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ON SEQUENCES WITH SIMPLE INITIAL SEGMENTS.
Domenico Zambella

0. Introduction.

In this report we will deal with descriptive complexity and with Turing
degrees. Sequences can be classified in various classes according to their
descriptive complexity; some of this classes have got an important
heuristic meaning as the class of random sequences they are definable as
the class of sequences with "high" complexity. The connection between
descriptive complexity and recursion theory has not been systematically
investigated. Some results (by Mayer [1], Chaitin [2] and Solovay [3]) are
known for classes of sequences of "low" complexity, namely it is known
whether or not certain inequalities characterize the recursive sequences.
Other results have been obtained for the class of random sequences by Kurtz
[4] and by Kucera [5]; they interpret randomness as a sort of genericity. (In
a more general contest, M.van Lambalgen [6] also showed there exist a deep
connection between forcing and randomness.) Our contribute is to be
intended in the former direction, we mainly deal with low complexity
sequences and present two main constructions of nonrecursive sets which
look very simple from the point of view of the descriptive complexity of
their initial segments. We also would like to add few observations on the
interplay between randomness and sequences of low complexity. In [6] the
notion of stochastic independence of sequences is introduced using the
relativized definition of randomness. We would like to make precise
intuitive fact that if a sequence X is independent from Y then Y has few
information about X hence Y has in a certain sense very low complexity.

We deal with two quite different kinds of descriptive complexity, namely
Chaitin's prefix complexity I [?], and the entropy H as defined in [8]; the
exact definitions will be given in the next sections. The first construction
we consider is by R.Solovay [3] apart from some minor simplifications due
to the author. The second is entirely the author's. The main ingredient of
the first construction is priority mixed with estimating the time
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complexity. The main ingredients of the second proof are the fixed point
theorem and the tree construction of hyperimmune free degrees. The two
main sections of this paper can be read independently.

Let us first present our notation. We associate to every natural number n
the set of the natural numbers less then n, i.e. n={0,...,n—1}, 2N is the set of
functions from n to 2, and 2< ®@:=U,.,2". The elements of 2< @ are called
(finite) strings if 6e2< @ we denote with |s] the length of & i.e. the domain
of 6. The set of the natural numbers is denoted by w, 2% is the set of the
functions from w to 2, called sequences. To each sequence we associate the
set {n|X(n)=1} and we denote it with the same symbol X since no confusion
will arise. If Xe29 we denote by X[n the restriction of X to n. The relation
c between strings or between a string and a sequence is the usual extension
relation between partial functions; L1 is the incompatibility relation
between partial functions. We assume a given effective bijective
enumeration of the set 2<®, we will use the same symbol both for a string
and for the number associated to it. There is large freedom in the choice of
the enumeration of the strings. We require only that for every string o,
l6l< ¢ and that the operation |-| of length and concatenation * of strings
translate into primitive recursive operations. wWe also write ON to mean the
string of length n consisting of just O's. If f is a partial function and
ngdom(f) (i.e. the domain of f) we write f(n)T or f(n)=c0. We will consider
o as larger than any natural number and we convene that 2= =0 and
-10g,0=c0. A function f:w—w is monotone if V¥n f(n)<f(n+1) and
divergent if 1lim,f(n)=c0. If B is a (finite) set #B denote its cardinality.
We is the domain of the partial recursive function with Gédel number e, as
usual Wy ¢ is a finite approximation of We. The jump of a set A is indicated
as usual with A’, thus @' is a complete r.e. set.

1. Sequences with low prefix complexity.

Let us first briefly recall the definition of prefix complexity. For more
details and proofs we refer to [7] and to [9]. A set of string A is prefix free
if Vo,teAlosct—»o=1l. A prefix algorithm g is a function g:2<®-2<®
such that dom(g) is prefix free. The set of the prefix algorithms is
recursively enumerable, so let us fix an effective enumeration and let g, be
the e—th prefix algorithm in this enumeration. The prefix complexity of the
string o with respect to the algorithm g, is defined by:

Ie(6):=lu gelTi =0l



If there is no T such that ge(t)l=06 we define I,(6)=00. Consider now the
following prefix algorithm U:

ge(T) if for some e, 6=08*1%g

U(G):={
T otherwise.

U is called the universal prefix algorithm. The reason is that, defining
I(6):=lu, U(t)l=0l, one has that I(-) is asymptotically optimal, namely:

(1.1) VeVos I(6) < Ig(o)+e+1.

The proof of the main theorem of this section will need the following basic
lemma. We will sketch its proof since in the sequel we refer explicitly to
the construction used.

Lemma 1.1
If f is a recursive partial function such that ={2-f(nN)| new} <1, then:

JcVo I(6) < f(o)+cC.

Proof. We will construct by stages a prefix algorithm g such that
Volf(e)l=p—o3te2P g(t)l=06]. Let W, be the domain of f. Without loss of

generality we can assume that for all s, #(W c.1\Wg ¢) <1. We define g
using the following construction. gg is the finite approximation of the graph
of g.

Stage 0. Let go=¢.
Stage s+1. If there exists an neWg o.¢\Wg s then let p:=f(n) and
o=l lItl=p&Vedom(gy) §LT). Define gg.q=gsU{<s,nd>}.

We leave to the reader the task of verifying that the construction gives the
desired algorithm g.
|

Let us now come to the principal subject of this section. The reader can
easily verify that if Ze2%9 is recursive then:

(1.2) JcVn I(Zn) <I(n)+c.
3



It is quite nontrivial to prove that the converse does not hold. This is the
content of the main theorem of this section:

Theorem 1.2
There exists a nonrecursive r.e. set Z such that:

JcVn I(2Zn) <I(n)+c.
O

This result is rather striking, in fact one of the first (non trivial)
characterization of recursive sequences via descriptive complexity was
Chaitin's proof concerning Kolmogorov complexity [2]. He proved that.:

3cVn K(Z[n) <K(n)+c & Z is recursive,

where the Kolmogorov complexity of the string ¢, K(¢) is defined similarly
to the prefix complexity I(¢) but without the condition that the domains of
the algorithms are prefixfree. This turns out to be one of the main
differences between these two kinds of descriptive complexities and it
makes it worthwhile to go in to the details of the proof.

Before commencing the proof of theorem 1.2 we would like to show that
there are rather few of such simple sets.

Proposition 1.3

Let Be = {2€2W@| Vn I(ZIn)-I(n) <c} then for every c, #B;< 2C.

Proof (Sketch). Assume for a contradiction that for a k> 2C there exist
Zq,.....Lx € B such that Z;=Z; whenever i=j. Let n be such that Ziln s ern
whenever i=j. A simple counting argument shows that for any number m,
one has l{6l1(¢) <m}| <2M. Then k must be less than 2I1{N) *+C  For each
i <k define ¢;=2;/n and consider the 6;'s as k different numbers greater
than n, thus Zil_cj;é Z,l 6, if <i,j>=<u,v>. Hence one has:

I(2if o)) <o) +c <I(n) + 2:c
There are K2 such strings, so K2 must be less than 2I(n) + 2¢  terating

this procedure sufficiently many times one will get a contradiction.
a



We remark that the proposition 1.3 holds also for Kolmogorov complexity; it
is not enough to have recursiveness but as a corollary we have that with the
help of a @' oracle one can reconstruct any such low complexity set 2. This
result was first obtained by Chaitin by a different argument.

Corollary 1.4

If Z satisfies (1.2) then Z < 1@".

Proof. Suppose Z satisfies ¥n I(Z[n)-I(n) <c for a certain constant c.
Then by proposition 1.3 there are only finitely many sets X such that
Vn I(X[n)=I(n) <c . Choose a string ¢ such that Z is the unigue sequence
which satisfies: X26&Vn I(X[n)-I(n) <c. Define the following set:

W:={t206IVE<IT]. I(&)-1(4]) <c}.

Then Z is the unique set such that Vn ZlneWw. By Konigs lemma, if e and
xSz, then for i€2 either InVte2N a*i*tegwW or IAnVte2l a*(i-1)*T¢W.
Since W < @', with a @' oracle we can know which case actually holds and if
AnVte2n a*i*tg W holds then we know that a*(i-1)c2.

O

Theorem 1.2 is an immediate corollary of the next proposition. We recall
that U is the universal prefix algorithm. Define n* =p, U(x)! =n, so that

I(n):=In*|.

Proposition 1.5
There exists a nonrecursive r.e. set Z and a prefix algorithm F such that:

(1.3) Vn F(n*)= Z[n.
m|

The construction of this prefix algorithm F is due to Solovay. It is a priority
construction, which is rather complex because of the presence of a global
restraint function. Usually restraint functions arise when one has to
combine positive requirements (which require some elements to be
enumerated in the set) with negative requirements (which require some
elements to be kept out of the set). Each negative requirement gives rise to
a restraint function. In some constructions of recursion theory it is
possible in special cases to drop the restraints, having elements enter the
set to meet the positive requirements while still eventually satisfying all
the negative requirements. In our case the interesting feature is that it is
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impossible to find a strategy to drop the restraints. Nevertheless we prove
that they drop out automatically without any "external trigger” so that the
positive requirements will be eventually satisfied.

Proof of proposition 1.5. We will construct the r.e. set Z as usual by
stages and in order to make it nonrecursive we will make it simple (in the
sense of Post). Namely, we will satisfy the usual requirements for Post's
simple set:

Pe: Wg infinite = ZNnW =@
and
Ne : #{ xeZlx<e}<e/2.

In order to satisfy (1.3) Z has to meet the requirements:
Ry : Z[n=F(n*).

These will play the role of negative requirements. At stage s, 25 will be the
finite approximation of Z. To meet the R,'s we compute at each stage s a
recursive approximation of n*, namely, we fix a (for the moment arbitrary)
recursive monotone increasing function t:w—w and compute
ng* =y Uys)(X)N = n. Then, if at stage s our guess is that ng* = n*, we define
F(ng*)=2Z4In. Once ng* = n is guessed, we maintain this guess until there is
an evidence that the guess was wrong, i.e. until a stage t is reached at
which ny* <ng*. Whilst we are guessing ns* =n*, we have to prevent
elements less than n from entering Zg, otherwise, in case our guess were
correct, we would end up with Z[n=F(n*). It remains to decide on the time
to guess ng* =n* That is when: n<s and ng*! =ng,4 *!. The resulting
restraint function is:

r(s):= max{n<s | ng*l =ng,q ¥}

so that we are allowed to enumerate in Z at stage s only those elements
that are greater than r(s). In order to satisfy the Ng's we use the usual
(harmless) trick due to Post, namely we will enumerate in Zg5 an element x
of W; only if x>2-i. In the following construction Fg is the finite
approximation of the graph of F.

Stage 0. Z2¢=¢@, Fo=9



Stage s+1. For each i<s, if W;snZs=¢ and there is an xeW; ¢ such that
Xx>r(s)+2-i, enumerate the minimal such x in Zg.4 and <ng,q1*,Zg.+1IN> in Fg.y.

The reader will easily verify that F=UF is actually the graph of a prefix
algorithm and, since limg ng*=n*, that ¥n F(n*)l= z[n. The requirements N,
are also trivially satisfied.

A much more difficult task is to prove that Z meets all the Pg's. Assume for
a contradiction that for a certain index e, Wy is infinite and WonZ=¢@. Let
G(s)=max We s ~2-e. G is a monotone divergent primitive recursive function.
For all s we have r(s)> G(s), otherwise some elements of W, would enter Z
at stage s+1 satisfying R,. The following lemma proves that it is possible
to choose the function t in such a way that this does not happen.

Lemma 1.6.

There is a recursive function t:w—w such that for every monotone
divergent primitive recursive function G, 3s r(s) < G(s).

Proof. Let A be a strictly monotone recursive function which dominates
every primitive recursive function. Let t(0):=A(0) and suppose t(s—1) has
already been defined. Then let t(s):=A(z) where z is the least integer such
that:

(a) t(s-1)<z
(b) Vn <5 pylU,(x)N = n)=py(Upzy(x))=n

Now assume for a contradiction that there exists a monotone divergent
primitive recursive function G such that Vs G(s) <r(s). For some s we will
construct new programs for all ne[G(s),s] which are short (i.e. shorter then
ng*) and quick (i.e. converge in less than t(s+1) steps) so that
r(s+1)< G(s+1), acontradiction.

ince we need a rough estimate of the time (i.e. the number of steps) a
program takes to converge, it is necessary to clarify the model of
computation we are going to use. It is out of the question to go into the
details During the proof we will merely briefly comment on some facts that
the reader can check for himself. One needs a specific representation of
algorithms (e.g. the usual deterministic Turing machines would be suitable)
to check facts as: "every primitive recursive function can be competed by an
algorithm converging in a time which is a primitive recursive function of
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the input” or: "if P(s,x) is a primitive recursive predicate then the function
f(x)=uP(s,x) can be computed by an algorithm converging in a time which is

a primitive recursive function of the input and the output®.
With this in mind we start giving some definitions.

Definitions.

Let I(n,s):=luy Ug(x)d =n)l, og{m)=min{I(j,t(s)) | m < j}
and a(m)=1limg og(m). Let s = g xg(G(s)) > 2:-k.

O

Lemma 1.7.

The function sy is total and converges in a time which is a primitive
recursive function of t(sy).

Proof. If the function G(s) is eventually increasing, then there is an n such
that «(G(s)) >2-k and a fortiori og(G(s))>k. Notice that the function s is
eventually increasing with k.

O

Lemma 1.8.
For k sufficiently large: 2{2—1(n,t(sy)) | nelG(s,),s,]} <2-K.
Proof. Assume the opposite, i.e. there are arbitrary large k such that:

2{2=-1n,t(sk)) | nelG(s,),5,1} >2—K

and let.:
B(t)=2, 4 2-1(nt)

For every t, 8(t) is a rational number strictly less then 1. We consider 6(t)
as a finite binary string encoding in the usual way the fractional part of the
corresponding rational numbers. In this proof the relation "<" between
strings holds if the relation "less than or equal to" holds between the
corresponding rational numbers. Consider now the algorithm which on input
Iwl*w outputs the minimal i such that 8(i)>w. Let z, be such that
Az )=t(sy) and let w, be the substring of 8(z,) of length k. We claim that
the number i, produced by this algorithm on input |w|*w, has to be greater
then G(sy). In fact since



2{2-1(n,Alz)) | nel6(s,),s,] ) >2—K

by the condition (b) on the function t we have:
2{2-1(n,z,) | nelG(sy),s¢]} >2-K,

The algorithm just defined will converge on input w, in a time which is a
primitive recursive function of z,. Therefore if zy is large enough, it
converges in less then A(z)=t(s,) steps so that for some constant c,
I(i, ts ) < lwyl*wy [+c <k+logy(k)+c. It being the case that iy > G(sy), by
the definition of s,, we have that I(ig,t(sy))> x(sy)>2-k. Then for k
sufficiently large the two inequalities lead to a contradiction.

O

Using lemma 1.1 we can find a prefix function Vk such that for all
ne[G(s,),s,] there is an x such that Vk(x)l=n and IxI=1(n,t(s,))-k. Examining
the proof of this basic lemma one realizes that the time that Vk(x) takes to
converge is a primitive recursive function of t(sy).

Finally consider the prefix algorithm C that on input 0lKl*x

(1) computes s as in the lemma,

(2) computes t:=t(s,) and G(s,),

(3) outputs n:=Vk(x).

The time C needs to converge is a primitive recursive function of t(s;).
Therefore, when k is large enough we have for a constant c and all
nelG(sy),sil, I(n,t(s+ 1)) <Ixl+lk|+c. By the definition of VK(x), IxI=I(n,t(s))-
k, then I(n,t(s +1)) < I(n,t(s,))—k+lk|+c. Choosing a sufficiently large k one
has that for all ne[G(sy),sy], Ngk+1* < Ng*. This implies r(s,) < G(s,).

This concludes the proof of lemma 1.6.
O

2. Sequences with low entropy.

It is hard to find a convincing formalization of the notion of randomness.
Jince the time of von Mises many attempts turned out to be inconsistent.
The work made by Martin L6f [10] in this directions is one of the most
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convincing and successful. Martin Lof declared nonrandom those sequences
which belong to some constructively definable set of measure zero. His key
concept is that of sequential test. Sequential tests correspond roughly to
the statistical tests that one can actually perform on a computer. we give
the precise definition:

Definition 2.7 If Ucw we define U = {x|<n,x>eU} and
[Un 1= {Xe2®W| JoeUn X206} (recall that we identify natural numbers with
binary sequences), A[U"] is the Lebesgue measure of [Un]. We call U a
recursive sequential test if U is r.e. and for every n, A[Un]1<2-N, The
definition can also be relativized to any arbitrary set Acw: if such an U is
r.e. in A we say U is a sequential test recursive in A.

(Many equivalents definitions could be given also in terms of descriptive
complexity; we shall not do so, however, and we refer to the literature for
more details; e.g. [9] and [11].)

Recursive sequential tests give rise to one of the most accepted and studied
notion of "effective null measure": a set GS2W has effective null measure
if there is a recursive sequential test U such that GS[ ¢, Up>nlUN]. A
sequence X is said to be random if it is not contained in any set of effective
null measure, i.e. if for every recursive sequential test U there are at most
finitely many n such that Xe[Ur]. When this definition is relativized to a set
A we shall speak of A—random sequences.

In a recent paper of M.van Lambalgen [6] it is argued in a very general
context that the key notion of randomness is in fact that of stochastic
independence. He presented a few quite intuitive axioms that any relation of
stochastic independence has to satisfy; he also proved these axioms are
consistent. In the same article it is also shown that, in the context of
Martin L6f notion of randomness, stochastic independence can be defined by
the relativized definition of randomness. Actually one can define "X is
independent from Y" if X is Y-random. It is shown for example that the
following symmetry property holds: if Y is random and X is Y-random then Y
is X—random. It roughly correspond to the Fubini theorem.

As remarked in the introduction, the possible relations between randomness

and recursion theoretic notions such as Turing degree have been not
completely explored yet. Pioneering work has been done by Kurtz [4] and by
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Kucera [5]. In the context of stochastic independence recursion theoretic
properties of random sets become much more interesting and urgent.

Some obvious recursion theoretic properties are easily established e.g.: if
X< 7Y then X is not Y—random. From this fact and by the quoted symmetry
property we have also that: if X is random and X < <Y then Y is not X—random.
In other words if X is random then the upper cone of degree above X is
contained in a sequential test recursive in X. This is an interesting fact for
it corresponds to a well—-known result of recursion theory: the upper cone of
degrees above the degree of any nonrecursive set has measure zero. (We will
refer to this theorem as "Sacks' theorem”; the Sacks' proof [12], is an
adaptation of an argument of de Leeuw et al. [13].) So by means of
stochastic independence it is possible to achieve a rather strong
effectivization of the Sacks' theorem for a set of measure 1 of nonrecursive
degree. The effective Sacks' theorem holds for every random set and a
fortiori for every set which is above (in the Turing degree upper
semilattice) a random set. Since not every nonrecursive set bounds a random
set (e.g. there is no random set below an incomplete r.e. degree or with
minimal degree [5]), a natural question arises: is the upper cone of degrees
above any nonrecursive set A contained in a sequential test recursive in A?
In other words: are there no A—random sets above any nonrecursive set A?

Another much stronger condition on low complexity arises from a question
of M.van Lambalgen. Are there nonrecursive sets A such that for every
random set X, X is also A—random? A negative answer to this latter question
would imply a negative answer to the former. In fact Kucera [5] has proved
that every complete degree (i.e. every degree above @') contains a random
set. Since for every set A, A'> @', there is a random set X=1A". If A is such
that every random set is also A-random, then X> tA would be A-random
and the effective Sacks' theorem fails for A.

Unfortunately we do not know a general answer to these questions but we
can show, as promised in the introduction, how they are related with the
existence of nonrecursive low complexity sets.

We shall exploit a different concept of descriptive complexity: entropy. The
entropy of a string has an intuitive description in terms of Turing machines.
We consider a universal Turing machine with three one—-way infinite tapes:
a read-only input tape, a work tape and a write—only output tape. There is
a scanning head in each of the three tapes. The cells of each tape contains a
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blank,a O, or a 1. The work tape and the output tape are initially blank, each
cell of the input tape is filled with a O or a 1 by separate toss of an
unbiased coin. The a priori probability of the string ¢ is the probability
that this machine writes the string ¢ on the first cells of the output tape.
From the a priory probability of ¢ we obtain the entropy of ¢ by taking the
integral part of the base—two logarithm. The reader should not confuse it
with Chaitin's entropy. Chaitin requires the machine write in the output
tape exactly the sting ¢ and then halts, while we do not care if, after
writing the string ¢, the machine keeps on computing and/or eventually
writes other digits in the output tape.

Let us introduce some notation to restate these definitions more precisely.
As usual by {e}¥ we mean the partial function computed by the Turing
machine with Gédel number e and the oracle X. We write simply {e} for {e}®.
It will simplify our notation to assume that the Godel numbering is such
that for each e there is an e' < e such that {e'}={e}?, and {e'} does not query
the oracle at all. On 2 (={0,1}) we fix the fair coin toss probability
measure and in 29 the product measure A. For every string ¢ we define
Mg(o):=A{T| 6 €{u}T} and He(o):= Integral part of (—1og,Mg(c)).

In the following we fix a Godel number u such that for every set X, {u}¥={j}¢
where j and Z are such that 0J*1%Z=X. Then we define the a priory
probability of the string ¢, M(6)=A{T| 6<{u}*} and H(s):= Integral part of
(-1og,M(s)). One immediately realizes that function {u} is universal in the
same sense as in (1.1), namely:

(2.1) Ve H(o) <Hg(o)+e+1.

We call the function H entropy. As the previously defined I, H is @ measure
of descriptive complexity.

Immediately from the definition of H one has that a sequence X satisfies the
inequality:

(2.2) JcVn H(X[n) <c

if an only if the upper cone of degrees above the degree of X has positive
measure. It Thus we have a characterization of the recursive sequences in
terms of entropy:

(2.3) X is nonrecursive < lim, H(XIn)=co

12



An effectivization of Sacks' theorem could be obtained effectivizing the
limit lim, H(XIn)=c. The next proposition show how this is related to

randomness and more generally to the notion of stochastic independence.

Proposition 2.8

If 3f <1A monotone divergent function such that 3%n f(n) <H(AIn) then
there is no A-random set X2 1 A

Proof Let g(n):=p, fim)>n+1. We define:

Va:={cl Alg(n)={u}®}.
The set V ={<n,x>|xeV,} isr.e. in A. We first show that there are infinitely
many n such that A[V,1<27N ie, Vqan>q A[V,]1<27N. Fixany qandlet p
be such that q<f(p)<<H(Alp), let n:=f(p). By the monotonicity of f,
g(n)>p, thus by the monotonicity of H, n <H(Alp) <H(Alg(n)). So we have:

ALV, = 2-H(Alg(n) < 2-

Now, by standard techniques it is possible to construct a set U, r.e. in A such
that.:

(i) Vnalu,lg2-n

(ii) VnU,EV,

(ii1) if A[V,1<27N then U,=V,.

If X2 A then Vn Xe[V,]. By (iii) Xe[U,] for infinitely many n, thus

X€Mheo Um>nlUpl and X is non—random in A.
O

Unfortunately there are nonrecursive sets with very low entropy. The rest of
this section is devoted to the proof of the following proposition:

Proposition 2.2

There exists a nonrecursive set Z such that: for every monotone divergent
function f <+Z and for all but finitely many n,

H(z[n) < f(n).O
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Since to prove this proposition we need a stronger result than 3Sacks'
theorem we give a different proof of the letter.

Lemma 2.1

(i) If X'nc{e} then H(Xn)<e+1

(ii) There exists a recursive function h(n) such that if H(s)<n then ¢c{i}
for some i<h(n).

Proof (i) If the algorithm with Gdédel number e does not query the oracle
then (i) is trivial. Otherwise by our assumption on the numbering there is
another Gédel number e'<e such that {e'}={e} and {e'} never queries the
oracle. So (i) follows.

(ii) First observe that there are at most 2N incompatible strings such that
H(c) <n. For each 0 <i< 2N we now define a (possibly partial) function
X;:0—{0,1} such that for all m, H(XI'm)<n. The construction will be
effective, thus it is possible to find recursively in n for each i an index g,
such that {e;}=X;. Defining h(n) := max{ e;| 0 <i< 2N} the theorem is proved.
Let us first construct X, as follows:

Let 69:=@. Assume 64 has already been defined. Now enumerate recursively
{6 |H(c) <n} till a prolongation T of &4 is found. Then put 65,4:=T. Let
Xo=UsewOs.

For i >0 we construct X; in the following way:
Let 6¢:=@. Assume 64 has already been defined. Now enumerate recursively
{6 IH(s)<n} and for all j<i produce X;, till a prolongation T of ¢4 is found

which is incompatible with all the X;. Put 64.4:=T and X1=Usem03-
a

We also need the next lemma to prove proposition 2.1.

Lemma 2.3

For any sequences X,Z the following are equivalent:

(a)Vf <X monotone divergent functions, for all but finitely many n,

H(2Z[n) < f(n).

(b)Vf <1X monotone divergent functions, for all but finitely many n,
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Je <f(n) {e}in=2n.

Proof (a)=»(b). Suppose f is a counter—example to (b), hence for
infinitely many n one has {e}ln=2[n for some e < f(n). By the lemma 2.1 (i)
one has immediately that for infinitely many n, H(Z[n) < f(n)+1.

(b)=>(a) Suppose f is a counter—example to (a), let h the function defined
in lemma 2.1 (ii); we can assume h is monotone divergent. The function
g(n)=max{m|h(m) < f(n)} is then a counter-example to (b).

O

To illustrate the method that we are going to use to prove proposition 2.2,
we prefer to prove first a weaker proposition.

Proposition 2.4. There exists a nonrecursive set Z such that: for every
monotone divergent recursive function f one has that for all but finitely
many n,

H(ZIn) < f(n).

Proof. (We notice without further comments that this proposition could be
also easily proved using the function F constructed in proposition 1.5, but
this method would not apply to prove the full proposition 2.2.) By lemma 2.3
the proposition is proved if we can construct a nonrecursive set Z such that:

(*) Vf monotone divergent recursive function,
ImVn>m Je <f(n) {elfn=2n.

Let fy,...,fg,... D8 an enumeration of all the recursive monotone divergent
functions. At stage e we construct an initial segment 6, of Z and we ensure
that 6, is not an initial segment of {e—1}. Then 2=Ug¢, 6, Will not be
recursive. At each stage we define also j, and ng such that {jg}{ng=6,. These
je Will play the role of the witnesses of (*) in the sense that we are going
to show thatfor all s and for all but finitely many n:
3t j, < fgn) & {jn=2n.

Stage 0. Let 6¢=0 and let j, be any number such that {jo}€2®, ng=0

Stage e+1. Case I. If {e}¢2W then do nothing, i.e. 1et je,q1=je and ng,q=n, and
define Gg.+q1={je+1} Ngs1=0¢. Case II. Otherwise let Fg(n)=min{fo(n),.,fe(n)}.
Let h be the recursive function such that:
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{jeXn) if n<ngor j>Fgn)

th(j)n)={
1={e}(n)  otherwise.

Let jg.1 be a fixed point of the function h (i.e. {h(jg,1)}={jg+¢} ) and let
Nev1=1+Up(N>Ng and je.q <Feln)). Finally let 6g.q={jes1Ngs1.

The next lemma proves that our construction works.

Lemma 2.5. For every e,

(1) 0,S0g41

(ii) if 6..1<{e} then {e}g29W (i.e.Z is not recursive).

(iii) Jilo;l>e (ie. Ze2W).

(iv) for all but finitely many n, 3t j, <f.(n) &{jn=2ln.

Proof. (i) If case I applies then it is trivial. Otherwise if {e} is total then
by the definition of h, {jg.1}={h(jg.4)} coincide with {jg} on n< ng. Therefore
Ge={jel NS {jer1lNes1 =0gut.

(i) Suppose {e}e2w . The definition of h ensures that
{je+1}ngsq—=1)={e}ng, 1 =1).

(iii) Case II applies infinitely many times and at each stage i at which it
applies one has |6,4>lg;l.

(iv) First observe that for every n, Fo(n) <fg(n). So the lemma is proved if
we can show that for every e and for all but finitely many n,

3t jy <Fg(n) &{jn=2n.

Let us fix an e and take an m so large that Vt<e {ji}Im=2[m (by the
previous lemma (ii) such an m exists). Assume for a contradiction that there
exists an n>m such that:

Vtlji<Fg(n)={jn=znl.

Let v be the minimal index such that {j,}n=2[n, then j,>F.(n). Since
n>m, by our choice of m we have that v>e and Fg,(n) being monotone
increasing in n and monotone decreasing in e one has Vp<n j,>F,(p).
Hence {j,n={j,_4)n against the minimality of v.

O
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If we want to strengthen proposition 2.4 to prove our claim, we could
replace (*) with (ii) of lemma 2.1. This would force us to a radical change of
method. Instead, we will by-pass the difficulty of looking at all the
monotone divergent functions recursive in Z by constructing a Z of
hyperimmune free degree. In the usual definition, a set Z has hyperimmune
free degree if and only if every function f <;Z is bounded by a recursive
function. One realizes immediately that this is equivalent to: a set Z has
hyperimmune free degree if and only if every monotone divergent function
f <12 bounds a monotone divergent recursive function. Then satisfying (%)
and simultaneously making Z of hyperimmune free degree we still prove our
claim.

We need only to reproduce the tree construction of Martin and Miller [14] of
hyperimmune free degrees and substitute for the simple original
diagonalization method with the one used in proposition 2.4.

We recall some definitions and some basic lemmas, for the proof of which
we refer to the literature (e.g. [15] p. 493-498).

Definitions.

A recursive tree is a recursive function T:2< @ - 2<® gych that for all
6, T(6*0) and T(6*1) are incompatible extensions of T(g).

Be2® is a branch of a tree T (or, B is on the tree T) iff B=U, ., T(XIn) for
some Xe€29,

If Qand T are two trees, then QST (i.e. Q is a subtree of T) iff every branch
of Q is a branch of T.O

Totality Lemma.

Given e and a recursive tree, there is a recursive tree Q€T such that one of
the following holds:

(a) for every X on Q, {e}X is not total.

(b) for every X on @Q, {e}X is total and VnVese2n {e}Q(5).O

Proof of proposition 2.2. Since in the end we want to get a set of
hyperimmune free degree, the whole construction has to be performed on a
tree. We will define a sequence of trees {Tglee(, Such that T¢,1ST,. Finally
we will take 2=Ug, To(@). As in the previous proof let fo,..sfpn,.. DB @N
enumeration of all the monotone divergent recursive functions.

Stage 0. Let T, be the identity tree and let ng=0 and jo be any number such
that {jo}e2W. Notice that {jo} is on Ty.
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Stage 2e+1. (We have to replace the diagonalization technique with the
construction of the previous proposition.) Case 1. If {e} is not a
characteristic function then let jg.1=je and ng.q1=ng and define To.gs1=To.e.
Case II. Otherwise let Fg(n)=min{fqy(n),..,fg(n)}. Define
mij=Hp(n>ne& j<Fe(n)). Let B be either the leftmost or the rightmost
branch of T,.o which extends {je}l'mj according to which one is not equal to
{e}. The branch B is recursive uniformly in j, i.e. there is a recursive
function h(j) such that {h(j)}=B. Let je.4 be a fixed point of the function h
and let ng,y=un{n>ng and jg.q <Fg(n)). Observe that for each j {h(j)} is on
T,.e. Then also {je+4} is 0n T,... Finally let T,...4= the full subtree of T,
above {jes1 Ngsq.

Stage 2-e+2. Let T,.q.o= the Q of the totality lemma for T,.q..

The next and last lemma proves that the construction works.

Lemma 2.6. For every e:

(0) Tesq(B)STo(B)

(i) If X is on Tye+q then X={e}

(i1) 31 ITy(@) > e.

(iii) If X is on Togsq then for all but finitely many n,
It jy <feln) &{jIn=Xn.

(iv) If X is Toe.o and {e}¥ is total then there is a recursive function
bounding {e}X (i.e. Z has hyperimmune Tree degree).

Proof. (0), (i), (ii) and (iii) are similar to the corresponding ones of
lemma 2.5, (iv) can be found in [15].

O
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