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THE CONSISTENCY OF AN EXTENDED NaDSet

Paul C. Gilmore
Department of Computer Science
University of British Columbia
Vancouver, B.C. V6T1WS5, Canada
(e-mail: gilmore@cs.ubc.ca)

1. INTRODUCTION

NaDSet, as described in this paper, is a natural deduction based logic and set theory that is an
extension of the one described in [Gilmore 71,80,86]. This introduction motivates the need for a
new logic, summarizes the distinguishing features of the extended NaDSet, and describes some
of its applications elaborated in [Gilmore 87a,b,88,89] and [Gilmore&Tsiknis 90a,b,c,d]. In
[Gilmore89] NaDSet is compared with some similarly motivated logics.

In sections 2 and 3 the elementary syntax and the logical syntax, or proof theory, for NaDSet is
described. In section 4 some definitions and results of a combinatorial nature are provided which
depend largely on the elementary syntax. The same is done in section 5 for definitions and
results depending upon the logical syntax. In section 6 the consistency of the logic is proved in
the manner of Gentzen's second proof of the consistency of elementary number theory

[Gentzen38][Szabo69]; namely, a transfinite induction argument over the ordinals less than g

demonstrates that the empty sequent has no derivation in NaDSet.

1.1. Why a New Logic is Needed

Mathematics has traditionally used a process of abstraction to generalize and simplify structures:
A property of objects is regarded as an object that may itself have properties. The traditional set
theories are attempts to codify acceptable abstractions to ensure that undesirable conclusions are
not drawn from sound premisses. But the concern of these set theories with what sets may
correctly exist has given them an ad hoc character which may account for why "[they] have never
been of particular interest to mathematicians. They now function mainly as a talismen to ward off
evil "[Gray84]. This ad hoc character, as well as the complexity of their proof theory, make
these set theories unsuitable for most uses within computer science.

The need for abstractions in computer science not available within traditional set theories has been
argued many times. For example, [Scott70] describes the problems of self-application that can
arise when interpreting programming languages and proposes a solution that has led to the
development of denotational semantics. In Scott's foreword to [Stoy77], he concludes "For the
future the problems of an adequate proof theory and of explaining non-determinism loom very
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large." This quote can be interpreted as a call for a new formal logic within which the
mathematical constructions of denotational semantics can be developed. But other needs for such
a logic can be identified.

Horn clause programming, as introduced in Prolog, provides a computational model, but not a
deductive model, for its programs. In NaDSet, the definition of a predicate by Horn clauses is an
abstraction term that is complete in the sense that two predicates with different but equivalent
definitions can be proved identical without additional axioms. In short, a proof theory for the
semantics of Horn clause programming can be provided. For this reason, NaDSet may suggest
extensions to Prolog that incorporate second order concepts.

The increasing levels of abstraction required for the conceptual models used in enterprise
modelling for database design, knowledge engineering and object-oriented systems, demands a
logic within which such abstractions can be defined as objects and reasoned about. [Gilmore87a,
87b,88] describes applications of the earlier form of NaDSet to some of these problems, while
[Gilmore& Tsiknis90b,d] describes two applications of NaDSet for the specification of
programming semantics.

Despite its widespread appeal, no suitable logic has been available within which category theory
can be properly formalized [Feferman77,84]. As demonstrated in [Gilmore&Tsiknis90a,90b],
category theory can be formalized within NaDSet, and a derivation provided for the theorem that
the set of all categories is itself a category.

Finally, no suitable logic is available within which computational conjectures such as P£NP may
be explored. NaDSet may prove to be such a logic.

A logic that can satisfy the above demands must of necessity offer an elementary resolution of the
paradoxes of set theory. The resolution offered by NaDSet is described in the next section;
briefly, it suggests that the underlying source of the paradoxes is an abuse of use and mention.

1.2. F I f

Classical first order logic provides a formalization of two of the three fundamental concepts of
modern logic, namely truth functions and quantification. In classical set theories the third
fundamental concept, namely abstraction, is formalized by adding axioms to first order logic. In
NaDSet the three concepts are formalized in the same mannet, namely through rules of deduction
in a natural deduction presentation of the logic. This is the first of four distinguishing features of
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NaDSet which will be discussed.

1.2.1. Natural Deduction based Set Theory

Although the sequent calculus of [Gentzen35][Szabo69] is used for this paper, any natural
deduction formalization of first order logic, such as those presented in [Beth55], [Prawitz65], or
[Fitch 52] would do as well, for they can be simply extended to be a formalization of NaDSet.
[Tsiknis90]

Natural deduction presentations of logic, but in particular the Gentsen sequent calculus, provide a
transparent formalization of the traditional reductionist semantics of [Tarski36], in which the truth
value of a complex formula depends upon the truth values of simpler formulas, and eventually
upon the truth values of atomic sentences. Formalizing abstractions in this way has the effect of
replacing an unrestricted comprehension axiom scheme by a comprehension rule of deduction.
This replacement is not novel to NaDSet; for example, several of the theories described in
[Schiitte60] or the set theory of Fitch described in [Prawitz65] or [Fitch 52] have this feature. It
is also implicit in the description of the logic in section 21 of [Church41]. This replacement is,
however, not enough to ensure consistency; the theory described in [Gilmore68], for example,
is inconsistent because of an improper definition of 'atomic formula'.

The interpretation of atomic formulas is critical for the reductionist semantics of Tarski. A
second distinguishing feature of NaDSet is its interpretation of atomic formulas.

1.2.2. A Nominalist Interpretation of Atomic Formulas

In NaDSet, only names of sets, not sets may be members of sets. To emphasize that this
interpretation is distinct from the interpretation of atomic formulas in classical set theory, ":'is
used in place of 'e’ to denote the membership relationship. For example, the atomic formula
@ {ul~uwm }:C

is true in an interpretation if the term '{u | ~u:u }' is in the set assigned to 'C’, and is false
otherwise. Note that the term '{u | ~u:u }' is being mentioned in the formula while 'C' is being
used.

To avoid confusions of use and mention warned against in [Tarski36] and [Church56], NaDSet
must be in effect a second order logic. The first order domain for the logic is the set D of all
closed terms in which no parameter occurs, as defined in 2.1 below. For example, the term
'{ul~u:u }'is a member of D. The second order domain for the logic is the set of all subsets of
D. Thus if 'C' is a second order constant, then an interpretation will assign it a subset of D, so
that (i) will be true or false in the interpretation.
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Although NaDSet is in effect a second order logic, the elementary syntax requires only one kind
of quantifier used for quantification over both the first order and second order domains. This is
the third distinguishing feature of NadSet

1.2.3. One Universal Quantifier Instead of Two

In classical logic, existential quantification can be defined in terms of universal quantification and
negation for both first and second order quantifiers. This opportunity for simplification is
exploited in NaDSet as well; but the elementary syntax requires only one universal quantifier, not
one for first order quantification and one for second order quantification. However, the second
order nature of the logic is maintained in the two kinds of parameters that are required.

In [Gentzen35,38][Szabo69] a syntactic distinction is drawn between free and bound variables;
substitutions of terms can thereby be greatly simplified since a free variable can never become
bound. In NaDSet the practice of [Prawitz65] is followed in calling free variables parameters.
Thus an occurrence of a parameter in a formula or term of NaDSet plays the role of a variable not
bound by a quantifier or an abstraction term.

In an interpretation of NaDSet, first order parameters are assigned members of D, while second

order parameters are assigned subsets of D.

1.2.4. A Generalized Abstraction
The term '{u | ~u:u }' introduced in 1.2.2 is a typical abstraction term for a set theory that admits
such terms; they take the form {v | F }, where v is a variable, and F is a formula in which the
variable may have a free occurrence. The term is understood to represent the set of v satisfying
F. In NaDSet, however, v may be replaced by any term in which there is at least one free
occurrence of a variable and there are no occurrences of parameters (clause 6 of the definition of
elementary syntax in section 2). A term satisfying these conditions is the ordered pair term
defined for variables u and v that are distinct from w as follows:

<u,v> for {w l(u:C ! v:C)}
Here '!' is the single primitive logical connective of joint denial, in terms of which all other
logical connectives are defined, and C is a second order constant. That this simple term has the
desired properties of the ordered pair is demonstrated in [Gilmore89]. The ordered pair term is
used, for example, to define the Cartesian product of two sets A and B:

[AxB] for {<u,v>I|(u:AAv:B)}

The rules of deduction for the introduction of abstraction terms such as these are natural
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generalizations of the rules of deduction for abstraction terms of the form {v | F}. These
abstraction rules determine what are appropriate uses of abstraction terms in mathematical
arguments, rather than determine what sets may consistently coexist. For example, the
arguments Russell used to show that the empty set is a member of the Russell set and that the
universal set is not, are arguments that can be shown to be correct in NaDSet, while the
arguments demonstrating that the Russell set is and is not a member of itself cannot be justified in
NaDSet. Thus it can be said that NaDSet provides an answer to the question

What constitutes a sound argument?
rather than to the question

What sets exist?
which is a concern of the classical set theories. This is stressed in [Gilmore89] where it is
demonstrated that the general diagonal argument of Cantor is not a sound argument, although the
commonly used instances of it in computer science are sound.

1.5. Acknowledgements
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Mathematics and Computer Science of the University of Amsterdam and for the material and
technical help I received during the writing of this paper. Conversations with and suggestions
from my colleagues Kees Doets, Dick de Jongh, and Anne Troelstra have been particularly
helpful.
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2. ELEMENTARY SYNTAX OF NaDSet

Five different kinds of sytactical objects are used in the elementary syntax, namely variables, first
and second order constants, and first and second order parameters. It is assumed that there are
denumerably many objects of each kind, and that any object of one kind is distinct from any
object of any other kind.

2.1. Definition of Elementary Syntax
1. Avvariableis a term. The single occurrence of the variable in the term is a free
occurrence in the term.
2. Any parameter or constant is a term. No variable has a free occurrence in the
term.
3. Ifr ands are any terms, then r:s is a formula. A free occurrence of a
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variable in r or in s, is a free occurrence of the variable in the formula.

4. If G and H are formulas then (G{H) is a formula. A free occurrence of a
variable in G or in H is a free occurrence in (G{H).

.5. IfFis aformula and v a variable, then VvF is a formula. A free occurrence of
a variable other than v in F, is a free occurrence in VVF; no occurrence of v is
free in VVF.

.6. Lett be any term in which there is at least one free occurrence of a variable and
no occurrence of a parameter. Let F be any formula. Then {tIF} is an
abstraction term and a term. A free occurrence of a variable in F which does not
also have a free occurrence in ta, is a free occurrence in {tIF}. A variable
with a free occurrence in ta has no free occurrence in {tIF'}.

7. A term is first order if no second order parameter occurs in it. A formula r:T is
atomic if r is first order, and T is a variable or a second order parameter or
constant. A term or formula in which no variable has a free occurrence is said to
be closed.

Note that the first sentence of 2.1.7 applies to second order constants and to the abstraction terms
defined in 2.1.6; for example, the second order constant 'B' is a first order term, as is also the
abstraction term {<u,v> | u:v A <v,y>:B}

2.2. Free and Bound Occurrences of Variables

It is important to understand what are free and not free, that is bound occurrences of variables in
aterm {tlF}. Consider the formula:

<u,v>:{<u,v>lu:v A <v,w>:B}
The first occurrence of each of the variables 'u' and 'v' in this formula are free occurrences; all
other occurrences of these variables are not free. The single occurrence of the variable 'w'is a
free occurrence. Therefore in the formula

[Vul[vw](<u,v>:{<u,v> | u:v A <v,w>:B})
only the first occurrence of 'v'is free.

2.3. Closed Formulas

A closed formula must take one of the following forms:

a) (GIH), where G and H are closed formulas.

b) VVF, where F is a formula in which at most the variable v has a free occurrence.
¢) r:T, where both r and T are closed terms.
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The only subforms of the latter are the following three:

i) T is {tlF}, where at most the variables with a free occurrence in t have a free
occurrence in F.

il) r:T is atomic; that is, r is first order and T is a second order parameter or constant.

iii) r is second order or T is a first order parameter or constant.

3. L SYNTAX

NaDSet is presented as a Gentzen Sequent Calculus. Familiarity with the Gentzen sequent
calculus as described in [Gentzen35], [Szabo69], [Kleene52], or [Prawitz65] is presumed. As
noted in the introduction, this natural deduction calculus is chosen for the formalization of
NaDSet because it is one of the least complicated to describe and justify. However, any natural
deduction formalization of first order logic, such as those presented in [Beth55], [Prawitz65], or
[Fitch52], can be simply extended to be a formalization of NaDSet.

A sequent in NaDSet takes the form
r-eo,

where I" and © are finite, possibly empty, sequences of closed formulas. The formulas I" form
the antecedent of the sequent, and the formulas of @ the succedent. A sequent can be interpreted
as asserting that one of the formulas of its antecedent is false, or one of the formulas of its
succedent is true.

3.1. finition ical
In the following, F, G, and H are closed formulas, unless otherwise stated.

3.1.1. Axioms
GG
where G is atomic

3.1.2. Logical Rules
Propositional
rG-0e rrHoe r-@G,e r-H,e

r - (GlH), ® r, (GIH) - e r,(GIH) - e
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Quantification
I - [p/ul]F, e I, [thF->e
I' > VuF, © T, VvuF - e

e Fis any formula in which at most the variable u has a free occurrence.
e pisa parameter that does not occur in F, or in any formula of T" or © of the first rule.
e tisany closed term.

Abstraction
- [r/ulF, e T, [r/u]F - e

r—[r/ult:{tF}, e L, [r /ult:{tIF} - e

u is a sequence of the distinct variables with free occurrences in the term ta.

F is a formula in which no variable, other than one of y, has a free occurrence.
I is a sequence of closed terms, one for each variable in y.

[r /u] is a simultaneous substitution operator that replaces each occurrence of the
variables u, respectively, with the corresponding terms [.

e o o o

3.1.3. Structural Rules

Thinning
r-e r-e
r-6,F F,r-e
Contraction
r--eo,F,F F,F,r->0
r-e,F F,r-e
Interchange
r--6,F,G,A AF,G TIr-e
r--6,G,F,A AGF,TIr-»e
3.1.4. Cut Rule

r-e,G G, r-e

'-e
End of definition

The rules are defined as schemas. In an application of a rule in a derivation, particular formulas
are used.

From the restrictions placed on the formulas appearing in the axioms and rules, it follows that
only sequents of closed formulas are derivable in NaDSet.
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The propositional, quantification and abstraction rules will be denoted respectively by:

-, l-, 5V, V-, »{} and {}-.
When it is necessary to distinguish between the two {— rules, they will be referred to as the
Ll— and the Rl— rules. The structural and cut rules will be referred to by name.

Although all the usual logical connectives ~, A, v, o and = and the existential quantifier 3 can be
defined using | and V, and corresponding rules of deduction derived, they will not be used in
this paper.

Note that, unlike [Gentzen35,38] and [Szabo69], the cut rule is not included among the structural
rules.

3.2. Eigenparameters and Eigenter

The parameter p used in an application of -V is called the gigenparameter (briefly g-par) of the
application, and the term t used in an application of V—» is called the gigenterm (briefly e-term) of
the application.

It is easy to confirm that the e-par p of an application of the —V rule in a derivation can be
changed to any other parameter of the same order that does not occur in the derivation. It is only
necessary to replace all occurrences of p in the derivation by the new parameter.

3.3. Failure of Param Term Replacem

Gentzen's proof of the consistency of arithmetic made use of a simple property of the axioms of
his theory: Any parameter occurring in a logical axiom F — F can be replaced in all of its
occurrences by a term, and the resulting sequent will still be an axiom. As a consequence, the
replacement of all occurrences of a parameter in a derivation by a term results in a derivation.

Because of the definition of atomic, and the restriction of axioms G — G to those for which G is
atomic, it is not possible in general to transform a derivation to a derivation by replacing

parameters by terms. This failure of parameter by term replacement is the main source of

complications in the proof of consistency of NaDSet given below.

4. ATOR E

The definitions and results presented in this section do not require more than a superficial
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knowledge of section 3, although they do require a better knowledge of section 2. They all have
a combinatorial, rather than a logical character.

4.1. lobal i

Each application of —V has an e-par and each application of V—» has an e-term. During the
reduction process to be described for a derivation of the empty sequent, a one-to-one mapping of
applications of —V onto applications of V- is constructed which leads to a mapping of e-pars
onto e-terms. In Gentzen's proof of consistency, each e-par is replaced by its corresponding
e-term. But in NaDSet this is not possible, so a record must be kept of the substitutions that
would be made if they could be made. The record is kept as a global substitution consisting of

zero or more components of the form [t; /p;], where t; is a closed term and p; is a parameter,
satisfying the condition:

* A parameter p; occurs in a term tj onlyifi<j.

The order of the components is therefore significant; it is determined by the order in which the
parameters p; are encountered in the reducation process as e-pars for applications of -V, with t;

being the e-term of the corresponding application of V-s.

Let a global substitution ¢ have components [ty /pq], [ty /Pl ..., [t /Py]. Each component
[t; /p;] of o has the effect of replacing every occurrence of p; in a term or formula to which it is
applied by t;. The result o(F) of applying o to a term or formula F is the result of successively
applying the components in the reverse order: first [ty /py], then [ty _1 /py_1], ... , and then
finally [t] /pq].

4.2. Labell raph

Cuts are eliminated from a derivation of the empty sequent in much the same manner as Gentzen.
Cuts are accumulated as edges of a labelled graph as the reduction of the derivation proceeds, and
then eliminated in pairs when the middle sequent of the two cuts is an axiom.

4.2.1. Terminology
A graph G consists of a nonempty set of vertices V and a set E of edges consisting of ordered
pairs <v1,v2> of distinct vertices vland v2, said to be the vertices of the edge; v1 is the tail of the

edge, while v2 is the head. An undirected path of G is a sequence €1» -.- » €, Of distinct edges
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such that successive edges €; and e;, ; have a common vertex. G is said to be connected acyclic if

there is exactly one undirected path connecting each pair of distinct vertices of G. A vertex of G
is said to be a leaf if it is a vertex of at most one edge.

Note that if G is a connected acyclic graph then not both <v1,v2> and <v2,v1> are edges of G

for any vertices v1 and v2. The following lemmas state two easily established properties of such
graphs.

4.2.1.1. Lemma: Every connected acyclic graph has at least one leaf vertex.

4.2.1.2. Lemma: Let <v1,v2>be an edge of a connected acyclic graph G. If the edge is

removed, then @G is split into two connected acyclic graphs, one in which v1 is a vertex and one

in which v2 is a vertex.
For the remainder of the paper, a connected acyclic graph will be referred to simply as a graph.

Given a global substitution o, a labelled graph for ¢ is a graph for which each edge <v1,v2> is
assigned a single label consisting of a pair <F1, F2> of closed formulas for which

o(F1)is o(F2).
The label assigned to an edge is said to be the label of the edge. The formula F1 is called the tail
formula for the edge, and the formula F2, the head formula.

Let F1 and F2 be respectively the tail and head formulas of an edge of a labelled graph. Both F1
and F2 together must be of one of the three forms (a), (b), or (c) described in 2.3. In the first
two cases the edge is said to be respectively a | edge or a ¥ edge. In the third case the edge is
called a {} edge if both F1 and F2 have the form (ci), an atomic edge if at least one of them has
the form (cii) and the other does not have the form (ciii), and a thinned edge if either has the form
(ciii). An atomic edge for which F1 ( respectively F2) is atomic is said to have an atomic tail
(respectively an atomic head). A thinned edge for which F1 ( respectively F2) has the form (ciii)
is said to have a thinned tail (respectively a thinned head).

4.2.2. Reducible Vertices

A vertex v of a labelled graph is said to be reducible if it satisfies one of the following four
conditions:

RO: v is the only vertex of the graph;

R1: v is the head or tail of a | or {} edge or the thinned head or tail of a thinned edge;
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R2: there are one or more V edges of which v is head, every other edge of which v is head is
atomic with atomic head, and every edge of which v is tail is atomic with atomic tail; or

R3: each edge of which v is the head is atomic with an atomic head, and each edge of which v is
the tail is atomic with an atomic tail.

Lemma: Every labelled graph has a reducible vertex.

Proof: By induction on the number of edges of a labelled graph G. If G has no edges then its
single vertex is reducible by RO.

Assume the lemma proved for all graphs G with n or fewer edges, where n 2 0. Consider a
graph G' with n+1 edges. By the lemma of 4.2.1, G' has at least one leaf vertex v'. Lete be

the sole edge of which v' is a vertex, and let v be the vertex of G which is the other vertex of e.

Ifeis a or {} edge then both v and v' satisfy R1 in G, and one of them does if e is a thinned

edge. Assume, therefore, that € is a V edge or an atomic edge with an atomic head or tail.

If e is a V edge with head v/, then v' satisfies R2 in G'. If e is an atomic edge with v' its atomic

head or tail, then v' satisfies R3 in G'. Assume, therefore, that either
a) eisaV edge with head v, or
b) e is an atomic edge with v its atomic head or tail.

By the induction assumption G has a reducible vertex. If v is not a reducible vertex of G, then

some other vertex of G is reducible and is a reducible vettex of G'. Assume therefore that v is a

reducible vertex of G. There are four cases to consider:

* visthe only vertex of G. If (a) is the case, then v satisfies R2 in G'. If (b) is the case, then
v satisfies R3 in G'.

« v satisfies R1 in G. Then v satisfies R1 in G'.

» v satisfies R2 in G. Then in each of the cases (a) and (b), v satisfies R2 in G'.

» vsatisfies R3in G. Then if (a) is the case, v satisfies R2 in G', while if (b) is the

case, v satisfies R3 in G'.

End of proof
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4.3. n icti T

Associated with each vertex v of a labelled graph is a sequent I' — ©, called the sequent of the
vertex, defined as follows:

» Each occurrence of a formula in I' is an occurrence of the head formula of an edge with head
v; and
* Each occurrence of a formula in @ is an occurrence of the tail formula of an edge with tail v.

It is assumed that the order of the occurrences of formulas in I" and © is fixed by an ordering of
all closed formulas of NaDSet. Note that the sequent of the single vertex of the labelled graph
without edges is the empty sequent.

A labelled graph is called a contradiction graph if the sequent for each of its vertices is derivable.
It will be assumed that for a given contradiction graph the derivations of the sequents of its
vertices are fixed. By the derivation of a vertex of a contradiction graph is meant the given
derivation for the sequent of the vertex.

In summary, the vertices of a contradiction graph with global substitution ¢ can be thought of as
derivations while the edges are ordered pairs <G1, G2> of formulas satisfying the following
conditions:

1. o(Gl)is o(G2);

2. The endsequent of the derivation of a vertex is the sequent of the vertex.

5. LOGICAL PRELIMINARIES

This section introduces some terminology as well as some lemmas needed in the proof of
consistency given in section 6. A knowledge of section 3, describing the logical syntax of
NaDSet, is presumed.

The consistency proof is an adaptation of Gentzen's second proof of consistency of elementary
number theory [Gentzen38]. But the terminolgy used differs at times from that used in the
translation of that paper offered in chapter 8 of [Szabo69]; the differences are largely all noted in
section 5.1. In sections 5.2, 5.3, and 5.4 some logical lemmas are stated and proved.
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5.1. T inol nd El ntar

5.1.1. Endsequent and Branch of a Derivation

A derivation in a Gentzen sequent calculus takes the form of a tree with leaves that are axioms,
and with a single sequent at the root of the tree called the gndsequent of the derivation. Each
sequent in the tree, other than an axiom at a leaf, is the conclusion of an application of a rule of
deduction with the premiss or premisses of the application immediately above the conclusion in
the tree. (In [Szabo69], an axiom is called a basic sequence, a rule of deduction an inference
figure schemata, and an application of a rule of deduction an inference figure.) When there is no
risk of confusion, an application of a rule of deduction in a derivation will be referred to simply
as a rule of deduction.

A branch of a given derivation is a sequence Sq;, ..., Sq, of sequents Sq;, i 2 1, where Sq;, ; is
a premiss of a rule of deduction with conclusion Sq;. Thus the order of sequents in a branch is

upwards in the tree.

5.1.2. Principal and Corresponding Formulas

In an application of a rule of deduction, specific formulas must replace the metasystem variables
printed in bold in the description of the rule, and specific sequences of formulas must replace the
sequences denoted by uppercase Greek letters. The specific formulas replacing the metasystem
variables are called the principal formulas of the application. An application of any logical rule,
or of any structural rule other than interchange, has a single principal formula in its conclusion,
while an application of interchange has two principal formulas in its conclusion. The premiss of
an application of contraction has two principal formulas. Each premiss of an application of a
logical rule has a single principal formula. Each application of a thinning rule has no principal
formula in its premiss, while each application of cut has no principal formula in its conclusion.
(In [Szabo69] only an application of a logical rule has a principal formula, and it is the principal

formula of the conclusion)

Each principal formula in the conclusion of an application of a rule has a corresponding principal
formula in each premiss of the rule. Each formula that is not a principal formula of the
conclusion of an application has a corresponding identical formula in each premiss of the rule.

5.1.3. Blocked Applications of v—

The principal formula of the premiss of an application of the —V rule takes the form [p/u]F,
where p is the e-par of the application. The requirement that the e-par of an application cannot
occur in any formula in the conclusion is referred to briefly as the g-par restriction. The principal
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formula of the premiss of an application of the V- rule takes the form [t/u]F, where t is the
e-term of the application.

There is no e-term restriction similar to the e-par restriction. However, complications arise from
interactions between applications of V— and —V. Consider the following example derivation in
which the horizontal bars between premiss and conclusion have been omitted:

c:P->cP axiom

Vx cx »cP Vo

VX C:X = VX CiX -V

VX ¢:X, (Vx c:xdVX €:X) — -

vx c:x, c:{u l (vx wxlvx ux) } —» {}-»

VX C:X, VX C:X = V-

VX CiX — contraction

The first rule applied is V-»; its e-term P is the e-par of the application of —V that follows it.
Thus the V— rule removes an occurrence of the parameter P in the antecedent of the premiss of
the -V rule, permitting that application to satisfy the e-par restriction. The removal of the
application of V— would prevent the application of —V from being made; the application of V—
is said to be blocked by the application of —V. The second application of V- is however not
blocked by any application of —V.

The full definition of blocking follows: Consider a branch of a derivation ending in the premiss
- [p/ulF,®

of an application of -V, and consider an application of V—» occuring in the branch. The

application of V- is said to be blocked by the application of -V if the e-par p occurs in the

e-term of the application of V—. An application of V- is said to be blocked in a derivation if it is

blocked by some application of -V in the derivation.

One elementary result concerning blocking is used in the consistency proof:

5.1.3.1. Lemma: Let T — © be a derivable sequent for which each formula of © is atomic,
and for which each formula of I is atomic or is of the form VvG. Further, let at least one of the
formulas VvG of the endsequent have a top identical predecessor that is the principal formula in
the conclusion of an application of V—. Then the last application of V- in the derivation is not
blocked.

The endsequent of the derivation in 5.1.3 is an example of a sequent satisfying the conditions of
the lemma. That the last application of V- is not blocked follows from the fact that no
application of —V follows it.
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5.1.4. Predecessor, Logical Predecessor, and (Top) Identical Predecessor

Consider an occurrence of a formula in a derivation. A predecessor of the occurrence is the
occurrence itself, or a formula in a premiss of an application of a rule of deduction corresponding
to a predecessor in the conclusion. The principal formula of a premiss of an application of a
logical rule is a logical predecessor of the principal formula of its conclusion.

A predecessor H of an occurrence F is called an identical predecessor if H, and every
predecessor G of F of which H is a predecessor, is an occurrence of the same formula as F. A
top identical predecessor is an identical predecessor that is the antecedent or succedent of an
axiom, or the principal formula in the conclusion of an application of thinning or of a logical rule.

Transformation, ntradiction Graph

For all but one of the following transformations, the global substitution for the given
contradiction graph will be the global substitution of the transformed graph.

5.2.1. A Cut-Transformation

Let I — © be the sequent of a vertex v of a contradiction graph G, and let the derivation of T — ©
have an application of cut which is not followed by any application of a logical rule. Let G be the
principal formula of the premisses of the cut.

The cut-transformation of the contradication graph G proceeds as follows:

* A duplicate G' of G is formed.

* G and G' are joined by an edge with tail the vertex v of G and with head the duplicate of v in
G'.

» The label for the new edge is < G, G >.

The endsequents of the derivations for v and V' in the transformed graph are
r-G,9andI,G->0

Since derivations of these sequents can be obtained from the derivations of the premisses of the

cut, the transformed graph is a contradiction graph.

5.2.2. A Thinning-Transformation
Let <v1,v2> be an edge with label < F1, F2 > of a contradiction graph G. Let I - F1, 0 be
the sequent of v1, and A, F2 — A the sequent of v2.
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« If every top identical formula of F1 is the principal formula in the conclusion of thinning,
then the thinning-transformation of G is G1.
+ If every top identical formula of F2 is the principal formula in the conclusion of thinning,

then the thinning-transformation of G is G2.

In the first case Gl is a contradiction graph with I — @ the sequent for v1, and in the second

case G2 is a contradiction graph with I' — @ the sequent for v2. In each case a derivation of the

sequent of the vertex can be obtained from the derivation of the premiss of the thinning.

5.23. A l-Transformation

Let <v1,v2> be an edge of a contradiction graph G with label < (G1{H1), (G2\H2) >. Let

I - (G1{H1), © be the sequent for v1 and A, (G2JH2) — A the sequent for v2. Let (G1IH1)
have a top identical predecessor that is the principal formula in the conclusion of an application of
-, and let (G2/H2) have a top identical predecessor that is the principal formula in the
conclusion of an application of the L{— rule. The derivations Derv1 and Derv2 for the sequents
of the vertices v1 and v2 may be assumed to have the following forms:

Dervl Derv2
rGlo>e I, Hl->6 A AL G2
r'>(GLHD, e ... e AL (G2UH2) S A
" e, GLHD T (GaHD,AoA

Here the occurrences of .. .' represent portions of the derivation not explicitly displayed,
while the double dotted lines represent zero or more applications of rules.

Two derivations Dervl' and Derv2' may be obtained from these by dropping the displayed
applications of respectively —{ and L{— and replacing them with applications of thinning:

Dervl' Derv2'
rGloe A A G2
r', Gl - (GLLHL), ' ... cer AL (G2LH2) - A, G2

r,Gl- e, (G1iH1) (G2lH2),A - A, G2
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The edge of G under consideration can be represented as follows:

<(G1i{Hl1), (G2!H2)>

vl v2
Dervl Derv2

The -transformation of G is obtained as follows:

1. By lemma 4.2.1.2, two graphs G1 and G2 are obtained from G by removing the edge
<v1,v2>; Gl is the graph in which v1 is a vertex and G2 the graph in which v2 is a vertex.

2. A duplicate G1'of G1 is made with vl named v1', and a duplicate G2' of G2 is made
with v2 being named v2'.

3. Three new edges <v1,v2'>, <v2',v1">, and <v1',v2> are added with labels respectively
<(G1{H1), (G2lH2)>, <G1,G2>, and <(G1{H1), (G2/H2)> to form a connected

acyclic labelled graph from G1, G1', G2', and G2.

The new edges with their labels and derivations can be represented as follows:

<(G1{H1), (G2|H2)> <G2,G1> <(G1lH1), (G2{H2)>
vl v2' g vl' i v2
Dervl Derv2' Dervl' Derv2

The transformed graph is clearly a contradiction graph. A similar transformation can be defined
if the Rl— rule rather than the L{— rule is used in Derv2.

5.2.4. A V-Transformation

Let G be a contradiction graph with global substitution o, and let <v1,v2> be an edge of G with
label < VvG1,vvG2 >. Let I' »VvGl1, © be the sequent of v1, and let VvG1 have a top
identical predecessor which is the principal formula in the conclusion of an application of -V
with e-par p satisfying the e-par restriction; therefore in particular, p does not occur in G1.
Similarly let A, VvG2 — A be the sequent of v2, and let VvG2 have a top identical formula
which is the principal formula in the conclusion of an application of V— that is not blocked, and
that has e-term t. By 3.2, it may be assumed that p is distinct from any parameter occurring in
the components of o or in the derivation of A, VvG2 — A. In particular, it may be assumed that
p does not occur in t or in G2.

Let Dervl and Derv2 be respectively the derivations for the sequents of the vertices v1 and v2.
Derivations Derv1' and Derv2' can be obtained from these by dropping the applications of —V
and V-, and replacing them by thinnings, just as was done in 5.2.3 for applications of the |
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rules. The endsequents for Derv1' and Derv2' are then respectively
I -vvGLl[p/vlGl, @ and A, [t/v]G2, VvG2 — A.

The edge of G under consideration can be represented as follows:

<vvGLVvG2 >

vl v2
Dervl Derv2

The V-transformation of G is obtained by steps (1) and (2) of 5.2.3, followed by the following
replacement for step 3:
»  Three new edges <v1,v2">, <v1',v2'>, and <v1',v2> are added with labels respectively
<vvG1l,vvG2 >, < [t/v]G2,[p/V]G1 >, and < VvG1,vv(G2 > to form a connected
acyclic labelled graph from G1, G1', G2', and G2.

The new edges with their labels and derivations can be represented as follows:

<vvGLVvvG2 > < [t/v1G2,[p/vIG1 > <vvGlvvG2 >
vl v2' vl v2
Dervl Derv2' Dervl' Derv2

The global substitution for the new graph is defined to be o[t/p]. Since p does not occur in G1,
t, or in G2, o[t/pl([p/vIG]) is o([t/v]G1) is [o(t)/v]e(G1). But since o(VvG1l) is 6(VVvG2),
o(G1) is 6(G2). Therefore, [a(t)/vlo(G1) is [o(t)/v]o(G2) is o([t/v]G2) is o[t/p]([t/v]G2),

and the transformed graph is a contradiction graph.

5.2.5. A {}-Transformation

Let G be a contradiction graph with global substitution o, and let <v1,v2> be an edge with label
<rl:T1, r2:T2 >, where both T1 and T2 are abstraction terms. Since o(T1) is 6(T2), there is
a term t and formulas G1 and G2, such that T1 and T2 are respectively {tiG1} and {tIG2},
for by 2.1.6 no parameter may occur in t.

Let T - rl1:{tIG1}, © be the sequent of v1, and let r1:{tiG1} have a top identical predecessor
that is the principal formula in the conclusion of an application of —{}. Similarly, let

A, r2:{tIG2} — A be the sequent of v2, and let r2:{tlG2 have a top identical predecessor that is
the principal formula in the conclusion of an application of {}—-.

It follows that r1 must be of the form [r1/u]t, and that the principal formula in the premiss of the
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application of —{} has the form [r1/u]G1, where u is a sequence of all the variables with free
occurrences in t, and rl is a sequence of terms of the same length. Similarly it follows that r2
must be of the form [r2/u]t, and that the principal formula in the premiss of the application of
{}— has the form [r2/u]G2, where r2 is a sequence of terms of the same length as u.

Asin 5.2.3 and 5.2.4, let Dervl and Derv2 be the derivations for vl and v2, and let Derv1' and
Derv2' be obtined from them by replacing applications of { } rules by thinnings. The endsequents
for Dervl' and Derv2' are then respectively

I - [rl/u]t:{tIG1}, [r/u]lG1, ® and A, [r2/u]t:{tIG2}, [r2/ulG2 - A.

The edge of G under consideration can be represented as follows:

< [c1l/ult:{tIG1},[r2/ult: {tIG2}>

vl v2
Dervl Derv2

The { }-transformation of G is obtained by steps (1) and (2) of 5.2.3, followed by the following
replacement for step 3:
e Three new edges <v1,v2'>, <v1',v2'>, and <v1',v2> are added with labels respectively

<[rl/ult:{tIG1},[r2/ult: {tIG2}>, <[rL/ulG1,[r2/ulG2 >, and
<[rl/ult:{tiG1},[r2/u]t: {tIG2}> to form a connected acyclic labelled graph from G1,

G1', G2, and G2.

The new edges with their labels and derivations can be represented as follows:

<[rlult:{tiIG1},[r2/]t:{tIG2}> <[r2/ulG2,[rl/ulG1> <[rl/ujt:{tIG1},[r2/u]t:{tIG2}>
< . .

vl v2' vl v2
Dervl Derv2' Dervl' Derv2

5.2.6. An Axiom-Transformation
Let G be a contradiction graph with global substitution o, and let the vertex v of G have the
axiom A — A as its sequent. There are therefore distinct vertices v1 and v2 such that <v1,v>
and <v,v2> are edges of G with labels respectively < A1, A > and < A, A2 > for which

oAl is 6A is cA2.

Let G1 be the subgraph of G in which v1 is a vertex obtained by removing the edge <v1,v> and

let G2 be the subgraph in which v2 is a vertex obtained by removing the edge <v,v2>.
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The transformed contradiction graph is obtained from G1 and G2 by joining the two graphs with
an edge <v1,v2> labelled with < Al, A2 >.

The edges of G under consideration with their labels and derivations can be represented as

follows:
<Al,A> <A,A2 >
vl v v2
Dervl A>SA Derv2

These edges are replaced by the single edge:

<Al,A2>
vl v2
Dervl Derv2

The transformed graph is clearly a contradiction graph.

6. CONSISTENCY PROOF

A proof of the following theorem will be provided in the subsections of this section:
Theorem: The empty sequent is not derivable in NaDSet.

The proof of the theorem will proceed by contradiction. A derivation of the empty sequent
defines a contradiction graph with a single vertex and no edges. It will be shown in 6.1 that
given any contradiction graph, at least one of the transformations defined in 5.2 can be applied to
it. In 6.2 a definition is given of the degree of an occurrence of a formula in a derivation of the
sequent of a vertex of a contradiction graph. This definition is used in 6.3 to define the ordinal
number of a contradiction graph. This ordinal is always less than g;. The proof of the theorem
is completed in 6.4 where it is shown that the ordinal number of a contradiction graph can always
be decreased by applying a finite number of the transformations defined in 5.2.

6.1. A Transfor ion 1

Let G be a contradiction graph. By the lemma of 4.2.2, G has a reducible vertex v. No matter
which of the conditions RO, R1, R2, or R3 v satisfies, one of the transformations defined in 5.2

can be applied to G:
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6.1.1. v satisfies R0
The sequent for v is the empty sequent . The last rule of deduction applied in any derivation of
the empty sequent is necessarily cut. Therefore the cut -transformation described in 5.2.1 can be

applied to G.

6.1.2. v satisfies R1

It follows that G has an edge <v1,v> or <v,v2> with a label one of the following:
<(G1iH1), (G2{H2)>, <rl:{t | G1}, r2:{t | G2}>, or <F1, F2>,

where at least one of F1 and F2 has the form (ciii) of 2.3.

Assume that no thinning-transformation can be applied. In this case, only the first two labels are
possible. If the first of these is the label, then necessarily a |-transformation can be applied,
while if the second is the label, then a { }-transformation can be applied.

6.1.3. v satisfies R2
It follows that G has an edge <v1,v> with label < vvG1,vvG2 >. If no
thinning-transformation applies, then by lemma 4.1.4.1 a V-transformation can be applied.

6.1.4. v satisfies R3

The formulas in the sequent I' — © of v are all atomic. Assume that no thinning transformation
can be applied. If I' - © is an axiom, then an axiom transformationcan be applied. If

I' - ©1is not an axiom, then necessarily the derivation of I' — © has an application of cut below
which no application of a logical rule is applied. Then a cut transformation can be applied.

6.2. The Degree of an Occurrence of a Formula in a Derivation

The usual definition of the degree of a formula is simply a count of the number of occurrences of
logical connectives and quantifiers in the formula. This definition is, however, no longer useful
in NaDSet because of the interaction between the { } and V— rules. For example, the last
application of V- in the derivation of 5.1.3 removes a term that has been introduced by a {} rule.
The definition provided here is that of the degree of an occurrence of a formula in a contradiction

graph.

A degree path in a contradiction graph G is a sequence Fy, ..., F|;, m 2 1, of distinct

occurrences of formulas for which, fori <m, F; and F,,, satisfy one of the following

conditions:
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1. F,,, is alogical predecessor of F;;

2. F,is alogical predecessor of F;, ;;

3. Oneof F;and F;,, is a distinct immediate predecessor of the other;

4. F;and F,,, are the principal formulas in the premisses of an application of cut in the

derivation of a vertex of G; or

5. <Fi’Fi+1> or <F

.+1-F;> is a label of an edge of G.

6. Oneof F;and F,,; is the antecedent and the other is the succedent formulas of an axiom.

The degree of a degree path Fy, ..., F, is defined recursively as follows:
» The degree of the path F; is 0;
» Letthe degree of Fy, ..., F; be d. Then the degree of Fy, ..., F}, F;,; is d', where the

value of d' depends upon which of the six conditions F; and F;,; satisfy:

d'= d+1 in case (1), d'=d-1 in case (2) and d'=d in the remaining cases.

Since a given occurrence of a formula can be at most one element of a degree path, there are at
most finitely many degree paths with a given occurrence as first element. The degree of an
occurrence is the maximum of the degrees of degree paths with the occurrence as first element.

The following notation will be used for degrees: Given a degree path dp and a occurrence F of a

contradiction graph G, the degree of dp is deg(dp, G) and the degree of F is deg(F, G)

The following lemma summarizes some of the obvious properties of the degree assignment:

6.2.1. Lemma: Let G be a contradiction graph, and F and G occurrences of formulas in

derivations of vertices of G. Then

1. deg(F, G) =max{ deg(dp, G) | dp a degree path with first element F} > 0.

2. LetF be the principal formula in the conclusion of an application of a logical rule and let G
be a principal formula in a premiss. Then deg(F, G) = deg(G, G) + 1.

3. deg(F, G) =deg(G, G) if F and G satisfy one of the following conditions:

.1. One is an identical predecessor of the other;
.2. They are the principal formulas in the premisses of an application of cut;

.3. They are the occurrences of formulas referenced by the label of an edge of G; or
4. They are antecedent and succedent formulas of an axiom.
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Note that with the exception of (2), these conditions are all satisfied by the degrees in the
traditional sense of formulas in a derivation in first order logic; an inequality is satisfied in this
case. They are all assumed in Gentzen's consistency proof for arithmetic.

6.2.2. The Effect on Degrees of the Transformations

Unlike the traditional degrees of formulas in first order logic, the degree of an occurrence of a
formula in a contradiction graph can be affected by the transformations described in 5.2, for
depending upon the transformation, degree paths may be added to or removed from the
transformed contradiction graph. If degree paths are added, the degree of an occurrence may be
increased, while if they are removed, the degree may be decreased.

6.2.2.1. A Cut-Transformation
Since a cut with cut formulas G and G is replaced with an edge with label <G,G>, the degree of
no occurrence of a formula is affected by the transformation.

6.2.2.2. A Thinning-Transformation
The transformed graph has at least one fewer edges than the given graph, and therefore the
degree of an occurrence of a formula cannot be increased, but it may be decreased.

6.2.2.3. A Logical Transformation

By a logical transformation is meant a |-, V-, or { }-transformation. When such a transformation
can be applied it transforms a contradiction graph G into the contradiction grah G* described in
5.2.3,5.2.4, and 5.2.5. Since the effect on degrees is similar for the other transformations, it is
sufficient to consider the case of a -transformation only.

A l-transformation replaces a single edge of G with three edges in G* as follows:

An edge
<(G1iH1), (G2{H2)>
. >- -— L]
vl v2
Dervl Derv2
is replaced by the edges
<(G1lH1), (G2!H2)> <G2,G1> <(G1{H1), (G2!H2)>
vl v2' vl' - -“\/2

Dervl Derv2' Dervl' Derv2
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The only way that the subgraph G1' of G* differs from the subgraph G1 of G and G* is that v1
has the derivation Derv1, while v1' has the derivation Derv1'. The relationship between the
derivations Dervl and Derv1' are described in 5.2.3. With the exception of the possible
additional occurrences of G1 in Derv1’, there is a one-to-one map of the occurrences of formulas
in Derv1' with the occurrences in Dervl. However the possible additional occurrences of G1
have an identical predecessor, namely the occurrence of G1 in the premiss of thinning, that has a
corresponding occurrence in Derv1, namely as the principal formula in the premiss of the
application of —.

Let dp1'* be a degree path of G* with elements entirely within G1'. It follows from the
observations of the previous paragraph that there is a degree path dpl of G with elements entirely
within G1 for which

deg(dpl'*, G*) = deg(dpl, G).
Similarly it follows from analogous observations, that if dp2* is a degree path of G* with
elements entirely within G2/, then there is a degree path dp2 of G with elements entirely within
G2 for which

deg(dp2'*, G*) = deg(dp2, G).

These conclusions are essential to a proof of the following lemma:

Lemma: Let F* be an occurrence of a formula in G*, and let F be the corresponding
occurrence in G. Then deg(F*, G*) <deg(F, G).

Proof: It is sufficient to prove that for any degree path dp* of G* with first element F*, there

is a degree path dp of G with first element F for which deg(dp*, G*) < deg(dp, G).

If all the elements of dp* are entirely within any of the pairs of subgraphs G1 and G2', G2' and
G1', or G1'and G2, then the result is immediate. For assume that the elements are entirely
within the pair G2' and G1'. Then dp* is a sequence <dp2'*, dp1"*> with subsequences dp2'*

and dp1'* with elements entirely within respectively G2'and G1', and having the forms

respectivley
F*, .., G2*
G1%, ..., H*.

But deg(dp*, G*) = deg(dp2'*, G*) + deg(dp1'*, G*)
< deg(dp2, G) +deg(dpl, G) = deg(dp, G),



Consistency of NaDSet December 5, 1990 26

where dp is

F, .., G2, (G2!H2), (G1{H1),G1, ... ,H;
since the pair G2, (G2!H2) contributes -1 to the degree, the pair (G2{H2), (G1{H1) 0, and
the pair (G1{H1), G1 +1.

A similar argument can be advanced for the cases when the elements of dp* are entirely within
other pairs of subgraphs.

Assume therefore that the elements of dp* are entirely within at least three of the subgraphs.
Consider first the case that they are within all four of the subgraphs, so that dp* consists of four

degree paths dp1*, dp2'*, dp1'*, and dp2* with elements entirely within respectivley G1, G2/,
G1', and G2.

Since dp1* has elements entirely within the subgraph G1 of both G* and G, F* may be
assumed to be F. Similarly the last element of dp2* is in both G* and G. Therefore the four

paths may be assumed to have the following forms respectively:
F, ..., (G1{H1)
(G2lH2)*, ..., G2*
G1*%, ..., (G1LH1)*
(G2{H2), ..., H

Let dp2 and dpl be the degree paths of G2 and G1 corresponding to the degree paths dp2'* and
dpl™* of G2' and G1'. Then
deg(dp2*, G*) = deg(dp2, G) < deg( (G2{H2), G) - deg(G2,G) =1
Similarly, using analagous notation,
deg(dpl'*, G*) = deg(dpl, G) < deg( G1, G) - deg( (G1LLH1), G) = -1.
Therefore
deg(dp*, G*) = deg(dpl*, G*) + deg(dp2'*, G*) + deg(dp1'*, G*) + deg(dp2*, G*)
<deg(dpl*, G*) + deg(dp2*, G*) = deg(dpl*, G) + deg(dp2*, G)
< deg(<dpl*, dp2*>, G),
where as before <dp1*, dp2*> is the sequence consisting of first the elements of dp1* followed
by the elements of dp2*.

Consider now the case that the degree path dp* has elements entirely within three of the

subgraphs. It is sufficient to consider the case that the elements are entirely within G1, G2', and
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G1', for the case that they are entirely within G2', G1', and G2 is similar.

The degree paths dpl*, dp2'*, and dp1'* may be assumed to take the forms respectively:
F,..,(G1{H1)
(G2lH2)*, ..., G2*
G1*, ..., H*

Using the same argument as in the previous case,

deg(dp2'*, G*) = deg(dp2, G) < deg( (G2{H2), G) - deg(G2,G) =1,
so that

deg(dp*, G*) < deg(dpl*, G*) + deg(dpl'*, G*) + 1

< deg(dpl*, G) + deg(dpl, G) + 1,

where dp1 is the sequence of elements G1, ..., Hin G1 corresponding to the sequence dp1'*
of elements G1*, ..., H* in G1'. Consider the sequence <dp1*, dp1> of occurrences in G1
consisting of first those of dp1*, followed by those of dpl. The degree deg( <dp1*, dp1>, G)

of such a sequence can be defined in the same manner as the degree of a degree path, even
though occurrences may be repeated as elements.

The elements of <dp1*, dpl> are

F,..,(GLLH1),Gl, ... ,H
Since G1 is a principal formula of a premiss of an application of —{ with (G1{H1) the principal
formula of its conclusion, (G1{H1) and G1 can be successive elements in a degree path, and
contribute +1 to the degree of the sequence. Therefore

deg( <dp1*, dp1>, G) = deg(dpl*, G) + deg(dpl, G) +1.

To complete the proof of this case it is sufficient to prove that a degree path dp can be formed
from the sequence <dp1*, dp1> by removing repeated occurrences while not changing the degree
of the sequent.

Let the first element of F, ... , (G1{H1) which also appears in G1, ... , H be F| so that the
degree path has the form:

F, .. Fo. Fep oo i (GLLHD),
Since the only two immediate predecessors of (G1{H1) are G1 and H1, it may be assumed that
Fy.m is G1, for if it were H1, the two sequences F, ..., (G1lH1) and G1, ..., H would not

have any occurrences in common and would form the desired degree path. Thus the sequence of
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occurrences
F,...F.F . i, Fppe oo H
has the same degree as the earlier, and has one less repeated occurrence of a formula. By
repeating this process of eliminating repeated occurrences, a degree path dp is obtained for which
deg(dp*, G*) < deg(dp, G).
End of proof of lemma

Thus the degree of an occurrence of a formula in a contradiction graph cannot be increased by a

logical transformation.

6.2.2.3. An Axiom-Transformation

In the original graph, the occurrence of Al in the endsequent of the derivation of the vertex v1,
the two occurrences of A in the axiom that is the derivation of v, and the occurrence of A2 in the
endsequent of the derivation of the vertex v2, all have the same degree by (4) and (5) of lemma
6.2.1. The degrees of Al and A2 remain unchanged in the transformed graph, as do the degrees
of all other occurrences.

6.3. The Ordinal Number of ntradicti

The method employed here for assigning an ordinal number to a contradiction graph G is an
adaptation of the method Gentzen used to assign an ordinal number to a derivation of the empty
sequent as described in [Gentzen38] and [Szabo69]. An adaptation is necessary since NaDSet
has no explicit induction rule of deduction, and no basic mathematical sequents. In addition a
contradiction graph has edges that are in effect cuts, but to which no order of application has been
defined. However, assuming that an order of application has been specified for the edges of a
contradiction graph, the graph can be regarded as a derivation of the empty sequent and therefore
is assigned an ordinal by the method of Gentzen. Some definitions of [Gentzen38] and
[Takeuti75] are adapted here.

The degree of a cut, is the degree of the cut formulas in its premiss, while the degree of an edge
is the degree of the occurrences referenced in its label. The height of a sequent is the maximum
of the degrees of cuts with conclusions appearing below the sequent. (In [Szabo69], the height
of a sequent is called the level.)

By an ordinal is meant any ordinal number less than €. For an ordinal p and an integer k, k > 0,

oy () is defined recursively: wg(n) = p; o1(n) = oM; and o, () = 01( VW) ).
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Each ordinal p, p > 0, has a unique representation in the following normal form:

n=w161) + 01(8) + ... + ©1(8n),
wherepn>8;28,2...28,, m21.

Let pand v be two ordinal numbers with normal forms as follows:
p=w11) + ©01(8) + ... + ©1(8y)
v=01(17) + 01(v) + ... + 01(vp)
The natural sum of the two ordinals p and v is
p#v=01A) + 01(A) + ... + ©1(Am4n)s
where A1, Ay, ... , Apyn iS the sequence obtained by merging the sequences 31, 3, ... , 8, and

Y1> ¥2» - » Yo With duplicates maintained, and then reordering the resulting sequence so that

MM 2 Apn

Two properties of ordinals that will be used in the proof of consistency are:
1. p<p+1;
2. Ifpy,v<yandk 21, then op(p#v) <aop(y).

6.3.1. The Ordinal of a Contradiction Graph

The ordinal number assigned to a contradiction graph G, assuming a given order of application

for the cuts represented by its edges, is defined as follows:

1. The ordinal 1 is assigned to each axiom used in a derivation of a vertex of G;

2. The ordinal number of the conclusion of a structural rule is the ordinal of its premiss;

3. The ordinal number of the conclusion of an application of a single premiss logical rule, that is
l—, or either of the V or {} rules, is u + 1, where p is the ordinal of the premiss;

4. The ordinal number of the conclusion of an application of the two premiss logical rule —{ is
u #v, where p and v are the ordinals of the premisses;

5. The ordinal number of the conclusion of an application of cut is wpj_p2(( 1 #v) + 1), where p
and v are the ordinals of the premisses, and h1 and h2 are respectively the height of the
premisses and of the conclusion of the cut;

6. The ordinal number of the conclusion of an application of cut represented by an edge of G is
oh1-n2( 1 #v), where p and v are the ordinals of the premisses, and h1 and h2 are
respectively the height of the premisses and of the conclusion;

7. The ordinal number of G, for the given order of application of the cuts represented by its

edges, is the ordinal number of the empty sequence which is the endsequent of the derivation
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represented by the graph.

The ordinal number of a contradiction graph is the minimum of the ordinals assigned to it for

given orders of application for the cuts represented by its edges.

6.4. The Ordinal of a Contradiction Graph Can Always be Reduced

To complete the proof of consistency, it is sufficient to prove that each of the transformations
defined in 5.2 decreases the ordinal of any contradiction graph. The transformations will be

considered in turn.

6.4.1. Cut-transformation
The ordinal number of the conclusion of an application of cut is
op1-h2(( #v)+1)
where p and v are the ordinals of the premiss, h1 is the height of the premisses, and h2 is the
height of the conclusion. Necessarily h1 = h2.

The cut is replaced by a labelled edge. To calculate the ordinal of the resulting contradiction
graph, the minimum of the ordinals for given orders of application of the cuts corresponding to
edges must be calculated. To show that ordinal of the original graph is decreased, it is sufficient
to show it is decreased if the cut corresponding to the new edge is applied in the same order as
the cut it replaces was applied. But with that order assumed, the ordinal of the conclusion is

Oh1-h2 (1 # V)
Thus a cut-transformation always decreases the ordinal of a contradiction graph.

6.4.2. Thinning-transformation

The cut corresponding to the edge that is removed in this transformation has the ordinal
®h1-h2(u #v)

assigned to its conclusion. Removing the edge means that in place of this ordinal, an ordinal no

greater than one of the ordinals p and v appears, since the possible decrease in the degrees of

occurrences in the transformed graph cannot increase the ordinal of its endsequent. Therefore a

thinning-transformation always decreases the ordinal of a contradiction graph.

6.4.3. Logical Transformations
For any of the three logical transformations, a single edge is replaced with three edges. The
conclusion of the cut corresponding to the single edge has the ordinal wp,1_pp( 1 # v) assigned to

its conclusion, where p and v are the ordinals of the premisses of the cut, h1 the height of its
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premisses, and h2 the height of its conclusion.

The form of the "derivation" constructed from the cuts corresponding to the edges of the given

contradiction graph G, can be represented as follows:

(Dervl) (Derv2) Heights
r-e,(GLLHD) (G2lH2),A A
======== ===== (thinnings)
roIL(GIHHD) (G2lH2),z -1 hl
RN 5 | h2
T ... h (h<hl)
- 0

Here the first pair of double lines represent the thinnings necessary to add formulas to I" and ©
that are not in A and A, and to add formulas to A and A that are not in I and ®©. The sequent

' - IT'is the first sequent below the premisses of the displayed cut with a height h <hl. There
must exist such a sequent since the height of the endsequent is 0. Since £ — IT may be such a
sequent, either h<h2 =hl,orh =h2 <hl.*

Assume that the two cuts corresponding to the new edges <v1,v2'> and <v1',v2> are executed
in that order in the same place as the cut for the edge <v1,v2> they are replacing. Thus their
premisses have the same height h1 as does the premisses for the cut they are replacing. Further
assume that the remaining cut corresponding to the new edge <v2',v1'> is executed at the
location of the sequent =' — IT'.

The form of the new "derivation" constructed from the cuts corresponding to the edges of the

transformed contradiction graph G*, can be represented as follows:

(Dervl) (Derv2") (Dervl") (Derv2)
e, (GILHD) (G2lH2),A—>A,G2 GIL,T—-e,(GILHL)  (G2lH2),A>A

-1, G2 Gl,z->1

¥ LI,G2  GLE oI

S IT

_)
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The lemma of 6.2.2.3 asserts that
deg(F*, G*) < deg(F, G)

where F* is an occurrence in G* and F is the corresponding occurrence in G. Should
deg(F*, G*) =deg(F, G)

then by lemma 6.2.1,
deg(G1, G*) + 1 = deg(G2, G*) +1 =deg( (G1{H1), G*) = deg( (G2LH2), G*)

The argument provided in section 4.3 of [Gentzen38], or its translation in [Szabo69], or the more
detailed argument provided in section 12 of [Takeuti75] can now be used to prove that the ordinal
number of the transformed contradiction graph is decreased. A similar argument can be used to
show that if the degrees of cut formulas are decreased by the transformation, then the ordinal is
not increased.

6.4.4. Axiom-transformation
In this transformation, two edges are replaced with a single edge.

Height
r-0,A1 A A hl
r -6,A
FLO.A A2A-A 1
I'A-e,A h2

Let pu be the ordinal of the sequent I' - ©, A1, v the ordinal of the sequent A2, A — A, and p' the
ordinal of the sequent I'" — @', A. Then p' = p+1, and the ordinal of the endsequent is

@p1-n2( 1 # (v+1)).
The above derivation becomes

Height
r -0,Al
I 5e,Al A2A-A h
I'A->@,A h2

If u" is the ordinal of I'" — @', A1, then p"< p', and the ordinal of the endsequent is
oh1-h2( 1" #v).
Thus an axiom-transformation reduces the ordinal of a contradiction graph.
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