Institute for Language, Logic and Information

EXTENSION OF LIFSCHITZ' REALIZABILITY TO HIGHER ORDER ARITHMETIC, AND A SOLUTION TO A PROBLEM OF F. RICHMAN

Jaap van Oosten

ITLI Prepublication Series for Mathematical Logic and Foundations ML-90-06

University of Amsterdam

```
The ITLI Prepublication Series
            1986
                                                                                                                                                        The Institute of Language, Logic and Information
A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus
           86-01
           86-02 Peter van Emde Boas
           86-03 Johan van Benthem
                                                                                                                                                         Categorial Grammar and Lambua Calculation
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I
Forward looking Operators
          86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh

86-06 Johan van Benthem

Logics

1987

87-01 Jeroen Groenendijk, Martin

Stokhof
                                                                                                                                                        Logical Syntax
Forward looking O
sokhof
Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
          87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Benthem
87-05 Victor Sánchez Valencia
                                                                                                                                                         Unique Normal Forms for Lambda Calculus with Surjective Pairing
                                                                                                                                                        Polyadic quantifiers
Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
          87-06 Eleonore Oversteegen
87-07 Johan van Benthem
87-08 Renate Bartsch
                                                                                                                                                        Categorial Grammar and Type Theory
                                                                                                                                                       The Construction of Properties under Perspectives
Type Change in Semantics: The Scope of Quantification and Coordination
           87-09 Herman Hendriks
           1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                                                                                        Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987
          LP-88-02 Yde Venema
          LP-88-03
                                                                                                                                                       Going partial in Montague Grammar
Logical Constants across Varying Types
Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse
Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
         LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
           LP-88-06 Johan van Benthem
      LP-88-10 Anneke Kleppe

ML-88-01 Jaap van Oosten

Mathematical Logic and Foundations:

ML-88-02 M.D.G. Swaen

ML-88-03 Dick de Jongh, Frank Veltman

ML-88-04 A.S. Troelstra

CT-88-01 Ming Li, Paul M.B.Vitanyi

CT-88-02 Michiel H.M. Smid

CT-88-04 Dick de Jongh, Lex Hendriks

Gerard R. Renardel de Lavalette

CT-88-06 Michiel H.M. Smid

CT-88-07 Ioher are Renardel de Lavalette

CT-88-07 Ioher are Renardel de Lavalette

CT-88-07 Ioher are Renarder and A mathematical model for the CAT framework of Eurotra

A mathematical model for the CAT framework of Eurotra

A Blissymbolics Translation Program

A Blissymbolics Translation Program

A Reliandations:

Lifschitz' Realizabiility

Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

General Lower Bounds for the Partitioning of Range Trees

Maintaining Multiple Representations of

Dynamic Data Structures

Computations in Fragments of Intuitionistic Propositional Logic

Machine Models and Simulations (revised version)
           LP-88-07 Renate Bartsch
         CT-88-06 Michiel H.M. Smid

A Data Structure for the Union-find Problem having good Single-Op

CT-88-07 Johan van Benthem

Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
        Towards a Universal Parsing Algorithm for Functional Grammar CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL X-88-01 Marc Jumelet Other prepublications: On Solovay's Completeness Theorem 1989 p. 2006 5
         1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
                                                                                                                            okhof Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse

Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
         LP-89-02 Jeroen Groenendijk, Martin Stokhof
       LP-89-03 Yde Venema
LP-89-04 Johan van Benthem
LP-89-05 Johan van Benthem
LP-89-06 Andreja Prijatelj
LP-89-07 Heinrich Wansing
LP-89-08 Victor Sánchez Valencia
LP-89-09 Zhisheng Huang
       LP-89-03 Yde Venema

LP-89-04 Johan van Benthem
LP-89-05 Johan van Benthem
LP-89-06 Andreja Prijatelj
LP-89-07 Heinrich Wansing
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang
ML-89-01 Dick de Jongh, Albert Visser
ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna

Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
Language in Action
Modal Logic as a Theory of Information
Intensional Language in Action
Modal Logic as a Theory of Information
Intensional Language in Action
Modal Logic as a Theory of Information
Intensional Language in Action
Modal Logic as a Theory of Information
Intensional Modal Logic as a Theory and Application
The Adequacy Problem for Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems
Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is conservative
Rosser Orderings and Free Variables
On the Proof of Solovay's Theorem
        ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ML-89-05 Rineke Verbrugge Σ-comple
                                                                                                                                                                                      On the Proof of Solovay's Theorem
                                                                                                                                                      Σ-completeness and Bounded Arithmetic
        ML-89-06 Michiel van Lambalgen
ML-89-07 Dirk Roorda
                                                                                                                                                      The Axiomatization of Randomness
                                                                                                                                Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
                                                                                                   Investigations into Classical Linear Logic Provable Fixed points in I\Delta_0 + \Omega_1
Computation and Complexity Theory: Dynamic Deferred Data Structures
        ML-89-08 Dirk Roorda
       ML-89-09 Alessandra Carbone
        CT-89-01 Michiel H.M. Smid
CT-89-08 Harry Buhrman, Steven Homer
Leen Torenvliet
CT-89-10 Sieger van Denneheuvel
CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas
X-89-02 G. Wagemakers
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
1990 SEE INSIDE BACK COVER

Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Honest Reductions, Completeness and
Nondeterminstic Complexity Classes
Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet
On Adaptive Resource Bounded Computations
The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas
X-89-01 Marianne Kalsbeek
X-89-02 G. Wagemakers
New Foundations:
An Orey Sentence for Predicative Arithmetic
New Foundations:
New Foundations:
As Over Foundations:
Dynamic Montague Grammar, a first sketch
The Modal Theory of Inequality
Een Relationele Semantiek
                                                                                                                                                      Machine Models and Simulations
        CT-89-02 Peter van Emde Boas
```

. .

Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

EXTENSION OF LIFSCHITZ' REALIZABILITY TO HIGHER ORDER ARITHMETIC, AND A SOLUTION TO A PROBLEM OF F. RICHMAN

Jaap van Oosten
Department of Mathematics and Computer Science
University of Amsterdam

Extension of Lifschitz' realizability to Higher Order Arithmetic, and a solution to a problem of F. Richman

Jaap van Oosten

Abstract. F. Richman raised the question whether the following principle of second order arithmetic is valid in intuitionistic higher order arithmetic **HAH**:

 $\forall X [\forall x (x \in X \lor \neg x \in X) \land \forall Y (\forall x (x \in Y \lor \neg x \in Y) \rightarrow \forall x (x \in X \rightarrow x \in Y) \lor \forall x \neg (x \in X \land x \in Y))$

 $\rightarrow \exists n \forall x (x \in X \rightarrow x=n)$]

and if not, whether assuming Church's Thesis CT and Markov's Principle MP would help. Blass & Scedrov gave models of HAH in which this principle, which we call RP, is not valid, but their models do not satisfy either CT or MP.

In this paper a realizability topos Lif is constructed in which CT and MP hold, but RP is false (It is shown, however, that RP is derivable in **HAH**+CT+MP+ECT₀, so RP holds in the effective topos). Lif is a generalization of a realizability notion invented by V. Lifschitz. Furthermore, Lif is a subtopos of the effective topos.

Key words and phrases: HAH, realizability, tripos, topos

AMS Subject classification: 03F50

and the second of the second o

Extension of Lifschitz' realizability to Higher Order Arithmetic, and a solution to a problem of F. Richman

Jaap van Oosten

§1. Introduction

Blass & Scedrov (1986) is about the following principle of Second Order Arithmetic:

RP
$$\forall X [\forall x(x \in X \lor \neg x \in X) \land \forall Y (\forall x(x \in Y \lor \neg x \in Y) \rightarrow \forall x(x \in X \rightarrow x \in Y) \lor \forall x \neg (x \in X \land x \in Y))$$

 $\rightarrow \exists n \forall x(x \in X \rightarrow x = n)]$

We have christened this principle RP from Richman's Principle: F. Richman, who needed this principle for an application in constructive algebra, raised the question whether it is constructively valid. Blass & Scedrov showed that it is not, by giving a topological model and a sheaf model in which RP does not hold.

Apparently this did not quite settle the matter, for the authors write: "Our models do not satisfy further conditions imposed by Richman, namely Church's Thesis and Markov's Principle, so the full conjecture remains an open problem".

We will exhibit a realizability topos in which CT and MP are valid, but which refutes RP (so \neg RP holds in our model). The topos is a generalisation of a notion of realizability invented by V. Lifschitz (1979). This realizability is studied further in Van Oosten (1990). It may surprise the reader that such a topos can satisfy CT, since Lifschitz designed his realizability in order to refute the schema CT_0 :

$$CT_0 \quad \forall x \exists y Axy \rightarrow \exists f \forall x \exists z (Tfxz \land Ax(Uz))$$

However, this first order schema is, in the presence of function variables, a consequence of two others:

CT
$$\forall f: \mathbb{N} \rightarrow \mathbb{N} \exists e: \mathbb{N} \forall x: \mathbb{N} \exists y: \mathbb{N} (\text{Texy} \land \text{Uy} = f(x))$$

(Church's Thesis), and a choice principle:

$$AC_{00} \quad \forall x: N\exists y: NAxy \rightarrow \exists f: N\rightarrow N \forall x: NAx(fx)$$

In our model, CT holds but AC_{00} fails.

This paper consists of two parts. In §2 some details about Lifschitz' realizability are recalled and we refute a first-order version RP_0 of RP. RP_0 is (provably in HA) Kleene-realizable and equivalent to RP in Higher Order intuitionistic Arithmetic HAH+CT, so $HAH+CT+MP+ECT_0\vdash RP$, where MP and ECT_0 are the schemata:

 $XAM:xE \leftarrow XAM:xE \leftarrow A(xA \leftarrow XA) \land Ax \rightarrow \exists x:NAx \rightarrow \exists x:NAx$

$$ECT_0 \quad \forall x: \mathbb{N}(Ax \rightarrow \exists y: \mathbb{N}Bxy) \rightarrow \exists z: \mathbb{N}\forall x: \mathbb{N}(Ax \rightarrow \exists w: \mathbb{N}(Tzxw \land BxUw))$$

(ECT₀ is a first-order schema, so A and B are first-order arithmetical formulas with the proviso that A is built up from Σ_1^0 -formulas using only \rightarrow , \forall and \land ; MP is unrestricted).

It is nice to see two realizabilities neatly separated (in the context of **HAH**+CT+MP) by a mathematical axiom originating from constructive algebra.

In §3 we show that Lifschitz' realizability has an extension to Higher Order Arithmetic + CT + MP. The topos we will describe is a subtopos of the effective topos.

§2. Lifschitz' realizability and RP

Let us agree on some notation. Primitive recursive pairing and divorcing functions will be denoted by $\langle \cdot \rangle$, $()_0$, $()_1$ respectively. We write $x \cdot y$ instead of $\{x\}(y)$ for partial recursive application. We use [z] instead of Lifschitz' V_z :

$$[z] = \{x \le (z)_1 \mid (z)_0 \bullet x \uparrow \}$$

For a proof of the following proposition, the reader is referred to Lifschitz 1979 or Van Oosten 1990.

- **2.1. Proposition.** i) There is no partial recursive function F such that for all z, if [z] is nonempty then $F(z) \downarrow$ and $F(z) \in [z]$.
- ii) There is a partial recursive function δ such that for all z, whenever [z] is a singleton, then $\delta(z) \downarrow$ and $\delta(z) \in [z]$.
- iii) There is a total recursive function γ such that for all z, $[\gamma(z)] = \{g \mid \exists f \in [z] (g \in [f])\}$.
- iv) There is a partial recursive function G such that for all e and f, if $\forall x \in [f]$ (e•x \downarrow) then G(e,f) \downarrow and [G(e,f)]={e•x | x \in [f]}.

Sometimes we just write something like $\Lambda yw. \cup \{[g \cdot h] \mid g \in [y], h \in [w]\}$, writing set notation for the (standard) code, and trusting the reader with the ability to construct such recursive functions with the help of proposition 2.1. For definitions 2.2 and 2.3 as well as proposition 2.4 see Van Oosten 1990.

2.2. Definition. Lifschitz' realizability can be defined as follows:

```
x \mathbf{r} t = s if [x] \neq \emptyset and t = s

x \mathbf{r} A \wedge B if [x] \neq \emptyset and \forall y \in [x] ((y)_0 \mathbf{r} A \text{ and } (y)_1 \mathbf{r} B)

x \mathbf{r} A \rightarrow B if [x] \neq \emptyset and \forall y \in [x] \forall z (z \mathbf{r} A \Rightarrow y \cdot z \downarrow \text{ and } y \cdot z \mathbf{r} B)

x \mathbf{r} \forall x A(x) if [x] \neq \emptyset and \forall y \in [x] \forall n (y \cdot n \downarrow \text{ and } y \cdot z \mathbf{r} A(n))

x \mathbf{r} \exists x A(x) if [x] \neq \emptyset and \forall y \in [x] ((y)_1 \mathbf{r} A((y)_0))
```

- **2.3. Definition.** i) The class of $B\Sigma_2^0$ -negative formulas is inductively defined as follows:
- Σ_1^0 -formulas are $B\Sigma_2^0$ -negative;
- Formulas of the form $\exists y \le t A$, with A a Π_1^0 -formula and t a term not containing y, are B Σ_2^0 -negative;
- $B\Sigma_2^0$ -negative formulas are closed under \forall , \rightarrow and \land .
- ii) ECT_I is the following first-order schema:

(ECT_L)
$$\forall x (Ax \rightarrow \exists y Bxy) \rightarrow \exists z \forall x (Ax \rightarrow z \bullet x \downarrow \land \exists w (w \in [z \bullet x]) \land \forall w \in [z \bullet x] Bxw),$$
 with the condition that Ax must be a B Σ_2^0 -negative formula.

2.4. Proposition. Every instance of the schema ECT_L is realizable. Markov's Principle is realizable.

In fact, ECT_L axiomatizes formalised **r**-realizability over a suitable extension of **HA**, but that does not concern us here. Let us now assume that Lifschitz' realizability has an extension to Higher Order Arithmetic (**HAH**) which satisfies CT and MP. Every decidable subset of \mathbb{N} may be identified with the set of zeroes of some function $f: \mathbb{N} \to \mathbb{N}$, and by CT all such functions are recursive, so in **HAH+**CT the principle RP is equivalent to the first-order axiom:

$$RP_0 \qquad \forall e \left[\forall x \exists y T exy \land \forall f (\forall x \exists y T f xy \rightarrow \forall x (e \bullet x = 0 \rightarrow f \bullet x = 0) \lor \forall x \neg (e \bullet x = 0 \land f \bullet x = 0) \right]$$
$$\rightarrow \exists n \forall x (e \bullet x = 0 \rightarrow x = n)$$

2.5. Proposition. HA+RP₀+ECT_L+MP is inconsistent.

Proof. Assuming $\forall x \exists y \text{Texy}$, $\forall f(\forall x \exists y \text{Tfxy} \rightarrow \forall x (e \cdot x = 0 \rightarrow f \cdot x = 0) \lor \forall x \neg (e \cdot x = 0 \land f \cdot x = 0))$ is equivalent to:

C(e)
$$\forall f(\forall x \exists y Tfxy \rightarrow \forall xyz(Texy \land Tfxz \land Uy=0 \rightarrow Uz=0))$$

 $\forall xyz \neg (Texy \land Uy=0 \land Tfxz \land Uz=0)),$

which is equivalent to a $B\Sigma_2^0$ -negative formula; we may apply ECT_L to RP_0 which would give a z such that:

- (1) $\forall e[\forall x \exists y \text{Texy} \land C(e) \rightarrow z \bullet e \downarrow \land \exists w (w \in [z \bullet e]) \land \forall w \in [z \bullet e] \forall x (e \bullet x = 0 \rightarrow x = w)],$ which means the existence of a z such that:
- (2) $\forall e[\forall x \exists y Texy \land C(e) \rightarrow z \bullet e \downarrow \land \exists w \leq z \bullet e \forall x (e \bullet x = 0 \rightarrow x = w)],$ and this is contradictory: suppose z as in (2). Let, by the recursion theorem, e be such that: $e \bullet x \simeq 1$ if $\neg Tzex 0$ else.

Then z•e is defined. For if not, then $\forall x (e \cdot x = 1)$ and C(e) clearly holds, so $z \cdot e \downarrow$, contradiction; so $\neg \neg (z \cdot e \downarrow)$; apply MP. Furthermore, C(e) holds, for if f codes a total function, we only have to look at $f \cdot (\mu x. Tzex)$ to decide which of the two possibilities holds. But $\exists w \le z \cdot e \forall x (e \cdot x = 0 \rightarrow x = w)$ is obviously false, since if Tzex, then $z \cdot e < x$ (for any standard coding).

2.6. Proposition. $HA+ECT_0 \vdash RP_0$

Proof. We argue in $\mathbf{HA} + \mathbf{ECT_0}$. Suppose $\forall x \exists y \mathsf{Texy} \land \forall f(\forall x \exists y \mathsf{Tfxy} \to \forall x (e \bullet x = 0 \to f \bullet x = 0) \lor \forall x \neg (e \bullet x = 0 \land f \bullet x = 0)$). By $\mathbf{ECT_0}$, there is a z such that, for all f, if $\forall x \exists y \mathsf{Tfxy}$ then $z \bullet f \downarrow and$:

- i) $z \cdot f = 0 \rightarrow \forall x (e \cdot x = 0 \rightarrow f \cdot x = 0)$
- ii) $z \cdot f \neq 0 \rightarrow \forall x \neg (e \cdot x = 0 \land f \cdot x = 0)$
- iii) $\neg \exists xy (x \neq y \land e \cdot x = 0 \land e \cdot y = 0)$.

Use the recursion theorem to find a code f such that:

$$f \bullet x \simeq 1 \text{ if } \forall y \le x \neg T(z,f,y)$$

$$0 \text{ if } T(z,f,x) \land Ux = 0$$

$$1 \text{ if } \exists y < x (T(z,f,y) \land Uy = 0))$$

$$0 \text{ if } \exists y \le x (T(z,f,y) \land Uy \neq 0)).$$

Then f codes a total function, so $z \cdot f \downarrow$. Say T(z,f,x). Two possibilities:

- a) Ux=0. Then by i), $\forall y(e \cdot y=0 \rightarrow f \cdot y=0)$. But the only zero of f is x. So $\forall y(e \cdot y=0 \rightarrow y=x)$.
- b) $Ux\neq 0$. Then by ii), $\forall y \neg (e \cdot y = 0 \land f \cdot y = 0)$. But $\forall y \geq x (f \cdot y = 0)$. So $\forall y (e \cdot y = 0 \rightarrow y < x)$. In both cases, $\exists n \forall y (e \cdot y = 0 \rightarrow y = n)$ (in case b, check $e \cdot y$ for all y < x. Use iii)).

Remark: The topological model of Blass & Scedrov satisfies —RP but does not even validate the weaker axiom in which the decidability condition on Y is dropped:

$$\forall X [\forall x (x \in X \lor \neg x \in X) \land \forall Y (\forall x (x \in X \to x \in Y) \lor \forall x \neg (x \in X \land x \in Y))$$
$$\rightarrow \exists n \forall x (x \in X \to x = n)]$$

This schema will be valid in our model, since our model satisfies the Uniformity Principle:

(UP)
$$\forall X \exists y A(X,y) \rightarrow \exists y \forall X A(X,y)$$

so if $\forall Y (\forall x (x \in X \rightarrow x \in Y) \lor \forall x \neg (x \in X \land x \in Y), \text{ then } \forall Y \forall x (x \in X \rightarrow x \in Y) \lor \forall Y \forall x \neg (x \in X \land x \in Y) \text{ and } X \text{ is the empty set.}$

§3. Extension of Lifschitz' realizability to HAH+CT+MP

The construction of a topos for Lifschitz' realizability relies heavily on the methods developed in Hyland, Johnstone & Pitts 1980 (abbreviated HJP 1980). Since not every reader will be familiar with that article and we try to be as self-contained as possible, we will recapitulate the main results as we go along. The reader will find it helpful to bear in mind the analogies with the construction of a topos of Ω -sets, where Ω is a complete Heyting algebra, as laid out in Fourman & Scott 1979. We construct a set Σ with a binary operation \Rightarrow on it, such that the following hold:

- 1) For every set X, the set Σ^X forms a Heyting pre-algebra (i.e. it has all the properties of a Heyting algebra except that the underlying order is a preorder), where the Heyting implication is given by \Rightarrow : for $\phi, \psi \in \Sigma^X$, $\phi \Rightarrow \psi = \lambda x.(\phi(x) \Rightarrow \psi(x))$;
 - 2) For every function between sets $f:X \to Y$ the map $\Sigma^f: \Sigma^Y \to \Sigma^X$, defined by composition with

- f: $(\Sigma^f(\psi))(x) = \psi(f(x))$, which preserves Heyting implication by 1), is an order-preserving map and has both a left and a right adjoint $\exists f$ and $\forall f$, respectively: $\Sigma^X \to \Sigma^Y$ (i.e. for $\phi \in \Sigma^X$ and $\psi \in \Sigma^Y : \Sigma^f(\psi) \vdash \phi$ iff $\psi \vdash \forall f(\phi)$ and $\exists f(\phi) \vdash \psi$ iff $\phi \vdash \Sigma^f(\psi)$);
- 3) These adjoints satisfy the Beck-condition: if $f:X \to Y$ is a set map and Z a set, then the two maps $\forall (\pi_X) \circ \Sigma^{Z \times f} \colon \Sigma^{Z \times Y} \to \Sigma^{Z \times X} \to \Sigma^X$ and $\Sigma^f \circ \forall (\pi_Y) \colon \Sigma^{Z \times Y} \to \Sigma^Y \to \Sigma^X$ are isomorphic maps of preorders $(\pi_X \text{ and } \pi_Y \text{ denote projections})$. A similar condition, for the left adjoint, then holds automatically.

In the terminology of HJP, we are going to define a canonically presented Sets-tripos.

3.1. Definition.

- i) Let J be $\{e \in \mathbb{N} \mid [e] \neq \emptyset\}$. Σ is the set of all subsets H of J that satisfy the following conditions:
 - a) H is extensional, i.e. if $e \in H$ then [f]=[e] implies $f \in H$;
 - b) H is closed under finite unions: if $[e]=[f]\cup[g]$ with $f\in H$ and $g\in H$, then $e\in H$.
- ii) For $G,H \in \Sigma$ we put $G \Rightarrow H = \{e \in J \mid \forall f \in [e] \forall x \in G \ (f \cdot x \downarrow \& f \cdot x \in H)\}$. The reader sees at once that $G \Rightarrow H$ is well-defined, i.e. $G \Rightarrow H \in \Sigma$.
- iii) Let X be a set. We define a preorder \vdash on Σ^X by: $\phi \vdash \psi$ iff $\bigcap \{\phi(x) \Rightarrow \psi(x) \mid x \in X\}$ is nonempty.

Let us show that \vdash is a preorder. We reserve the letter β for (a code of) the total recursive function such that $[\beta(e)]=\{e\}$. Then $\beta(\Lambda x.x)\in \bigcap \{\phi(x)\Rightarrow \phi(x)\mid x\in X\}$, so \vdash is reflexive. Now suppose $\phi\vdash \psi$ and $\psi\vdash \chi$, say $e\in \bigcap \{\phi(x)\Rightarrow \psi(x)\mid x\in X\}$ and $f\in \bigcap \{\psi(x)\Rightarrow \chi(x)\mid x\in X\}$. If $y\in \phi(x)$ then $\forall a\in [e]$ a• $y\in \psi(x)$, so (since $\psi(x)\in \Sigma$) $\cup \{[a\bullet y]\mid a\in [e]\}\in \psi(x)$; with proposition 2.1, $\cup \{[a\bullet y]\mid a\in [e]\}$ is [G(e,y)] for a suitable partial recursive G. Similarly, $\cup \{[b\bullet G(e,y)]\mid b\in [f]\}\in \chi(x)$ and again, $\cup \{[b\bullet G(e,y)]\mid b\in [f]\}$ is [G'(e,f,y)] for a partial recursive G'. So if g is a code for $\Lambda y.G'(e,f,y)$, then $\beta(g)\in \bigcap \{\phi(x)\Rightarrow \chi(x)\mid x\in X\}$, i.e. $\phi\vdash \chi$ and \vdash is transitive.

We now define operations of conjunction and disjunction on Σ : for G,H $\in \Sigma$ put:

$$G \land H = \{e \in J \mid \forall f \in [e] \ ((f)_0 \in G \ \& \ (f)_1 \in H)\}$$

 $G \lor H = \{e \in J \mid \forall f \in [e] \ ((f)_0 = 0 \ and \ (f)_1 \in G) \ or \ ((f)_0 = 1 \ and \ (f)_1 \in H)\}$

3.2. Proposition. Let, on Σ^{X} ,

```
\phi \wedge \psi = \lambda x.(\phi(x) \wedge \psi(x)),
\phi \vee \psi = \lambda x.(\phi(x) \vee \psi(x)),
\phi \Rightarrow \psi = \lambda x.(\phi(x) \Rightarrow \psi(x)),
T = \lambda x.J,
```

 $\bot = \lambda x. \text{Ø}.$ Then Σ^X forms with this structure a Heyting prealgebra.

Proof. For instance, $\beta(\Lambda x. \cup \{[(a)_0] | a \in [x]\}) \in \bigcap \{(\phi \land \psi)(x) \Rightarrow \phi(x) | x \in X\}$ (Use definition 3.1). All calculations are similar.

3.3. Proposition. Let $f: X \to Y$ be a function between sets and $\phi \in \Sigma^X$. Define $\forall f(\phi)$ and $\exists f(\phi)$ in

```
\begin{split} & \Sigma^Y \text{ by:} \\ & \forall f(\phi)(y) = \{e \in J \mid \forall x \in X \forall h \in J (f(x) = y \Rightarrow \forall g \in [e] \ (g \bullet h \downarrow \& \ g \bullet h \in \varphi(x)))\} \\ & \exists f(\phi)(y) = \{e \in J \mid \forall h \in [e] \exists x \in X (f(x) = y \& \ h \in \varphi(x))\} \end{split} Then \forall f and \exists f are order-preserving maps: \Sigma^X \to \Sigma^Y and respectively right and left adjoint to \Sigma^f.
```

Proof. By way of example, we show for $\phi \in \Sigma^X$ and $\psi \in \Sigma^Y$: $\Sigma^f(\psi) \vdash \phi$ in Σ^X iff $\psi \vdash \forall f(\phi)$ in Σ^Y (In particular, this will show that $\forall f$ is order-preserving). So let $e \in \bigcap \{ \psi(f(x)) \Rightarrow \phi(x) \mid x \in X \}$ and $y \in Y$, $a \in \psi(y)$. If f(x) = y and $h \in J$, then $\bigcup \{ [g \bullet a] \mid g \in [e] \} \in \phi(x)$ so for $e' = \beta(\Lambda a. \beta(\Lambda h. \bigcup \{ [g \bullet a] \mid g \in [e] \}))$ we have that $e' \in \bigcap \{ \psi(y) \Rightarrow \forall f(\phi)(y) \mid y \in Y \}$; conversely, if $e' \in \bigcap \{ \psi(y) \Rightarrow \forall f(\phi)(y) \mid y \in Y \}$ and $x \in X$, $a \in \psi(f(x))$, then $\bigcup \{ [f \bullet a] \mid f \in [e'] \} \in \forall f(\phi)(f(x))$ so $\bigcup \{ [(f \bullet a) \bullet \beta(0)] \mid f \in [e'] \} \in \phi(x)$, etc.

The reader is invited to check himself that the Beck-condition holds. This completes the construction of our tripos. We now indicate how to interpret many-sorted intuitionistic predicate logic without equality in this tripos: *sorts* are interpreted by sets (for a sort σ , we write $\llbracket \sigma \rrbracket$ for the set that interprets σ); *predicates* with variables $x_1,...,x_n$ of sorts $\sigma_1,...,\sigma_n$ are interpreted as elements of Σ^X where $X = \llbracket \sigma_1 \rrbracket \times ... \times \llbracket \sigma_n \rrbracket$; *formulas* are then formed using the Heyting pre-algebra structure and the maps $\exists f$ and $\forall f$; for example: suppose our language has two sorts σ and τ , a unary predicate $R(x^{\sigma})$ and a two-place predicate $S(x^{\sigma},y^{\tau})$. Let $X = \llbracket \sigma \rrbracket$, $Y = \llbracket \tau \rrbracket$, $\phi \in \Sigma^X$ interprets R and $R = \Sigma^{X \times Y}$ interprets $R = \Sigma^X = \Sigma^X$

We say that a formula *holds* in the tripos (under a given interpretation of sorts, predicates and functions) if its interpretation is (isomorphic to) the top element in the Heyting algebra it belongs to.

Intuitionistic many-sorted predicate logic without equality is sound for this interpretation (this is Lemma 2.1 in HJP 1980); this is important because logical calculations play a large role in the construction of our topos as well as the verification of axioms in it.

Now we have to rely on the reader's gullibility (or his willingness to read HJP 1980) for the fact that the category we now construct is a topos. Objects are pairs (X,=) with X a set and = an element of $\Sigma^{X\times X}$, such that the formula $(x=x'\to x'=x) \land (x=x'\land x'=x''\to x=x'')$ holds; morphisms $(X,=)\to (Y,=')$ are equivalence classes of elements $F\in \Sigma^{X\times Y}$ such that the formula: $(F(x,y)\to x=x\land y='y) \land (F(x,y)\land x=x'\land y='y'\to F(x',y') \land (F(x,y)\land F(x,y')\to y='y') \land (x=x\to\exists yF(x,y))$ holds; two such F,G being equivalent iff the formula $F(x,y)\to G(x,y)$ holds (note, that this is an equivalence relation!). If $F\in \Sigma^{X\times Y}$ represents a morphism $(X,=)\to (Y,=')$ and $G\in \Sigma^{Y\times Z}$ represents a morphism $(Y,=')\to (Z,='')$ then the interpretation of $\exists y(F(x,y)\land G(y,z))$ represents a morphism: $(X,=)\to (Z,='')$, the composition of [F] and [G]. Checking associativity is

an easy exercise in logic.

The resulting category is a topos, which we call Lif (from: Lifschitz' realizability).

We now want to establish a relation between Lif and Hyland's topos Eff (the "effective topos", see Hyland 1982). The underlying tripos of Eff is the system of Heyting pre-algebras $P(\mathbb{N})^X$, with preordering $\phi \vdash \psi$ iff there is e such that for all x and all $a \in \phi(x)$, $e \cdot a \downarrow \& e \cdot a \in \psi(x)$.

- **3.4. Proposition**. Let $\Psi_+(X)$: $\Sigma^X \to P(\mathbb{N})^X$ be defined by composition with the inclusion: $\Sigma \to P(\mathbb{N})$. Then:
- i) $\Psi_{+}(X)$ is order-preserving;
- ii) $\Psi_{+}(X)$ has a left adjoint $\Psi^{+}(X)$, that preserves finite meets;
- iii) The map $\Psi^+(X) \raisebox{-0.2ex}{$\scriptstyle \bullet$} \Psi_+(X)$ is isomorphic to the identity on $\Sigma^X.$

Proof. i) Trivial. ii) Let $\Psi=\Psi^+(1)$: $P(\mathbb{N})\to\Sigma$ be defined by $\Psi(A)=\{e\in J\mid [e]\subseteq A\}$ and let $\Psi^+(X)$ be composition with Ψ . Suppose $\phi\in P(\mathbb{N})^X$, $\psi\in\Sigma^X$ and $\phi\vdash\Psi_+(X)(\psi)$ in $P(\mathbb{N})^X$, say for all x and all $a\in\phi(x)$, $e\bullet a\downarrow \& e\bullet a\in\Psi_+(X)(\psi)(x)=\psi(x)$. Then if $x\in X$ and $b\in\Psi^+(X)(\phi)(x)$, so $[b]\subseteq\phi(x)$, then $\cup\{[e\bullet h]\mid h\in [b]\}\in\psi(x)$. So for all x, $\beta(Ab.\cup\{[e\bullet h]\mid h\in [b]\})\in\Psi^+(X)(\phi)(x)\Rightarrow\psi(x)$, so $\Psi^+(X)(\phi)\vdash\psi$ in Σ^X . Conversely, if for all x, $e\in\Psi^+(X)(\phi)(x)\Rightarrow\psi(x)$, then [e] is nonempty and for every $g\in [e]$, for every $x\in X$ and $a\in\phi(x)$, $g\bullet\beta(a)$ is defined and in $\Psi_+(X)(\psi)(x)$. So $\phi\vdash\Psi_+(X)(\psi)$. iii) left to the reader.

In the language of HJP 1980, 3.4 establishes a geometric morphism of triposes.

3.5. Proposition. There is a geometric morphism (Ψ_*, Ψ^*) : Lif \to Eff, which is an inclusion of toposes. The inverse image part Ψ^* : Eff \to Lif is given by $\Psi^*((X,=)) = (X, \Psi^+(=))$.

Again, for a proof we have to refer to HJP 1980. We will explain the terminology. Ψ_* : Lif \to Eff and Ψ^* : Eff \to Lif are functors such that Ψ_* is right adjoint to Ψ^* and Ψ^* preserves finite limits; "inclusion" means that the counit of the adjunction ε : $\Psi^* \Psi_* \to Id$, is an isomorphism. As an immediate consequence:

3.6. Proposition. The natural number object in Lif is up to isomorphism given by $(\mathbb{N},=)$ with $[n=m] = \{e \in J \mid [e] \subseteq \{n\} \cap \{m\}\} = \{e \in J \mid [e] = \{n\}\}$ if n=m, and \emptyset else.

Proof. Natural numbers objects in toposes are preserved by functors that preserve 1 and have right adjoints, such as Ψ^* : diagrams of form $1 \rightarrow X \rightarrow X$ in Lif go to diagrams $1 \rightarrow \Psi_*(X) \rightarrow \Psi_*(X)$ in Eff. If N is the natural number object of Eff, then the unique map: $N \rightarrow \Psi_*(X)$ transposes under $\Psi^* \dashv \Psi_*$ to a unique map $\Psi^*(N) \rightarrow X$, and the required diagram commutes. 3.6 now follows from the characterization of the natural number object in Eff, given in Hyland 1982.

3.7. Interpretation of arithmetic in Lif. We can now interpret **HA** directly in Lif, as follows. We consider a language Σ with one sort σ , a function symbol for every primitive recursive function, constants n for every natural number, and one relation symbol =. This language is interpreted in the tripos underlying Lif by: $[\sigma] = \mathbb{N}$, the function symbols and constants have the obvious interpretation, and = is interpreted by the equality defined in 3.6.

We define a translation (-)⁺ from the language of $\mathbf{H}\mathbf{A}$ to \mathbf{L} as follows: primitive recursive function symbols and equality of $\mathbf{H}\mathbf{A}$ are translated by the corresponding function symbols and = of \mathbf{L} , respectively; prime formulas are translated in the obvious way. (-)⁺ commutes with the propositional connectives, and the clauses for the quantifiers are:

```
(\forall x \phi)^+ \equiv \forall x(x=x \rightarrow (\phi)^+)
(\exists x \phi)^+ \equiv \exists x(x=x \land (\phi)^+)
```

We say that an arithmetical sentence ϕ in the language of **HA** is *valid* in Lif iff $(\phi)^+$ is valid in the tripos, by the interpretation of \mathcal{L} . We have:

3.8. Proposition. An arithmetical sentence is valid in Lif iff it is realizable in the sense of definition 2.2.

Proof. One defines, by an induction on the complexity of formulas ϕ with free variables $x_1,...,x_k$ primitive recursive functions t_{φ} and s_{φ} of k arguments, such that for all $e,m_1,...,m_k$:
i) if $e r \ \phi(m_1,...,m_k)$ then $t_{\varphi}(m_1,...,m_k)$
•e is defined and is an element of $I\![(\varphi)^+I\!](m_1,...,m_k)$;
ii) if $e \in I\![(\varphi)^+I\!](m_1,...,m_k)$ then $s_{\varphi}(m_1,...,m_k)$
•e is defined and $r \ \phi(m_1,...,m_k)$.
If φ is a prime formula t=s, then $I\![(\varphi)^+I\!](m_1,...,m_k)$
•e is defined and $r \ \phi(m_1,...,m_k)$.
If φ is a prime formula t=s, then $I\![(\varphi)^+I\!](m_1,...,m_k)$
•e $I\![(\varphi)^+I\!](e]=\{t\}$ and $t=s\}$ so we can put: $t_{\varphi} = \Lambda m_1,...,m_k.\Lambda e.\beta(t); \ s_{\varphi} = \Lambda m_1,...,m_k.\Lambda e.\beta(0). \ (Again, \beta \text{ is such that } [\beta(e)]=\{e\})$
The induction steps for the propositional connectives are trivial. If φ is $\forall x \psi$, then $I\![(\varphi)^+I\!](m_1,...,m_k) = \{e \in J \mid \forall f \in [e] \forall n \in \mathbb{N} \ \forall h \in J \ (f \cdot h \downarrow \& \forall g \in [f \cdot h] \forall w ([w]=\{n\} \Rightarrow g \cdot w \downarrow \& g \cdot w \in I\![(\psi)^+I\!](m_1,...,m_k,n))\}.$
So if $e \in I\![(\varphi)^+I\!](m_1,...,m_k,n)$
However, $I\![(\varphi)^+I\!](m_1,...,m_k,n)$
However, $I\![(\varphi)$

The induction step for the existential quantifier, equally tedious, is left to the reader.

3.9. Proposition. CT and MP are valid in Lif.

Proof. Following the characterization of exponentials in realizability toposes in 2.14 (iii) of HJP 1980, the function space $\mathbb{N}^{\mathbb{N}}$ has as underlying set $\Sigma^{\mathbb{N} \times \mathbb{N}}$. The equality is given by: $\mathbb{I}_{F=G}$ is the interpretation of $E(F) \wedge E(G) \wedge \forall xy(Fxy \leftrightarrow Gxy)$ where E(F) is the universal closure of formula

 $(F(x,y)\to x=x\land y='y)\land (F(x,y)\land x=x'\land y='y'\to F(x',y')\land (F(x,y)\land F(x,y')\to y='y')\land (x=x\to\exists yF(x,y)).$ Here of course = is interpreted as the equality on $\mathbb N$ given in 3.6. Now if $e\in \mathbb E(F)$ then we can find, recursively in $e, f\in \mathbb V$ then we can find, recursively in $e, f\in \mathbb V$ then we can find, recursively in $e, f\in \mathbb V$ then we can find $e\in \mathbb V$ then $e\in$

Markov's Principle is easier: note that if $e \in [A \lor \neg A]$ then $\{(a)_0 \mid a \in [e]\}$ must be a singleton.

Remarks: 1) Externalizing the argument in the proof of 3.8 one sees that morphisms $\mathbb{N} \rightarrow \mathbb{N}$ in Lif are in bijective correspondence with total recursive functions. This shows in particular that Lif is not equivalent to a subtopos of Eff of the form "recursive in A", as studied in Phoa 1990.

2) In Lif, the notions of Cauchy real and Dedekind real coincide. This is remarkable because usually this is a consequence of the validity of certain choice axioms, which we don't have in Lif. Already the simple choice schema AC_{00} fails for arithmetical formulas $A \in \Pi_1^0$.

Literature

Blass, A. & Scedrov, A. Small decidable sheaves, Journal of Symbolic Logic 51, 726-731 Fourman, M. & Scott, D.S.

Sheaves and logic, in: Fourman et al.(eds.), Applications of sheaves, Lecture Notes in Mathematics 753, Berlin (Springer) 1979, 302-401

Hyland, J.M.E The effective topos, in: Troelstra & Van Dalen (eds.), The L.E.J.

Brouwer Centenary Symposium, Amsterdam (North-Holland) 1982

Hyland, J.M.E., Johnstone, P.T. & Pitts, A.M.

Tripos Theory, Mathematical Proceedings of the Cambridge Philosophical Society 88, 205-232

Johnstone, P.T. Topos Theory, Academic Press, 1977

Lifschitz, V. CT₀ is stronger than CT₀!, Proceedings of the AMS 73, 101-106

Oosten, J. van Lifschitz' realizability, Journal of Symbolic Logic 55 (1990), 2, 805-821 Phoa, W. Relative computability in the effective topos, Mathematical Proceedings of

the Cambridge Philosophical Society 106, 419-422

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language LP-90-01 Jaap van der Does LP-90-02 Jeroen Groenendijk, Martin Stokhof LP-90-03 Renate Bartsch LP-90-05 Renate Bartschi LP-90-04 Aarne Ranta LP-90-05 Patrick Blackburn LP-90-06 Gennaro Chierchia LP-90-07 Gennaro Chierchia LP-90-08 Herman Hendriks

LP-90-10 Theo M.V. Janssen Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella ML-90-06 Jaap van Oosten

LP-90-09 Paul Dekker

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavaldà, Leen Torenvliet
Osamu Watanabe, José L. Balcázar
CT-90-04 Harry Buhrman, Leen Torenvliet
Other Prepublications Other Prepublications X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke X-90-03 L.D. Beklemišhev X-90-04 X-90-04 X-90-05 Valentin Shehtman X-90-06 Valentin Goranko, Solomon Passy X-90-07 V.Yu. Shavrukov X-90-08 L.D. Beklemishev

X-90-09 V.Yu. Shavrukov X-90-10 Sieger van Denneheuvel Peter van Emde Boas X-90-11 Alessandra Carbone

A Generalized Quantifier Logic for Naked Infinitives Dynamic Montague Grammar Concept Formation and Concept Composition Intuitionistic Categorial Grammar Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic Flexible Montague Grammar
The Scope of Negation in Discourse,
towards a flexible dynamic Montague grammar Models for Discourse Markers

Isomorphisms and Non-Isomorphisms of Graph Models A Semantical Proof of De Jongh's Theorem Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman

Associative Storage Modification Machines A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity in Relativized Separations **Bounded Reductions**

Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version Nevised Version

Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical Theories On Rosser's Provability Predicate An Overview of the Rule Language RL/1

Provable Fixed points in $I\Delta_0 + \Omega_1$, revised version