Institute for Language, Logic and Information

A NOTE ON THE INTERPRETABILITY LOGIC OF FINITELY AXIOMATIZED THEORIES

Maarten de Rijke

ITLI Prepublication Series for Mathematical Logic and Foundations ML-90-07

University of Amsterdam

```
The ITLI Prepublication Series
                                                                                                                                                                          The Institute of Language, Logic and Information
A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I Well-founded Time,
Forward looking Operators
       1986
       86-01
       86-02 Peter van Emde Boas
       86-03 Johan van Benthem
      86-04 Reinhard Muskens

A Reli
86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem
Logics
1987

87-01 Jeroen Groenendijk, Martin Stokhof
                                                                                                                                                                          Logical Syntax
Forward looking Optokhof
Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
Unique Normal Forms for Lambda Calculus with Surjective Pairing
      87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
     87-04 Johan van Benthem
87-05 Víctor Sánchez Valencia
87-06 Eleonore Oversteegen
87-07 Johan van Benthem
87-08 Renate Bartsch
                                                                                                                                                                           Polyadic quantifiers
                                                                                                                                                                           Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
                                                                                                                                                                           Categorial Grammar and Type Theory
                                                                                                                                                                         The Construction of Properties under Perspectives
Type Change in Semantics: The Scope of Quantification and Coordination
      87-09 Herman Hendriks
     1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                                                                                                         Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987
     LP-88-02 Yde Venema
     LP-88-03
     LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
                                                                                                                                                                         Going partial in Montague Grammar
Logical Constants across Varying Types
Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse
     LP-88-06 Johan van Benthem
     LP-88-07 Renate Bartsch
    LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe
                                                                                                                                                                          Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
   LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe

ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen
ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra

ML-88-05 A.S. Troelstra

CT-88-01 Ming Li, Paul M.B.Vitanyi
CT-88-02 Michiel H.M. Smid, Mark H. Overmars
Leen Torenvliet, Peter van Emde Boas

CT-88-04 Dick de Jongh, Lex Hendriks

A mathematical model for the CAT framework of Eurotra
A Blissymbolics Translation Program

Lifschitz' Realizabiility

The Arithmetical Fragment of Martin Löf's Type Theories with weak Σ-elimination

Provability Logics for Relative Interpretability
On the Early History of Intuitionistic Logic
Remarks on Intuitionism and the Philosophy of Mathematics

Computations

General Lower Bounds for the CAT framework of Eurotra

A Blissymbolics Translation Program

Lifschitz' Realizabiility

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

General Lower Bounds for the CAT framework of Eurotra

A Blissymbolics Translation Program

A mathematical model for the CAT framework of Eurotra

A Blissymbolics Translation Program

Lifschitz' Realizabiility

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

Complexity Theory: Two Decades of Applied Kolmogorov Complexity

ML-88-04 Dick de Jongh, Lex Hendriks

ML-88-05 A.S. Troelstra

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

A Blissymbolics Translation Program

A Blissymbolics Translation Program

A Blissymbolics Translation Program

A mathematical model for the CAT framework of Eurotra

A Blissymbolics Translation Program

Frovability

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

Complexity Theory:

Two Decades of Applied Kolmogorov Complexity

ML-88-04 Dick de Jongh, Lex Hendriks

Computations:

Lifschitz' Realizability
     CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
                                                                                                                                                                         Computations in Fragments of Intuitionistic Propositional Logic
     CT-88-05 Peter van Emde Boas
                                                                                                                                                                         Machine Models and Simulations (revised version)
     CT-88-06 Michiel H.M. Smid
                                                                                                                         A Data Structure for the Union-find Problem having good Single-Operation Complexity
    CT-88-07 Johan van Benthem

Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
   Towards a Universal Parsing Algorithm for Functional Grammar CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL X-88-01 Marc Jumelet Other prepublications: On Solovav's Completeness Theorem 1989 1 D 20 C 2 C 2
    1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
                                                                                                                                           okhof Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse
Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
    LP-89-02 Jeroen Groenendijk, Martin Stokhof
LP-89-04 Johan van Benthem
LP-89-05 Johan van Benthem
LP-89-06 Andreja Prijatelj
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang
ML-89-01 Dick de Jongh, Albert Visser
ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna
ML-89-05 Rineke Verbrugge
ML-89-06 Michiel van Lambalgen
ML-89-06 Michiel van Lambalgen

Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
Language in Action
Modal Logic as a Theory of Information
Modal Logic as a Theory of Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems
Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is conservative
Rosser Orderings and Free Variables

MI -89-06 Michiel van Lambalgen

The Avionatics of Relation Algebras and Temporal Logic of Intervals

Language in Action
Modal Logic as a Theory of Information
Intensional Logic From Algebra to Graphs
Dependency of Belief in Distributed Systems

Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is conservative

Intensional Modal Logic as a Theory of Information
Intensional Modal Logic From Algebra to Graphs
Dependency of Belief in Distributed Systems

Intensional Modal Logic Fro
  ML-89-06 Michiel van Lambalgen
ML-89-07 Dirk Roorda
                                                                                                                                                                       The Axiomatization of Randomness
                                                                                                                                               Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
   ML-89-08 Dirk Roorda
                                                                                                          Investigations into Classical Linear Logic
Provable Fixed points in IΔ<sub>0</sub>+Ω<sub>1</sub>

Computation and Complexity Theory: Dynamic Deferred Data Structures
Machine Models and Simulations
   ML-89-09 Alessandra Carbone
   CT-89-01 Michiel H.M. Smid
CT-89-01 Michiel H.M. Smid
CT-89-02 Peter van Emde Boas
CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas
CT-89-04 Harry Buhrman, Leen Torenvliet
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
Leen Torenvliet, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr.
CT-89-07 Ming Li, Paul M.B. Vitanyi

Machine Models and Simula
A Comparison of Reductions
A Parallel Functional Implem
Finding Isomorphisms betwee
A Theory of Learning Simpled Average Case Complexity Ice
                                                                                                                                                                                                                                                                         On Space Efficient Simulations
                                                                                                                                                                       A Comparison of Reductions on Nondeterministic Space
                                                                                                                                                                       A Parallel Functional Implementation of Range Queries
CT-89-06 H.W. Lenstra, Jr.

CT-89-07 Ming Li, Paul M.B. Vitanyi

CT-89-08 Harry Buhrman, Steven Homer
Leen Torenvliet

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations

CT-89-10 Sieger van Denneheuvel

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas

X-89-01 Marianne Kalsbeek

CT-89-02 G. Wagemakers

Finding Isomorphisms between Finite Fields

A Theory of Learning Simple Concepts under Simple Distributions and

Average Case Complexity for the Universal Distribution (Prel. Version)

Honest Reductions, Completeness and
Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet

On Adaptive Resource Bounded Computations

The Rule Language RL/1

CT-89-01 Marianne Kalsbeek

Other Prepublications:

An Orey Sentence for Predicative Arithmetic
                                                                                                                                                                    New Foundations: a Survey of Quine's Set Theory
Index of the Heyting Nachlass
Dynamic Montague Grammar, a first sketch
The Modal Theory of Inequality
Een Relationele Semantick voor Conceptueel Modelleren: Het RL-project
 X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
X-89-04 Jeroen Groenendijk, Martin Stokhof
 X-89-04 Jeroen Groenendja, Martin
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
1990 SEE INSIDE BACK COVER
```


Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

A NOTE ON THE INTERPRETABILITY LOGIC OF FINITELY AXIOMATIZED THEORIES

Maarten de Rijke
Department of Mathematics and Computer Science
University of Amsterdam

A Note on the Interpretability Logic of Finitely Axiomatized Theories

Maarten de Rijke*

Department of Mathematics and Computer Science University of Amsterdam

July 1990

1 Introduction

In [5] Albert Visser introduces a logic ILP in a modal language $\mathcal{L}(\Box, \triangleright)$ with a unary operator \Box , to be interpreted arithmetically as provability, and a binary operator \triangleright , to be interpreted arithmetically as relative interpretability over some fixed theory U. In [6] he shows that ILP completely axiomatizes all schemata about provability and relative interpretability that are provable in Σ_1^0 -sound finitely axiomatized sequential theories U that extend $I\Delta_0 + \operatorname{SupExp}$. In this paper we give a somewhat different proof of this result; we also present a complete axiomatization, called ILP^ω , of all true such schemata.

The main difference between Visser's proof of the arithmetical completeness of ILP and ours, is that we use infinite Kripke-like models, instead of finite ones, to find arithmetical interpretations for unprovable modal formulas. The models we use are variations on the *tail models* for provability logic as developed by Albert Visser (cf. [4]). The advantage of using these infinite models is two-fold. First of all, it allows us to set up things in such a way, that we can prove the arithmetical completeness of ILP and ILP^{ω} (almost) in one go.

To understand the second advantage, recall that the arithmetical sentences needed to prove the arithmetical completeness of some given logic Λ are usually found by embedding models of Λ into arithmetic. If these models are finite, the embedding will only be partial, in the following sense. Consider a formula $A(\vec{p})$ as a polynomial in the truth values of the ps, and suppose that [B] is a representation in arithmetic of the extension of B in a given model. To justify the use of the phrase 'embedding into arithmetic' we want the equivalence $A([\vec{p}]) \leftrightarrow [A(\vec{p})]$ to be provable in our arithmetical theory, for all formulas A.

^{*}Research supported by the Netherlands Organization for Scientific Research (NWO).

But, assuming that our arithmetical theory is Σ_1^0 -sound, this is not possible when we are working with finite models: for if M is such a model then for some $n, \mathcal{M} \models \Box^n \bot \leftrightarrow \Box^{n+1} \bot$. By using infinite models we will be able to obtain complete embeddings.

The rest of this paper is organized as follows: in §2 the systems ILP and ILP^{ω} are introduced; in §3 we review the arithmetical notions we need and assumptions we make for our completeness results. Then, in §4, we state and prove the arithmetical completeness of ILP and ILP^{ω} .

Finally, a word on prerequisites: we assume that the reader is familiar with the discussion of systems and arithmetization in [7].

The systems ILP and ILP^{ω} 2

The provability logic L is propositional logic plus all instance of the schemas $\Box(A \to B) \to (\Box A \to \Box B), \ \Box A \to \Box \Box A \ \text{and} \ \Box(\Box A \to A) \to \Box A; \ \text{its rules of}$ inference are A, $A \to B/B$ (Modus Ponens), and $A/\Box A$ (Necessitation). Let $\mathcal{L}(\Box, \triangleright)$ denote the language of interpretability logic. The interpretability logic ILP extends L with all instances of the following schemas:

- $\begin{array}{ll} (J4) & A\rhd B\to (\diamondsuit A\to \diamondsuit B);\\ (J5) & A\rhd \diamondsuit A;\\ (P) & A\rhd B\to \Box (A\rhd B). \end{array}$ $(J1) \quad \Box (A \to B) \to A \rhd B;$
- $(J2) \quad (A \rhd B) \land (B \rhd C) \to A \rhd C;$ $(J3) \quad (A \rhd C) \land (B \rhd C) \to (A \rhd C);$

 ILP^{ω} has as axioms all theorems of ILP plus all instances of the schema of reflection: $\Box A \to A$; its sole rule of inference is Modus Ponens. Since $ILP \vdash$ $\Box A \leftrightarrow \neg A \rhd \bot$, we may consider '\Boxed' to be defined in terms of '\sigma'.

ILP has been shown to be modally complete with respect to two kinds of (finite) models, notably w.r.t. Veltman models for ILP in [1], and w.r.t. Friedman models for *ILP* in [6].

Definition 2.1 A Friedman tail model is a tuple $\mathcal{M} = \langle \omega, 0, Q, P, \Vdash \rangle$ with

- 1. $Q \subseteq \omega^2$ is transitive, irreflexive and tree-like;
- 2. $P \subseteq Q$ is given by a set $X \subseteq \omega$ such that $0 \in X$, and $xPy \Leftrightarrow xQy$ and $y \in X$, and such that $y \in X$, yPz implies yQz'Pz, for some z';
- 3. if xQyPz then xPz;
- 4. if $n \neq 0$ then 0Qn, and if $0 \neq nQm$ then n > m;
- 5. there is an $N \in \omega$ such that
 - (a) for every $n, m \ge N$, if m < n then nQm;
 - (b) for every $n \ge N$, if for some k, n = 2k + N then mPn for all m > n;
 - (c) for every $n \ge N$, $N \Vdash p$ iff $n \Vdash p$ iff $0 \Vdash p$.

An N which satisfies 5 is called a *tail element*. We define $R := Q \circ P$, i.e., xRy iff $\exists z \, xQzPy$. \Vdash satisfies the usual clauses, with R as the accessibility relation for ' \square ', and

```
x \Vdash A \rhd B \iff \forall u (xQu \Rightarrow (\exists y (uPy \land y \Vdash A) \Rightarrow \exists z (uPz \land z \Vdash B))).
```

Finally, if \mathcal{M} is a Friedman tail model, and A a formula. Then $[\![A]\!]_{\mathcal{M}} := \{x \in \mathcal{M} : x \Vdash A\}.$

Definition 2.2 We introduce two operators \triangle_p , \triangle_q with forcing conditions $x \Vdash \triangle_p A$ iff for all y with xPy, $y \Vdash A$, and $x \Vdash \triangle_q A$ iff for all y with xQy, $y \Vdash A$. We write ∇_p , ∇_q for $\neg \triangle_p \neg$, $\neg \triangle_q \neg$ respectively. $\mathcal{L}(\triangle_p, \triangle_q)$ denotes the language with the two new operators.

Define a translation $(\cdot)^{\tau}: \mathcal{L}(\square, \triangleright) \longrightarrow \mathcal{L}(\triangle_p, \triangle_q)$ as follows: $(\cdot)^{\tau}$ is the identity on proposition letters and the constants \top , \bot , and it commutes with the Boolean connectives; furthermore $(A \triangleright B)^{\tau} := \triangle_q(\nabla_p A^{\tau} \to \nabla_p B^{\tau})$.

We write $\tau \mathcal{L}(\square, \triangleright)$ for the image of $\mathcal{L}(\square, \triangleright)$ under τ , and define $\tau \mathcal{L}(\square, \triangleright)^*$ to be the sublanguage of $\mathcal{L}(\triangle_p, \triangle_q)$ in which \triangle_q occurs only in front of implications of the form $\nabla_p C \to \nabla_p D$. Clearly, then, $\tau \mathcal{L}(\square, \triangleright) \subseteq \tau \mathcal{L}(\square, \triangleright)^*$.

Remark 2.3 $\mathcal{L}(\triangle_p, \triangle_q)$ is in fact the language of the bi-modal provability logic PRL_1 discussed in [3] (with the modal operators interpreted as tableaux provability instead of ordinary provability). Using $(\cdot)^{\tau}$ and 2.7 one easily verifies that PRL_1 is a conservative extension of ILP.

Proposition 2.4 Let \mathcal{M} be a Friedman tail model, and let $A \in \mathcal{L}(\square, \triangleright)$. Then for all $n \in \mathcal{M}$, $n \Vdash A \leftrightarrow A^{\tau}$.

Proposition 2.5 Let \mathcal{M} be a Friedman tail model in which P is given by some set X. Let $\triangle_q B \in \tau \mathcal{L}(\Box, \triangleright)^*$. If $n \in X$ and $n \Vdash \triangle_q B$ then $n \Vdash B$.

Proof. If $\triangle_q B \in \tau \mathcal{L}(\Box, \triangleright)^*$ then B has the form $\nabla_p C \to \nabla_p D$. Moreover, if $n \in X$ and nPm then nRm. These observations yield the result. QED.

Proposition 2.6 1. Let $A \in \mathcal{L}(\Box, \triangleright) \cup \mathcal{L}(\triangle_p, \triangle_q)$. Then $[A]_{\mathcal{M}}$ is either finite or cofinite.

- 2. $0 \Vdash A$ iff for some N and all $n \geq N$, $n \Vdash A$;
- 3. $0 \not\Vdash A \text{ iff for some } N \text{ and all } n \geq N, n \not\Vdash A.$

Theorem 2.7 Let $A \in \mathcal{L}(\Box, \triangleright)$. Then

- 1. $ILP \vdash A$ iff for every Friedman tail model M, and all $n \in M$, $n \Vdash A$;
- 2. $ILP^{\omega} \vdash A$ iff for every Friedman tail model \mathcal{M} , $0 \Vdash A$.

Proof. The first claim is immediate from [6, Theorem 8.1]. To prove the second one, note first that 0 forces the theorems of ILP in any Friedman tail model. Closure under Modus Ponens is trivial. Assume that $0 \Vdash \Box A$, then for all n

with 0Rn, $n \Vdash A$. So $[A]_{\mathcal{M}}$ is infinite, and hence, by 2.6, cofinite. Thus $0 \Vdash A$, again by 2.6.

Next assume that ILP^{ω} , then, obviously, $ILP \not\vdash T(A) \to A$, where $T(A) := \bigwedge_{\square B \in S(A)} (\square B \to B) \land \bigwedge_{C \rhd D \in S(A)} (C \to \diamondsuit C)$, and S(A) is the set of subformulas of A. So by 1 there is a tail model \mathcal{M} such that for some tail element N in \mathcal{M} , $N \Vdash T(A) \land \neg A$. An easy induction now establishes that for $C \in S(A)$ the following facts hold: (1) if $N \Vdash C$ then for all m with mRN, $m \Vdash C$; and (2) if $N \not\Vdash C$ then for all m with mRN, $m \not\Vdash C$. So $0 \not\models A$. QED.

3 Arithmetical completeness: preliminaries

To prove the arithmetical completeness of ILP^{ω} we want to use several results from [6]. To be able to do so, we only consider arithmetical theories that satisfy a number of conditions to be given now. (Details about the notions used below may be looked up in [2], [5], [6] and [7].)

Officially we will be working in a relational version of the language of arithmetic, in which successor, addition and multiplication are (2-, 3- and 3-place) relation symbols. We will, however, pretend that we are working with function symbols. We assume that the theories T we consider are given by an R_1^+ -formula $\alpha_T(x)$ having just x free plus the relevant information on what the set of natural numbers of T is; α_T gives the set of codes of non-logical axioms of the theory (cf. [7]). We also assume that the numbers of T satisfy $I\Delta_0 + \Omega_1$, and that T is finitely axiomatized and sequential.

Wilkie and Paris [7] show that $I\Delta_0 + \Omega_1$ is a completely adequate theory for arithmetizing syntax. E.g., if T is a theory satisfying the assumptions made above, we can formalize in $I\Delta_0 + \Omega_1$ (as an R_1^+ -formula) $Proof_T(x, y)$, which represents the relation 'x is a proof of the formula y from T'. We further define $Prov_T(y) := \exists x \, TabProof_T(x, y)$.

One of the key results needed to prove our arithmetical completeness results, is a result by Friedman, extended by Visser, that gives a characterization of interpretability in terms of consistency. To state it we need a notion of cut free proof. We follow [6] in choosing tableaux provability. We write TabProof_T(x, y) for (a formalization of) the relation 'x is a tableau proof of the formula y from T'. Furthermore, TabProv_T(y) := $\exists x$ TabProof_T(x, y), and TabCon_T($\ulcorner \varphi \urcorner$) := \lnot TabProv_T($\ulcorner \neg \varphi \urcorner$). Using this notation we can state the Friedman-Visser characterization as follows: let U be finitely axiomatized and sequential, and let Interp_U denote (a formalization of) relative interpretability over U, then $I\Delta_0 + Exp$ proves

$$\operatorname{Interp}_{U}(\lceil \varphi \rceil, \lceil \psi \rceil) \leftrightarrow \operatorname{TabProv}_{Exp}(\lceil \operatorname{TabCon}_{U}(\lceil \varphi \rceil) \to \operatorname{TabCon}_{U}(\lceil \psi \rceil) \rceil).$$

A proof of this result may be found in [6].

4 Arithmetical completeness: the main result

For the remainder of this paper, let U be a Σ_1^0 -sound extension of $I\Delta_0 + SupExp$ that satisfies all the requirements from §3.

Our first aim is to embed Friedman tail models into U. To do so we fix $\mathcal{M} = \langle \omega, 0, Q, P, \Vdash \rangle$ to be a tail model; we assume that P is given by a set X as in item 2 of the definition of a Friedman tail model. Define as formulas in the language of U:

$$(x \in \llbracket A
rbracket_{\mathcal{M}}) := \left\{ egin{array}{ll} igvee \{ \, (x = \underline{i}) : i dash A \, \}, & ext{if } \llbracket A
rbracket_{\mathcal{M}} ext{ is finite} \\ igwedge \{ \, (x
eq \underline{i}) : i dash A \, \}, & ext{if } \llbracket A
rbracket_{\mathcal{M}} ext{ is cofinite.} \end{array}
ight.$$

It is easily verified that $I\Delta_0 + Exp$ proves

- $\bullet \ (x \in \llbracket A \rrbracket_{\mathcal{M}}) \land (x \in \llbracket B \rrbracket_{\mathcal{M}}) \leftrightarrow (x \in \llbracket A \land B \rrbracket_{\mathcal{M}});$
- $(x \in \llbracket A \rrbracket_{\mathcal{M}}) \lor (x \in \llbracket B \rrbracket_{\mathcal{M}}) \leftrightarrow (x \in \llbracket A \lor B \rrbracket_{\mathcal{M}});$
- $x \notin \llbracket A \rrbracket_{\mathcal{M}} \leftrightarrow x \in \llbracket \neg A \rrbracket_{\mathcal{M}}$.

Using the Recursion Theorem we define a Solovay-like function H as follows:

$$H(0) = 0$$
 $\begin{cases} y, & \text{if } H(x)Py \text{ and } \mathrm{TabProof}_U(x+1, \ulcorner L \neq y \urcorner) \\ y, & \text{if } H(x)Qy \text{ and } \mathrm{TabProof}_{Exp}(x+1, \ulcorner L \neq y \urcorner) \\ H(x), & \text{otherwise} \end{cases}$ $L = \text{the limit of } H.$

We leave it to the reader to check (or to look up in the proof of [6, Theorem 8.2]) that the formula 'H(x) = u' is $\Delta_0(2^x)$, and that for any x, y

- 1. $I\Delta_0 + Exp \vdash xQy \rightarrow H(x)\underline{Q}H(y)$;
- 2. $I\Delta_0 + Exp \vdash L'$ exists';
- 3. $I\Delta_0 + \operatorname{Exp} \vdash L = x \leftrightarrow \exists y (H(y) = x) \land \forall uv (H(u) = x \land v > u \rightarrow H(v) = x);$
- 4. L = 0.

Definition 4.1 We define the representation $[A]_{\mathcal{M}}$ of $[A]_{\mathcal{M}}$ in the language of U by $[A]_{\mathcal{M}} := (L \in [A]_{\mathcal{M}})$.

Let g be any function that takes the proposition letters from $\mathcal{L}(\Box, \triangleright)$ (or $\mathcal{L}(\triangle_p, \triangle_q)$) to sentences in the language of arithmetic. Then the arithmetical interpretation $\langle \cdot \rangle_g$ of $\mathcal{L}(\Box, \triangleright) \cup \mathcal{L}(\triangle_p, \triangle_q)$ into the language of arithmetic is defined by

$$\begin{array}{rclcrcl} \langle p \rangle_g & := & [p]_g & \langle \Box A \rangle_g & := & \operatorname{Prov}_U(\lceil \langle A \rangle_g \rceil) \\ \langle \bot \rangle_g & := & `0 = 1 ` & \langle A \rhd B \rangle_g & := & \operatorname{Interp}_U(\lceil \langle A \rangle_g \rceil, \lceil \langle B \rangle_g \rceil) \\ \langle \neg A \rangle_g & := & \neg \langle A \rangle_g & \langle \triangle_p A \rangle_g & := & \operatorname{TabProv}_U(\lceil \langle A \rangle_g \rceil) \\ \langle A \wedge B \rangle_g & := & \langle A \rangle_g \wedge \langle B \rangle_g & \langle \triangle_q A \rangle_g & := & \operatorname{TabProv}_{Exp}(\lceil \langle A \rangle_g \rceil). \end{array}$$

In case $g(p) = [p]_{\mathcal{M}}$ for some model \mathcal{M} , we write $\langle \cdot \rangle_{\mathcal{M}}$ for $\langle \cdot \rangle_{g}$.

Proposition 4.2 Let $\psi \in \Pi_2^0$. Then $I\Delta_0 + \text{Exp} \vdash \text{TabProv}_{Exp}(\lceil \psi \rceil) \to \text{TabProv}_U(\lceil \psi \rceil)$.

Proof. Cf. [6, Lemma 8.2]. QED.

Proposition 4.3 $U \vdash L \in X$.

Proof. Reason in U: by our earlier remarks the limit L exists. So assume $L = \underline{i} \notin X$. Then, by the definition of H, i > 0 and TabProv $_{Exp}(^{\Gamma}L \neq \underline{i}^{\Gamma})$. Recall that U extends $I\Delta_0 + \text{SupExp}$. By [6, Consequence 7.3.7], $I\Delta_0 + \text{SupExp}$ proves Π_2^0 -reflection for $I\Delta_0 + \text{Exp}$. (This is in fact the only place where we really need U to be an extension of $I\Delta_0 + \text{SupExp}$.) Therefore, in U we have $L \neq \underline{i}$ —a contradiction. QED.

Lemma 4.4 Let $A \in \tau \mathcal{L}(\Box, \triangleright)^*$. Then $I\Delta_0 + \operatorname{Exp} \vdash [A]_{\mathcal{M}} \leftrightarrow \langle A \rangle_{\mathcal{M}}$.

Proof. Induction on A. The propositional case, and the Boolean cases are immediate from the fact that the limit provably exists, and the induction hypothesis, respectively.

Suppose $A \equiv \triangle_p B$. First we assume that $[\![\triangle_p B]\!]_{\mathcal{M}}$ is cofinite. Then $[\![\triangle_p B]\!]_{\mathcal{M}} = \omega$. So $[\![\triangle_p B]\!] \equiv \bigwedge \{ (L \neq \underline{i} : i \Vdash \bot \} \equiv \top$. So $[\![\triangle_0 + Exp \vdash [\![\triangle_p B]\!]_{\mathcal{M}},$ and hence $[\![\triangle_0 + Exp \vdash (\triangle_p B)\!]_{\mathcal{M}} \to [\![\triangle_p B]\!]_{\mathcal{M}}.$ To prove the other direction it suffices to show that $[\![\triangle_0 + Exp \vdash TabProv_U(\lceil [B]\!]_{\mathcal{M}}])$. Clearly, $[\![B]\!]_{\mathcal{M}}$ is cofinite and $X \subseteq [\![B]\!]_{\mathcal{M}}$; therefore $[\![B]\!]_{\mathcal{M}} \equiv \bigwedge \{ (L \neq \underline{i}) : i \not\Vdash B \}$. Reason in $[\![\triangle_0 + Exp]\!]$: if $i \not\Vdash B$, then $[\![Ab]\!]$ because $U \vdash L \in X$. Therefore $[\![Bb]\!]$ $[\![Ab]\!]$.

Next we assume that $\llbracket \triangle_p B \rrbracket_{\mathcal{M}}$ is finite. Let $\{j_0, \ldots, j_s\}$ be all j with $j \Vdash \triangle_p B$, $\neg B$. Then, if $i \not\Vdash \triangle_p B$, there is a $j \in \{j_0, \ldots, j_s\}$ with iPj. By the induction hypothesis it suffices to show that $I\Delta_0 + \operatorname{Exp} \vdash [\triangle_p B]_{\mathcal{M}} \leftrightarrow \operatorname{TabProv}_U(\lceil B]_{\mathcal{M}})$. Reason in $I\Delta_0 + \operatorname{Exp}$:

' \leftarrow ': Assume TabProv $_U(\lceil [B]_M \rceil)$. Let $j \in \{j_0, \ldots, j_s\}$. It follows that TabProv $_U(\lceil L \neq \underline{j} \rceil)$. So assume that TabProof $_U(p+1, \lceil L \neq \underline{j} \rceil)$. If LPj then H(p)Pj—so H(p+1) = j, which is a contradiction. Therefore, $\neg LPj$, so $\bigvee \{(L = \underline{i}) : i \Vdash \triangle_p B\}$.

' \rightarrow ': Assume $L = \underline{i}$, $i \Vdash \triangle_p B$. Then $i \neq 0$. So TabProv $_{Exp}(\ulcorner L \neq \underline{i} \urcorner)$ or TabProv $_U(\ulcorner L \neq \underline{i} \urcorner)$, so by 4.2 TabProv $_U(\ulcorner L \neq \underline{i} \urcorner)$. We also have for some x, H(x) = i, and hence TabProv $_U(\ulcorner \exists x \, H(x) = i \urcorner)$. This implies TabProv $_U(\ulcorner iQL \urcorner)$, which entails TabProv $_U(\ulcorner iPL \urcorner)$, because $U \vdash L \in X$. Finally, iPj implies $j \Vdash B$. Therefore TabProv $_U(\ulcorner \bigvee \{(L = j : J \Vdash B\} \urcorner)$.

Assume next that $A \equiv \triangle_q B$, and that $[\![\triangle_q B]\!]_{\mathcal{M}}$ is cofinite. Then $[\![\triangle_q B]\!]_{\mathcal{M}} = [\![B]\!]_{\mathcal{M}} = \omega$. So by the induction hypothesis $I \triangle_0 + \operatorname{Exp} \vdash \langle B \rangle_{\mathcal{M}}$, and hence

$$\begin{split} \mathrm{I}\Delta_0 + \mathrm{Exp} & \vdash & \mathrm{TabProv}_{Exp}(\lceil \langle B \rangle_{\mathcal{M}} \rceil) \\ & \vdash & \langle \triangle_q B \rangle_{\mathcal{M}} \leftrightarrow \top \\ & \vdash & \langle \triangle_q B \rangle_{\mathcal{M}} \leftrightarrow [\triangle_q B]_{\mathcal{M}}. \end{split}$$

Next we assume that $[\![\triangle_q B]\!]_{\mathcal{M}}$ is finite. As in the case of $\triangle_p B$, let $\{j_0, \ldots, j_s\}$ be all j with $j \Vdash \triangle_q B$, $\neg B$. Then, if $i \not\Vdash \triangle_q B$, there is a $j \in \{j_0, \ldots, j_s\}$ with iQj. By the induction hypothesis it suffices to show that $I\Delta_0 + \operatorname{Exp} \vdash [\triangle_q B]_{\mathcal{M}} \leftrightarrow \operatorname{TabProv}_{Exp}(\lceil B]_{\mathcal{M}})$. Reason in $I\Delta_0 + \operatorname{Exp}$:

' \leftarrow ': This direction is analogous to the corresponding direction in the case of $\triangle_p B$.

' \rightarrow ': Assume $L=\underline{i}, i \Vdash \triangle_q B$. Then there exists an x with H(x)=i. So $\mathrm{TabProv}_{Exp}(\lceil \exists x \, H(x)=i \rceil)$, and hence $\mathrm{TabProv}_{Exp}(\lceil \bigvee \{(L=\underline{k}:i\underline{Q}k\}\rceil)$. Now, if $i \notin X$, then $\mathrm{TabProv}_{Exp}(\lceil L \neq \underline{i}\rceil)$ by the definition of H. Therefore $\mathrm{TabProv}_{Exp}(\lceil \bigvee \{(L=\underline{k}):iQk\}\rceil)$. Thus $\mathrm{TabProv}_{Exp}(\lceil \bigvee \{(L=\underline{k}):k \Vdash B\}\rceil)$. And if, on the other hand, $i \in X$, then $i \Vdash \triangle_q B$ implies by 2.5 that $i \Vdash B$. Again we have $\mathrm{TabProv}_{Exp}(\lceil \bigvee \{(L=\underline{k}):k \Vdash B\}\rceil)$. QED.

Lemma 4.5 Let $A \in \mathcal{L}(\Box, \triangleright)$. Then $I\Delta_0 + \operatorname{Exp} \vdash [A]_{\mathcal{M}} \leftrightarrow \langle A \rangle_{\mathcal{M}}$.

Proof. Since, by 2.4, for all $A \in \mathcal{L}(\square, \triangleright)$, and all $i, i \Vdash A \leftrightarrow A^{\tau}$, we trivially have $I\Delta_0 + \operatorname{Exp} \vdash [A]_{\mathcal{M}} \leftrightarrow [A^{\tau}]_{\mathcal{M}}$. Since $A^{\tau} \in \tau \mathcal{L}(\square, \triangleright)^*$, we can apply Lemma 4.4 to conclude that $I\Delta_0 + \operatorname{Exp} \vdash [A]_{\mathcal{M}} \leftrightarrow \langle A^{\tau} \rangle_{\mathcal{M}}$ (*).

By the Friedman-Visser characterization of relative interpretability over finitely axiomatized sequential theories, $I\Delta_0 + Exp$ proves

$$\operatorname{Interp}_{U}(\lceil \varphi \rceil, \lceil \psi \rceil) \leftrightarrow \operatorname{TabProv}_{Exp}(\lceil \operatorname{TabCon}_{U}(\lceil \varphi \rceil) \to \operatorname{TabCon}_{U}(\lceil \psi \rceil) \rceil).$$

This characterization allows us to show by induction on A that $I\Delta_0 + Exp \vdash \langle A^{\tau} \rangle_{\mathcal{M}} \leftrightarrow \langle A \rangle_{\mathcal{M}}$. Together with (\star) this yields the Lemma. QED.

We need one more definition and a proposition before we can prove the arithmetical completeness of ILP and ILP^{ω} . From now on \mathcal{M} is no longer a fixed Friedman tail model.

Definition 4.6 Let \mathcal{M} be a Friedman tail model. Define $d_{\mathcal{M}}(k) := \sup\{d_{\mathcal{M}}(l) + 1 : kRl\}$, and

$$\operatorname{d}(A) := \left\{egin{array}{ll} \mu n.\, \exists \mathcal{M} \exists m \, (\operatorname{d}_{\mathcal{M}}(m) = n \wedge m \not \Vdash A), & ext{if such an } n ext{ exists} \\ \omega, & ext{otherwise.} \end{array}
ight.$$

Proposition 4.7 Let $A \in \mathcal{L}(\Box, \triangleright)$. Then there is a function g that takes proposition letters to sentences in the language of U such that $I\Delta_0 + \operatorname{Exp} \vdash \langle A \wedge \Box A \rangle_g \leftrightarrow \operatorname{Prov}_U^{\operatorname{d}(A)}(\ulcorner 0 = 1 \urcorner)$.

Proof. If $d(A) = \omega$ then $ILP \vdash A$, so any g does the trick. If $d(A) < \omega$, then there is a tail model \mathcal{M} with tail element N such that $d_{\mathcal{M}}(N) = n$, and $N \not\Vdash A$. Define $g(p) := [p]_{\mathcal{M}}$. Then for every k with NRk, $k \Vdash A \land \Box A$. Moreover, if $k\underline{R}N$, then $k \not\Vdash A \land \Box A$. Therefore

$$\begin{split} \mathrm{I}\Delta_0 + \mathrm{Exp} \vdash \langle A \wedge \Box A \rangle_g & \leftrightarrow & [A \wedge \Box A]_{\mathcal{M}}, \text{ by 4.5} \\ & \leftrightarrow & [\Box^{\mathrm{d}(A)} \bot] \\ & \leftrightarrow & \mathrm{Prov}_U^{\mathrm{d}(A)}(\ulcorner 0 = 1 \urcorner). \text{ QED.} \end{split}$$

Theorem 4.8 Let $A \in \mathcal{L}(\Box, \triangleright)$. Then $ILP \vdash A$ iff for every interpretation $\langle \cdot \rangle_q$, $U \vdash \langle A \rangle_q$.

Proof. The direction from left to right is left to the reader. To prove the other one, assume that $ILP \not\vdash A$. Then there is a tail model \mathcal{M} and a tail element N such that $d_{\mathcal{M}}(N) = d(A) < \omega$, $N \not\vdash A$ and $I\Delta_0 + \operatorname{Exp} \vdash \langle A \wedge \Box A \rangle_{\mathcal{M}} \leftrightarrow \operatorname{Prov}_U^{d(A)}(\lceil 0 = 1 \rceil)$. If $U \vdash \langle A \rangle_{\mathcal{M}}$ then $U \vdash \langle A \wedge \Box A \rangle_{\mathcal{M}}$, and hence $U \vdash \operatorname{Prov}_U^{d(A)}(\lceil 0 = 1 \rceil)$ —contradicting our assumption that U is Σ_1^0 -sound. Conclude that $U \not\vdash \langle A \rangle_{\mathcal{M}}$. QED.

Theorem 4.9 Let $A \in \mathcal{L}(\Box, \triangleright)$. Then $ILP^{\omega} \vdash A$ iff for every interpretation $\langle \cdot \rangle_g$, $\mathbb{N} \models \langle A \rangle_g$.

Proof. Again, the direction from left to right is left to the reader. Assume, to prove the converse, that $ILP^{\omega} \not\vdash A$. Then there is a Friedman tail model \mathcal{M} with $0 \not\Vdash A$. By $4.5 \ N \models \langle A \rangle_{\mathcal{M}} \leftrightarrow [A]_{\mathcal{M}}$. Moreover, $N \models L = 0$. It follows that $N \models \neg \langle A \rangle_{\mathcal{M}}$. QED.

References

- [1] Dick de Jongh and Frank Veltman. Provability Logics for Relative Interpretability. In: P.P. Petkov (ed.) Mathematical Logic, Proceedings of the 1988 Heyting Conference, Plenum Press, New York, 1990, 31-42.
- [2] P. Pudlák. Cuts, Consistency and Interpretations. Journal of Symbolic Logic 50 (1985), 423-441.
- [3] Craig Smoryński. Self-Reference and Modal Logic. Springer Verlag, New York, 1985.
- [4] Albert Visser. The Provability Logics of Recursively Enumerable Theories Extending Peano Arithmetic at Arbitrary Theories Extending Peano Arithmetic. Journal of Philosophical Logic 13 (1984), 97-113.
- [5] Albert Visser. Preliminary Notes on Interpretability Logic. Logic Group Preprint Series No. 14, Department of Philosophy, University of Utrecht, 1988.
- [6] Albert Visser. Interpretability Logic. In: P.P. Petkov (ed.) Mathematical Logic, Proceedings of the 1988 Heyting Conference, Plenum Press, New York, 1990, 175-210.
- [7] A.J. Wilkie and J.B. Paris. On the Scheme of Induction for Bounded Arithmetic Formulas. Annals of Pure and Applied Logic 35 (1987), 261-302.

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language LP-90-01 Jaap van der Does LP-90-02 Jeroen Groenendijk, Martin Stokhof LP-90-03 Renate Bartsch LP-90-04 Aarne Ranta LP-90-05 Patrick Blackburn LP-90-06 Gennaro Chierchia LP-90-07 Gennaro Chierchia LP-90-08 Herman Hendriks LP-90-09 Paul Dekker

LP-90-10 Theo M.V. Janssen LP-90-11 Johan van Benthem Mathematical Logic and Foundations ML-90-01 Harold Schellinx ML-90-02 Jaap van Oosten ML-90-03 Yde Venema ML-90-04 Maarten de Rijke ML-90-05 Domenico Zambella ML-90-06 Jaap van Oosten

ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel

Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavaldà, Leen Torenvliet

Osamu Watanabe, José L. Balcázar
CT-90-04 Harry Buhrman, Leen Torenvliet

Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke

X-90-05 Valentin Shehtman X-90-06 Valentin Goranko, Solomon Passy X-90-07 V.Yu. Shavrukov X-90-08 L.D. Beklemishev X-90-09 V.Yu. Shavrukov X-90-10 Sieger van Denneheuvel

Y-90-10 Sieger van Emde Boas X-90-11 Alessandra Carbone X-90-12 Maarten de Rijke

X-90-03 L.D. Beklemishev

X-90-04

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse,
towards a flexible dynamic Montague grammar
Models for Discourse Markers
General Dynamics

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Exercise of Lifschitz' Realizability to Higher Order Arithmetic,
and a Solution to a Problem of F. Richman
A Note on the Interpretability Logic of Finitely Axiomatized Theories

Associative Storage Modification Machines A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity in Relativized Separations Bounded Reductions

Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical
Theories
On Rosser's Provability Predicate
An Overview of the Rule Language RL/1

Provable Fixed points in $I\Delta_0+\Omega_1$, revised version Bi-Unary Interpretability Logic