Institute for Language, Logic and Information

SOME SYNTACTICAL OBSERVATIONS
ON LINEAR LOGIC

Harold Schellinx _

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-90-08

University of Amsterdam

335232



The ITLI Prepublication Series

1986
86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Theory of Types
86-05 Kenneth A, Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking Operators
1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sdnchez Valencia Traditional Logicians and de Morgan's Example
87-06 Eleonore Overstecgen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under Perspectives
87-09 Herman Hendriks Type Change in Semantics: The Scope of (gt:ntiﬁcation and Coordination
8 1P-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going fmﬁal in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anncke Kleppe . . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | ifschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of A,f, lied Kolmogorov Complexity
CT-88-02 Micl%iel HM. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple ﬁcprescntations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denneheuvel, Peter van Emde Boas  Towards implementing RL

X-88-01 Marc Jumelet Other prepublications:  On Solovay's Completeness Theorem

1989 LP-89-01 Johan van Benthemlogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof = Dynamic Predicate Logic, towards a compositional,
non- frcscnmtioml semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adequacy Problem for S?uemial Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce':?ropositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in %)istribnled Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations. into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provabﬁ:_Fixed points in JAg+Q,

CT-89-01 Michiel H.M. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Necuféglise, Leen Torcnvliet, Peter van Emde Boas ~ On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Picter H, Hartel, Michiecl H.M. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvlhet, Willem G. Vree ’

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complgcxily ?or the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Dennchcuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas o
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

{—88-06 Peter van e Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
990 ' SEE INSIDE BACK COVER



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

SOME SYNTACTICAL OBSERVATIONS
ON LINEAR LOGIC

Harold Schellinx

Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications
for Mathematical Logic and Foundations

ISSN 0924-2090
Received September 1990



Some syntactical observations on linear logic

Harold Schellinx
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Abstract

The purpose of this note is to clarify some syntactical matters in linear logic. We
present a detailed proof of the faithfulness of the embedding of intuitionistic logic into
classical linear logic (CLL) and characterize intuitionistic linear logic (ILL) as the logic
obtained from CLL by imposing a restriction on the right-rule for linear implication while
keeping the property of Cut elimination. Also it is shown that CLL is not conservative
over ILL.

Keywords: syntax, linear logic, intuitionistic logic, sequent calculus, cut elimination.

1 Introduction: standard logic

In a Gentzen-type sequent calculus logic is formalized by means of a set of rules for the
manipulation of so-called sequents: two strings I'; A of formulas separated by the symbol =
(so ‘T = A’ will be our typical example of a sequent). A distinction is made between two
kinds of rules: those that are said to be logical and those that are denoted as structural rules.
In Appendix A we give a version of sequent calculus for classical predicate logic CL. As is
well known we obtain a sequent calculus for intuitionistic predicate logic (IL) by limiting all
succedent sets to one-element sets. The resulting calculus is presented in Appendix B. A less
standard version of intuitionistic sequent calculus is obtained by limiting succedent sets to
one-element sets only for the rules — R and VR. We will denote the resulting system by IL”.
It is presented in Appendix C.

One of the basic results of proof theory is that Cut can be eliminated from derivations
in CL and IL. The usual proof of this fact proceeds by induction, on e.g. the weight of an
application of Cut in a derivation. One then goes through all possible cases to show that a given
application of Cut may always be replaced by a derivation without Cut, or with applications
of Cut of a lower weight.

In Dragalin (1988) precisely this technique, which of course is correct for CL and IL, is
applied to prove the eliminability of Cut from derivations in (a sequent calculus equivalent to)
IL>. But a closer inspection of the argument presented shows that the author seems to have
overlooked the difficulties arising from the asymmetry caused by the restricted rules in IL”.



Before explaining this in more detail, we list some of our conventions and terminology in
dealing with sequents and derivations.

1.1. DEFINITION. In asequent I' = A we take I and A to represent multisets of formulas: we
hardly ever explicitly mention the use of exchange, but take the order of formulas in sequents
in a way that suits the occasion.

Derivations are represented in the usual tree-form. In a (representation of a) derivation D
we will use double bars to denote a succession of applications of weakening- and/or contraction-
rules.

Given a derivation of some sequent I' = A we say that a formula A is the main formula
if A is main formula in the first application of a logical rule appearing above the conclusion
I' = A. (An instance of) a formula A occurring in a derivation is said to be primitive if it has
been introduced by means of an axiom.

The length | D | of a derivation D is defined as follows:

- If D is an axiom, then | D |= 0;
- If D is obtained from D' by means of a rule, then | D |=| D' | +1;
- If D is obtained from D, and D, by means of a rule, then | D |= maz(| D, |,| D2 |) +1.

The height h(D) of a derivation D is defined as follows:

- If D is an axiom, then h(D) = 0;

- If D is obtained from D’ through a structural rule, then k(D) = h(D');

- If D is obtained from D; and D, by Cut, then h(D) = maz(h(D1), h(D2));

- If D is obtained from D’ through a logical rule, then h(D) = h(D’) + 1;

- If D is obtained from D; and D, through a logical rule, h(D) = maz(h(D,), h(D2)) +1.

A highest instance of Cutin a derivation D is an instance of Cut such that the sub-derivation
of D ending with it does not contain any other instances of Cut.

Let an instance of Cut be given:

D, D,
I'=> A A I'A= A’
T,T' = A, A

Cut

We call A the cut-formula. The sub-derivations given by the instance of Cut are the
derivations D; and D, of the premisses. The hetght of the instance of Cut is the minimum of
the heights of the sub-derivations given by it, i.e. min(h(D1), h(Dz)). O

Inspection shows that we get into trouble when we try to adapt the usual proof of Cut
elimination to the case of IL” precisely in those cases where the cut-formula A is main formula
of the left premiss, whereas the first logical rule in the sub-derivation which has the right
premiss of the instance of Cut as its conclusion is one of the restricted rules of IL>, and does
not have A as main formula. We are then no longer able to perform the permutation of rule
and Cut necessary to obtain instances of Cut in which one of the premisses is conclusion of a
sub-derivation of lower height:



\<_-’I‘£)A)C=>D I‘{,AéA(a)

Iy = A4,A«7 T{,A=C>D Ty = A, A 1 A= VzA(z)
T=4,A rAsa . T AA T A= A
I,I'= A, A v I,T'= A,A

Nevertheless it is true that use of Cut is superfluous in IL”-derivations. In fact a system
equivalent to IL”, namely the Beth-tableau system (B) has already been studied quite exten-
sively in the late sixties by M.C. Fitting, who in Fitting (1969) proved B to be closed under
Cut by showing the system B without Cut to be sound and complete for Kripke-semantics.

In what follows we will show the eliminability of Cut in IL” in two slightly more direct
ways, referring only to the given systems IL and IL”.

Cut elimination for IL>: First Method.

Our first method of establishing Cut elimination for IL” will consist in showing that we always
are able to avoid the problematic situations mentioned above. To establish this the following
two lemmas will be (more than) sufficient.

1.2. LEMMA. Let D be a Cut-free derivation of I' = AOB,A or T, AOB = A (withO €
{A,V}) in CL or IL”. Then we can transform D into a Cut-free derivation D' that ends with
an application of the relevant (-rule, or such an application followed by a contraction.

PROOF. An easy, but long, induction on the length of Cut-free derivations in CL, IL>. To
be precise, one shows inductively the following:

e A(1) - If D is a Cut-free derivation in IL”> or CL of I' = AA B, A then we can transform
D into a Cut-free derivation ending with

' AA T=BA
T= AAB,A

e A(2)- If Dis a Cut-free derivation in CL or IL” of ', AAB = A then we can transform
D into a Cut-free derivation ending with

TA)B= A
I'ANB,B= A

I AAB,AANB = A
T''AANB= A

e V(1) - If D is a Cut-free derivation of I' = A vV B, A, then we can transform D into a
Cut-free derivation ending with



T = A,B,A
T'= AV B, B,A
T= AV B,AV B,A
I'= AV B,A

e V(2) - If D is a Cut-free derivation of T, AV B = A, then we can transform D into a
Cut-free derivation ending with

T'N'A= A I''B=> A

T,AVB = A =

(Note that in CL we have that a Cut-free derivation of I' == A — B, A too can be trans-
T''A= B,A

T= A4 B,A’
T=>A4A TI,B=A

I'N'A—-> B=A

and a Cut-free derivation

formed into a Cut-free derivation ending with

of ', A —» B = A can be transformed into one ending with
Both are not true for IL> (or IL).)

1.3. LEMMA. Let D be a Cut-free derivation of ', 3z A(z) = A in IL” or CL. Then we can

I'A A
transform D into a Cut-free derivation ending with T E’lzfi‘z:)c 7 A
Proor. Another induction on the length of Cut-free derivations. O

1.4. LEMMA. Highest instances of Cut of height 0 are redundant (i.e. they can be removed).
Proor. Easy. a

1.5. LEMMA. Highest instances of Cut on primitive formulas are redundant.

Proor. By careful inspection of cases one shows that these instances can either be removed,
or permuted upwards (i.e. replaced by instances of Cut of lower height). O

1.6. THEOREM. (Cut elimination for IL>) Any IL>-derivation of a sequent ¥ = II can be
transformed into a Cut-free derivation.

Proof. Let D be an IL”-derivation of £ = II. First apply (the proof of) lemmas 1.4 and
1.5 to obtain an IL”-derivation in which no highest instance of Cut is of height 0, and in which
no highest instance of Cut has a primitive cut-formula. Now let

D]_ DZ
I'=> A A I"A= A’
LT/ A A

Cut

be one of the remaining highest instances of Cut. Then A = A;04; or A = QzA(z) with
O€ {V,A,—},Q € {3,V}. As in the usual proof we show that in all possible cases the instance
of Cut can either be removed or replaced by instances of Cut on formulas of strict lower



complexity or of strict lower height. First note that we may assume that A is not introduced
by (left- or right-)weakening (for then we obtain I',I' = A, A’ directly by structural rules
from D; or D,). Next let us sketch how to handle the “problematic cases”, where A is main
formula in the left premiss, while in the right premiss we have as first logical rule one of the
restricted rules.

For A = A; — A, or A =VzA(z) to be main formula, the derivation in the left premiss of
the instance of Cut necessarily is e.g. as follows:

D' D'
I‘1,A1:>A2 I‘1:>A(a)
I‘l = A]_ g Az I‘1 = VzA(z)
I's A4; — Ay A I'=> VZA(:E),A

Consequently we can perform the permutations of Cut and restricted rules, as all other
formulas in the succedent are introduced by right-weakening.

For A= A AN A;,A= A,V A; or A = 3JzA(z) we can avoid the problematic situation by
using (the proof of) lemmas 1.2 and 1.3: we can transform the derivation D, into a Cut-free
derivation in which A is main formula. As an example let us look at A = 4; A A,. We then
have e.g.

£

I‘i,Al,Az = Ai

D D , ,
1,A1 /\Az,Az = Al
Iy = A1, A1 T1 = A4y, TY,A1 A Az, A1 N Az = A}
Ty = A ANAy A I‘;,A]./\A2:>Ai
T's A1 AAy A r',Al/\A2:>AI Cut
T,T' = A, A/

which can be transformed into

D! £
Ty = A;,A T}, Ay, Ay = A! Dy
1 1,41 1) 41, 1 Cut
I‘l,I‘{,A2=> Al,Ai Ty = 4,,4 Cut
rlarlari = A11A1)Ai
I,T' = A, A

Thus we replaced the original instance of Cut by two instances of lower height (and on
formulas of lower complexity). A = A; V A; and A = 3zA(z) are treated similarly.

All the remaining cases are treated in the usual way.

Therefore a finite number of transformations results in a derivation of I', TV = A, A’ in
which all instances of Cut are on primitive formulas and/or of height 0. Starting with the
highest instances, we use (the proofs of) lemmas 1.4 and 1.5 to remove them all. This gives



us a Cut-free IL”-derivation of ', T' = A, A’.
We have shown that each highest instance of Cut in an IL”-derivation can be removed.
Therefore all instances of Cut can be removed. a

Cut elimination for IL>: Second Method.

1.7. DEFINITION. We write \ A for any formula representing the disjunction of all formulas
in A. If A is empty we take VA = L. O

From the following proposition it follows that the comma in succedent sets of IL> -derivable
sequents is precisely the intuitionistic disjunction.

1.8. ProrosiTiON. IL> FT = A ifandonlyif ILFT = VA.

Proor. («) Suppose IL T = V A. As V A = A is (Cut-free) derivable in IL”, we
obtain the desired derivation of I' == A by an application of Cut.
(=) By induction on the length of derivations in IL>. O

(Note that in Troelstra and van Dalen (1988, chapter 10) for the equivalent systems
“Kleene’s calculus G3” and “Beth-tableau system” the left-to-right part of proposition 1.8
is proved via a reduction to natural deduction for intuitionistic predicate logic.)

1.9. THEOREM. (Cut elimination for IL”, again) Any IL”-derivable sequent T' = A is
derivable without application of Cut.
ProoF. Suppose IL”+ T = A. Then by proposition 1.8 and Cut elimination for IL we have
a Cut-free IL-derivation of I' = \/ A. One then shows by induction on Cut-free IL-derivations
that it is possible to transform this derivation into a Cut-free derivation of I' = A in IL”.
The only cases that need some consideration are the axioms and applications of V R-rules.
These are handled by right-weakening, which in IL” acts as right-rule for “disjunction written
as a comma”. O

2 From standard to linear logic

The distinction made in the sequent calculus formulation of standard logic between logical and
so-called structural rules is a bit misleading, as especially the rules of weakening and contraction
express important and non-trivial properties of the connectives A,V and —, properties that
on closer observation appear to be at the very heart of (standard) logic.

Let’s take a look at the following minimal version of sequent calculus for classical propo-
sitional logic, say CL,:

Axioms:
A= A I'1=>A

Logical rules:

'A= B,A 'y = A A T2, B=> A,
—-R —F — L
I'=>A—- B,A I'yy,T2,A— B = Ay, A,




Structural rules:

, L= e DA g DA4=a g D2A4AA
Y T B=a T> B,A T, A= A T=4,A
[, A4,B,A=3 T =T, 4,B,A 1= A, A Ty A=A,
el o= eR 2T 55 Cut
I''B,AJ A= X Y=I,B,4A 'y, T2 = Ag, A,

Clearly this limited calculus enables us to obtain all of classical propositional logic (e.g. as
given by the sequent calculus of Appendix A) by taking the connectives A,V as being defined
in terms of — and L. Observe that the rules of weakening are crucial in showing that the
appropriate rules for our defined disjunction and conjunction are derivable in this limited
calculus. Also note the following:

2.1. ProrosIiTION. CL, enjoys Cut elimination.
ProoF. Straightforward. O

In our formulation of the calculus we have given the rule — L in what is called a multi-
plicative form. Another option would have been to use the so-called additive form:

T'= AA I''B=> A
' A—- B=A

One easily shows that in the presence of the structural rules of weakening and contraction
the additive form is equivalent to the multiplicative form, in the sense that given one of both,
the other becomes derivable. And in fact there is a converse to this observation: by adding rules
for — in additive form to our calculus, we may delete the rules for weakening and contraction
while still being able to obtain all of classical propositional logic, provided we keep the rule
for right-weakening in the special case of our constant L. But for this there is a price to be
paid: our calculus will no longer enjoy Cut elimination.

Let us denote the modified calculus by CLj,. It is given by the following set of axioms and
rules:

Axioms:
A=A l=A

Logical rules:

'=A
_|_R -
r=.1,A
R I A= B,A R I'=> B,A R A=A
™ I'=> A— B,A “ I'=>A—-BA “ I's A—B,A
L Di=44 TB=4 L =44 I'B=A
™ T3, Ao B= Ay, A ¢ A—-B=A



Structural rules:

I'A,B,A=% Y=TI,4,BA I'i=>4A,,A ', A= A,
eR Cut

[ 2oeae=a 2= L e
 T.B,AA=3 T=T,B,4A T1, Tz = Ay, Az

Now we observe:

2.2. ProrosITION. CLJ, is equivalent to CL,, but does not enjoy Cut elimination.

ProOOF. We leave it as an exercise to show that weakening and contraction are derivable
rules in CLj, but obviously a sequent like e.g. A, B = A is not derivable without use of Cut.
O

Some reflection will make it clear that it is precisely the derivability of weakening- and
contraction-rules that stands in the way of a possible elimination of Cut in CLj,-derivations.
Now taking a closer look at those derivations of weakening and contraction, we observe that
they seem to depend on two features:

o the identification of “—”

additive rules;

in the use of multiplicative rules, with “—” appearing in the

e the joined possibility of ‘ez falso’ for L as given by the (.L)-axiom, and rule 1R.

Therefore, in order to regain eliminability of Cut, it seems good strategy to consider additive
> as being different from multiplicative “—”, and distinguish a multiplicative “L” (which
can be used for right-weakening) from the additive “1” (giving us ‘ez falso’). So let us
introduce a splitting of notions, as follows:

“_yo

(multiplicative)

~) (L)

J
&
N\

N
/
) GO

(-

(additive)

As we will see, the calculus obtained in this way enjoys Cut elimination, but of course
again there is a price to pay: we have left the realm of standard classical logic, as clearly the
logic obtained (we will denote it by LL,) can no longer be equivalent to CL,,. It is given by
the following set of axioms and rules:



Axioms:

A=A o= A 1=
Logical rules:
I'= A
R —=
L ' 1A
I'A= B,A T'y=> A4 I';, B= A,
—oR —F —o L
' A— B A I'y,T3,A— B = A1, A,
R I'= B,A R TI'A= A N '=>AA I'B=A
! T=> A4~ B,A ! T3 A~ BA LA~ B=A
Structural rules:
I''A,B,A=X Y=T,4,BA I'n=>A,,4A I A= A,
el —mMm— eR —m———— Cut
I''B,AJA=X Y=>I,B,AA ', T2 = A, A,

What we did obtain is a logic equivalent to Girard’s so-called classical linear (propositional)
logic (Girard, 1987), which we denote by LL and a sequent calculus formulation of which is
given (by the propositional part of the calculus presented) in Appendix D. As a matter of fact,
our formulation is ‘minimal’ in the same sense in which CL,, provided a minimal formulation for
classical propositional logic: the additive connectives @, & and their multiplicative companions
%,® are definable from ~+,0 and —o, L in precisely the way we define V,A from —, 1 in
standard logic. All this and more is contained in the following

2.3. THEOREM. LL, enjoys Cut elimination and is equivalent to classical linear propositional
logic LL.

ProoF. Cut elimination can be proved in the usual way, straightforwardly. For the equiv-
alence of LL,, with LL, let us give the definitions of the various connectives and constants in
Girard’s logic in terms of our two arrows —o, ~+ and two constants L, 0:

[#] ABB:=(A— 1) B;

(] A®B:=(A~0)~ B;

e [®] A®B:=(A—-(B-—l))—ol;
o [&] A&B :=(A~ (B~ 0))~0;

1] 1:=1 —1;

[T] T:=o0~0.

We leave it as an exercise to show that the rules for these connectives as given in the
Appendix are derivable in LL, for the defined connectives.

Conversely, observe that the arrow ~+ is definable in LL by putting A ~ B := (A — 1)®B.
We leave the details of verification again as an exercise. O

The formulation of linear propositional logic here given shows that we can consider linear
logic as being ‘a logic of two arrows’. That with the arrows we get but one ‘classical’ (i.e.
involutive) negation is the content of the following



2.4. ProPOSITION. Both A —o 1 and A ~+ 0 behave as a negation, and we can derive in
LL,:

¢ (A—ol)—o L &= 4
¢ (A~ 0)~0 <= A
But also the following are derivable:

o Aol <= A~0.

ProoF. Exercise. o -

3 Linear logic

Girard (1987) showed how to obtain a powerful logic with interesting properties by adding
to LL weakening and contraction ‘controlled’ by modalities, the so-called exponentials ! (‘of
course’) and ? (‘why not’). This logic, extended with the usual rules for first-order quantifiers,
is known as ‘classical linear logic’ (CLL), and enjoys Cut elimination (see Roorda, 1989). A
sequent calculus for CLL is given in Appendix D. It is important to note that the rules for the
exponentials are taken to be logical rules. In linear logic the only remaining structural rules
are exchange and Cut.

Embedding IL into CLL.

In Girard (1987) a translation (-)* of IL into CLL is defined as follows:
for atomic A put A* := A ; then put

1* =0
(AAB)* := A*&B*
(AV B)* = 14*@!B*

(A—- B)* := 1A* - B*
(VzA)* = VzA*
(FzA)* = 3F!A*

The embedding thus defined is claimed to be both correct and faithful, which is the content
of the following

3.1. THEOREM. IL T = A ifand only if CLL}IT™* = A*.
(Here !T* denotes the multiset {!B* | B € T'}.)

A straightforward induction on the length of (Cut-free) derivations of T' = A in the
version of sequent calculus of IL given in Appendix B suffices to proof correctness. The proof of
faithfulness, on the other hand, seems to be a bit more involved. In Girard (1987) it is justified,
first by the remark that, due to Cut elimination, we may assume a derivation of !T* = A* to
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be obtained within the fragment F of CLL containing solely rules for 0, —, ®, &,!,V and 3.
(See Appendix G). Secondly, Girard says, “if we erase all symbols !, and replace @, &, — by
V, A, —, then we get a proof of A in intuitionistic logic.”

This, however, is not obvious at all. The reader may convince her/himself of the fact that
in a derivation of !I'* => A* the combined use of 0-axioms and —o L-rules allows the occurrence
of sequents with more than one succedent. Using the above recipe for proof transformation,
~ the result is not a derivation of ' = A in IL and it is not clear whether the resulting proof
will be intuitionistically valid.

Nevertheless Girard’s claim of faithfulness holds, as in what follows we will show that we
may assume a derivation of !T* = A* to be of such a form that application of the above
recipe for proof transformation necessarily results in a derivation of I' = A within IL>, and
therefore is intuitionistically correct. '

A first step towards this is the following simple, but useful,

~

TS AASE Then there is

3.2. LEMMA. (a) Suppose in F we have some derivation
—
I''A=AB

I'>AA—-B’

(b) If in F we have some derivation

in F a derivation

5

————————, then't is I
TS A ALB en there is in F a

! n

T=A4 T'sA,B
I'=> A,A&B ’
(c) Suppose in F we have some derivation

derivation
v

m. Then there 1S 1n .7:

.

I' 5 A, Ay

I'=> AVzA

Proor. Induction on the length of derivations in F. O

a derivation

Lemma 3.2 tells us that we may assume that a derivation of a sequent T= A,C in F ends
with a series of applications of — R, & R, VR starting from a collection of sequents I'; = A;, C;,
where each formula C; has been introduced by an axiom or is of one of the forms A @ B or

A A

I‘lz?Al)Cl Pi:>Aivci rn:An:Cn

T=A,C

11



3.3. DEFINITION. In a derivation within F of a sequent !T'*,II* =!A* A* we will call (an
occurrence of) a formula C* f-primitive if either it is primitive (i.e. has been introduced by an
axiom) or has one of the forms !A*@ !B* or Jz!A*. O

We then have the following

3.4. LEMMA. Suppose in F a derivation is given of either
(a) 'T*II*=!A* or
(b) 'T*II* =!'A*, B* , where B* is f-primitive.
Then we may assume the derivation to be such that all sequents having more than one
succedent have one of the forms (i) or (ii) :
(i) T A*='0*,A*, with|® |>1 and A* fprimitive;
(i) 5%, A*=10*%, with|©|> 2.
PrROOF. By induction on the length of derivations of (a), (b) in F:
A sequent of the form (a) can be derived by means of a right-rule in F only if that rule is
'R and moreover I =0, | A |=1:

T* = L*
IT* =>10*°

Because of (the remarks following) lemma 3.2 we may assume that !I'* => L* is obtained
solely through applications of — R,&R,VR starting from sequents !I'Y = L}, with L} f
primitive. To these sequents we may apply the induction hypothesis for (b).

A sequent of the form (b) can be derived by means of a right-rule in F only if that rule is
either ®R;,®R; or 3R. In all these cases we can apply the induction hypothesis for (a) to
the premiss of the rule. _

Also if (a) or (b) has been obtained through application of a left-rule in F (including !c)
the result follows directly by induction hypothesis.

Finally, notice that in case (a) or (b) is an axiom there is nothing to prove. a

3.5. PROPOSITION. Suppose the sequent !I'* = A* is derivable in F. Then we may assume
the derivation to be such that all applications of —o R, VR only use sequents with precisely one
succedent.

ProoF. Because of (the remarks following) lemma 3.2 we may assume that we have obtained
IT* = A* through a series of applications of — R, & R, VR starting from a collection of sequents
Iy = A} with A} f-primitive.

Lemma 3.4 then tells us that also we may assume the derivations of the sequents I} = A¥
to be such that all occurences of sequents with more than one succedent have either the form
(i) or (ii). Would there be, in any one of these derivations, an application of —o R or VR in
which a sequent having more than one succendent occurs, then we would have a sequent of
the form (i) or (ii) as a conclusion in an application of — R or VR. Obviously this is not
possible. O

12



3.6. COROLLARY. Girard’s embedding IL — CLL is faithful.

ProoF. Given the derivability of the sequent !T'* = A* in CLL, we know by Cut elimination
that there is a derivation within 7. The previous proposition tells us that we may assume
that applications of — R, VR only use sequents with precisely one succedent. Then, by erasing

all !, and replacing occurrences of ®,&,— by A,V,—, we obtain a derivation of the sequent
I = A within IL> (with left rule for — in multiplicative form). O

Intuitionistic Linear Logic.

Intuitionistic linear logic ILL is defined in analogy to intuitionistic logic in the standard case as
the logic obtained by restricting all succedent sets to one-element sets. As this means that we
lose the rules for par (®) and the exponential ?, this connective and exponential are dropped
alltogether, as are both the axiom and rule for the ‘neutral constant’ corresponding to par, L.
Thus we arrive at the calculus given in Appendix E.

One might ask whether CLL is conservative over ILL. This is not so, as e.g. the sequent
D —-C,(D—-B)—-0=CQ®T is derivable in CLL:

=>T,B C=>C
D=D C=>CQT,B
D,D—-C=CQ®T,B

D—-oC=CQ®T,D—-B 0=>
D—-oC,(D—-B)—0=CQ®T

On the other hand, given the redundancy of Cut in ILL-derivations (which for ILL, as
for CLL, can be proved in more or less the usual way), it is easy to show that this sequent is
not ILL-derivable. (It was pointed out to us by Yves Lafont that the above example can be
modified to give us an even simpler counterexample to the conservativity of CLL over ILL.
We leave it as an exercise for the reader to find this simplification.)

We will now go on to show that, as in the non-linear case, one gets a calculus equivalent
to ILL by restricting the occurrence of one-element succedent sets to only some of the rules.
In fact it turns out to be sufficient to impose this restriction on —o R. However, a consequence
is that also the axiom (T) has to be limited; this is because in ILL we can derive 0 = A= T
as well as T = 0 — A, for any A. So axiom (T) in a way represents an instance of — R.

We denote the resulting calculus by ILL>. It is given by the set of axioms and rules listed
as Appendix F.

REMARKS

1. Contrary to the non-linear case we do not need a restriction on VR.
2. When we insist on using the full axiom (T), the resulting calculus can not enjoy Cut
elimination; for then e.g. A = 0 — A, A is derivable, as follows:

13



T,0=> A

A=>T,A T=>0—-oA
A=>0-—o0A4A

Cut

Clearly this sequent can not be derived without use of Cut in a calculus that has a restricted
—o R-rule.

3.7. DEFINITION. A sequent I' = A is an n-sequent if the multiset A contains n formulas.
O

3.8. LEMMA. Any ILL”-derivation D of a sequent T' =  contains at least one branch
consisting solely of 0-sequents and ending in an instance A,0 =  of axiom (0). Moreover,
for all ©, % there exists an ILL” -derivation D' of ©,T = ¥ with | D’ |=| D |.

ProoOF. By induction on the length of ILL” -derivations. O

The following proposition provides an interpretation for the non-singleton sets that can
appear as succedents in ILL”-derivable sequents.

3.9. ProproSITION. Let D be an ILL”-derivation of an n-sequent ' = A withn # 1. Then
there is an ILL” -derivation D' of T = 0 with | D’ |<| D |.
ProoF. For 0O-sequents this is a corollary to lemma 3.8. For n > 1 we again proceed by
induction on the length of derivations. This is possible thanks to the restriction on —o R and
the fact that rules for right-weakening and left-par are lacking.

For the basis of induction we only need to consider axiom (0), which trivially satisfies our
demands. In the induction step most cases are more or less immediate by induction hypothesis.
Consider e.g. the rule ®R:

'=> AA "= B,A’
I''l"= A® B,A,A’
The induction hypothesis can be applied to at least one of the two premisses. In both cases

we obtain our result by an application of Cut on 0.
For the rule oL

I'=> A A I',B=> A’
I, T A— B = A,A’

we have to distinguish two cases: if A is not empty we use the induction hypothesis on the left

premiss and apply Cut on 0; otherwise we have a derivation of I' = A of strict lower length

and obtain our result by induction hypothesis for the right premiss and application of —o L.
The same argument holds in case of Cut. O
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3.10. THEOREM. ILL”> +T = A iff ILLF T = A. (So ILL” is conservative over ILL.)

Proovr. Obviously only the left-to-right direction needs some attention, and for this we
once more proceed by induction on the length of ILL” -derivations.

Clearly, for derivations of length 0 our claim holds. So suppose we already were able
to give the proof for all sequents having an ILL”-derivation of length at most n. Then let a
derivation of I' = A be given of length n+ 1. Now in most cases the result follows immediately
by induction hypothesis and application of the same rule in ILL. Let us check this in the case
that I' = A has been obtained through application of —o L. For this there are two possibilities.
Either we have

'h=C I';,B= A
I, T2, C—-B= A

or the final step in the derivation has been

I‘1:>C,A I'y,B >
[1,T5,C-B=A4

" In the first case we are done by induction hypothesis and — L in ILL. In the second case,
note that by proposition 3.9 we have an ILL” -derivation of I'; = 0 having at most the same
length as the given derivation of I'; = C, A. By lemma 3.8 we have an ILL”-derivation of
I';, B = A having the same length as the given derivation of I';, B =>. Therefore we have
ILL-derivations of I'y = 0 and I';, B = A by induction hypothesis. We then combine these
to obtain an ILL-derivation of I'y,T'5,C — B = A as follows:

I'h=0 0=C
Cut
=C I'y,B=A
ry,T,,C -B= A

Cut is treated similarly. (]

3.11. THEOREM. (Cut elimination for ILL>) Cut can be eliminated from ILL> -derivations.

ProoF. One may follow a procedure similar to the first method for Cut elimination de-
scribed in the non-linear case. There is a slight technical complication caused by the !c-rule,
which can be overcome by permitting a generalized (but derivable) rule of Cut on !-formulas.
For this we refer to Roorda (1989), where an extensive description of the process of Cut
elimination for CLL-derivations is given.

The “problematic cases” can be handled by means of proposition 3.9 and theorem 3.10.
As an example, let the following be some highest instance of Cut in an ILL”-derivation, and
suppose A is main formula in the left premiss.

T;,A,B=C
I‘1=>A,A1 I‘z,A=>B—OC
I, T, = A;,B—-oC

Cut

As before, when A; # @, we cannot permute Cut and application of — R. But we know
by (the proof of) 3.9 how to transform the derivation of I'1 = A, A; into a derivation of
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I'; = 0; by (the proof of) 3.10 we can transform this into an ILL-derivation of I'1 = O,
which, by applying the procedure of Cut elimination for ILL, may be changed into a Cut-free
ILL-derivation.

Now replace the sub-derivation ending with the given highest instance of Cut by

h=0 0,Ty = Ay,B—-C
I'1,Ts=>A,B—-C

In the derivation obtained this is a highest instance of Cut of height 0, and can be removed.
O

Cut

Note that by theorem 3.10 any further restriction of rules to one-element succedent sets
in ILL> will result in some calculus that is also conservative over ILL. On the other hand,
dropping the restriction on either —o R or axiom (T) results in a calculus that no longer enjoys
Cut elimination, while dropping the restriction on both gives us a calculus, say ILL>>, that
is no longer conservative over ILL, e.g. by the non-conservativity example given above. So we
might call ILL> ‘minimally restricted’. In fact we have the following

3.12. THEOREM. ILL” is the unique minimally restricted sequent calculus obtainable from
ILL>> that is conservative over ILL and enjoys Cut elimination.

Proor. First note that restricting only on 1-, !-; quantifier- or structural rules, we would
obtain a calculus that is no longer equivalent to ILL, again by the example given above.
The same example shows that restricting only on @—, &-rules or ® L results in a calculus not
equivalent to ILL.

If we want to keep Cut elimination, a restriction on axiom (0) forces a restriction on axiom

(T):

I'=>T,A 0=>0
I''T—-0=0A 0=>T -0
Cut
I'o=0A

But a restriction on both (0) and (T) gives us precisely ILL, i.e. it forces restriction on
all rules.

As we already saw above, a restriction on — R forces a restriction on (T). Conversely, a
restriction on (T) forces a restriction on either — R or (0):

0= A,B

=>0—0A,B 0oA=>T
=>T,B

Cut

A restriction on ® R forces a restriction on (T):

T=>T =>T

=>T,A T=>TRT
>TQT,A

Cut
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And finally, a restriction on —o L forces a restriction on (0):

A=>A 0=0
0= B,C AJA—-0=0
A A—-0= B,C

Cut

Also ILL” is in some sense mazimal as a sequent-calculus:

e  we might consider extending ILL> with the exponential ? and its rules, but then note
that we would necessarily have to restrict rules ?R in order to keep eliminability of Cut,
e.g. because of the following:

X=X
0=>T X =70,X
X=>T,X

Cut

With this restriction the introduction of ? becomes harmless; but also quite useless.

¢ extending ILL> with the rules for par (%) results in a calculus in which Cut is not
eliminable, as follows from the next example:

0= A,B c=C A=A 0=
0®C = A,B,C A/A—-0=> C=C
0®C = A,C,B ABC,A—-0=C
0% C => ARC,B ARC = (A—0)—C

Cut
0%C = (A—0)—=C,B “

We leave it to the reader to convince her/himself of the fact that 0% C = (A — 0) —
C, B is not Cut-free derivable in ILL> + par.
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Appendix A:
Axioms:
A = A

r,L = A

Logical rules:

CLASSICAL PREDICATE LOGIC CL.

I'B=A

A s AABSA

I A=A T,B=A

AR I'=>AA I'= B, A AL A=A
T'=AAB,A ! T,AAB=A
I'=4A I'= B,A

VR —M—— VRy —m8—— VL

! T=AVB,A > T=>AvVB,A

I'A= B,A I'=4A I''B=A

R LT = - L
' A—- B/A rA—-B=A
T'= Aag, A TAt= A

VR I'=> VzAz, A vI I''VzAz = A
T = At, A T,Aa= A

iR I'= 3z4dcz, A L I'3zAz = A

Structural rules:

r=A r=A

v § B A vR t=8.A

I I''A A=A R I'= A A A

“ T, A=A “ T=aa

e LABA=X p 2=>4BA

I'B,A,LA=X =I,B,4AA

Cut I'i = A, A T, A= A,

'y, T2 = A, A
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Appendix B:
Axioms:
A = A

Iyl = 4

Logical rules:

INTUITIONISTIC PREDICATE LOGIC IL.

AR I'=> A I'=> B AL I'A=C AL IB=C
= AAB ! T AAB=C 2 T AAB=C
I'= A I'=>B A= C I''B=C
VR —_— VR —_— VL
! T=AVB > T=>AVB T,AVB=C
A= B rsA TI,B=C
—R =7 —1I
I'=>A—- B 'NA—-B=C
I' = Aa I'At=> B
VR ——mm vL ——
I' = VzAz I'VzAz = B
I'= At I'Aa= B
IR I' > 3z Az L I'3zAz = B
Structural rules:
w I'= A L I'"AJA=> B I'A,B,A=C
I'')B=>A I'A=>B I''B,A,A=>C
'i=A4 I'syA= B
Cut
“ T, ;= B
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Appendix C:
Axioms:
A => A

ryL = A

Logical rules:

AR '=s A A I'=> B, A AL A=A
T'=AAB,A ! T,AAB=A
I'=>AA I'= B,A

_— VR _

VR, = AVB,A 2 ' AVB,A
'A=12B I'=>AA IB= A

—-R — — L

I'>A— B 'A—-B=>A

VR I'= Aa T'At= A

I'=> VzAz I''VzAz = A
IR I'=> At, A I'NAa= A
I' = dzAz, A I'dzdAz = A
Structural rules:
'=>A '=>A
wlL —————— _
I''B=A I'=> B,A
I VA A= A I'=2> A A A
“ T a=a T=4,A
I''A,B,A=>X Y=>I,4,B,A
e[, — Ll -~ — eR T2 ™=
I''B,A,A=1X Y=T,B,A A
Cut I'r=4A,,4 Ty A= A,

', T2 = A, A,

21
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Appendix D: -

Axioms:
A=A
=1 1=
ryo=A

Logical rules:

'=sT,A

CLASSICAL LINEAR LOGIC CLL.

i L=A r=A
) ILi=> A '=>1,A
oL I'A,B= A ' = A,A Ty = B,A;
I'NA®RB=> A I'yT9=> A® B, A1, A,
A=A T,B=A ' A4A TI'=BA
—_— &Ly ———mm— &R
&Ly T,A&B = A ? T,A&B=A T = A%B,A
BR I'= A, B A BI I'i, A= A, I';, B= A,
I'=> A®B,A '), 2, ABB = A3, A,
' A4A I'= B, A VA=A I''B= A
=48 - =5Hha L
®R S 4eB,A ®R: TS 4eBA ® T, A0 B= A
I'A= B,A T'y = A A I';, B= A,
—oR —F —o L
I'=>>A—-oBA I'y,T['9,A— B = A4, A
N T, A=A p T=C7A . L4145 A
1 oTA= A T,'A= A T orsic,’a : T,'1A= A
2R T'=A Ry I'=AA 2L IT,C =7A 7¢ T=74,74,A
I'=>74,A I'=2?%4,A I, 7C =7A I' =274, A
vp L= 4aA T,At= A T = At, A g Dde=4
' Ve Az, A I',VzAz = A I'> 3z Az, A IdzAz = A
S truc>t ural rules:
Cut T''=> A A Ty, A= A,
I';,Te = A, A2
g DABA=T . E=2D4BA
T=T,B,4,A

I'hB,A,A=X
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Appendix E:

INTUITIONISTIC LINEAR LOGIC ILL.

Axioms:
A=A
=1
o= A '=>T
Logical rules:
I'=> B
17 I'i1=1B
I‘iA’B:>C I‘1:>A P2:>B
L —mMmM— R
®L T, agB=>c ° T.l; > A®B
'aA=<C 'B=>C '= A I'=B
&L T,A&B = C &L, T,A&B=C LR T = A%B
'=> A I'= B A= C IhB=C
O’ TS A0B ®R: TS AeB eL T,A@B=C
I'YA= B 'i=4 I';yy,B=C
—oR ——m8M ——— — L
I'=>A4A—-oB I'yyT'2,A—B=C
1 I'=> B I'nA=B ' T=C e I'VA\'A= B
! T,'A=B " T,1A=>B oarsic ’ T,'A= B
VR I'= Aa I'At= B I'=> At ar I'y Aa= B
I' = Ve Ax I',VzAz = B ' = Jz Az I'JzAz = B
Structural rules:
Cut I'h=>4 I';5,A=C
Pl,F2=>C
e I'hA,B,A=>C
T,B,AA=C
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Appendix F: INTUITIONISTIC LINEAR LOGIC ILL”.

Axioms:

A=A
=1
o= A '=>T

Logical rules:

I'=A
1L rii=A
oL I''A,B= A I'i =>4, I's = B,A;
A B= A I'',T'2= A® B, A1, A,
I'A= A IB=>A I's A4,A ' B, A
. —_— &R
&l T, A&B = A &L, T,A&B = A T = A&B, A
T=A4,A I'= B,A A=A T,B=A
—_— ‘ R, ———— L
®’ TS Ae8B,A ®% 1= 4eB,A ® T,A@eB= A
I'A=1B I'h=>AA; '3, B=> A,
R — —o L
I'=>>A-—oB I'',T9,A—o0 B = A1, A,
I'= A VA=A T'=C I'iA(JA= A
L, ——— L, === IR ——— e e Rt
VA= A VA= A T =I1C TVJA= A
I'= Ag, A T At = A I'=> At, A I'y Aa = A
=468 g =48 =48 _fe=4a
VR I' = VzAz, A L I'VeAz = A iR I' = Jz Az, A L I'dzAz = A
Structural rules:
Cut ' = A, A I';, A= A,
', T2 = Ay, A
I'A,B,A=3X Y=>TI,A4,B,A
el —m4mM—— eR ——m———
[,B,AA=zX L=T1,B,4,A
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Appendix G:
Axioms:
A => A

r,0 = A

Logical rules:

The fragment F of CLL

oL I'N'd=> A I'B= A OR I'=>A4,A OR I'= B,A
ILA@B=A ! T3 4@B,A > T 40B,A
TVA= A IB=A I'=s A A I'=> B,A
—_— Ly, —mmm— &R
&Ly T,A%B = A &L, T, A&B = A T = A%B, A
I 'y = 4,A I's,B=> A, I'A= B,A
-—0 —_—
I'y,T'2,,A— B = Ay, A, I'> A—oB,A
'=A TIVA= A T'sC TVIA A= A
1L, ———— L, -~ IR ——— e 275
VA= A LA A ' =!1C VA= A
At,T'=> A T'= Aag, A
it Rt el v — T T
vL VzAz, ' = A R I' = VeAz, A
Aa, T = A I'= At A
L Jz Az, I' = A IR I'=> dzAz, A
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