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Extension of Lifschitz' realizability to Higher Order Arithmetic, and a solution to
a problem of F. Richman

Jaap van Oosten

Abstract. F. Richman raised the question whether the following principle of second order
arithmetic is valid in intuitionistic higher order arithmetic HAH:

VX [Vxxe Xv—xe X)AVY (Vx(xe Yv—xe Y) > Vx(xe X—xe Y) vVx-(xe X AxeY))

—3InVx(xe X — x=n)]
and if not, whether assuming Church's Thesis CT and Markov's Principle MP would help. Blass
& Scedrov gave models of HAH in which this principle, which we call RP, is not valid, but their

models do not satisfy either CT or MP.
In this paper a realizability topos Lif is constructed in which CT and MP hold, but RP is false (It is

shown, however, that RP is derivable in HAH+CT+MP+ECT)), so RP holds in the effective

topos). Lif is a generalization of a realizability notion invented by V. Lifschitz. Furthermore, Lif is
a subtopos of the effective topos.
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Extension of Lifschitz' realizability to Higher Order Arithmetic, and a solution to
a problem of F. Richman

Jaap van Oosten
§1. Introduction

Blass & Scedrov (1986) is about the following principle of Second Order Arithmetic:

RP VX[VxeXv—xeX)AVY (Vx(xe Y v—xeY) > Vx(xe X—oxeY)V Vx—-(xe XAxeY))
— InVx(xe X > x=n)]

We have christened this principle RP from Richman's Principle: F. Richman, who needed this
principle for an application in constructive algebra, raised the question whether it is constructively
valid. Blass & Scedrov showed that it is not, by giving a topological model and a sheaf model in
which RP does not hold.

Apparently this did not quite settle the matter, for the authors write: "Our models do not satisfy
further conditions imposed by Richman, namely Church's Thesis and Markov's Principle, so the
full conjecture remains an open problem".

We will exhibit a realizability topos in which CT and MP are valid, but which refutes RP (so
—RP holds in our model). The topos is a generalisation of a notion of realizability invented by V.
Lifschitz (1979). This realizability is studied further in Van Oosten (1990). It may surprise the
reader that such a topos can satisfy CT, since Lifschitz designed his realizability in order to refute
the schema CT:

CT, VxdyAxy—3fVx3dz(TfxzA Ax(Uz))

However, this first order schema is, in the presence of function variables, a consequence of two

others:

CT VEN-NTe:NVx:NIy:N(Texy A Uy=f(x))
(Church's Thesis), and a choice principle:

ACy VxiNJy:NAxy—If:N-NVx:NAx(fx)

In our model, CT holds but AC, fails.

This paper consists of two parts. In §2 some details about Lifschitz' realizability are recalled
and we refute a first-order version RP, of RP. RP,, is (provably in HA) Kleene-realizable and
equivalent to RP in Higher Order intuitionistic Arithmetic HAH+CT, so
HAH+CT+MP+ECT)I- RP, where MP and ECT|; are the schemata:
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MP Vx:N(Axv—AXx) A——Ix:NAXx = IxiNAx
ECT, Vx:N(Ax—3Jy:NBxy)— Iz:NVx:N(Ax—3Iw:N(Tzxw A BxUw))
(ECTO is a first-order schema, so A and B are first-order arithmetical formulas with the proviso that
A is built up from X}-formulas using only —, V and A; MP is unrestricted).

It is nice to see two realizabilities neatly separated (in the context of HAH+CT+MP) by a
mathematical axiom originating from constructive algebra.

In §3 we show that Lifschitz' realizability has an extension to Higher Order Arithmetic + CT +
MP. The topos we will describe is a subtopos of the effective topos.

§2. Lifschitz’ realizability and RP

Let us agree on some notation. Primitive recursive pairing and divorcing functions will be denoted
by <>, ()¢, (); respectively. We write xey instead of {x}(y) for partial recursive application. We use
[z] instead of Lifschitz' V,:

[z] = {x<(2); | (@)pox T}
For a proof of the following proposition, the reader is referred to Lifschitz 1979 or Van Oosten
1990.

2.1. Proposition. i) There is no partial recursive function F such that for all z, if [z] is nonempty
then F(z)d and F(z)e [z].

ii) There is a partial recursive function & such that for all z, whenever [Z] is a singleton, then §(z){
and 8(z)e [z].

iii) There is a total recursive function y such that for all z, [Y(z)]={g! Ife[z] (ge[f])].

iv) There is a partial recursive function G such that for all e and f, if Vxe[f] (esx{) then G(e,f){
and [G(e,f)]={e*x| xe [f]}.

Sometimes we just write something like Ayw.U{[geh]| ge [y], he [w]}, writing set notation for the
(standard) code, and trusting the reader with the ability to construct such recursive functions with
the help of proposition 2.1. For definitions 2.2 and 2.3 as well as proposition 2.4 see Van Qosten
1990.

2.2, Definition. Lifschitz' realizability can be defined as follows:

X T t=S if [x]#D and t=s

xrAAB if [x]#@ and Vye[x] ((y)yT A and (y); rB)
xrA—-B if [x]#@and Vye[x] Vz (zr A = yezl and yez r B)
xr VxA(x) if [x]#@ and Vye [x] Vn (yend and yez r A(n))
xr3xA(x) if [x]#@ and Vye[x] ((y); r A((Y)y)



2.3. Definition. i) The class of BX;-negative formulas is inductively defined as follows:

- X}-formulas are BX;-negative;

- Formulas of the form Jy<t A, with A a IT}-formula and t a term not containing y, are
BX;-negative;

- BXj-negative formulas are closed under V,— and A.

ii) ECTj is the following first-order schema:

(ECTy) Vx (Ax—3yBxy) > 3zVx (Ax — zoxd A Fw(we [zex]) A VWE [zox] Bxw),

with the condition that Ax must be a BX}-negative formula.

2.4. Proposition. Every instance of the schema ECTj is realizable. Markov's Principle is
realizable.

In fact, ECTy axiomatizes formalised r-realizability over a suitable extension of HA, but that does
not concern us here. Let us now assume that Lifschitz' realizability has an extension to Higher
Order Arithmetic (HAH) which satisfies CT and MP. Every decidable subset of N may be
identified with the set of zeroes of some function f: N—N, and by CT all such functions are
recursive, so in HAH+CT the principle RP is equivalent to the first-order axiom:

RP, Ve[VxdyTexy A Vi(VxIyTfxy — Vx(eex=0—-fex=0) v Vx—(e*x=0 A fex=0))
— dnVx(eex=0—x=n)]

2.5. Proposition. HA+RP,+ECT; +MP is inconsistent.

Proof. Assuming Vx3JyTexy, Vi(VxIyTfxy — Vx(eex=0—fex=0) v Vx—(e*x=0 A fox=0)) is
equivalent to:
Ce) VIi(VxdyTfxy — Vxyz(TexyATfxz A Uy=0 — Uz=0)
v Vxyz—(Texy A Uy=0 A Tfxz A Uz=0)),
which is equivalent to a BX;-negative formula; we may apply ECT L to RP which would give a z
such that:
(1) Ve[Vx3yTexy A C(e) — zeed A Iw(we [ze€]) A VWe [zoe]Vx(esx=0—x=wW)],
which means the existence of a z such that:
(2) Ve[VxIyTexy A C(e) — zeed A Iw<zeeVx(eex=0—x=wW)],
and this is contradictory: suppose z as in (2). Let, by the recursion theorem, e be such that:
ex « 1if -Tzex
0 else.
Then zee is defined. For if not, then Vx(eex=1) and C(e) clearly holds, so zeel, contradiction; so
——(zeel); apply MP. Furthermore, C(c) holds, for :f f codes a total function, we only have to look
at fe(ux.Tzex) to decide which of the two possibilities holds. But Iw<zeeVx(e*x=0—x=w) is
obviously false, since if Tzex, then zee<x (for any standard coding).
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2.6. Proposition. HA+ECT,, I RP,

Proof. We argue in HA+ECT,,. Suppose VxdyTexy A V{(VxdyTfxy — Vx(esx=0—-fex=0) v
Vx—(e*x=0 A fex=0)). By ECT,j, there is a z such that, for all f, if Vx3dyTfxy then zefl and:
i) zef=0 > Vx(eex=0—fex=0)
i) zef#) — Vx—(eex=0 A fox=0)
i) —3xy (xzy A eex=0 A eey=0).
Use the recursion theorem to find a code f such that:
fox « 1if Vyx—T(zf.y)
0 if T(z,f,x) A Ux=0
1 if Jy<x (T(zf,y) A Uy=0))
0 if y<x (T(z,f,y) A Uy0)).
Then f codes a total function, so zefl. Say T(zf,x). Two possibilities:
a) Ux=0. Then by i), Vy(eey=0—fey=0). But the only zero of f is x. So Vy(eey=0—-y=x).
b) Ux#0. Then by ii), Vy—(e*y=0 A fey=0). But Vy2x (fey=0). So Vy(esy=0—y<x).
In both cases, InVy (eey=0—y=n) (in case b, check ey for all y<x. Use iii)).

Remark: The topological model of Blass & Scedrov satisfies —RP but does not even validate the
weaker axiom in which the decidability condition on Y is dropped:
VX [Vx(xeXv—-xeX)AVY (Vx(xe X—xe Y)Vv Vx-(xe X AxeY))
—InVx(xe X - x=n)]
This schema will be valid in our model, since our model satisfies the Uniformity Principle:
UP) VXIyAX,y) — JyVXAXy)
s0 if VY (Vx(xe X—xe Y) v Vx—(xe XAxe Y), then VY Vx(xe X—xe Y)vVY Vx-(xe X Axe Y)
and X is the empty set.

§3. Extension of Lifschitz’ realizability to HAH+CT+MP

The construction of a topos for Lifschitz' realizability relies heavily on the methods developed in
Hyland, Johnstone & Pitts 1980 (abbreviated HJP 1980). Since not every reader will be familiar
with that article and we try to be as self-contained as possible, we will recapitulate the main results
as we go along. The reader will find it helpful to bear in mind the analogies with the construction of
a topos of Q-sets, where Q is a complete Heyting algebra, as laid out in Fourman & Scott 1979.
We construct a set X with a binary operation = on it, such that the following hold:

1) For every set X, the set £X forms a Heyting pre-algebra (i.e. it has all the properties of a
Heyting algebra except that the underlying order is a preorder), where the Heyting implication is
given by =: for ¢,ye X 0=V = Ax.(0(Xx)=VY(X));

2) For every function between sets f:X—Y the map >f: Y 53X defined by composition with
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f: (Zf(w))(x)=\|f(f(x)), which preserves Heyting implication by 1), is an order-preserving map and
has both a left and a right adjoint 3f and VT, respectively: ¥X3Y (ie. for e X and
ye ZY:Zfy) F ¢ iff wi V(o) and IE(@) F v iff ¢ FZE(y));

3) These adjoints satisfy the Beck-condition : if f:X—Y is a set map and Z a set, then the two
maps V/(1y ) Z2¥E: 22XY 552XX 55X and 2oV (ry): Z2XY—»ZY—3X are isomorphic maps of
preorders (Ty and 7y, denote projections). A similar condition, for the left adjoint, then holds
automatically.

In the terminology of HJP, we are going to define a canonically presented Sets-tripos.

3.1. Definition.
i) Let J be {ee NI [e]#@]. X is the set of all subsets H of J that satisfy the following conditions:
a) H is extensional, i.e. if ee H then [f]=[e] implies fe H;
b) H is closed under finite unions: if [e]=[f]U[g] with fe H and ge H, then e H.
ii) For G,He X we put G=H={ee J| Vfe [e]Vxe G (fexd & fexe H)}. The reader sees at once that
G=H is well-defined, i.e. G=>HeX.
iii) Let X be a set. We define a preorder F on XX by: ok vy iff N{ox)=y(x) | xe X} is nonempty.

Let us show that - is a preorder. We reserve the letter B for (a code of) the total recursive function
such that [B(e)]={e}. Then B(Ax.x) e N{dpx)=>¢(x) | x€ X}, so I is reflexive. Now suppose ¢Fy
and yty, say ee N{p(x)=2y(x) | xe X} and fe N{y(x)=>x(x)| xe X}. If ye ¢(x) then Vae [e]
asye y(x), so (since y(x)e X) U{[asy]l a [e] }e y(x); with proposition 2.1, U{[asy]| ac[e]} is
[G(e,y)] for a suitable partial recursive G. Similarly, U{[beG(e,y)]| be [f]}€ %(x) and again,
U{[b*G(e,y)]l be [f]} is [G'(e.f,y)] for a partial recursive G'. So if g is a code for Ay.G'(e.f,y),
then B(g)e N{dx)=>x(x)| xe X}, i.e. ¢k and I is transitive.

We now define operations of conjunction and disjunction on X: for G,He X put:

GAH = {ee]| Vfe[e] (()ye G & (f),e H)}

GVvH = {ee]| Vfe [e] (();=0 and (f);€ G) or ((f)y=1 and (f);e H)}

3.2. Proposition. Let, on =X,

OAY =Ax.OCIAY(X)),

VY = Ax.OCIVY(X)),

o=y = Ax.(G(x)=y(X)),

T =AxJ,

L =2Ax.@. Then ZX forms with this structure a Heyting prealgebra.

Proof. For instance, B(Ax.u{[(a)o] I ae [x]}) € N{(@AY)X)=9(x) | xe X} (Use definition 3.1).
All calculations are similar.

3.3. Proposition. Let f: X—Y be a function between sets and ¢e ZX. Define V{(¢) and If(¢) in
5



=Y by:

Vi(d)(y) = {ee] | Vxe XVhe J(f(x)=y = Vge[e] (gehd & gehe d(x)))}

Af($p)(y) = {ee | Vhe [e]Txe X (f(x)=y & he ¢(x))}

Then Vf and 3f are order-preserving maps: ZX—XY and respectively right and left adjoint to =t

Proof. By way of example, we show for ¢e 2X and ye EY: Zf(y)r¢ in ZX iff yV£(¢) in ZY (In
particular, this will show that Vf is order-preserving). So let ee N{y(f(x))=¢(x) | xe X} and
yeY, ae y(y). If f(x)=y and he J, then U{[gea] | ge[e]}€ ¢(x) so for e'=P(Aa.B(Ah.U{[gea] |
ge[e]})) we have that e'e N{y(y)=>V(®)(y)| ye Y}; conversely, if e'e N{y(y)=>VI($)(y)!

ye Y} and xe X, ae y(f(x)), then U{[fea] | fe [¢']}e VI(9)(f(x)) so U([(fea)*P(0)]! fe [e] }€ d(x),
etc.

The reader is invited to check himself that the Beck-condition holds. This completes the
construction of our tripos. We now indicate how to interpret many-sorted intuitionistic predicate
logic without equality in this tripos: sorts are interpreted by sets (for a sort 6, we write [c] for the
set that interprets ©); predicates with variables x,,...,x,, of sorts 0;,...,0,, are interpreted as
elements of =X where X=lo,Ix...xIo_I; formulas are then formed using the Heyting pre-algebra
structure and the maps 3f and Vf; for example: suppose our language has two sorts ¢ and 1, a
unary predicate R(xC) and a two-place predicate S(x%,y%). Let X=[cl, Y=I1l, ¢ ZX interprets R
and ye ZXXY interprets S. Let m; and m, be the projections from XxY to X and Y respectively;
then the formula Jy(R(x)—S(x,y)) is interpreted by the element (1, )(Z™(9)=>y) of X This
interpretation can be extended to languages with function symbols: function symbols f of sort ¢
which take arguments of sort T are interpreted as functions [fl: [t}—>lcl; if, for instance, R is a
predicate of one variable of sort ¢ and ¢e slolinterprets R, then the formula R(f(y")) is interpreted
by 2Ifl(¢)e =11 . Constants of sort o are elements of [o] (functions: 1—-[o]).

We say that a formula holds in the tripos (under a given interpretation of sorts, predicates and
functions) if its interpretation is (isomorphic to) the top element in the Heyting algebra it belongs to.

Intuitionistic many-sorted predicate logic without equality is sound for this interpretation (this
is Lemma 2.1 in HJP 1980); this is important because logical calculations play a large role in the
construction of our topos as well as the verification of axioms in it.

Now we have to rely on the reader's gullibility (or his willingness to read HJP 1980) for the
fact that the category we now construct is a topos. Objects are pairs (X,=) with X a set and = an
element of ZXXX, such that the formula (x=x'—x'=x) A (x=x'Ax'=x" — x=x") holds; morphisms

X,=)—(Y,=") are equivalence classes of elements Fe FXXY

(F(x,y)—=x=xAy="y) A (F(x,y)Ax=x'Ay="y'=F(x"y") A (F(X,y)AF(X,y")—>y="y") A
(x=x—3yF(x,y)) holds; two such F,G being equivalent iff the formula F(x,y)—G(x,y) holds

such that the formula:

(note, that this is an equivalence relation!). If Fe ZXXY represents a morphism (X,=)—(Y,=") and

GexY<Z represents a morphism (Y,=")—(Z,=") then the interpretation of Jy(F(x,y)AG(y,z))

represents a morphism: (X,=)—(Z,="), the composition of [F] and [G]. Checking associativity is
6



an easy exercise in logic.
The resulting category is a topos, which we call Lif (from: Lifschitz' realizability).

We now want to establish a relation between Lif and Hyland's topos Eff (the "effective topos",
see Hyland 1982). The underlying tripos of Eff is the system of Heyting pre-algebras P(N)X, with
preordering ¢k iff there is e such that for all x and all ac ¢(x), esad & esacy(x).

3.4. Proposition. Let ¥, (X): X SP(N)X be defined by composition with the inclusion:
X—P(N). Then:

i) ¥, (X) is order-preserving;

ii) ¥, (X) has a left adjoint ¥*(X), that preserves finite meets;

iii) The map ¥*(X)°¥  (X) is isomorphic to the identity on =X,

Proof. i) Trivial. ii) Let ¥=%*(1): P(N)—>ZX be defined by ¥(A)={ee J| [e]cA} and let ¥*(X) be
composition with ¥. Suppose ¢pe P(N)X, ye X and o-¥ LX) in P(N)X , say for all x and all
ac §(x), esad & evac¥ +X)W)X)=y(x). Then if xe X and be ¥*+(X)(¢)(x), so [b]lcd(x), then
U{[esh] | he [b]}e y(x). So for all x, B(Ab.U{[e*h]| he [b]}) e ¥H(X)($)(X)=>¥(X), so
P+H(X)(9)Fy in X, Conversely, if for all x, ee ¥*H(X)(¢)(x)=>y(x), then [e] is nonempty and for
every ge [e], for every xe X and ae ¢(x), g+B(a) is defined and in ¥, (X)(y)(x). So o+-¥ +XW).
iii) left to the reader.

In the language of HIP 1980, 3.4 establishes a geometric morphism of triposes.

3.5. Proposition. There is a geometric morphism (¥s,¥"): Lif—Eff, which is an inclusion of
toposes. The inverse image part P*: Eff—>Lif is given by ‘P*((X,=)) =(X,¥*(=)).

Again, for a proof we have to refer to HIP 1980. We will explain the terminology. W: Lif—Eff
and P*: Eff—Lif are functors such that ‘W, is right adjoint to ¥* and ¥* preserves finite limits;
"inclusion" means that the counit of the adjunction &: ¥* W, —Id, is an isomorphism. As an
immediate consequence:

3.6. Proposition. The natural number object in Lif is up to isomorphism given by (N,=) with
In=m] = {eeJI [e]c{n}"{m}}= {ee ]I [e]={n}} if n=m, and O else.

Proof. Natural numbers objects in toposes are preserved by functors that preserve 1 and have right
adjoints, such as b O diagrams of form 1-X—X in Lif go to diagrams 1 -5>¥«(X)—>W¥«(X) in Eff.
If N is the natural number object of Eff, then the unique map: N—>¥.(X) transposes under
¥Y'4{¥,.t0a unique map ¥" (N)—X, and the required diagram commutes. 3.6 now follows from
the characterization of the natural number object in Eff, given in Hyland 1982.



3.7. Interpretation of arithmetic in Lif. We can now interpret HA directly in Lif, as follows. We
consider a language £ with one sort 6, a function symbol for every primitive recursive function,
constants n for every natural number, and one relation symbol =. This language is interpreted in the
tripos underlying Lif by: [6l=N, the function symbols and constants have the obvious
interpretation, and = is interpreted by the equality defined in 3.6.

We define a translation (-)* from the language of HA to £ as follows: primitive recursive
function symbols and equality of HA are translated by the corresponding function symbols and =
of X, respectively; prime formulas are translated in the obvious way. (-)* commutes with the
propositional connectives, and the clauses for the quantifiers are:

(Vx)* = Vx(x=x—(9)")
@Exd)t = Ix(x=x A (®))
We say that an arithmetical sentence ¢ in the language of HA is valid in Lif iff (¢)* is valid in

the tripos, by the interpretation of £. We have:

3.8. Proposition. An arithmetical sentence is valid in Lif iff it is realizable in the sense of
definition 2.2.

Proof. One defines, by an induction on the complexity of formulas ¢ with free variables X peeesXg
primitive recursive functions t and So of k arguments, such that for all e,m;,...,m;:

) if e r ¢(m;,...,my) then ty(m;,...,my)ee is defined and is an element of (o) l(m,,...,my);
ii) if e [(¢)*I(m;,...,m;) then s¢(m1,...,mk)oc is defined and r ¢(my,...,my).

If ¢ is a prime formula t=s, then [(¢)+](m1,...,mk) = {ee]Jl [e]={t} and t=s} so we can put:
ty = Am;,...,my . Ae.B(1); S = Am;,...,my.Ae.B(0). (Again, B is such that [B(e)l={e})
The induction steps for the propositional connectives are trivial. If ¢ is Vxy, then
[(¢)*l(m,,...,m,) = {eeJ| Vfe [e] Vne NVhe] (fehl & Vge [fsh]Vw ([w]l={n} = gew! &
gewe [(y)*Kmy,....m,n)))}. So if ee [(¢)*N(m;.....my) then Ve [e] VneN (B0}

&Vge [f+B(0)] (geBm)! & Sy (M- myon) @ (goB(M) T Y(my,....my,n))). So if
e'=[3(An.u{sW(m1,...,mk,n) *(g*B(n)) ! ge [f+P(0)],fe [e]}), then €' r Vxy. Conversely, if

er Vxy(m;,...m,) then [e]#B & Vfe[e]Vn (fenl &

tw(ml,...,mk,n)-(f-n)e [oy)*k@m,,...,my,n)). Let & be as in 2.1(ii). So if e' is such that [e'] =
{Ah.B(Aw. t\v(ml,...,mk,8(w))o(f~8(w)) | fe[e]}, then e'e [(¢)+](m1,...,mk) . In both cases, €'
can evidently be obtained recursively in e (use 2.1).

The induction step for the existential quantifier, equally tedious, is left to the reader.

3.9. Proposition. CT and MP are valid in Lif.

Proof. Following the characterization of exponentials in realizability toposes in 2.14 (iii) of HJP
1980, the function space NN has as underlying set ZNVN, The equality is given by: [F=Gl is the
interpretation of E(F)AE(G)AVxy(Fxy<>Gxy) where E(F) is the universal closure of formula

8



(F(xy)ox=xAy=) A FEy)Ax=x'Ay=y'=F(.y) A (F&y)AFXy)-2y="y) A
(x=x—3yF(x,y)). Here of course = is interpreted as the equality on N given in 3.6. Now if

ec [E(F)] then we can find, recursively in e, fe [Vxy (F(x,y)AF(x,y)—y=y"],

ge [Vx(x=x—3yF(x,y))] and he [Vxy (F(x,y)—>x=xAy="y)l. This means Vx(g'sx! & [g'*x]*@

& Vne[g'ex]3y(ne Fxy)) for some g. Using h, we can find a z such that Vx(zex| & [zex]20 &
Vne [zex]dy(ne FxyAy=y)). But then, using f, we know that for every x, {(n), | ne [zex]} must be
a singleton. Using proposition 2.1(ii) there is a w such that Vx(wexd & Fx(wex) is nonempty)).
This w then codes a total recursive function, w can be found recursively in e, and, in Lif, F is the
function coded by w.

Markov's Principle is easier: note that if ee [Av—Al] then {(@)y! a€ [e]} must be a singleton.

Remarks: 1) Externalizing the argument in the proof of 3.8 one sees that morphisms IN—N in Lif
are in bijective correspondence with total recursive functions. This shows in particular that Lif is
not equivalent to a subtopos of Eff of the form "recursive in A", as studied in Phoa 1990.

2) In Lif, the notions of Cauchy real and Dedekind real coincide. This is remarkable
because usually this is a consequence of the validity of certain choice axioms, which we don't have
in Lif. Already the simple choice schema ACyy, fails for arithmetical formulas A IT;.

Literature
Blass, A. & Scedrov, A. Small decidable sheaves, Journal of Symbolic Logic 51, 726-731
Fourman, M. & Scott, D.S.
Sheaves and logic, in: Fourman et al.(eds.), Applications of sheaves,
Lecture Notes in Mathematics 753, Berlin (Springer) 1979, 302-401
Hyland, JM.E The effective topos, in: Troelstra & Van Dalen (eds.), The L.E.J.
Brouwer Centenary Symposium, Amsterdam (North-Holland) 1982
Hyland, J.M.E., Johnstone, P.T. & Pitts, A.M.
Tripos Theory, Mathematical Proceedings of the Cambridge Philosophical
Society 88, 205-232

Johnstone, P.T. Topos Theory, Academic Press, 1977

Lifschitz, V. CT,, is stronger than CT !, Proceedings of the AMS 73, 101-106

Oosten, J. van Lifschitz' realizability, Journal of Symbolic Logic 55 (1990), 2, 805-821
Phoa, W. Relative computability in the effective topos, Mathematical Proceedings of

the Cambridge Philosophical Society 106, 419-422






The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does ]
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch

LP-90-04 Aarne Ranta

LP-90-05 Patrick Blackburn

LP-90-06 Gennaro Chierchia

LP-90-07 Gennaro Chierchia

LP-90-08 Herman Hendriks

LP-90-09 Paul Dekker

LP-90-10 Theo M.V. Janssen
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten

Computation and Complexity Theory
CT-60-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavalda, Leen Torenvliet
Osamu Watanabe, José L. Balcazar
CT-90-04 Harry Buhrman, Leen Torenvliet
Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04

X-90-05 Valentin Shehtman

X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov

X-90-08 L.D. Beklemishev

X-90-09 V.Yu. Shavrukov

X-90-10 Sieger van Denneheuvel
Peter van Emde Boas

X-90-11 Alessandra Carbone

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic .
The Vanabh(tiy of Impersonal Subjects
hora and Dynamic Logic
Flexible Montague Grammar
The a%;gpeﬂof .biaggtlon in %i{scourse,
towards a flexible dynamic Montague grammar
Models for Discourse Markers

Isomorphisms and Non-Isomor%hisms of Graph Models
A Semantical Proof of De Jongh's Theorem
%elaﬁolr:lal Ga\megili Logi

nary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic,
and a Solution to a Problem of F. Richman

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity
in Relativized Separations
Bounded Reductions

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version
Some Chapters on Interpretability Logic
On the Complex1t§ of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
%rhovaplhty Logics for Natural Turing Progressions of Arithmetical
es

eori
On Rosser's Provability Predicate
An Overview of the Rule Language RL/1

Provable Fixed points in IAy+£;, revised version



