1(C2T — O24Y).
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Using Albert Visser’s alternative semantics for ILP (cf. [9]) one may then show
that for all A € £(0,1), ilp+ A iff PRL, + A*.

This much about a connection of (one of) our new logics with a previously
known one. Let’s look in the opposite direction now, and consider an extension
of the language £(0J,I). Montagna and Hajek [3] show that ILM is the logic
of II9-conservativity in the following sense: given a L{-sound extension T' of
IZ; define the interpretation (A > B)* of a formula A > B in the language
of T to be ‘T + B* is II{-conservative over T + A*’; then ILM + A iff for
all such (-)*, T F A*. It is well-known that in essentially reflexive theories
like P A relative interpretability and II?-conservativity (in the above sense) are
provably extensionally equivalent. However in finitely axiomatized theories like
IT; the two notions no longer coincide. So it is natural to extend £([, >) with
an operator D> to be interpreted arithmetically as II{-conservativity. (It’s
convenient in this context to write > p instead of > for the ‘old’ operator 1>.)
As axioms we take the usual L-axioms and rules plus the ILM-axioms for >y,
and the ILP-axioms for >p. In addition we have the following ‘mixed’ axiom:
Ap>y B — AAN(C >bp D) by BA(C >p D). The resulting system is
called ILM/P. The relevant models are tuples (W, R, SM, SP IF) where
(W, R, S™, IFF) is an ILM-model, (W, R, SF, II) is an ILP-model, while the
following extra condition holds: if zRySM zRuS} v then uSFv. It is still open
whether ILM /P is modally complete with respect to such ILM/P-models. The
unary counterpart ilm/p of ILM/P is defined in a language £(I5s,Ip) with two
unary interpretability operators; its axioms and rules are those of L plus the
tlm-axioms for Iys and the ilp-axioms for Ip; ilm/p has no ‘mixed’ axioms. It
has been shown by the present author that ilm/p is modally complete w.r.t.
ILM/P-models.

We end with a remark on the method used here to prove modal completeness
results for the unary logics. Recall that it employs infinite maximal consistent
sets and a ‘small’ adequate set instead of finite maximal consistent sets that are
contained in a ‘large’ adequate set (as used, for example, in [6] and [2]). Our
method has already been used to prove the modal completeness of several of the
binary interpretability logics mentioned in this paper—however, it is still open
whether ILM may be proved modally complete using this method (cf. [4]).
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