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1 Introduction

In [5] Albert Visser introduces a logic ILP in a modal langunage £([], >) with a
unary operator [, to be interpreted arithmetically as provability, and a binary
operator >, to be interpreted arithmetically as relative interpretability over
some fixed theory U. In [6] he shows that ILP completely axiomatizes all
schemata about provability and relative interpretability that are provable in
%9-sound finitely axiomatized sequential theories U that extend 1A + SupExp.
In this paper we give a somewhat different proof of this result; we also present
a complete axiomatization, called ILP¥, of all {rue such schemata.

The main difference between Visser’s proof of the arithmetical completeness
of ILP and ours, is that we use infinite Kripke-like models, instead of finite ones,
to find arithmetical interpretations for unprovable modal formulas. The models
we use are variations on the tail models for provability logic as developed by
Albert Visser (cf. [4]). The advantage of using these infinite models is two-fold.
First of all, it allows us to set up things in such a way, that we can prove the
arithmetical completeness of ILP and ILP*“ (almost) in one go.

To understand the second advantage, recall that the arithmetical sentences
needed to prove the arithmetical completeness of some given logic A are usually
found by embedding models of A into arithmetic. If these models are finite,
the embedding will only be partial, in the following sense. Consider a formula
A(P) as a polynomial in the truth values of the ps, and suppose that [B] is
a representation in arithmetic of the extension of B in a given model. To
justify the use of the phrase ‘embedding into arithmetic’ we want the equivalence
A([p]) « [A(P)] to be provable in our arithmetical theory, for all formulas A.
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But, assuming that our arithmetical theory is £9-sound, this is not possible
when we are working with finite models: for if M is such a model then for some
n, M | O"L « O"*'1. By using infinite models we will be able to obtain
complete embeddings.

The rest of this paper is organized as follows: in §2 the systems ILP and
ILPY“ are introduced; in §3 we review the arithmetical notions we need and
assumptions we make for our completeness results. Then, in §4, we state and
prove the arithmetical completeness of ILP and ILP“.

Finally, a word on prerequisites: we assume that the reader is familiar with
the discussion of systems and arithmetization in [7].

2 The systems ILP and ILP”

The provability logic L is propositional logic plus all instance of the schemas
0(A — B) — (0A — OB), 0A — OOA and O(OA — A) — OA4; its rules of
inference are A, A — B/B (Modus Ponens), and A/[JA (Necessitation). Let
L£(0,>) denote the language of interpretability logic. The interpretability logic
ILP extends L with all instances of the following schemas:

(J1) O(A— B) — Ap> B; (J4) Ap B — (OA— OB);
(J2) (A> B)A(B>C)— AD C; (J5) AD OA4;
(J3) (ADC)A(BD>C)— (AD C); (P) Ap B—-0O(AD> B).

ILP¥ has as axioms all theorems of ILP plus all instances of the schema of
reflection: [1A — A; its sole rule of inference is Modus Ponens. Since ILP |-
OA < —-A D> 1, we may consider ‘(] to be defined in terms of ‘>’.

ILP has been shown to be modally complete with respect to two kinds
of (finite) models, notably w.r.t. Veltman models for ILP in [1], and w.r.t.
Friedman models for ILP in [6].

Definition 2.1 A Friedman tail model is a tuple M = (w, 0, Q, P, IF) with

1. Q C w? is transitive, irreflexive and tree-like;

2. P C Q is given by a set X C w such that 0 € X, and zPy < zQy and
y € X, and such that y € X, yPz implies yQz' Pz, for some 2’;

3. if zQyPz then zPz;

4. if n # 0 then 0Qn, and if 0 # n@Qm then n > m;

5. there is an N € w such that

(a) for every n, m > N, if m < n then nQm;
(b) for every n > N, if for some k, n = 2k + N then mPn for all m > n;
(c) foreveryn> N, NI-piff nl- piff 0 I- p.



An N which satisfies 5 is called a tail element. We define R := Qo P, i.e., zRy
iff 32 2QzPy. I satisfies the usual clauses, with R as the accessibility relation
for ‘[P, and

zl-A> B < Vu(zQu = (3y(uPyAyl- A) = 3z(uPzAz I+ B))).

Finally, if M is a Friedman tail model, and A a formula. Then [A]r¢:= {z €
Mzl A}

Definition 2.2 We introduce two operators A,, A, with forcing conditions
z |- Ap A iff for all y with 2Py, y I A, and z |- AjA iff for all y with zQy,
y - A. We write V,, V4 for —A,—, ~Ag— respectively. £(Ap, A,) denotes the
language with the two new operators.

Define a translation (-)™ : £(0,>) — L(Ap,A,) as follows: (-)7 is the
identity on proposition letters and the constants T, 1, and it commutes with
the Boolean connectives; furthermore (A > B)" := Ay(Vp A" — V,BT").

We write 7£(0, ) for the image of £([J, >) under 7, and define 7£(0], >)* to
be the sublanguage of £(A,, Ag) in which A4 occurs only in front of implications
of the form V,C — V,D. Clearly, then, 7£(0J,>) C 7£(0O, >)*.

Remark 2.3 £(A,, A,) is in fact the language of the bi-modal provability logic
PRL, discussed in [3] (with the modal operators interpreted as tableauz prov-
ability instead of ordinary provability). Using ()™ and 2.7 one easily verifies
that PRL, is a conservative extension of ILP.

Proposition 2.4 Let M be a Friedman tail model, and let A € £(0J,>). Then
forallneM, nl- A A7

Proposition 2.5 Let M be a Friedman tail model in which P is given by some
set X. Let AgB € 7L(0O,>)*. If n € X and nl- AyB then nl- B.

Proof. If AgB € 7£(0,>)* then B has the form V,C — V,D. Moreover, if
n € X and nPm then nRm. These observations yield the result. QED.

Proposition 2.6 1. Let A € L(0O,>) U L(Ap, A,). Then [Ala is either
finite or cofinite.
2. 0l A iff for some N and alln> N, nl- A;
3. 0l A iff for some N and alln> N, nlf A.

Theorem 2.7 Let A€ £(O,>). Then

1. ILP | A iff for every Friedman tail model M, and alln € M, nl- A;
2. ILP“ \- A iff for every Friedman tail model M, 01 A,

Proof. The first claim is immediate from [6, Theorem 8.1]. To prove the second
one, note first that 0 forces the theorems of ILP in any Friedman tail model.
Closure under Modus Ponens is trivial. Assume that 0 |- [JA, then for all n



with ORn, nl- A. So [A] ¢ is infinite, and hence, by 2.6, cofinite. Thus 0 I- A,
again by 2.6.

Next assume that ILP¥, then, obviously, ILP f T(A) — A, where T(A) :=
Aosesa) (OB — B)AAcy pes(ay(C — OC), and S(4A) is the set of subformu-
las of fi So by 1 there is a tail model M such that for some tail element N in
M, N |- T(A) A ~A. An easy induction now establishes that for C € S(A) the
following facts hold: (1) if N |- C then for all m with mRN, m I C; and (2) if
N I C then for all m with mRN, m I C. So 0l A. QED.

3 Arithmetical completeness: preliminaries

To prove the arithmetical completeness of ILP“ we want to use several results
from [6]. To be able to do so, we only consider arithmetical theories that satisfy
a number of conditions to be given now. (Details about the notions used below
may be looked up in [2], [5], [6] and [7].)

Officially we will be working in a relational version of the language of arith-
metic, in which successor, addition and multiplication are (2-, 3- and 3-place)
relation symbols. We will, however, pretend that we are working with function
symbols. We assume that the theories T' we consider are given by an Rf-formula.
ar(z) having just z free plus the relevant information on what the set of natural
numbers of T is; ar gives the set of codes of non-logical axioms of the theory
(cf. [7]). We also assume that the numbers of T satisfy IAg + €21, and that T is
finitely axiomatized and sequential.

Wilkie and Paris [7] show that IAg + €2; is a completely adequate theory
for arithmetizing syntax. E.g., if T is a theory satisfying the assumptions made
above, we can formalize in IAg + Q; (as an R'f-formula) Proofr(z,y), which
represents the relation ‘z is a proof of the formula y from 7°. We further define
Provr(y) := 3z TabProofr(z, y).

One of the key results needed to prove our arithmetical completeness re-
sults, is a result by Friedman, extended by Visser, that gives a characteriza-
tion of interpretability in terms of consistency. To state it we need a notion
of cut free proof. We follow [6] in choosing tableaux provability. We write
TabProofr(z,y) for (a formalization of) the relation ‘z is a tableau proof of
the formula y from 7°. Furthermore, TabProvy(y) := 3z TabProofr(z,y),
and TabConr("¢”) := ~TabProvy("—¢"). Using this notation we can state the
Friedman-Visser characterization as follows: let U be finitely axiomatized and
sequential, and let Interpy denote (a formalization of) relative interpretability
over U, then IA( + Exp proves

Interpy ("¢", "¢¥") <> TabProvgs,("TabCony ("¢") — TabCony ("$7)7).

A proof of this result may be found in [6].



4 Arithmetical completeness: the main result

For the remainder of this paper, let U be a £9-sound extension of IA¢+ SupExp
that satisfies all the requirements from §3.

Our first aim is to embed Friedman tail models into U. To do so we fix
M= (w, 0,Q, P, IIF) to be a tail model; we assume that P is given by a set X
as in item 2 of the definition of a Friedman tail model. Define as formulas in
the language of U:

eetaa={ XEZDINAD tial i comme
It is easily verified that 1Ay + Exp proves
e (z € [Alm) A (= € [B]lm) « (= € [AA Blm);
o (z € [A]m) V (z € [Blm) « (= € [AV Blam);
o 2 ¢ [Alm o 2 € [~ pe
Using the Recursion Theorem we define a Solovay-like function H as follows:

H@O) = 0

y, if H(z)Py and TabProofy(z + 1,"L # y")
Hkz+1) = y, if H(z)Qy and TabProofgey(z +1,"L # y7)
H(z), otherwise
L = thelimit of H.

We leave it to the reader to check (or to look up in the proof of [6, Theorem
8.2]) that the formula ‘H(z) = v’ is Ao(2%), and that for any z, y

1. Ao+ Exp F 2Qy — H(z)QH (y);

2. IAo + Exp I ‘L exists’;

3. IAoc+Expt L=z 3y(H(y) =z)AVuv(H(u)=zAv>u— H(v) =
z);

4. L=0.

Definition 4.1 We define the representation [A]xq of [A]r¢ in the language of
U by [Alaei= (L € [Ala.

Let g be any function that takes the proposition letters from £(0J,>) (or
L(LpyAg)) to sentences in the language of arithmetic. Then the arithmetical
interpretation (-)g of £(00,>) U L(Ap, A,) into the language of arithmetic is
defined by

(g = [ply ({O4); := Provy("(4),)
(L)g = =7 (A> B), := Interpy("(4),""(B)g")
(m4)g = —(4)g (ApA)g := TabProvy("(4),")
(AAB)g = (A)gA(B)g (Ag4); := TabProvg.y((4)g").

In case g(p) = [p]m for some model M, we write (-)a¢ for ().



Proposition 4.2 Let ¢ € 1. Then IA¢+Exp  TabProve,p(™¥") — TabProvy ("¢7).

Proof. Cf. [6, Lemma 8.2]. QED.
Proposition 4.3 U+ Le X.

Proof. Reason in U: by our earlier remarks the limit L exists. So assume
L = i ¢ X. Then, by the definition of H, ¢ > 0 and TabProvg,,("L # i').
Recall that U extends 1A+ SupExp. By [6, Consequence 7.3.7], IAo + SupExp
proves II9-reflection for IAg + Exp. (This is in fact the only place where we
really need U to be an extension of IAg + SupExp.) Therefore, in U we have
L # i—a contradiction. QED.

Lemma 4.4 Let A € 7£(0,>)*. Then IA¢+ Exp - [A]aq & (A)aq.

Proof. Induction on A. The propositional case, and the Boolean cases are imme-
diate from the fact that the limit provably exists, and the induction hypothesis,
respectively.

Suppose A = Ap,B. First we assume that [A,B]a¢ is cofinite. Then
[2,Blam = w. So [A,B] = A{(L#i:ilF L}=T. SoIA¢+ ExpF [A,B]r,
and hence 1A + Exp F (ApB)am — [ApB]lm. To prove the other direction it
suffices to show that IAg + Exp + TabProvy ("[B]a"). Clearly, [B]aq is cofi-
nite and X C [B]aq; therefore [Bjaq = A{(L # i) : ¢« ¥ B}. Reason in
IAo + Exp: if i [ B, then TabProvy ("L # 1), because U I L € X. Therefore
TabProvy ("[Blam").

Next we assume that [A,B]aq is finite. Let {jo,..., 7, } be all j with
j Ik &,B, ~B. Then, if i |f A,B, there is a j € {jo,...,Js } with iPj.
By the induction hypothesis it suffices to show that IA¢ + Exp I [ApBla «
TabProvy ("[B]ad”). Reason in IAq + Exp:

‘—’: Assume TabProvy([Blam"). Let j € {jo,...,Js}. It follows that
TabProvy ("L # j7). So assume that TabProofy(p+ 1,"L # j7). If LPj then
H(p)Pj—so H(p + 1) = j, which is a contradiction. Therefore, ~LPj, so
V{(Z =4:ilFa,B}.

‘-’ Assume L = i, i - A,B. Then i # 0. So TabProvggp("L # i) or
TabProvy ("L # "), so by 4.2 TabProvy ("L # i"). We also have for some z,
H(z) = i, and hence TabProvy("3z H(z) = 1"). This implies TabProvy(":QL"),
which entails TabProvy("¢PL"), because U F L € X. Finally, iPj implies
j I B. Therefore TabProvy("V{(L=j:JI- B}").

Assume next that A = A,B, and that [A¢B] ¢ is cofinite. Then [A¢B]rq =
[B]am = w. So by the induction hypothesis IAg + Exp F (B) a¢, and hence
IAo+ Exp F TabProvggp("(B)am")
F (AgB)m T
F (AgB)m « [AgBlam.



Next we assume that [AgB] ¢ is finite. Asin the case of A, B, let { jo,..., 5, }
be all j with j - AgB, —=B. Then, if ¢ |[f AyB, thereis a j € {Jjo,...,Js } with
iQj. By the induction hypothesis it suffices to show that IAo+Exp I [A;Blam —
TabProvgey([B]am”). Reason in 1A, + Exp:

‘" This direction is analogous to the corresponding direction in the case
of A,B.

‘=’ Assume L = 4, i | A B. Then there exists an = with H(z) = i.
So TabProvgep("3z H(z) = i'), and hence TabProves,("V{(L = k : iQk}").
Now, if ¢ ¢ X, then TabProvg,("L # 2") by the definition of H. Therefore
TabProvgzp("V{(L = k) : iQk }"). Thus TabProve.,("V{(LZ =k):k I+ B}").
And if, on the other hand, ¢ € X, then ¢ - Ay B implies by 2.5 that ¢ |- B.
Again we have TabProve.,("V{(L =k): kI B}"). QED.

Lemma 4.5 Let A € £(00,>). Then IAg+ Exp - [A]p « (A) M-

Proof. Since, by 2.4, forall A € £([J,>), and all ¢, i |- A — A", we trivially have
IAo + Exp b [A]m < [A7]m. Since A™ € 7£(0,>)*, we can apply Lemma 4.4
to conclude that IAg + Exp F [A]aq — (A7) aq (%).

By the Friedman-Visser characterization of relative interpretability over finitely
axiomatized sequential theories, IAg + Exp proves

Interpy ("¢", ¥") <« TabProvge,("TabCony ("¢") — TabCony ("47)7).

This characterization allows us to show by induction on A that IA¢ + Exp I
(A")m — (A)m. Together with (x) this yields the Lemma. QED.

We need one more definition and a proposition before we can prove the
arithmetical completeness of ILP and ILP“. From now on M is no longer a
fixed Friedman tail model.

Definition 4.8 Let M be a Friedman tail model. Define da¢(k) := sup{ da(I)+
1:kRl}, and

d(4) == pn. IMIm(dpm(m) = n AmlfF A), if such an n exists
T w, otherwise.

Proposition 4.7 Let A € £(O,>). Then there is a function g that takes
proposition letters to sentences in the language of U such that 1A + Exp I

AADOA), o Provi®(0 = 17).
g U

Proof. If d(A) = w then ILP |- A, so any g does the trick. If d(4) < w, then
there is a tail model M with tail element N such that dp¢(N) = n, and N | A.
Define g(p) := [pJm. Then for every k with NRk, k I A AOA. Moreover, if
kRN, then k | A ACJA. Therefore

IAo+Expt (AAOA), < [AADOA]m, by 4.5
— [Dd(A)J_]
o Provg,(A)("O =17). QED.



Theorem 4.8 Let A € £(0O,>). Then ILP A iff for every interpretation
(’)y: Uk <A)g-

Proof. The direction from left to right is left to the reader. To prove the
other one, assume that ILP |f A. Then there is a tail model M and a
tail element N such that dp¢(N) = d(4) < w, N I A and IAo + Exp
(AADOA)p o Prova®(0 = 17). If U F (A)r then U F (A ADA)aq, and
hence U - ProvdU(A)("O = 17)—contradicting our assumption that U is £9-sound.
Conclude that U i/ (A)m. QED.

Theorem 4.9 Let A € £(0,>). Then ILP“ | A iff for every interpretation
(')gr N = (A>g-

Proof. Again, the direction from left to right is left to the reader. Assume, to
prove the converse, that ILP¥ If A. Then there is a Friedman tail model M
with 0 [ A. By 4.5 N = (4) ;¢ — [4]ar. Moreover, N |= L = 0. It follows that

NE ~(4)a. QED.
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