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0 INTRODUCTION The fact that ZF set theory does not decide various easily
expressible statements concerning the reals and sets of reals, leads one to search for
additional axioms. Most axioms proposed so far use concepts which are formalizable in
set theory and they express new, in some cases even plausible, properties of these
concepts. Typical examples include large cardinal axioms, Martin's axiom, or the
axiom of determinacy. But, as Kreisel pointed out, one might also think of a different
way of introducing axioms, this time involving new primitives:

Let us try to expand the language of set theory, that is, add symbols for new
primitive notions, and look for axioms in the wider language which are evident (for
the notions given). They may imply set theoretic propositions, i.e. propositions in
the language L of set theory, which are not. Prima facie the case for this project is
overwhelming. [Kreisel then goes on to discuss one such proposal.]

A more interesting, but also more problematic, expansion in the literature [Kruse
1967] concerns the primitive predicate of being a "random sequence". Myhill
formulated axioms for the notion l.c. which, however, are not altogether plausible.
As he himself observed, the intuitive notion of random sequence is certainly not
extensional; specifically, if we think of a sequence as being produced by a die, it is
random, but this does not ensure that some element of the sequence differs from, say,
1; also, it is not intuitively clear that there is a collection of (intensional) sequences
such that (i) for each it is decided whether or not the sequence is random and (ii) the
usual axioms of set theory are satisfied by the collection. So, once again, we have
here an idea for an expansion rather than an effective use of an expansion ([1968],
100-1).

In the following pages we shall study various ways of introducing random sequences
in set theory, and their consequences. As Kreisel remarks, it is a moot point whether
the intuitive notion of randomness can be captured extensionally. We therefore pursue
two different lines:
- an intensional approach, where one studies essentially only
quantification over random sequences by means of a generalized
quantifier;
- an extensional approach, where one adds a new predicate for random
sequences.
The main conclusion will be that, orice one accepts the axioms Q for quantification over
random sequences given in section 1, and moreover classical logic, the two approaches
are essentially equivalent (theorem 2.4). The consequences of the axioms that have



been obtained so far, are all related to AC; e.g. in section 3 we show that Lebesgue
measure has a translation invariant extension to all sets of reals (theorem 3.6).

To appreciate the potential significance of this result, recall that, in modern probability
theory as codified by Kolmogorov, one proceeds by setting up first the apparatus of 6—
algebras and o-additive measures; afterwards the notions of independence and
randomness are defined. The results of this article indicate that one can profitably
reverse this procedure: we start with the notions of randomness and independence as
true primitives, not even formalizable in set theory; it is then shown that one can
dispense with the usual apparatus.

We now give a brief description of the contents of the paper. In section 1 we study the
effect of adding a generalized quantifier Q with the intuitive meaning of "almost certain"
to ZF. The most natural way to do so (allowing arbitrary sets as parameters in formulas
with Q) leads to a refutation of AC. A strong restriction (allowing only real and ordinal
parameters) still refutes V # L. The extensional approach to randomness is studied in
section 2. It so happens that this approach is strongly related to that of section 1 via the
elimination of the quantifier Q given in van Lambalgen [1990]. In section 3 we
introduce some further plausible axioms for randomness, which are analogous to the
density and data axioms for the (intuitionistic) theory of lawless sequences. A
consequence of the new axioms is the existence of a translation invariant extension of
Lebesgue measure to all sets of reals, and furthermore the nonexistence of free
ultrafilters on the powerset of w. In section 4 we briefly indicate why, as a consequence
of the preceding results, the addition of the theory of lawless sequences to intuitionistic
set theory is no longer a conservative extension (as opposed to the situation in, say,
intuitionistic second order arithmetic). The Epilogue, 5, contains some philosophical
remarks. In an appendix, section 6, we compare our approach with Freiling's "Axioms
of Symmetry" [1986]. Freiling shows how some simple axioms on throwing n random
darts forces the cardinality of the continuum to be = X . The main result here is,
roughly, that the size of 2%0 is related to the number of iterations of Q that one allows.
In this section we also comment on axioms for randomness proposed by Myhill in
1963.

It is only fair to say that this work owes part of its inspiration to Freiling [1986] and
Simms [1989]. In particular Freiling's emphasis on the fundamental importance of
symmetry for randomness, and Simms suggestion that Fubini's theorem is related to
extensions of measures have been instrumental. Furthermore I would like to thank
Domenico Zambella for permission to include some of his results and Georg Kreisel for
helpful correspondence.



1 QUANTIFICATION OVER RANDOM SEQUENCES. When we generate a random
sequence, there is prima facie nothing certain about the result, except for the finite
segment already generated. In this sense, random sequences behave as lawless
sequences and are indeed often adduced as examples of the latter. However, on an
intuitve level we are also almost certain, or practically certain, of many other properties:
that relative frequencies converge, that the same holds in suitably chosen subsequences
etc. The fact that practical certainty is not absolute certainty is what renders an
extensional theory of randomness difficult. But we have a different option: formalizing
the properties of "practically certain" itself and incorporating this notion in ZF.

So suppose we have some stochastic mechanism X that randomly produces infinite
binary sequences x. For X one could take, e.g., a fair coin. We add to the language of
set theory a generalized quantifier Q, where the intended interpretation of Qx¢(x) is: "if
x is randomly generated, it is practically certain that ¢(x)". We shall state the axioms
first, and comment on them afterwards. Unless specified otherwise, we assume that the
variables bound by Q run over 2®. We first fix the logic to be used:

QO Axioms and inference rules of classical predicate logic.

The following five properties, expressing that Q is a nonprincipal filter, are fairly
immediate.

Q1 —Qx x#x

Q2 Qy xy

Q3 Qxd(..,x,..) = Qyd(..,y,..) provided y is free for x in ¢

Q4 Qxd A Vx(d — W) = Qxy

Q5 Qxd A Qxy — Qx(d A Y)

So far, there is no difference between Q and the filter quantifiers studied in Kaufmann
[1983] and Kakuda [1989]. The crucial property is

Q6 QxQy¢ & QyQx¢.

COMMENTS ON THE AXIOMS

QO This choice of a logic is not altogether obvious, since we have expressly introduced
random sequences as objects about which we have partial information only. The force
of QO will become clear when we discuss Q4.

Q1 When read classically, this axiom states that there is some randomly generated x.
Without such a weak existence axiom, the enterprise would trivialize. But notice that
Q1 is still very weak; the following density axiom also seems to be justified: if a set A
has positive measure, then —Qx(x € A — x # x). This stronger axiom will be
considered in section 3.

Q2 This means that it is almost certain that randomly generated sequences differ from
some given sequence. This axiom is related to Kreisel's observation that "if we think of



a sequence as being produced by a die, it is random, but this does not ensure that some
element of the sequence differs from, say, 1"; for y, take the sequence 111... Here,
intensionality makes itself felt; we only require that it is almost certain that a randomly
produced x differs from y.

Q3 This is a syntactic expedient only.

QS5 states that the intersection of two almost certain events is again almost certain
(though, intuively, perhaps slightly less so).

Q4 expresses that Q is a monotone quantifier. That this is less innocent than may seem
at first sight can be seen as follows. We show that Qxd(x) — Ixdp(x). Suppose Qxp(x);
assume for simplicity that ¢ does not contain other free variables. Since Vx(¢(x)
—3yd(y)), monotonicity implies QxIyd(y). Using classical logic and Q1 — 5 one can
derive, when x does not occur free in Jyd(y): QxIyd(y) — Jyd(y). For suppose
—3yd(y), then also Vx(x # y = —IJyd(y)), whence by Q4 and Q2, Qx—Iyd(y). By
Q5, Qx(—Iyd(y) A Jyd(y)), which, again by Q4, contradicts Q1. Hence ——3Iyd(y),
and so dy¢(y) by classical logic. To see why the existential import of Q is somewhat
problematic, let us make a historical diversion. When Borel had proved (in [1909]) that
almost all real numbers are absolutely normal (i.e. normal in every base), he noted that
it would be of interest either to construct a concrete example of such a number or to
show that none of the definable numbers is absolutely normal. He observed that,
however paradoxical at first sight, the latter possibility did not contradict his result. In
other words, the existential quantifier in Qx¢(x) — Ixd(x) need not have a constructive
meaning.

Indeed, on an intensional view Qx3y¢d(y) — Jyd(y) is controversial. It will be
observed that, when x does not occur free in y, "Qx" in Qxy can be read as a
propositional modal operator, namely "it is practically certain that y". The statement
"Qxy — y" (x not free in ) therefore expresses a collapse of modalities: y is
practically certain implies that y is true. Hence, although each of Q1 — 5 seems justified
on the intensional interpretation, together with classical logic they present a picture not
unlike the extensional view. It should be observed here that the addition of Q1 — 5 to
ZF is conservative so that no new existential statements become provable via Qx3yd(y)
— Jyd(y); however, this is no longer true when one adds Q6.

Q6 So far our axioms were concerned with randomness. The last axiom implicitly
introduces a new primitive notion, namely, independence. We think of the quantifiers
Qx, Qy in a formula QxQy¢ as referring to independent processes. Hence QxQyd(x,y)
means: " if x is randomly generated and y is randomly generated independently from x,
then it is practically certain that ¢(x,y)". But if the processes generating x and y are
independent, it shouldn't matter in which order we take them. (This intuition is also the
motivation behind Freiling's "Axioms of Symmetry" [1986].)



The axiom system QO - 6 will be denoted Q, We have seen just now that there is a
certain amount of idealization involved in rendering "almost certain" formally by means
of @, in particular, the intuitive notion of "almost certain” may not be monotonic, or
satisfy classical logic. But if we adopt Q, we can use some work of Harvey Friedman
(see Steinhorn [1985a,b]), who introduced a quantifier with properties 1 - 6. We now
think of the formula Qx¢(x) as meaning "{x | ¢(x)} has Lebesque measure 1". On this
interpretation, Q6 bears some analogy to the Fubini theorem: for Fubini implies Q6 if
we know in addition that {<x,y>| ¢(x,y)} is measurable. Without this extra condition,
Q6 expresses a very strong property, which is almost solely responsible for the peculiar
features of set theory with random sequences. Despite the fact that there is only an
analogy, we shall refer to Q6 as the "Fubini property".
Alternatively, Qx¢x can be read topologically as "{x | ¢(x)}¢ is first category". In this
case, Q6 corresponds (in the same sense as above) to the Kuratowski - Ulam theorem
(see Oxtoby [1980], Chapter 16). Friedman shows that the set Q of axioms for Q is
complete for both interpretations. However, since definable sets need not be
measurable, or have the Baire property, Friedman considers completeness with respect
to a class of nonstandard models, so called Borel structures.
Let M be a model for a first order language L, with domain a subset of 2@ of positive
Lebesgue measure. On the measure theoretic interpretation, the satisfaction clause for Q
is:

M E Qxd(x,a1,...,.an) iff A{ x| M ¥ 6(x,a1,....,an)} = 0, where A = (3,5)@
is Lebesgue measure on 29.
The other logical constants have standard interpretation. A structure whose domain is a
subset of 2@ and all of whose relations and functions are Borel is called a Borel
structure (or model). A Borel structure for LU{Q} is called totally Borel if any relation
defined using a formula from LU{Q} (possibly with parameters) is Borel. Evidently
the axioms for Q are valid on any totally Borel model.
Similarly, when Q is interpreted in terms of category, we put

ME Qx0(x,a1,...,an) iff { x| M E o(x,a1,....,a5)} is comeagre;
and we have definitions of Borel structure etc. analogous to the ones given before.
The main theorems in this subject are:

1.1 THEOREM (See Steinhorn [1985a,b]) Let T be a consistent theory in L with an
infinite model. Then T has a totally Borel model with domain 29,

1.2 THEOREM (See Steinhorn [1985a]) Let T be a theory in LU{Q}. Then T has a
totally Borel model whose domain is a full subset of 29 iff T is consistent in Q,

Mutatis mutandis, the same theorem holds for category.



We now study the effect of adding Q to ZF. We shall first present a few quick
consistency results using a theorem due to Shelah and Stern, in order not to overburden
the exposition with the details of a forcing construction. In sections 2 and 3 we give a
finer analysis.

1.3 THEOREM Assume there is a standard model of ZF. (I) Then there is a standard
model of ZFC with the following properties:

(1) Any set of reals definable from ordinal and real parameters has the property of Baire
(Shelah [1984], theorem 7.17).

(2) There is a sequence of X1 reals (Stern [1985], theorem 2(iii)).

(3) Any ordinal definable set of reals is Lebesgue measurable (Stern [1985], theorem
2(V)).

(II) As a consequence, there is a standard model of ZF + DC in which all sets of reals
have the Baire property (Shelah [1984], theorem 7.17).

The proofs show moreover that subsets of (29)1, n > 1, have corresponding regularity
properties.

We first show how not to add Qto ZF. Generally, we have

1.4 LEMMA Let T be any first order theory. Then T + Q, is conservative over T.
PROOFSKETCH This sketch is only intended to give the reader moral certainty; a more
elementary proof can be found in van Lambalgen [1990] (theorem 2.1.3). Let M be a
model of ZFC such that T € M. Let A be an extension of M in which every set of
reals has the Baire property (theorem 1.3 (II)).

Let A4 be a totally Borel model of T in M, and let A* be A as seen in A, By
absoluteness, A" verifies T. Since in A(all sets definable using V and Q have the Baire
property, we can expand 4" to a model <4*,Q> of the Friedman axioms. (Use the fact
that Q6 corresponds to the Kuratowski - Ulam theorem.) X

In particular, ZFC + Q is conservative over ZFC, even when the variables bound by Q
run over all sets. However, the theory ZFC + Qs unnatural, since we do not allow Q
to occur in the schemata of ZF. This unnaturalness is reflected semantically: since no
Borel relation can be a wellordering, the Borel models constructed in the above lemma
are not transitive. We therefore consider only extensions of set theory in which Q does
occur in the separation and substitution schemata. It is useful to distinguish two
extensions of this sort: ZFQ and ZFQP. In ZFQ, Q formulas may contain parameters
for arbitrary sets; in ZFQP, only real and ordinal parameters are allowed in Q formulas.



Hence in ZFQ we allow formulas "Qx(x € A)" for arbitrary sets A in 29; in the weaker
theory ZFQ we still have formulas "Qx(x € B)", with B a Borel subset of 29,

We emphasize that systems of this type (unlike the ones studied in section 2) are fairly
weak in one respect: one cannot even express that random sequences are closed under
nontrivial operations. (For a weaker notion of closure, see section 3.) Nevertheless, the
axioms pose strong constraints on the set theoretic universe. We first give a simple

result which shows that it is really the Fubini property Q6 that is responsible for the
striking features of ZF Q that will be discussed later.

1.5 LEMMA ZFQminus Q6 is conservative over ZF.
PROOF Define Qx¢ explicitly as JyVx(x ¢ y — ¢), then Q1 - 5 are satisfied. X

1.6 LEMMA If ZF is consistent, so is ZFQ + DC.
PROOF This follows from 1.3 (II). X

1.7 LEMMA If ZF is consistent, so is ZFQ® + AC.

PROOF Use theorem 1.3 (I) (1). For an alternative proof, see lemma 3.4 below.
X

The main technical tool is the following additivity property of Q.

1.8 THEOREM (ZFQ) Let the family (Ag)o<k be given, where X is an initial ordinal.
Voa<xkQx(x g Ag) 2 QxVa<k(x ¢ Ag).

PROOF (The argument is adapted from van Benthem [1990]). We use induction on
initial ordinals k. Note that we need Q in the separation axiom to conclude from this
that the result holds for all families (Ag)a<x.We may suppose the A are pairwise
disjoint.

The case x = 1 is trivial. So suppose for all A < x and all families (Bg)a<), VO <
AQx(x ¢ Bg) = QxVa <A(x ¢ Bg). Define a relation S on 2?9 by S(x,y) & Va <
K[xe Ag > @B>0(ye Ap) vVB<k(y ¢ Ag)] vI[Va <k(x & Ag) Aye 29].
Put B:= U y<Ag.

We then have VxQyS(x,y). For if x ¢ B, then {y | S(x,y)} =29; and if x € B, then {y
I S(x,y)} = 29 — C, where C is a union of less than k¥ Ay's; now apply the induction
hypothesis. Hence also QxQyS(x,y), whence by Q6, QyQxS(x,y). Consider the set {x
I S(x,y)}. Obviously, if y € B, then {x | S(x,y)} = B¢ U C, where C is a union of less
than X Ag's; and if y ¢ B, then {x | S(x,y)} = 29, which is in Q. It follows from this
observation that { y | QxS(x,y)} 2 B¢. If we have equality, then QxQyS(x,y) implies



Qx(x ¢ B). If not, then for some y € B, {x1S(x,y)} = B¢ U C, where C is a union of
less than k¥ Ag's, and we can apply the induction hypothesis to obtain Qx(x ¢ C). But
Qx(xe B¢vxe C) A Qx(x ¢ C)implies Qx(x € B°). X

In particular, we see that the continuum is not the union of k¥ Q - nullsets, for any initial
ordinal k.

1.9 CORLLARY (ZFQ) Suppose B S 29 has a wellordering. Then Qx(x ¢ B).
PROOF Suppose B = { x¢ | @ < x}. By Q2, Qx(x ¢ {x¢}). Now apply the preceding

theorem. X

In other words, if a set can be "counted" at all, it must be small. Note that it is
consistent with ZFQ, that every wellorderable subset of 2% is countable; this holds in
Solovay's model where every set of reals is Lebesgue measurable. But, as we have
seen in 1.3 (I) (2), the existence of a sequence of X j reals (hence of a nonmeasurable
set) is also consistent with ZFQ, Hence, if CH' denotes the aleph - free version of the
continuum hypothesis, ZFQ is consistent with both CH' and —CH'.

1.10 COROLLARY (ZFQ) —AC.

PROOF If not, 2® would have a wellordering, whence by the preceding corollary, Qx(x
¢ 29); but this contradicts Q1.X

We thus see that it is the Fubini axiom Q6 that is responsible for eliminating some sets
from models of ZFC.

By keeping track of definability, we obtain

1.11 COROLLARY (ZFQP) Let ¢(x,a) be a formula which may contain additional
ordinal and real parameters (but no other parameters). Then Va < xQx¢(x,a) —
QxVa < kd(x,0). Moreover, if B = Field(<) for some definable wellordering <, then
Qx(x ¢ B).

For the constructible hierarchy this means the following: if L(x) is the formula "x is
constructible”, we get Qx—L(x).

2 AN EXTENSIONAL STUDY OF RANDOMNESS We shall see presently how one can
introduce a randomness predicate R and axioms governing R, such that ZFQO is
interpretable in the resulting theory. The moral of this construction is, that we may
think of a formula "Qx¢(x)" as meaning: "for all random x, ¢(x)"; in other words, that
we can extensionalize the notion of randomness implicit in Q,



Our procedure is to eliminate Q in terms of the R predicate and V. In the first
approximation, this elimination is a translation from Q-formulas to R—formulas which
is the identity on formulas not containing Q, commutes with —, A,V and transforms
Qx¢ into Vx(R(x) — ¢). However, we quickly run into trouble if ¢ is of the form x=y,
say; for then Qx(xzy) implies that R is empty. Instead of R(x) we therefore use a
relation R(x,¥) with the intended interpretation " x is independent of Y" or "y has no
information about x". Here, ? denotes a vector, of unspecified length, of variables;
hence R is a relation of indefinite arity. We always assume that the variable x in R(x,¥)
runs over 29; the Y, however, may be interpreted by arbitrary sets. Y may be empty,
in which case we write R(x,8) =: R(x). We may think of x with R(x) as random
sequences. We are now in a position to define our translation formally; afterwards we
shall specify the axioms which will turn the translation into an embedding.

2.1 DEFINITION Let L be an arbitrary countable first-order language. We define a
translation * of L(Q) into L(R) as follows:

* is the identity on L formulas

* commutes with A, =, =,V

(Qx0x, Y)* := VX(R(x,Y) = 0(x,Y)*)

We now give the axioms for the independence relation. Properties 1 - 5 are a slight
weakening of the usual axioms for algebraic or linear independence. Observe that R5
corresponds to the Steinitz exchange principle.

RO. Axioms and inference rules for classical predicate logic

R1. 3xR(x), VYIxR(x,¥)

R2. R(x,7Z) = R(x,2)

R3. (a) R(x,?) - R(x,ﬂ:?) for any permutation 7; (b) R(x,y?) - R(x,yy?)

R4. —R(x,x)

R5. R(¥,Z) AR(x,yZ) = R(yxZ).

The next axiom looks odd and we shall comment on it after the proof of the embedding
theorem.
R6. Suppose q)(x,")'r)) is in L(R), and z does not occur free in ¢. Then
Vx(R(x,z Y ) = 6(x,7)) = VR, Y) = 6(x,5));
The system consisting of axioms RO - 6 will be denoted R,

Our results in this section will rely upon the possibility of interpreting R by means of
Solovay forcing. This was spelt out in van Lambalgen [1990], but since in the present
paper we have opted for a stronger version of R6, we have to verify this anew.



Let /M be a countable transitive model of ZF + V=L. In M, consider (2¥)X, where Kk =
1. We equip (2®)X with the product topology and the product measure A¥ defined on
the Borel © - algebra B((29)X). Let I denote the o - ideal of A¥ nullsets, then the
quotient algebra B:= B((2®)¥)/I is a complete Boolean algebra. Let G & Bbe a generic
ultrafilter; construct the generic extension M| G]. We shall refer to this extension as
"generically adding x random reals".
For any sequence y of elements in 2°NM[ Gl, M[ Y] is welldefined (via relative
constructibility).
In M[ G, interpret R(x,Y) as

R(x,7) iff for all Borel sets B with code in M[ ], if AB = 1, then x €

B.
If R(x,¥), we say that x is (Solovay) random over M[ ¥ ].

2.2 LEMMA R(x,Y), interpreted as Solovay randomness, satisfies R,
PROOF R1 holds because the set of reals random over M[y ] has outer measure 1 in
M| G]. R2 — 4 are trivial and RS was verified in van Lambalgen [1990], theorem 2.2.1.
To prove R6, we first observe that R is in fact definable; hence it suffices to show that
for ¢ in the language of ZF, if z does not occur free in ¢,

MGl Vx(RExZY ) = 6(x,Y)) = VXRE,Y) > 6(x,7)).
Suppose M[GlF Vx(R(x,2Y ) = ¢(x,¥)). If x is an element of M[G], let x denote
its name. We claim that there exists a formula y such that M[G]F &(x,y) < M[Y x]
F w(x,Y). By the homogeneity of B, we can write M[G] = M[y x][G], where G
C Bis a generic ultrafilter. If ® is any automorphism on B such that the induced
automorphism on M[ G] fixes Y and x, then M[y x][rG] F o(x,¥). It follows that
1z I &(x,¥Y) and since forcing is expressible in the groundmodel, in this case
MY x], we have the required formula y(x,Y).
By the properties of Solovay forcing, there exists a Borel set B, with code in M[y],
such that for all x random over M[ Y], x € B & M[Y.x] F y(x,¥).
By hypothesis, for all x random over M[¥,z], M[¥,x] F y(x,¥). Since this set has
outer measure 1, we must have AB = 1. But then, because B has code in M[¥], also

for all x random over M[ Y], M[ ¥ x] E y(x,¥). This shows M[G]F Vx(R(x,Y )
- 6(x,7)). B

2.3 THEOREM * is a faithful relative interpretation of L(Q) into L(R), i.e. for all ¢ in
L(Q): QF ¢ iff RF ¢*.

PROOFSKETCH For a weaker system £ this was proved in van Lambalgen [1990]. We
do the = part again to show the reader which properties of R correspond to quantifier

properties. R1 ensures that * is correctly defined as a relative interpretation. The
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remainder of the argument proceeds by a routine induction on the length of proofs in Q,
That the axioms for Q are derivable in & can be seen as follows:
- (—Qx x£x)* = 2Vx(R(X) — x#x) <> IxR(x), hence Q1 corresponds to R1 under *
- (VxQy x#y)* = VxVy(R(y,x) = x#y) <> Vx—R(x,x) hence Q2 corresponds to R4
under *
- Q3 holds trivially
- (Qx0(%,Y) AVXOKY) = W(x,2) = Qxy(x,2))* =
VXRE,Y) = 0,7 A VXOEY)* = ¥(x,2)*) - VXRX,Z) = ¥(x,2)*);
the antecedent implies that Vx(R(x,'Y’?)-—)\V(x,?)*), hence by R6 also Vx(R(x,Z) —
Y, 2)*)
- (Qx(%,Y) A Qxy(x,Z) = QO AWK, Z2))* =
VXR(x,Y) = 06, Y)*) A VXRX,Z) = Y(x,2)*) -
Vx(R(X, PZ) = O(x,Y)*Ay(x,Z)*), hence (Q5)* can be derived in Rusing R2
- (QxQyd(x,y, Z) & QyQxd(x,y, Z)* =
VxVyR(x, 2)AR(YXZ) = 0(x,y,Z2)*) & VyVXRY, Z)ARKYZ) = 0(x.y,2)%),
hence (Q6)* can be derived in K using RS and R2.
The induction step is almost trivial, since both in the case of Q and & the inference
rules are those of classical predicate logic. To check the validity of the identity axioms,
we have to verify that * commutes with substitution, i.e. that (qu)(x,y?))*[y = t(V)]
o (Qxd(x,yZ)[y = t(¥)])*, but this can be shown using R2 and R6.
In van Lambalgen [1990] (theorem 2.2.1) we proved the converse direction by
extending a totally Borel model (cf. theorem 1.2) for QU{—¢} using forcing; this
argument has to be changed slightly. Suppose QuU{—0} is consistent. Let M be a
model of ZF + V=L, and let A€ M be a totally Borel model for Q{—¢}. Let M[G]
be the extension for generically adding ®; random reals. Now consider 4 in M[ G] (by
Borel absoluteness) and expand A4 to <A,R>, where R is interpreted as Solovay
forcing. That <4,R> E R was verified in lemma 2.2. By induction one shows

Ak y(T) & <AR> E y* 7)),
which proves <4,R> F —¢*. Hence if QU{—0} is consistent, so is Ru{—¢*}. K

The above proof makes clear that the odd - looking R6 corresponds to that seemingly
most innocent of all quantifier properties, monotonicity. To see what it means, let us
first consider the contraposition:
IRE,Y) A 0,V = I(Rx,2 Y ) A O, Y))-

In conjunction with the irreflexivity of R, this statement shows that if ¢ is satisfied by
some random sequence, it is satisfied by infinitely many of them. Again, we see that
random sequences have some indistinguishability properties. Moreover, in van
Lambalgen [1990] it is shown that, as a consequence of R6, random sequences are
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transcendental in the modeltheoretic sense: R(a,B)) implies that a is not in the algebraic
closure of B. As easy consequences we get

- Vx (R(x) — x # a), for constants a in L; and more generally

- Vx (R(x,?) S X# t(?)), where t is a term in L. In other words, if x is independent
of ?, then x cannot be obtained by applying a definable function to _)? Hence the R -
analogue of monotonicity for Q is a strong statement; perhaps this is connected to the
reservations on monotonicity expressed in section 1. Further clarification of R6, in
terms of its relation to forcing, will be given after the proof of lemma 3.4.

We now study the effect of adding X to ZFC. As in the case of Q, there are two
possibilities. The system ZFR results from ZF by adding &, where the parameters Yy

can be interpreted by arbitrary sets and where we allow R to occur in the schemata of
ZF. The system ZFR? + AC results from ZFC by adding X, with the following

provisos

(1) R may occur in the schemata

(2) the variables in R are assumed to range over 2@

(3) the L(R) formulas occurring in R6 may contain ordinal parameters.

Irt is easy to see that in this case the fundamental axiom is R6:

2.4 LEMMA ZFR minus R6 is conservative over ZF; similarly for ZFR?.
PROOF If y denotes the vector <y1,...yn>, #(x,¥) is defined as: X£y1 A .... A X#Yn.
Now interpret R as: R(x,Y) < #(x,7). X

Hence, for a reason that is not yet clear to me, the role of the Fubini axiom Q6 in Qs
taken over by the transcendentality axiom R6 in &,
The fundamental consistency result is given by:

2.5 LEMMA ZFR9 + AC can be interpreted in the model obtained by generically
adding x random reals, for x > ;.

PROOF Interpret R as Solovay randomness and apply 2.2. Since R is definable, the
schemata with the new predicate R are also satisfied. X

COROLLARY 2.6 (a) If ZF is consistent, so is ZFQ?+ AC. (b) If ZF is consistent, so is
ZFQ+ DC.

PROOF (a) By theorem 2.3. (b) Consider again M[ G]; ZFQ + DC holds in the inner
model of M[G] of sets which are hereditarily definable from ordinal and real
parameters. X
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We still have to prove one more consistency result, namely, if ZF is consistent, so is
ZFR_ + DC. Before we turn to this question, and to the question posed in the
introduction, to wit, what is the relation between the intensional, and the extensional
approach to randomness?, let us first draw an easy consequence from ZFR? + AC. We
already know the next result (it follows from 1.11 and 2.5), but we give another proof
here because it shows that R in the schemata of ZF makes life a little easier.

THEOREM 2.7 (ZFR9+ AC) There is no definable wellordering (not even with real and
ordinal parameters).

PROOF Suppose x < y is a formula that defines a wellordering. Suppose for the
present that x <y does not contain additional real parameters (ordinal parameters are
allowed). Define S(x,y) := R(y,x) A Vz(R(z,x) — y<z). We claim that Vx3!yS(x,y).
Uniqueness is obvious. If for some x, Vy(R(y,x) = Jz(R(z,x) A z<y), then by using
AC and recursion one can construct an infinite descending < - chain (here, it is essential
that R occurs in the schemata); this proves the claim.

But since S defines a function, we also have Vx3!lyS(x,y) — Vxy(R(y,x) —
-S(x,y))). For by R4, Vxz(S(x,z) = Vy(R(y,zx) —» —S(x,y))), whence by R6,
Vxz(S(x,z) = Vy(R(y,x) = =S(x,y))). Vx3IyS(x,y) now implies Vxy(R(y,x) —
—S(x,y)), but this is a contradiction. (Observe that we haven't used RS in the proof.) If
there are other parameters in x <y, simply add these to R in the definition of S. &

We now examine the relation between ZFR and ZFQ, and their 0 - versions. These

results are in part due to Domenico Zambella.

2.8 THEOREM (i) ZFR has an inner model satisfying ZFQ, . (ii) ZFQ has an inner
model satisfying ZFR (as a consequence ZFX is consistent).

PROOF (i) follows from theorem 2.3 *. In the other direction, it suffices to find an
explicit definition of an R, satisfying R1-5 and the weak form of R6, in ZFQ, Suppose
first that we have a formula 9(x,a,§)) enumerating (in o) all sets of reals which are
definable (in L(Q)!) from '}7) and ordinal parameters. Define

R(x,Y) & Va(Qx8(x,0.,Y) = 0(x,0, 7).

Observe that we must have V?QxR(x,?); for this statement is equivalent to
VYQxVo(Qx08(x,0,Y ) — 6(x,x,¥)), which follows from the tautology
VY Va(Qx0(x,0,Y) — Qx0(x,, 7)) by theorem 1.8. Hence we have established R1.
R2 and R3 are trivial. For R4 observe that R(x,y) implies Qx(x # y) — x #y, which

implies x # y by Q2. The verification of RS is somewhat more involved:
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We have to show R(y,?) A R(x,y?) - R(y,x?). Suppose —|R(y,x?). Then for
some ¢(y,xZ), ~(Qyd(y.xZ) = ¢(y,xZ)). By R(x,yZ), “Qx—~(Qyd(y,xZ) —
6(y.xZ)), and by R(y,Z), -Qy—Qx—~(Qyd(y,xZ) = ¢(y,xZ)). We apply Q6 and
obtain —Qx—Qy—(Qyd(y:xZ) — ¢(y,xZ)), whence also —~Qx—~(Qyd(y.xZ) A Qy—
¢(y,x7)). From this we get -Qx(x=x), but this conflicts with Q2 and Q4. Lastly, R6
holds trivially:

For suppose Vx(R(x,2Y ) = ¢(x,7)), then by definition Vx[Vo(Qx0(x,a.,2y) —
8(x,a,2Y)) = 0(x,¥)]. We have to show Vx[Va(Qx8(x,a,Y) = 08(x,0,,Y)) =
¢(x,? )]. Suppose for some x and o, QxO (x,oz,?’) - G(X,Q,?), then also
Qx(8(x,0,Y) A z =2z) = (B(x,0,Y) A z = z), hence §(x,¥). This proves Vx(R(x,¥ )
- 0(%,Y))-

It remains to construct the formula 8(x,c, ). The obvious way to do this, is to copy
the construction of the formula defining ordinal definability. To this end, we must
extend the reflection theorem to formulas in the language L(Q), i.e. we have to show:

if ¢ is a formula in L(Q), then VoAB>0(¢ <> ¢ ¥ ®).

We show how to amend Kunen's proof ([1980], 137). We first observe that the

quantifier Q is represented as a set in ZFQ ; for by the separation axiom we have
IBVAAe B A € 20 A Qx(x € A)).

We shall call this B Q. We can therefore rewrite a formula Qx¢(x) as Ju e QVx(x € u

< §(x)), so we have a reduction to the case of first order formulas. &

2.9 COROLLARY (i) ZFR? has an inner model satisfying ZF QY. (ii) ZFQV has an inner
model satisfying ZFR?.
PROOFSKETCH Only the argument for (ii) needs modification. We can no longer
conclude immediately from separation that Q is represented as a set in ZFQ0. We
therefore use "bootstrapping”: let Op(x,c,y) denote the formula representing all sets
ordinal definable (in {€, =}) from ? Using 09, we can define (in ZF Q) a set Q! by
Ae Ql &IV e A © 0y(x,0,7)) A Qz00(z,t,Y)).
As in 2.8, we can use Q! to show that the reflection theorem holds for L(Q) formulas
involving one Q only . This absoluteness can then be used to construct a formula
enumerating all sets (of reals) which are definable from ordinals and reals using
formulas which may contain one Q; etc. &

Hence there is not much to choose between the extensional approach and the approach

which speaks about random sequences only implicitly. Of course, this holds true only
provided one accepts Q; and as we have seen, one may argue that both monotonicity
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(Q4) and classical logic not justified on a more intensional way of looking at
randomness. In any case it is clear that the Fubini property, in the guise of theorem 1.8,
plays a major role in the equivalence.

3 DATA AXIOMS So far our axioms have made explicit only very general properties of
randomness; since the axioms also allow an interpretation in terms of category,
essential features of randomness are missing. Even worse, the axioms do not force
simple properties like density of random sequences:

3.1 LEMMA ZFQ has models in which the random sequences are not dense.

PROOF Let [0] be the cylinder set of all sequences starting with 0. We may suppose
—Qx(x ¢ [0]), otherwise we are done. Define a new quantifier Q%1 by Q[0lp <> Qx(x
€ [0] = ¢). Then ZFQ is also satisfied when we interpret Q as Q[0l. Hence in the

resulting model there are no random sequences in [1]. &

To formulate additonal axioms, we take our cue from the intuitionistic theory of lawless

sequences. A lawless sequence (cf. also the next paragraph) is a process of choosing

infinitely many 0's and 1's such that at any stage only finitely many values are known

and no restrictions are imposed upon future choices. Two characteristic axioms are:
Density: every finite binary word is the initial segment of a lawless
sequence

and
Open Data: if we know A(a) for lawless o, this can only be due to our

knowledge of an initial segment a(n) of o; hence for all B, if f(n) =
o(n), then A(B).

We will now investigate the analogues of these axioms for random sequences. By now
we have four formal systems, and the formulation of the data and density axioms
differs for each of them. To spare the reader, we look only at the two most important
cases: ZFQ and ZFRO.
We first consider ZFQ, As a density axiom we propose

Density: let A be a Borel set such that AA > 0, then —Qx—(x € A).
In other words, a set of positive probability contains a random sequence. As a kind of

converse, we have
Inner Data: Qx(¢(x) > JA(A Borel AAA>0Axe AAQz(ze A—

0(z,Y)))-
The justification of this principle runs as follows. We think of random sequences as
incomplete objects, i.e. objects about which we have only partial information; typically
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their mode of generation and some initial segment. (In this respect, random sequences
are analogous to lawless sequences.) Suppose we know that ¢(x) holds for some
random x. Since we cannot know X in its entirety, our knowledge of the truth of ¢(x)
must be based on our knowledge of the process generating x. But it seems that such a
process must be of the following type: a randomness preserving (Borel) function f: 2®
— 29 applied to a sequence generated by coin tossing (or some isomorphic process).
Now f preserves randomness if Af~1 << A, i.e. if Af-1 is absolutely continuous with
respect to A. Hence we have justified

Qx(d(x) — If(f: 2© — 2® Borel A Af-1 << A A x € ran(f) A

Qxo(f(x))),
but this is equivalent to Inner Data by general nonsense.
It is clear that, by resorting to a specimen of intuitionistic reasoning in the above
justification, we have given a more or less constructive meaning to the dual quantifier
—Q-. For a thoroughgoing classical analysis of randomness, see the remarks on
Myhill's work in 6.1.
We next consider ZFRC. One could obtain a R version of Inner Data by restricting the
formulas ¢(x) to have only real and ordinal parameters, and applying * from definition
2.1. However, this would not yield a statement that is true for our preferred
interpretation of R, Solovay randomness. The true R - analogue is obtained by
explicitly taking parameters into consideration. Suppose ¢(x) = ¢(x,?), where all real
parameters are exhibited. Observe that, by applying Q2, Q4 and QS5, ID is equivalent to

Qx(9(x,¥) > JA(ABorel AMA>0Axe AAQz(ze AA#(z,Y) o

0z Y))).
If we translate this version of Inner Data in the R language, using *, we get

VX(R(X,Y) A 0(x,Y) > JAAA >0 Ax € AAVZR(EZY) A #z,Y) A

ze A= 0z Y)))),
but by R4 this is equivalent to

VR, V) A 0x,Y) > JAAA >0 Ax € A AVZR(EZY) A #(z,7) A

ze A 6(z,Y)))).
As we shall see in the proof of 3.2, this statement expresses a truth about Solovay
forcing. In fact, I do not know of any other way of verifying Inner Data than by way of
the parametrized version. The reader may also wish to compare this formulation of
Inner Data with the parametrized form of the axiom of Open Data, given in 4.
Henceforth we abbreviate Inner Data to ID, and Density to D; we use these
abbreviations indiscriminately for the Q and R versions. When we add both D and ID to
a theory we indicate this by IDD.
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3.2LEMMA ZFR0 + AC + IDD holds in the model obtained by generically adding k >
1 random reals to a groundmodel satisfying V =L.
PROOF Let M[ G] be the generic extension constructed in theorem 2.6. It suffices to
show that Density and ID hold in M[G]. Density follows from the definition of
Solovay randomness. Moreover, ID was already implicitly verified in the proof of R6.
For we showed that, given a formula ¢(x,?), there exists a Borel set A with code in
M[Y], such that for all x random over M[Y], x € A iff M[G] E o, 5). If 0(x,Y) is
verified for some random x, AA > 0. Hence we have shown
VX(RE, V) A0, Y) > ITAAA>0Axe AAVZREZY)AZE A —
oY) B

Exactly as in section 2 we obtain
3.3 COROLLARY ZFQ+ DC + IDD is consistent.

A consequence of ID that is useful in applications is given in

3.4 LEMMA (ZFQ + DC + ID) For any formula ¢(x) there is a Borel set A such that
Qx(x € A & ¢(x)).

PROOF We may assume —Qx—d(x), for otherwise we can take A = @. Consider the set
{AITAA >0 A Qx(x € A — ¢(x))} which exists in ZFQ, Let Ag be an element of
maximal measure. A exists because s := sSup{AAIAA>0A Qx(xe A - ¢(x))} < 1;

choose (DC!) Ay, ..., Ap,... such that AAp, — s, and put Ag := UAy. Then we must
have Qx(x € Ag © ¢(x)), for otherwise =Qx—(dp(x) A x ¢ Ag) and ID shows that Ag
wasn't maximal after all. &

The reader will have noticed that the proofs of R6 and ID in the random real extension
are very similar. It may therefore be instructive to observe that ID can be derived from
two weaker axioms, with the help of R6. The axioms are

(1) Let B be a Borel set with Borel code u, such that AB = 1. Then Vx(R(x,u) = x €
B).

(2) for any formula q)(x,?), there exists a Borel set B such that Vx(R(x,'?) - (¢(x,?)
<> x € B)).

Suppose R(x,¥) A ¢(x,¥). To prove ID, it suffices to show that for the B given by
(2), AB > 0. Suppose AB = 0. Let B have Borel code u. By (1), Vx(R(x,u) = x ¢
B), whence by R2, Vx(R(x,uy) = x ¢ B). By (2), Vx(R(x,uy) = —(x,Y)). We
may now apply R6 to obtain Vx(R(x,?) - —.¢(x,?)), a contradiction.

Conversely, in ZFRY(minus R6) + D, ID implies (1), (2) and R6. (2) follows from
3.4. To prove (1), let B be a Borel set with code u such that AB =1 and suppose that
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for some X, R(x,¥) A x ¢ B. By ID, there exists A such AA >0 and Vz(R(ZY) A z€
A — z ¢ B). We can rewrite this as Vz(R(z,¥) — (z¢ B v z ¢ A)); but since A(B¢ U
AC€) < 1, we have a contradiction with D. Lastly, we prove R6. Suppose Vx(R(x,2Y)
- ¢(x,¥)) and Ix(R(X,Y) A =0(x,¥)). ID gives us a Borel set A such that LA >0
and Vx(R(x,Y) A x € A > —0(x,Y)). By hypothesis, VX(R(X,Y) A x € A —
‘ﬂR(X,Z?)), which is equivalent to Vx(R(x,?) A R(x,z_y')) —x¢ A). By R2 we obtain
Vx(R(x,2y) = x & A), which conflicts with D.

The presence of (1) of course explains why we had to use Solovay forcing.

We have already noted that the Q language is not strong enough to express the closure
of the universe of random sequences under suitable operations. E.g. if f is measure
preserving, there is no way to express "for all random x, f(x) is random". A weaker

type of closure is given by

3.5 LEMMA (ZFQ+IDD) Let {f:20 — 20 be a bijective measure preserving Borel
function. Then Qx¢(x) <> Qx¢(f(x)).

PROOF Suppose Qxd(x) A =Qxd(f(x)). By Inner Data, we obtain a Borel set A such
that AA > 0 and Qx(x € A & —¢(f(x))). Then f[A], the image of A under f, is Borel
and we have Qx(x € f[A] &> —d(x)); but since Qxd(x), we get Qx(x ¢ f[A]), whence
Af[A] = 0; a contradiction. For the other direction, consider f-! (which is also Borel

and measure preserving). X

We are now ready for the main result of this section.

3.6 THEOREM (ZFQ + DC + IDD) There exists a translation invariant extension p of
Lebesgue measure to all of g (29). This u can be computed as follows: every B €
£ (29) can be written as AAN, where A is Borel and N is a u — nullset, and HAAN =
AA.

PROOF The idea that Fubini's theorem is connected to extensions of Lebesgue measure
is suggested by Simms [1989]. Let 4 denote the Borel ¢ — algebra on 2@, Let A{
denote {B € p (29) Qx(x ¢ B)}. By theorem 1.8, Al is closed under countable
unions. By Q4, Ais closed under subsets. Hence A(is a 0— ideal. Let B= {AAN | A
€ 4, N e A[}. Itis easy to see that Bis a ¢ — algebra. We would like to define i on
B such that uUAAN = AA. To make | welldefined, we should have AjAN7 = A2AN>
implies AA1 = AA2. But AjJAN] = A2AN, implies A1AA2 = N1AN» and since NjANp
e A; we get Qx(x ¢ A1AA»). By Inner Density, AAjAA3 = 0. Hence p is welldefined
and is easily shown to be ¢ — additive. Moreover, N € N implies uN = 0.
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We now show that B= £ (29). Choose B € £ (2%). Apply lemma 3.4 to get a Borel
A such that Qx(x € A & x € B), i.e. Qx(x ¢ AAB). Hence AAB € A, We may now
write B = AA(AAB), which shows that B € B.

That  is translation invariant follows from lemma 3.5. X

3.7 LEMMA (ZFQ + DC + IDD) p is k—additive, for any ordinal x.

PROOF Suppose {Aq}o<x are pairwise disjoint subsets of 2®. At most countably
many of them can have positive | measure; say these are {Ap}n<e. Then

ZuAa = ZuAn + WU {Ay o £ a < x}; by the additivity property 1.8, the last term

<K n<®

equals 0. K

The meaning of these results can perhaps best be explained by referring to two rivalling
traditions in probability theory. In the approach universally used today (associated with
the name of Kolmogorov), a probability is taken to be a 6—additive measure on a 6—
algebra. Other notions that are of interest to a probabilist, foremost among them
independence, are defined in terms of measure. But there is an older tradition, now
nearly extinct, in which rather randomness and independence are taken as primitive.
This approach goes back to von Mises, who tried to capture the independence inherent
in random sequences by means of axioms about subsequence selection. Although these
axioms themselves are fairly unwieldy, it still seems to me that the general idea of
treating fundamental probabilistic notions as primitives has some potential. For
instance, we have seen just now that the whole business about g—algebras actually
becomes superfluous. This may not be immediately apparent, because we formulated D
and ID in terms of Borel sets and Lebesgue measure; but a glance at the axioms will
show that we could have used closed sets instead, and their Lebesgue measure is easily
computed.

It may also be of interest to note that von Mises' axioms in their orignal form are
derivable in ZFQ + DC +IDD. First some notation:

1n
Put LLN(x) := VednygVn2ng IH Y Xk — %l < ¢ and define a partial operation /: 20x2®
k=1

— 29 by: (X/y)n = X if m is the index of the nth 1 in y and undefined if there is no

such index. (The subsequence X/y of x is infinite if y has infinitely many 1's.)
In van Lambalgen [1990] we used the systems Q and X to formalize von Mises' notion

of randomness. We added for instance the following axioms:
QxLLN(x) ("a random sequence satisfies the law of large numbers")
and
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QxQyLLN(X/y) ("If one selects a subsequence from a random sequence

x by means of a random sequence y which is independent of x, that

subsequence satisfies the law of large numbers").
It is easy to see that these properties are derivable in ZFQ + DC +IDD. QxLLN(x)
follows from ID and the fact that A{x | LLN(x)} =1. To prove QxQyLLN(X/y), we first
observe that /y: 29 — 2© is measure preserving. Hence by 3.5, VyQxLLN(X/y). By
applying monotonicity and Fubini we obtain QxQyLLN(*/y).

The next consequence of ZFQ+ DC + IDD is also related to AC:

3.8 THEOREM (ZFQ+ DC + IDD) There are no ultrafilters on g (w).

PROOF Let U be an ultrafilter on g (®). We identify U with a subset of 2@, By
theorem 3.6, U must be p - measurable. Hence U must be of the form A A N, where A
is Borel and N € A We claim that AA =0 or 1. This follows if we can show that A is
a tailset. So let T be a transformation on 2%® that changes a fixed finite number of
coordinates of x € 29, It suffices to show that x € A implies Tx € A. Observe that, by
lemma 3.3, each M € A(is a tailset. If x € ANU, then x ¢ N and hence tx ¢ N; but
since for all y, y € U implies Ty € U, we must have 1x € A. Suppose now that x ¢
ANUC. Again, generally y € UC implies Tty € UC. If x ¢ N, x e AUN, x ¢ ANN,
whence x € U. So we must have x € N and hence 1x € N. If 1x ¢ A, then ©x € AUN,
Tx ¢ ANN and it follows that Tx € U, a contradiction. This shows that Tx € A, i.e.
that A is a tailset. By the 0 — 1 law, A has measure 0 or 1. By definition of u, pU
equals O or 1. But U€ is obtained from U by the measure preserving transformation of
exchanging 0's and 1's, and we get a contradiction from lemma 3.5.&

4 EXCURSION INTO INTUITIONISM: LAWLESS SEQUENCES We indicate here, as a
consequence of the preceding results, why the addition of the axioms LS for lawless
sequences to intuitionistic set theory ZF! is not conservative. ZF! (called T in Powell
[1975]) is the following set of axioms, formulated in intuitionistic logic:

1. (Extensionality) Xx=y A XE WD YE W

2. (e - induction) Vx(Vu € x¢(u) — ¢(x)) = Vx(x)

3. (Separation) yVz(ze ye>ze x A ¢)

4. (Pairs) dJy(ue y A ve y)

5. (Union) yVz(Jue x(ze u) > z€ y)

6. (Replacement) JyVv(@u € x(¢(v) A VW(H(W) > v=w)) 5 VE YY)

7. (Power set) dyVz(Vu(ue z—>ue x) 5 ze y)

8. (Double complement) yVz(——z e x > z€ y)
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9. (Infinity) Jy(Jz(z€ y) A Vx € ydze y(x € z))

Here, —¢ is defined as ¢ — L, where L is some absurdity; e.g. L = Vxy(x € y).
Furthermore, equality is defined asx =y & Vz(ze x &z € y).

We now turn to lawless sequences. Lawless sequences are processes of assigning (in
our case) 0 or 1 to the arguments 1,2,3, .., such that (1) at any stage only finitely many
values are known and (2) at no stage the possibility for choosing values is restricted.
We think of ZF! with variables for lawless sequences as a two - sorted theory: one sort
for sets, one sort for lawless sequences o, B, ... € 29. We first introduce some
notational conventions. We use w as a variable over finite binary sequences. [w] is the
set of infinite binary sequences which have initial segment w.

#(o,B1,.....8n) is defined as o # B1 A ... A & # PBp; and the quantifier
YYB(Y.B1,.....Pn) is defined as VY(#(Y,B1,.....Bn) = B(.B1,--..,.Pn))-

To show nonconservativity we need only axioms which are an immediate consequence
of the intuitive explanation of lawlessness given above (and not the more problematic
continuity principles relying on the bar theorem). The axioms are as follows:

LS1 Vwia(a e [w])

LS2 a=B v a=p

LS3 A(c,B1,.....Bn) A #(a,B1,.....0n) = Iw(a e [w] A ¥Yye [WIA®Y.B1,.....Bn)
We add a few words of explanation; for the full motivation the reader is referred to
Troelstra [1977] or Troelstra and van Dalen [1988].

LS1 says that we are allowed to specify an initial segment in advance. LS2 is based on
the fact that extensional and intensional identity coincide for lawless sequences. Let =
denote intensional identity: oo = B means that o and P are given to us as the same
process. Then obviously o = v —a = P and it is easy to show that for extensional
identity =, a =B & a = .

LS3 is clearly inherent in the meaning of lawlessness, especially if we consider the
parameterfree version: A(a) — Iw(a € [w] A Vye [w]A(Y)). For if we have a proof
of A(a), this can only be on the basis of a finite segment of o. In the general case of
formulas with parameters, we have to add some provisos (like the condition
#(o,B1,-....Bn)) to avoid inconsistency. The formula A(ca,B1,....,Bn) may contain
quantifiers over arbitrary sets, but the parameters Pi,....,n are assumed to be lawless.
(Troelstra remarks: "LS3 seems also to be justified for predicates containing ...
parameters for non-lawlike objects not constructed from lawless sequences ... ,
provided extensionality holds w.r.t. all function and set parameters.” (Troelstra [1977],
p- 29) In other words, one would need an independence relation more general than # to
formulate L.S3.)

Call the resulting two sorted system ZFI LS. We then have
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4.1 THEOREM ZFLLS is not conservative over ZFL.
PROOF We first indicate how to embed a slight variant of ZFQ into ZFILS. For
reasons that will become clear below we have to consider the Q - closures of the axioms
Q1 - 6, instead of the universal closures. Call this system weak - ZFQ. Inspection of
the proof of corollary 1.11 shows that it takes place inside weak - ZFQP.
Powell [1975] constructs an interpretation * of ZF into ZF! as follows. Put ~~z := {x |
——xe z}and define by recursion a function s which satisfies s(x) = ~~{s(u) | u e x}.
We can now define * by recursion:

(x € y)* = s(x) € s(y)

(—0)* =—¢* :=0*—> L

(O v Y)* = =(=0* A =y¥)

O AY)=¢*Ay*

¢ - W*=0* > y*

(Vx¢)* = Vxu(u = s(x) = ¢*(u))

@x0)* = ~(Vx—0)*.
Powell shows ZF - ¢ < ZF! |- ¢*.
We extend this interpretation with the following clause for Q: (Qxd(x,y1,...,yn)* :=
Vou(#(X,¥15.--,¥n) = 0*(0,8(¥1),...,8(yn))). If one of the parameters yi,...,yp is in
fact a lawless sequence [, we put s(B) = .
All Q axioms except Q4 are trivially true under this interpretation. To verify Q4, one
uses the axioms of density and open data, and it is here that our convention on weak —
ZFQ becomes important, for now we may assume that all parameters are lawless. So
suppose we have Vo(a # B — ¢0*(c,p)) and Va(d*(a,B) = y*(a,y)). Then also
Voo # B,y = y*(a,y)) and we have to show Yoo # 7y — y¥(a,Y)).
If B =y we are done. So (LS1) suppose a # 7, B # 7. By applying LS3 to B in Vo(o =
By = w*(a,Y)) we get

dw(Be WAV e [WIB =Y >Va(a =By = y*(a,1)).
By LS2 we can take B'e [w] such that a # ' and y = B' and y*(c,y). This completes
the proof of the interpretation of Q4.
Suppose ZF! LS were conservative over ZFL Hence if weak - ZFQO F ¢, then ZFLLS +
¢*. By assumption ZF! | ¢* and since * is an embedding, ZF F ¢. This would show
that weak - ZFQ is conservative over ZF, quod non. X

4.2 REMARK We could have interpreted full ZFQP in ZFLLS if in the latter system
LS3 were formulated with an abstract independence relation instead of # (cf.
Troelstra's remark above).
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This result shows that, in contrast to the situation in second order intuitionistic
arithmetic, when added to set theory lawless sequences can no longer be considered a
"figure of speech" (Troelstra and van Dalen [1988], p. 644). In other words,
quantifiers over lawless sequences can no longer be interpreted by means of
expressions not containing those quantifiers.

5 EPILOGUE Godel writes in a letter to Tarski, commenting on the failure of his
"square axioms" for the continuum:

My confidence that 2%0 N2 has of course somewhat been shaken. But it still

seems plausible to me. One reason is that I don't believe in any kind of irrationality
such as, e.g. random sequences in any absolute sense. (G6del [1990], 175)

The preceding considerations seem to show that randomness is related to structure or
complexity rather than cardinality. It is true that Freiling [1986] has claimed that
suitable randomness axioms can force 280> X n+1, for any n. But an examination of
his proofs (see the next section) makes clear that what he really shows is that the
continuum cannot have a wellordering of length wy, for any n. We would rather
interpret his results as indicating that the continuum cannot be wellordered at all. This is
what ZFQ implies and, as can be seen below, ZFQ is a natural extrapolation of
Freiling's axioms. Of course, what we mean is really a conditional assertion: if one
believes in the reality of randomness and if one believes that ZFQ is a correct
description of this reality, then the axiom of choice is false. For different notions of set
AC may still be true.

To us, the interesting feature of the randomness axioms is rather their strong connection
with forcing. Fairly straightforward hypotheses on random sequences turn out to
describe essential properties of a particular type of forcing extension; as such they are a
"poor man's Martin's axiom". But, unlike Martin's axiom, the axioms can also lay
claim to some intuitive justification.

6 APPENDIX: RELATED APPROACHES Here we discuss two other attempts to add
axioms for randomness to set theory, those of Myhill and Freiling.

6.1 MYHILL'S AXIOMS These were alluded to in the quotation from Kreisel in section
0. They are reported in paragraph 10 of Kruse [1967].

Again, let 2@ be the space of infinite binary sequences and let A denote Lebesgue
measure on this space, i.e. (£,5)®. Let R(x) be a predicate which should intuitively be
interpreted as "x is random". Myhill tries to formalize the intuition that random
sequences should satisfy "all" properties of probability 1, and no other properties. His
axioms (M) are
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M1) Af{xe 29| R(x)} =1

(M2) If ¢(x) is a formula in one free variable, then A{x € 29| ¢(x)} = 1 implies
Vx(R(x) = ¢(x)).

The restriction that ¢ contain no parameter beside x is obviously necessary, since
otherwise we could take the formula x # y. The formulation of (M2) contains a
deliberate ambiguity, however: is R allowed to occur in ¢ or not? If not, then M is
obviously conservative over ZFC. On the other hand, if we do allow R in ¢, then R
need no longer be explicitly definable. Myhill comments:

[This] would accord with a prejudice of mine which I derived from Feller, i.e. that
randomness is an intensional notion, not definable in the usual mathematical terms.
The "circularity” of the schema above with R allowed to appear in ¢ is quite justified
if we are convinced that R belongs to a new order of ideas, entirely outside the set
theoretic order.

An immediate consequence is that M is no longer conservative over ZFC, for it implies
the by now familiar consequence that there is no definable wellordering of the
continuum: if there were such a wellordering, then we could define the least random
element, in contradiction with (M2). It is clear that this proof works only when R is
also allowed to occur in the schemata of ZF. Note that, on the liberal interpretation of
(M2), the consistency of ZFC + M (with R allowed in the schemata of ZF) is not
immediate.

6.1.1 LEMMA ZFC + M is consistent.

PROOFSKETCH Use the construction of theorem 1.3 (I), starting from a model M of
ZF + V = L. Interpret R(x) as: x is (Solovay) random over M. In the generic extension
of M verifying 1.3 (I), the random reals have measure 1. Furthermore, R is definable,
hence to verify (M2) it suffices to show that a definable set of reals with measure 1
contains all random reals. This is established in Stern [1985], section 4.7.&

In order to facilitate comparison between M and the axioms introduced in the previous
sections, let us reformulate M in terms of axioms of density and data. (M1) is
equivalent to the axiom of Outer Density:

If {x | ¢(x)} has positive outer measure, then Ix(R(x) A ¢(x));
and (M2) is equivalent to Outer Data:

If Ix(R(x) A §(x)), then {x | ¢(x)} has positive outer measure.
It then becomes clear that Myhill's approach is eminently classical. If {x | ¢(x)} has
positive outer measure, we do not have enough information to construct a random x
which almost certainly verifies ¢. By the same token, knowledge of the truth of
Ix(R(x) A ¢(x)) does not allow us to infer that we must have been able to construct
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(with practical certainty) a random x such that ¢(x); hence we obtain only the weaker
conclusion that {x | ¢(x)} has positive outer measure.
One final remark: in view of the extensional theory of randomness outlined in section 2,
the following modification of Myhill's axioms seems reasonable: we have a relation
R(x,Y) such that

(MO) R(x,¥) satisfies R_

M1 VY AMx e 29 IRx,Y)} =1

M2) If A{x € 291 ¢(x,¥)} = 1, then Vx(R(x,Y) = §(X,¥)).

Is it possible to prove the consistency of this theory short of using an inaccessible?

6.2 FREILING AND THE CONTINUUM HYPOTHESIS We will next investigate the
relation of Freiling's axioms of symmetry [1986] to the axioms introduced here.
Freiling writes:

Suppose we were to throw a random dart at the real number line and ask whether the
dart landed on a rational number. The outcome is, of course, predictable. We could
say in advance that the dart will (with probability one) land on an irrational number.
Furthermore, let us agree that the reason does not depend on any particular property
of the set of real numbers except that it is countable and its members are determined
before we make our throw.

Now suppose we were to throw two darts and ask whether the second dart was a
rational multiple of the first one. The answer would likewise be no, since by the
time we throw the second dart there are only countably many points which it has to
miss, and membership in this countable set is predetermined by the first dart.
Suppose then that we have a function f: R > Ry (i.e. f assigns to each real a

countable set of reals). The second dart will not be in the countable set assigned to
the first dart. Now by the symmetry of the situation (the real line does not know
which dart was thrown first or second), we could also say that the first dart will not
be in the set assigned to the second. This leads us to the following natural
proposition:

Ax, VIR >R X, Ixy(x ¢ f(y) Ay ¢ f(x)),

the intuition being that x and y could be found by independently throwing two
random darts.

He then proceeds to prove that A g, is equivalent to ~CH. We intend to show here that
Freiling's intuitive motivation for Ay is entirely captured by Q, in the following
sense: a suitable fragment of ZFQ (basically one allows two iterations of Q only)
suffices to derive Ay, and, conversely, that fragment can be interpreted in ZFC +
AR,

Although the resulting fragment is admittedly adhoc, we shall try to motivate it by

referring back to the proof of 1.8. It will be observed that, in that proof, we needed
only statements of the form Qx(<x,y> € U) or QxQy(<x,y> € V). Accordingly, we

can define a class of elementary statements as follows.
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6.2.1 DEFINITION The class of n — elementary statements is defined by

(1) <x1, ... xp> € U, where U © (29)D, is n — elementary

(2) n — elementary statements are closed under —,—,A,v,V 3

(3) if ¢ is elementary and not of the form Vxy or 3xy, then Qx¢ is n — elementary.

ZFE, is obtained from ZFQ by applying the following restrictions

(1) the Q axioms are formulated for n — elementary statements only

(2) we allow only n iterations of Q

(3) in n — elementary statements, we allow only those U & (29)" for which { x| <x1,
..» Xn—1,X> € U} is countable for all <xi, ... ,Xp-1>.

We apologize for the lack of elegance, both of the preceding definitions and of the
proof of the main result, 6.2.7. We include this material only because it shows that
Freiling's intuitions fit squarely in the framework of the preceding sections.
Furthermore, it may be of interest to see that Q can also have a cardinality interpretation
and that the size of the continuum is related to the number of iterations of Q.

6.2.2 THEOREM (ZFEp) Ay,

PROOF Suppose we are given f: 20 — (20) o It suffices to show QxQy(x ¢ f(y) Ay

¢ f(x)), for generally Qx¢ implies 3x¢. By Q6 and QS5, we only have to prove QxQy(y

¢ f(x)). However, this follows from VxQy(y ¢ f(x)), which is a consequence of 1.8.
X

Clearly, Freiling's symmetry principle ("the real line does not know the order of the

darts") corresponds to Q6.

6.2.3 COROLLARY (ZFE;) —CH

PROOF If CH, there is a wellordering < of 2® of length X; Now consider f(y) := {x
| x<y}. Then VxVy(x € f(y) v y € f(x)); but since each f(y) is countable we get a
contradiction from A . X

Actually something stronger holds. Let (2®), denote the set of n - element subsets of
x. Since (2®), can be coded into 2%, we can also consider functions f: (290), —
(29) % 0 This means that we are able to formulate and prove a generalization of A Xo

in our set up. First a

6.2.4 DEFINITION Let f: 29)" — (29) o 0" Aset X € 29 s called f - incomparable if

for any n distinct elements X1, ... ,xn of X, xp ¢ f({ X1, ... , Xn-1}).
The generalization of A g o can then be formulated as follows:
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AI;O Vi 291 = (29 g 0 3 f - incomparable set of size n.
6.2.5 THEOREM (ZFE,) For all n, AI;O .

PROOF Along the same lines as for n = 2. To show how Q6 is applied we do the case
n = 3. Choose f. By 1.8 VxVyQz(z ¢ f({x,y}), hence by monotonicity QxQyQz(z ¢
f({x,y}). By Q6, we get QzQyQx(z ¢ f({x,y}), whence QxQyQz(x ¢ f({z,y}) by Q3;
and similarly QxQyQz(y ¢ f({x,z}). Now apply Q5. X

Freiling proves

n
6.2.6 THEOREM (ZFC) A, is equivalent to 280> x,.

We will now establish an equivalence between Freiling's approach and ours.

6.2.7 THEOREM ZFE+ AC s interpretable in ZFC + A, .

PROOF The obvious interpretation of Q would be to put A in Q if A is co-countable,
but this runs afoul of Q6. We therefore have to give a contextual definition of Q,
depending on an additional parameter. Indeed, it seems impossible to give a uniform
interpretation of Q in the absence of strong hypotheses like, e.g., "all sets of reals have
the Baire property".

Let A4 be the ¢ - algebra of countable (i.e. finite or countably infinite) and co-countable
sets. Define v : 4 — {0,1} by VA = 1 iff A is co-countable. v is 6—additive. We show
how to extend v X v on 2®x 2® to a measure | on an extension of A4xA4 that will serve
to interpret Q. Expressions like "full", "null" or "almost all" refer to v.

We first need a lemma which shows that Sierpinski's counterexample to a Fubini
theorem without joint measurability condition does not exist under A, .

6.2.8 LEMMA (ZFC + Axo ) There is no set that is null for almost all horizontal

sections and full for almost all vertical sections.
PROOF See Freiling [1986], p.197. X

Let Ax denote { A © 29| Vx e 20 Ay is null } and similarly AY :={ A € 2@ | Vy
€ 20 AY isnull }. Obviously Ax and A§ are o —ideals.

6.2.9 LEMMA (ZFC + A ) Let A be v x v measurable and suppose A < UB;,
where {Bj} is a countable family contained in Ay U AY. Then v X VA = 0.
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PROOF (Cf. Simms [1989], lemma 2) Suppose not, then we would have v X VA = 1.
We may suppose A € X U Y, where X € Ax and Y € AJ. Hence for all x, Ax & Xx
U Yx. By Fubini's theorem applied to v X v, for almost all x, Ay is full.

Since for all x, Xy is null, it follows that Yx must be full for almost all x, which is
impossible by the previous lemma. X

We can now define the extension |l of v X v. Let B be the ¢ - algebra generated by
AU(Nx U AY). It is easy to show that B={ BIB=AAN,Ae 4, Ne AxuU A}
Define L on B by LW(AAN) =v X VA. U is a welldefined ¢ - additive measure because
A1AN] = AAN, implies A]AA2 = N1AN»; now apply the previous lemma. Obviously
p satisfies UN = 0 for all N € Az U AY. We can explicitly define a disintegration { i |
x € 20} of U as follows: put px(AxANx) := VAx. Then iy is a © - additive measure that
extends v, for fixed B € Bthe function x — 4By is V - measurable and we have

(*) L(AAN) = v X VA = [VAxdv(x) = JixAxdv(x) = Jux(AxANy)dV(x).
This property will serve to validate Q6. We interpret Q in ZFC + A x, as follows:

(1) Qxy(x) & vi{x I y(x)) = 1

@) Qxo(xy) & pxly | 0(xy)) =1
for 2 — elementary ¢ and y. This interpretation is correct because, if ¢ is 2 —
elementary, either Vx {y | ¢(x,y)} is null or Vx {y | =¢(x,y)} is null; whence by
construction of y, {<x,y> | ¢(x,y)} is 1L - measurable.
We now show that the Q axioms are valid under this interpretation. Q1 — 3,5 hold
trivially.
We prove Q6 by means of (*):

QxQyd(x,y) & vix I pux{y 16y} =1} =1 & [px(yl dxy))dvx) =1 &

pi<xy>10(xy)} =1 [py{xloGxy}dvy) =1 & v{y | py{y |

ox,y)}=1}=1 < QyQx¢(x.y).
The validity of Q4 is connected to some simple symmetry properties. Suppose
Qx0(x,y) and Vx(¢(x,y) = y(x,2)). Then py{x | §(x,y)} =1, hence py{x|y(x,2)} =1.
Let 7t: 29 — 20 be an automorphism that maps y to z and let T = id X & be the induced
automorphism on 29. Obviously W is invariant under t. Hence if we put C:= {<x,z> |
y(x,2)} we have uC = (ut-1)C which implies p,C; = (uT1),C, = pyCz = 1. X

6.2.10 COROLLARY ZFE; + AC is interpretable in ZFC + 280 = .

Analogous results hold for n iterations of Q, n = 3.

The main philosophical difference between Freiling's approach and ours, is that ZFQ is
a purely qualitative theory. Unlike Freiling, we remain agnostic about which sets are
small (hence will almost certainly be missed by a random dart), we formulate properties
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of small sets per se. (It is only after adding ID that we commit ourselves.) What
Freiling proves in each case is that the continuum cannot have a wellordering of length
p; only by applying AC can we conclude from this that 280> Xp41. It seems to us
that his arguments may be taken as well as evidence that AC is false for a universe
containing random sequences. Indeed, ZFQ, which contains Q6, the natural
extrapolation of Freiling's symmetry principle, forces AC to be false. But we have seen
that, although the continuum has no wellordering at all, the aleph - free version of CH
can still be true in the presence of ZFQ (even with ID added). We conclude from this
that randomness is related to the structure, rather than to the cardinality of the
continuum.
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