Institute for Language, Logic and Information

CYLINDRIC MODAL LOGIC

Yde Venema

ITLI Prepublicstion Series
for Mathematical Logic and Foundations ML-91-01

&

¢ University of Amsterdam




1986 The ITLI Prepublication Series

86-01 i The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for lntcﬂ';lion and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking Operators
1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic Tnntiﬁcn

87-05 Victor Sénchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonorc Overstecgen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of Sue:ntiﬁcation and Coordination
1988 | p.88-01 Michicl van Lambalgen L08ic: Semantics and Philosophy of Language: Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Goingafa.m'a.l in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Varying Types '

LP-88-06 Johan van Benthem . Semantic Parallels in Natural Language and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

A Blissymbolics Translation Program

LP-88-10 Anneke Kleppe . (
Mathematical Logic and Foundations: 1 jfschitz' Realizabiility

ML-88-01 Jaap van Oosten

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L8f's Type Theories with weak I-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troclstra On the Early History of Intvitionistic Logic

ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics

CT-88.01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Ty Decades of Applied Kolmogorov Complexity
CT-88-02 Micﬁiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michicl H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Toreavliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jonih, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic

Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel HM. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Lo&ic and Computation

CT-88-08 Michicl H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V, Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundaméntal Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Emdec Boas Towards implementing RL
X-88-01 Marc Jumeler Other prepublications:  On Solovay's Completeness Theorem

9 1P-89-01 Johan van Benthemlogic. Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adequacy Problem for S?uenﬁal Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce's Propositional Lo%t]: rom Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge I-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Stricily Positive iowards Monotone
ML-89-08 Dirk Roorda - Investigations into Classical Linear Logic

ML.-89-09 Alessandra Carbone . Provable Fixed points in 149+£;

CT.89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvlict, Peter van Emde Boas  On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space
CT-89-05 Picter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries

Leen Torenvhiet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of LcarninF Simple Concepts under Simple Distributions and
Average Case Complexity for the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Léen Torenvliet Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvlict On Adaptive Resource Bounded Computations

CT-89-10 Sieger van Denncheuvel The Rule Language RL/1
- CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas P
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke The Modal Theory of Inequality

{-8 -06 Peter van e Boas Een Relationele emantiﬁ voor Conceptueel Modelleren: Het RL-project
990 SEE INSIDE BACK COVER



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and

4
Information
Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

CYLINDRIC MODAL LOGIC

Yde Venema

Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications
for Mathematical Logic and Foundations

ISSN 0924-2090
Received January 1991






CYLINDRIC MODAL LOGIC

Abstract. We study Cylindric Algebras from a perspective of modal
logic. A completeness result for this modal logic yields a finite
derivation system for the equations valid in the variety of Representable
Cylindric Algebras, and a proof calculus for type-free valid formulas.
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1. Introduction.

In the same manner as Boolean algebras form an interpretation for
propositional logic, cylindric algebras [HMT] are an algebraic ap-
proach towards the predicate calculus. Cylindric algebras (of
dimension «, « an ordinal) are defined as Boolean algebras with
operators (BAO's, cf [JT]) satisfying a specific finite set of
equations; there are unary operators cj corresponding to the
existential quantification 3v;, and nullary operators, i.e. constants,
dij, corresponding to the identities vij = vji. Such algebras are called
representable if they are in the variety generated by the so-called
cylindric set-algebras ; in these algebras the universe V consists of
all subsets of a set *U, the Boolean operators are interpreted as the
usual set-theoretical operations, cj (0 <i< &) as the cylindrifi-
cation operation Cj given by Ci(X) = {ue xU| there is av € %U with v;
= uj for j = i}, and dij as the diagonal set Dij = {u e Ul uj = uj}.

As the cylindrification operators cy are additive (meaning ci(xvy) =
ci(x)veily) ), we may treat the subject from a generalized modal
perspective. So in our approach cylindric algebras are the modal
algebras associated with a modal logic. A reader unfamiliar with
the concept of modal algebras is referred to [Go1]. For the modal
language, we will have a unary modal operator <i> corresponding to
the i-th cylindrification, and a constant &;; corresponding to the
appropriate diagonal constant djj of the algebraic language. Kripke
frames for this language will be relational structures having
cylindric-type complex algebras [HMT1]. The reader might put
forward that the modal language is nothing but the algebraic one in a
very thin disguise, and rightly so, as we give a quite straightforward
translation between the two. We feel however, that the modal
approach is more suitable for our aims, as it enables us to
distinguish local truth of a formula (i.e. at a possible world, or
element, of a Kripke structure) from global truth (i.e. at every
possible world of the Kripke frame).

Now, as usual in this logic-as-algebra framework, completeness
theorems are the logical counterpart of the algebraic representation
theorems. In this light, we give a new completeness/representation
proof for the well-known finite axiomatization result of the two-
dimensional representable cylindric algebras. We may also try to use
more sophisticated tricks from modal completeness results. The
idea to use an axiom system with a special kind of derivation rule in
order to obtain completeness results originates with D.M. Gabbay,
who used an "irreflexivity rule" to axiomatise the set of ordinary



modal formulas valid in the class of irreflexive Kripke frames (cf.
[G]). Similar rules have been applied frequently in the context of
more-dimensional modal logics (cf. e.g. [B1,[V]). In [V] a system with
such a special rule is given which axiomatizes the class of
Representable Relation Algebras.

The main result of this paper is a finite derivation system of the
identities valid in the class of representable cylindric algebras of
finite dimension, obtained by adding one equation to the set
axiomatizing cylindric algebras, and a new closure operator to the
usual set of derivation rules. For the representable algebras of
dimension «w we then prove a similar result. This last result has as
its immediate corollary that we can give a proof calculus for the so-
called type-free valid formulas which involves only type-free valid
formulas. This may indicate a positive solution to Problem 4.16 of
[HMTI.

This paper sprang from the rather careless written section 3.3 of
[V]. We want to thank Hajnal Andréka, Istvan Németi and I1diké Sain
for many corrections and suggestions without which this paper
would probably never have been written, let alone be finished.



2. Two-dimensional cylindric modal logic.

As symbols for the language of two-dimensional cylindric modal
logic we have an infinite number of propositional variables
Po,P1,...,9.r,..., propositional constants &oo, 01, €10 and &1, the
Boolean connectives A and 71, and two unary modal operators <0> and
<1>. Formulas are built up in the usual fashion. In this section,
however, we will use the following symbols: § for both o1 and &40, T
for both &go and &11, O for <1> and © for <0> and the ordinary
propositional and modal abbreviations, e.g. M for 7P . (The
symbols < and © originate with Segerberg, who treated a similar
logic in [3]).

we will define two kinds of semantics for this language: first the
more abstract Kripke-frames, and then the intended two-
dimensional ones:

A (Kripke) frame is a quadruple K = (W,H,V,D) where W is a set of
possible worlds, H and V are binary accessibility relations on W and
the diagonal D is a subset of W. A (Kripke) model is a pair (K,u) with
K a Kripke frame and V a valuation, i.e. a map assigning subsets of W
to each propositional formula of the language; u should satisfy u(T)
= W and u(é) = D. By induction we define a truth relation kF; we only
give the clauses for the modal operators:

M,w E © if there isav with Hwv andM,v E @,

M,w E O if there is av with Vwv and M,v F @.
Concepts like validity and satisfiability are defined in the usual
way.

A two-dimensional frame based on a set U is defined as the Kripke
frame (w,H,V,D) where

W = UxU,

H(ug,uq1)vo,vq) iff ug = vy,

V(ug,uq1)vo,vq) iff ug = vg and

D(ug,uq) iff ug = uq.
Note that, with this definition, on a two-dimensional model we have
M,u F ©@ iff there is a v on the same horizontal line with M,v F @,
M,u E Oy iff there is a w on the same vertical line with M,w E y
(cf. the figure)
The class of two-dimensional frames is denoted by F2.



we might now proceed and develop the modal theory of CML2, by
defining concepts like disjoint unions, general frames, etc. As all
this can be done in a rather obvious way, we only give notions needed
further on: Let K,K' be two Kripke frames, f: W— W' a map. Consider
the following properties:

(1) Huv only if H'f(u)f(v), Vuv only if V'f(u)f(v), Du only if D'f(u);

(2) Du if D'f(u)

(3) If H'f(u)v' then there is av € W such that Huv and f(v) = v'

(and the same holds for V).

If f has (1) we call it a homomorphism, f is a strong homomorphism
if it also has (2), and if it satisfies the zigzagcondition (3) as well,
we call it a zigzagmorphism. If the zigzagmorphism f: K » K' is
onto, we may call K' a zigzagmorphic image of K. It is straight-
forward to verify that the validity of modal formulas is preserved
under taking zigzagmorphic images: If K' is a zigzagmorphic image of
K, then Kk = K'F.
A frame K is connected if K E Vxy3dz xHzVy. Note that all two-
dimensional frames are connected.

Call a frame nice if it satisfies the following properties: H and V
both are reflexive (i), symmetric (ii), and transitive (iii), HIV = VIH,
where RIS = {(x,y)| there is a z with xRz and zSy} (iv), each world has
exactly one H-successor (resp. V-successor) in D: (v) for existence
and (vi) for uniqueness. Finally, nice frames must validate the
following formula (vii): Yuvw [ (Du A Huv A Vvw A v#Ww) —
(Ix(TDx A Vux A Hxw) 1.
Let MC1-7 be the following modal formulas:

(MC1) p—©p

(MC2) p—B%p

(MC3) ©Sp—><p

(MC4) ©Dp—->DOPp

(MCS) ©¢

(MC6) ©(8Ap) - B(&—> 1)

(MC?) [6 A ©(pAag A O(pATIg))] —» O( 16 A S(pATIg))



Theorem 2.1
A frame K is nice iff MC1-7 are valid on K:
In fact the correspondences (i)-(C1) etc. are one by one.

Proof.

For the first six correspondences, the proofs are omitted as they
are wellknown, either in their own right or as consequences of the
Sahlqvist theorem [SV]. This theorem may also be applied to (vii),
but for readers unfamiliar with the theorem we give the proof for
KEC? = KE(vii):

Suppose Kk(vii). Then there are worlds u,v,w in K with Du A Huv A
VVW A v=w (we are a bit sloppy in our notation), for which there
is no x satisfying T1Dx A Vux A Hxw (*). Look at a valuation pu
with u(p) = {v,w}, u(q) = (v: Kp,u E [6 A ©(pag A O(paTg))]
Now let x be a world with 71Dx and Vux. Then by (*) x cannot be an
H-predecessor of w, so v is the only H-successor of x where p is
true. This gives x E B(p—q). As x was an arbitrary non-diagonal
V-successor of u, this means u F M(T7§—-HB(p—q)). But then C?
fails to hold in K.

Not every nice frame is two-dimensional, but there does exist a
strong connection between the two notions:

Theorem 2.2.
Every connected nice frame is a zigzag-morphic image of a two-

dimensional frame.

Proof,
Let K be a connected nice frame. We will define a chain of homo-

morphisms (fz)z<» (where X is the maximum of K| and ), such
that the union fy of this chain is the desired zigzagmorphism.
Every map fz must be seen as an approximation of f).

Look at the set of possible defects P = AxxxWx{H,V}. Call the
quadruple (B,§,v,V) € P a defect of a homomorphism f: 2t =K
(where &< \), if it defies the zigzagcondition, i.e.f(B,§)Vv while
there is no 3'e such that f(B,5')=v; f is called perfect if it has no
defects. Assume P is well-ordered, then we may speak of the first
defect min(f) of an imperfect homomorphism f: 2Z » K. By the
following lemma such a map has an extension f' lacking the defect
min(f).



Lemma.
Let f: 2 +~ K be a homomorphism, (B,$,V,v) a defect of f. Then

there is an f'2f, ': 2(x+1) » K such that f(p,x)= v,

Proof
Without 1oss of generality we assume that =0 and y=x-1.
we first set  f'(&,p) = f(&,p) for&,n < «,

f'(0,0) = v,
viz.

(% v
I

-1 fo,0-1) 101 =— firx-1) — flo=1,0-1)
I I I I

n 0,7 1)) — frn)  — floe=1,7)
I I I I

1 (0,1) (1,1 - (n,1) - flo=1,1)

0 (0,00 (10 - f(»0) — flo=1,0)
0 1 n x-1

Then we are concerned with the f(»,a), » < «. By assumption we
have v = f(0,p), and as f is a homomorphism we get the
following picture:

f(0,0)

I

| =

f(0,n) --- flp,p)eD ,

so by the seventh characteristic of being nice, K has a v,¢D
with Hv,f(0,x) and Vv,f(»,n). We set

f'(n,x) = vyp;

f'(x,x) is defined as the unique diagonal H-successor of any/

all of the f'(n,x).

It is straightforward to verify that with this definition the part
of f' defined up till now satisfies both the ordinary and the
strong homomorphism condition.



For a definition of f(x,n) we use the same trick as above to
ensure f(o,n)gD: as f(x,x) is in D and f(»,x) is not, they cannot
be identical. So f(»,x) can be defined as any non-diagonal H-
successor of f(»,n) which is a V-predecessor of f(x,x). O

We now define the chain of maps as follows:

fo = {<(0,0),u>} for some u on the diagonal of K.

freq = fpif Ty is perfect

(fz) otherwise,

fg = Uz<g fz if 8 <X isalimit ordinal.
It is now straightforward to verify that f) has the desired
properties: first it is a strong homomorphism as all the maps in
the chain are. Suppose that f is not a zigzagmorphism; then there
are quadruples in P witnessing this shortcoming. Let (B,3,v,V) be
the first of these in the well-ordering of P. Then with 8 = max
(B+1,5+1), this quadruple is a defect of fg, whence (B,3,v,V) is
min(fg). By its definition then, fg+4 lacks this defect, as fg+1(B,8)
= V. As fg+1 € fy the desired contradiction is derived.
Finally, we have to prove that f is onto. This is an easily provable
consequence of the connectedness of K. O

we now define our axiom system:

ACML» is the set of formulas obtained by closing the set of axioms
consisting of all substitution instances of CO: all propositional
tautologies,and (C1) - (C?), under the inference rules, necessitation:
o = FDO@, B, and modus ponens: F@ and Fp—-y = Fu.

A deduction is a finite string of formulas each of which is either an
axiom or follows from earlier formulas by a rule of inference. A
formula @ is a thesis of ACML2 (notation: ACML2 F@ or F if no
confusion arises) if it appears as the last item of a deduction. A
formula @ is a consequence of a set ' of formulas, notation "', if
there are formulas 31,..,¥n in " such that F(§1A...A¥n)— @. A set of
formulas I is consistent if L is not a consequence of [". For L a set
of propositional formulas, an L-maximal consistent set (short: L-
MCS ) is a consistent set of L-formulas to which one cannot add L-
formulas without violating its consistency.

The canonical L-model MS(L) is defined as (WC(L),HC,VE,DC,uc), where
WC(L) is the set of L-maximal consistent sets, HS(I",Z) if {@| B@ € I'}
€ 3,7 e Dt if § € " and ut is given by uc(p) = {I' € WE(L)| p € T}. The
underlying frame of the canonical L-model is called the canonical L-
frame and denoted by FCc(L). It is straighforward to prove, by
formula-induction, that in MS(L), " E @ iff @ € ", for all @ € @|.



Theorem 2.3.
The canonical frame is nice.

Proof

Again, this theorem can be seen as a direct consequence of the
Sahlqvist form of the axioms, cf. [SV] O
Theorem 2.4 dn ompletene

ACML is sound and complete with respect to Fo.

Proof.

Soundness is straightforward, and completeness is more or less
immediate by the previous theorem and theorem 2.2: Let 2 be a
consistent set of formulas in the language L. Then by the usual
Lindenbaum construction, = has a maximal consistent extension 2’
€ WC(L). By theorem 2.2, FC¢(L) is the image of some two-
dimensional frame, say based on a set U, under a zigzagmorphism
f. Then it is straighforward to verify that, with the valuation u
given by u € u(p) if p € f(u), (2U,n) is a two-dimensional model
such that for all u € 2U, u E @ iff @ € f(u). But then there is a
world u in 2U withu F ¢ for all ¢ € Z: (2U,u) is @ model for Z. a



3. Finite-dimensional cylindric modal logic.

For a finite ordinal o, ox-formulas are the formulas of the language
of x-dimensional cylindric modal logic CMLy. This language has an
infinite number of propositional variables po,p1,....0,r,...,
propositional constants &;j, 1,j < «, the Boolean connectives A and 71,
and unary modal operators <i> for all i< «. For a set of propositional
variables L, the set of L-formulas ®_ is the set of w-formulas
obtained by allowing only the &jj's and the propositional variables in
L as atomic formulas. We will use, besides the usual Boolean and
modal abbreviations, also the following:
For I' a subset of «, we define <[">{ in the obvious way, e.g.

<{1,3,51>0 = <1><3><5>p
c(iyeg =<oMib>e
<c(i,j)>e = <oMi,jb>e
O = <00Q.

As in the two-dimensional case we define both the more abstract
Kripke semantics, and the intended x-dimensional frames:

A (Kripke) (x-)frame is a tuple K = (W,Tj,Eij)i,j< o« Where W is a set
of possible worlds, each T is a binary accessibility relation on W
and each diagonal Eij 1s a subset of W. A Kripke model is a pair (K,u)
with K a Kripke frame and n a valuation, i.e. a map assigning subsets
of W to each propositional formula of the language; u should satisfy
u(&ii) = W and u(&ij) = Ejj. By induction we define a truth relation k;
we only give the clauses for the modal operators:

M,w E <i>@ if there isav with Tywv and M,v F Q.
Concepts like validity and satisfiability are defined in the usual
way.
Now let U be some set. By the a-frame based on U we understand the
Kripke frame (W,Ti,Eij)i‘j<o< where W = U, Tjuv iff uj = v;j for all
j=1, and u € Eyj iff uj=uj. An o-dimensional frame is a frame based
on some set U; we denote the class of x-dimensional frames by Fq.
Note that, with this definition, in an x-dimensional model we have
M,u E <i>(@ iff there is a v in ®U, at most differing from u in the i-th
coordinate, with M,v E .

For zigzagmorphisms, connected frames, etc. the obvious genera-
lizations of the definitions in the previous section hold.



An o-frame is called nice if it satisfies the properties N1 - N8:
(N13) Tj is reflexive,
(N2j) Tjis symmetric,
(N3;) T;jis transitive,
(Ndij) TilTj = TjITy,
(NSj) Ejj =W,
(NByj) If i=j, each world has at most one Ti-successor in Eij
(N?i56) IT k € {i,]}, VU (Ejju & 3v (Teuv A Ejv A Ejgv)
(N8ij) If i j,
Vuvw [ (EjjuATiuvAT jvWwAV=W) — 3x (TEjjXATjuxATixw) ]

These properties all correspond to modal formulas, just like in
theorem 2.6. Consider the following «-formulas:

(MC13) p- <i>p

(MC2i) p-likki>p

(MC3;) <id<i>p—<i>p

(MC44j) <id<j>p—-<j><i>p

(MCS;)  &ii

(MCBi;) <i>(61j/\(9) - [i](éijﬁip) (i=j)

(MC?ijk) &ij « <k>(<§ik/\6jk) (ke {i,jh

(MC84j) [&ij A <I>(pAg A <J>(pATIGN] = <j>( 7645 A <id(pA Q)
(i=j)

Proposition 3.1.

For x-frames K, we have K F MC1; iff K E N1j, etc.

The proof of this proposition is as in the previous section. O

950 a frame is nice iff MC1-MC8 hold in it.

One can easily prove that in a nice frame, any composition of T-
relations is again an equivalence relation. Let Pj be the equivalence
relation composed of all accessibility relations Tj except Tj, then P;
is the accesibility relation of the operator <c(i)>. In x-dimensional
frames P; of course denotes the relation of lying in the same "i-

hyperplane”: x and y are in the same i-hyperplane if they have the
same i-th coordinate.

Definition 3.1.
Consider the following derivation system Agy:
The axioms are
(MCO): all propositional tautologies, and
(MC1)-(MC8),
and as derivation rules we have

10



Necessitation (Nec): F¢ = F[ilg and
Modus Ponens (MP): k@ and Fp—-y = .

The following concepts are defined as in 2.9: deduction,thesis,
consequence, consistent, L-maximal consistent set.
As in the previous section, we can easily prove the following

Theorem 3.2.:
Ay is sound and complete with respect to the nice frames.

Unfortunately, we do not have an immediate analogon of 2.7: not
every connected nice frame is a zigzagmorphic image of an «-
dimensional one, if x> 2. So Ay is not complete with respect to Fg.
In the sequel we will show that by adding a derivation rule to Ay, we
can attain completeness. But first, let's have a 1ook at where the
problem arises.

The general line of the completeness proof will be, just like for
most completeness proofs, to give a model for a consistent set of
formulas . Here such a model is built up in a countable number of
stages; in every stage of the proof we are dealing with a finite
approximation of the model. Such an approximation will be called a
matrix and has the form of a homomorphism Ap: *n » F where F is
some canonical frame; if we can show that the union of these maps
is a quasi-zigzagmorphism (to be defined later on), the desired
model rolls out immediately. Now a finite approximation may have a
shortcoming with respect to the quasi-zigzag-condition and the aim
of the construction is to remove these shortcomings, one in each
stage of the construction. Removing a shortcoming will mean
extending the homomorphism A, by assigning an MCS to one element
of ®n+1\&n. But then all new elements of n+1 have to be assigned
MCSs, and in general we can only be sure that this continuation can
be done "respecting homomorphy", if the approximation satisfies
some special conditions: all information concerning the MCSs of the
extension should already "be present in" the old MCSs. Now in general
this is not the case, so we have to interrupt the process by adding
the necessary information to the homomorphism. The new derivation
rule, called the Consistency Rule (CR), is devised just to make this
possible. However, adding new information to an L-maximal set
means extending the language; therefore each Ap+41 does not only
extend A with respect to the domain, but also w.r.t. the codomain:
WC(Ln+1) instead of WE(L,), for some Ln+q 2 L,. The union A' of the
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chain of homomorphisms will then be a quasi-zigzagmorphism into
Fe(Unewln) (A' need not be surjective).

Before giving the formal definition of the new derivation system,
matrices and their defects, we give some derived theses of the old
system and facts needed later on. The more technical proofs are
skipped here and can be found in the appendix.

To start with, we would like to have an operator THIS; such that
[il(THISj@ — ) is provably equivalent to <i>(THISi@ A y). For then,
any MCS I" containing <i>(THISi@ A y), has exactly one Ti-successor
A in the canonical frame in which THISij@ A y can be found. (For,
suppose both A = A' would be Ti-successors of . Then some g is in
A\A', whence <i>(THISj@ A ¢) A <i>(THISje A Ty) € T,
contradicting the assumption about THIS;.) It is in this sense that
we speak of one MCS (I") containing all information on another (A).

Before defining THIS;, we consider the following abbreviations:
CiljTe = [I( &5 = [IX(T6&5 = [j1g))
[i,jle =I[jle A LiljI70.

First consider the case x=2: in a two-dimensional frame we have
K,ug,uq,u E L[0,11¢ iff @ holds on the vertical line through (ug,u1) and
nowhere else, cf.

/]

® G

And indeed, we can show that
F <O>(L0,11p A y) —»[0I([0,1T1¢ — ) (T1)

For the general case, set
THISi® = [c(i)le A A juiLiljIlc(i)] e
Note that for K € Fqy:
K,1,(ug,...,Ui,...,.Uj,...ue-1) F LiljIg iff for all uj',u;' such that uj'=uj,
KoM, (U0, Ui U U-1) @,
whence
K,u,u E THISi@ & forall v:K,u,v F @ iff vi = uj, i.e. (¢ holds
exactly at all points in the hyperspace through u.

12



In the appendix it is proved that

F THISj@  [c(i)ITHIS @ (T2)
F THISj — O(p « THIS;p) (T3)
F <i>(THISi@ A @) & [iI(THISip — y) (T4)

In the case x=2, again consider the formula [0,11p. If this formula
is true somewhere in a two-dimensional model M = (K,u), there is
exactly one point u on the diagonal where p holds. This gives:
<i>(pAdpq) is true exactly on the points on the horizontal line
through u. So, M,u E [1,0IK1>(pAdg1).
This implies: having a THISp-formula gives a THIS1-one. We may
even prove:

F ([0,1Tp A Sp1) — [1,00<1>(&p1 A p). (TS)

In the general case, something similar is going on: in an «-
dimensional frame K = &U, if THIS;p characterizes the i-hyperplane
{xe®U| xj=a}, then THISj(<i>(&i; A p)) does so with {xe*U| xj=a}. And
again, we may prove that

F (&5 A THISip) — THISj(<i>(&i5 A p)). (T6)

In the same way as THIS;j which is an operator characterizing
hyperspaces, we may define an operator OH (Qnly Here) pointing out
single possible worlds in connected nice frames. Set
OHp =@ A ﬁ(\j;ﬂﬂ:ilj][C(i)]_“P-

and for connected, nice K we have K,u,u E OHy iff u is the only world
inK withu E @, as we can prove:

F O(OH® A w) — O(0HE — W) (T?)

F (O(OHE A y) A O(OHE A <idOHP)) = O(OHE A <idy) (T8)

Definition 3.2.
A% is the deduction system Ag, with one extra derivation rule. Using
the notation F*o @ for "@ is derivable in A*y", we give this rule by
the following:

CR Let j,i ¢ ' S «, @ a formula such that p does not occur in .

If H*« [FILi,jIp—> @, then F+4 1.

Notion like deduction, etc. are defined just as for Ay. When no
confusion arises, we may drop the subscript o in - *g.
To call CR a derivation rule is slightly misleading; it is in fact a
schema of derivation rules, CRr, " a subset of . We would like to
stress the fact, however, that there are only finitely many rules CRf
in A*y, as o is finite.
Note that it may be necessary to apply CR more than once in a
derivation: a deduction of @ could look like

13



(1) F [F11Ciq,j13p1 — @ (...)

(2) F+ y (1,CR)
(3) F* ¢ - [FolLig,jolpo — @ (...)
(4) F+ [Collip,jolpo — @ (2,3,MP)
(S (4,CR)

So for @ a formula in a language L with finitely many propositional
variables, it may be impossible to deduce @ using only formulas in L.
In an extended version of this paper we will give an example of a
derivation necessarily using CR.

From now on all notions like derivability, consistency, etc. are
understood to be defined with respect to A*q.

For L a set of propositional formulas, the canonical L-model ME(L) is
defined as (WC(L),=y,Eij,uC), where WE(L) is the set of L-maximal
consistent sets, M=iZ if {@| [ilg € '} € 2, € Ejj if &5 € " and uCis
given by uc(p) = {F € We(L)l p € T}. The underlying frame of the
canonical L-model is called the canonical L-frame. As in the
previous section, in MC¢(L) we have @el & k@ for L-formulas @,
and the canonical frame is nice.

Let f: K = FC(L') be a strong homomorphism, LEL". Then f is called a
quasi-L-zigzagmorphism if it satisfies the following quasi-
zigzagcondition :
(3') for all u in K and L-formulas @, if <i>¢@ € f(u) then there isav
in K with Tijuv and @ € f(u).
We need quasi-zigzagmorphisms in our completeness proof because
of the following proposition, and its corollary:

Proposition 3.3.
Let f: K ~ FC(L') be a quasi-L-zigzagmorphism and let u be the

valuation on K given by : u € p(p) iff p € f(u). Then for all @ in .
K.WUuE @ & @ e flu)

Proof.

The proof is by formula-induction: we only give the step = <id>y:
K,u,u E <i>y & thereisavinK with Tuvand K,u,v F @ &
there is a v in K with Tjuv and @ € f(u) & <i>@ € f(u). O

Corollary 3.4.

Let = € We¢(L), and f: *m ~ FC&(L') a quasi-L-zigzagmorphism such
that = < f(u) for some u € “m. Then there is a model for Z on ¥m.
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The reason why, at a first glance, the rule CR looks more peculiar
than necessary, is that it is not stated in the way it is used:

Proposition 3.5.
If A € ®_isconsistent,pg L,andi,j, ¢ T € o, then A u [IILi,jIp
is consistent.

Proof.

Suppose otherwise, then F* [[]Li,jlp — 7@ for some @ € A. But
as p does not occur in @, this means F* 7@, contradicting the
consistency of A. O

Corollary 3.6.
If A c &_ isconsistent, p ¢ L and <i>@ € A, then A U {KiX(p A

THIS;p)} is consistent.
The proof of this corollary is given in the appendix. O

Perhaps the meaning of the rule CR is made most clear when we look
at its soundness:

Theorem 3.7 (SOUNDNESS)
F+o = Fok .

Proof.
We leave it to the reader to verify that the axioms of A*+y are
valid in Fy and that the set of Fy-valid formulas closed under MP
and Nec. For CR, we must show that if Fy F [[]Li,jIp — @ then Fgq
F ¢ (wherel,i,j,p, are as in the wording of CR).
Suppose, for contraposition, that Fy ¥ (@, i.e. there is a model
(%U,u) with a world u such that %U,u,u E . Let u' be the
following valuation on «U:

u'(g) = u(q) if g = p,

n'(p) = {vexU| vj = uj}.
Then clearly %U,u',u kF [I']Li,jIp A @. So Fy ¥ [FILi,jIp — . O

Let L be a set of propositional formulas. An L-matrix of size n is a
strong homomorphism A: %n » FC(L). The size of A is denoted by |Al.
An L-matrix is called distinguishing if there is, for all sequences a
€ *nand i,j < &, an L-formula @(a) with OH@(a) € A(a): @(a) must be
seen as the formula: characterizing a or A(a). Not only do
distinguishing matrices give formulas characterizing points, but
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they can also characterize hyperplanes, lines, etc. We give two
alternative characterizations of distinguishing matrices:

Proposition 3.8.

For a matrix A of size n, the following are equivalent:

(1) A is distinguishing.

(2) Foralli,j<o, a € *n, there is a formula @(a,i,j) such that
[c(i,j)Ili,j1e(a,i,j) € A(a)

(3) Foralli<wo, a e @n, there is a formula @(i,a) such that
THIS;@(i,a) € A(a).

Proof.
The proof of this proposition is given in the appendix. O

Matrices need not be perfect; an L-defect of an L'-matrix A is a
triple (a,i,) with a € @n, i< o and @ an L-formula such that <i>@ €
A(a) while there is no b in %n such that by = aj for j=iand @ € A(b)
(i.e. (a,i,p) is a witness of the fact that A does not satisfy the
quasi-zigzagcondition.)

The next two lemmas are the cornerstone of the completeness proof.
The first lemma sais that if in a distinguishing matrix formulas in a
new language are added to one MCS, this news may spread to the
other ones (like an ink spot). The content of the second lemma is

that if a matrix is distinghuishing, each of its defects can be
repaired.

Ink Spot Lemma 3.9.

Let A be a distinguishing L-matrix of size n; suppose
A(a)ereWwec(L'). Then there is a distinguishing L'-matrix A' such
that A'(a) = " and for all x € ®%n: A(x) = A'(x) n &

Proof.
By definition of a distinguishing matrix there is, for all x € ®n, a
formula @y such that OH@y € A(x); as A is a homomorphism this
means O(OH@y — ) e I" for all x € %n, ¢ € A(x). Set

A'(x) = {@| O(OHGy — @) € T}
Then T = A'(a) and A'(x) is consistent. A'(x) is maximal by T7.
To verify that A’ is a strong homomorphism, first suppose ¢ ¢
A'(x), x,y € %n such that they only may differ in the i-th
coordinate; then

<i>(OHpy) € Aly) =
OlyAapy) A O(OHEyACI>OHEy) e T = (by T8)
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O(OHRyALI>Y) e T =
O(OH@y—<i>p € T = <>y € A'y).
The proof for the other conditions is straightforward. O

Repair lemma 3.10.
Let pgL. Any distinguishing L-matrix with a defect has an Lu{p}-

extension A' of size |Al+1, 1acking this defect.

Proof.

Without loss of generality we may assume that the defect has the
form (a,0,¢). Corollary 3.6 gives that X = A(a) U {<O>((p ATHISop)}
is consistent, so by the Ink Spot Lemma there is an L'-matrix Q of
size n (set n = |Al) extending A, such that X is contained in $(a).
The desired matrix A' will be such that for xe®n, A'(x) = Q(x). So
we have to provide A' with L'-MCSs for those «-sequences X
having one or more coordinates equal to n. we will do this step by
step, in o stages.

In the first stage, we give A'(x) for those x having n as their zero-
th coordinate. This stage is divided into two steps:

step1:
We set out to define A'(x) for those x with only xo = n.

As F[c(0)ITHISop « THISgp,
<0>[c(0)ITHISep is in Q(ag,aq,...,ax-1) = s0 is [c(0)IKO>THISep.
As Q is a homomorphism, <O>THISgp is in every Q(ag,X1,....Xa-1).
Set

A'(x) = {@| [OXTHISep — ¢) € Q(ag,X1,....Xx-1)},
then clearly A'(x) is consistent. By T4 it is maximal too.

we will now show that the part of the matrix defined up till
now is a strong homomorphism:

First, let x,y € ®n+1 (with xj=n and yj=n if j=0) only differ in
their i-th coordinate. We must show that A'(x) =; A'(y).

For i=0, this is immediate (by the fact that 2 is a strong
homomorphism and/or by definition of A").

Ifi= 0,xandy are either both old or both new points.

In the first case, there is nothing (new) to prove.

In the second case, let x' and y' be the projections of x and y in
the O-hyperplane through a, i.e. let x' = (ag,xq,...,.Xg-1) and y' =
(ag,¥1,...,.Ya-1). Now suppose [ily € A'(x), then
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[iJ(wATHISEp) € A'(x) (as [iITHISip € A'(x))

= <O>[i1J(y ATHISop) € Q(x') (by def. of A'(x))
= [iIKO>(y ATHISop) € (x") (by modal logic)
= <O>(PATHISop) € Q(y") (as 2 is a homomorphism)
= [0ONTHISop—y) € Q(y') (by (6b))
= Y € A'(y) by its definition. (by def. of A'(y))

Concerning the diagonal, we only check that the new A'-images
are not on the Egj-diagonal. Take i=1 and suppose &g €
A'(n,x1,...,Xq-1), then

<0>(&p1 A THISop) € A'(n,X1,....Xx-1)
= [01(§g1 — THISpp) € A'(n,Xq,...,.Xq-1)
= THISop € A'(Xq,X1,X2,....Xa-1)
= THISop € A'(x4,a1,a2,..,a¢-1), which is impossible by xq=n.

step2:

We can now treat all x's with, besides xg, other coordinates

identical to n. Consider such an x: let I ={iex| xj=n, i=0} and

let x’ be the sequence obtained by replacing all C-coordinates in

x with O (then x' is such that A'(x') was defined in step 1). Set
A'X) = (@l <m>(w A Aer &oi) € A'(x)).

Now clearly each of these sets is maximal and consistent, and in
this step we cannot have destroyed the strong homomorphism
constraint.

Note that for all x in the hyperplane with xg=n, we have THISqp in
A'(x). The point is, that using this, we also have a defining
formula for every hyperplane of points having their i-th coordinate
equal to n: by T6 we may take <c(i)>(&gi A P).

We are now ready for the last x-1 stages of the construction: Let,
for 0< i<, Xjbe the set of ®Xn+1-sequences for which the i=th
coordinate is the first one equalling n. In the i-th stage from now
we define A'-images for sequences in X;. Each stage has two steps.

For the first half of the i-th stage, consider the sequences x
such that x; is the only coordinate equal to n. Let x' be the
sequence (Xg,...,Xj-1,3i,Xi+1,...,Xa=1). Then x' € *n. Set

A'(x) = {@l [II(THIS(<c(i)>(&oj A P)) > @) € Q(X),

Again by T4, this (consistentl) set is maximal, as
<iI>THIS<e(i)>(oj A p) is in Q(x').
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For the gecond step, use a similar procedure as in the last step
of the first stage.

We leave it to the reader to verify that, with this definition, the
new matrix is a strong homomorphism from %n+1 into FS(Lu{p}).
A’ is distinguishing by proposition 3.8, and of course A' does not
have the defect which started this business, as it was built to
have @ € A'(n,aq,..,a-1). O

Theorem 3.10. (COMPLETENESS)
Let 2 be a consistent set of CMLy-formulas. Then I has an o«-
dimensional model.

Proof.
Without loss of generality we may assume that I is maximal. For
simplicity we assume that 45 € Z for all i,j< o Let pq,p2,.. form a
set of mutual distinct propositional constants not inL. Set Lg = L,
Ln+1 = Ln U {pn+1}, L' = Unew Ln. We will construct a chain of
distinguishing Lp-matrices Ap,, n< w, such that the union A' of
this chain is a quasi-zigzagmorphism: ®m » FC(L'), (where m =
sup {lApl I new} ), such that == A'(0,0,...,0).
Look at the set of possible defects P = % x & x &_. Assume we
have an enumeration of P, so that we may speak of the first defect
min(A) of a (distinguishing) imperfect matrix A. By the repair
lemma such a map A has an extension, a distinguishing Lny+1-
matrix A’, lacking the defect min(A). Now define the chain of maps
as follows:

Ao = {(0,0,..,0),2>}

Apn+1 = Ap if Ap is perfect

(Ap)' otherwise,

A' = Unew An.
It is then straightforward to verify that A' has the desired
properties, so by corollary 3.4 we have found an x-dimensional
model for Z. ‘ |

Note that in fact we have proved strong completeness and soundness:

2 Fop & ZFH' @

where 2 Fy @ means: for every o-dimensional model (U,u) and

world u € «U, if (U,u),u F o for all 6 € %, then (U,u),u E @, and
Z F*y @ means: there is a finite Sg € I such that F*o ( /A 3Jg) - (.
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4. An axiomatization of Representable Cylindric Algebras.

In this section we give our main result, viz. a finite schema of
equational axioms and rules generating all the equations valid in the
class of representable cylindric algebras of dimension x <. (The
case x> w is an easy generalization). For definitions concerning
cylindric algebras the reader is referred to [HMT]. Some notation:
(R)CAq is short for (representable) cylindric algebra of dimension «,
Ly is the algebraic language of CAy's. For a class A of CAy-type
structures, let EQa be the set of equations valid in A.

EQrcaw 18 recursively enumerable, and some derivation systems are
known. Monk proved in [M] that no finite schema of equational axioms
can generate EQrcaq if one allows only the ordinary algebraic
derivation rules; in the same article he gave a system with
infinitely many axioms. In [AN2], Andréka and Németi showed a
finite schema of axioms and rules generating EQrcaw, but they need
an axiom which is not in equational form. Our system has finitely
many equational axioms and rules, but one of the latter (CR) is
somewhat unorthodox.

As was mentioned in the introduction, in our approach CA's appear as
the modal algebras of our logic. We will use, however, the
terminology of [HMT]: we define, for a frame K = (W, Ty, Eij)i,j< o its
complex algebra as CmK = (Pow(W),U,N ,-w,8,W,Ti*,Eij)i j< o Where
Ti*(X) = {yeW| for some xeX, xTiy}. Obviously CmK has the type of
cylindric algebras. For a class A of frames, CmA denotes the class of
all complex algebras of frames in A. The reader is referred to [Go2]
for a general treatment of the theory of complex algebras.

The modal language CMLy and the algebraic Ly are in fact very close
in talking about frames. Let P = {pg,p1,...} be a set of propositional
variables and X = {Xo,x1,..} a set of Ly-variables. Define a map g from
CMLy-formulas to Ly-terms in X:

e(pi) = xj,
e(&ij) = dij,
e(T@) = -o(p)

eleAay) = ele) A o(y)

e(<i>@) = cip(ep).
It is easily seen that g is a bijection; let ¢ be the inverse of p. Now
using ¢, we give a translation g’ from CMLy-formulas to Ly-identi-
ties: p'(p) is defined as g(@p) = 1.
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The bad news about this translation ¢' is that it is not a bijection,
as it has only images of the form t=1. The good news is that, given
the underlying Boolean algebraic setting, every equation has an
equivalent in the range of @', viz. s=t has (sAt) V (-sA-t) = 1. So in
the sequel we may and will conveniently think all Ly-equations
having the form t=1. To increase readability, we write s<t for
sA-t=0.

The strong similarity between logic and algebra is expressed by the
following

Proposition 4.1. For any «-frame K and CMLy-formula ¢
KE® & CmKE g'(p).

Proof.
A straightforward induction. O

By definition, a CA is representable if it belongs to the variety
generated by the cylindric set algebras [HMT 3.1.1], which are in our

phrasing just the complex algebras of x-dimensional frames. So by
Birkhoff's theorem we get

Proposition 4.2. EQrcax = EQcmFa.

The above two propositions, together with the completeness result

of the previous section, are enough to give a finite axiomatization of
EQrcaq for I < o< w.

Definition 4.1.

Let 24 be the smallest set of equations containing

(CO) - (C?), the equations governing CAq, cf. [HMT1, p 162].

(C8) cilxAyA cjlxa-y)) < cjlcixa-dij)

which is closed under ordinary algebraic deduction and under the

following rule:

(CR) Let y,Xg,...,Xn-1 be Ly-variables such that y does not occur
among the x;. Let i,jex and Fc & be such that i,jer.
If —cr (cjy V cjldij A ci(-dijAcjy)) ) < tXo,..,Xn-1) 8 in Sy
then so is t(xg,...,.Xxn-1) = 1.

Here cr denotes the generalized cylindrification operator defined in
[HMT1, p 203]; it is the algebraic counterpart of the modal operator
<I"> used in the previous section.

Clearly 2y is the algebraic version of the set of A*y4-axioms, as we
can easily prove the following
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Proposition 3. For all CMLy-formulas ¢
F'ap & QI(LP) € 2q.

Proof.
we leave this proof to the appendix. O

Compared to the axioms and rules recursively enumerating EQcaq, 2«
has one extra axiom, and the new derivation rule, CR.

We are now ready to state and prove the fundamental theorem of this
paper:

Theorem 44 For € u< w, 2y = EQRrcax

Proof.

First, let t=1 € Zy. By the above proposition, F* 6(t), so by F*4-
soundness, Fy F o(t). Proposition 4.1 gives CmFy k t=1, so by
proposition 4.2, t=1 € EQrcaa.

For the other direction: let t=1, or identically, g(s(t))=1 be in
EQRrcawx- Proposition 4.2 gives CmFy F p(o(t))=1, so proposition
4.1 yields Fy E o(t). Then by completeness, *4 6(t). Finally, by
proposition 4.3, t=1 € 2. O

As RCAy is known not to be finitely axiomatizable in the ordinary
sense there must be equations in Xy = EQrcaq Which need one or
more applications of CR in their derivations. In an extended version
of this paper we give an example of (the modal counterpart of) a +*-
derivation of an equation ¢ in EQpcax \ EQcan.

For o = 2, the situation is much simpler, as we can even dispose of
the derivation rule CR. Let X, be the smallest set of Lo-equations

containing (CO) - (C8) which is closed under ordinary algebraic
deduction.

Theorem 4.4 (ii)

22 = EQpca2
Proof.
By the same route as the above proof, here using the completeness
theorem 2.4 for CMLo. O
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It is now straightforward to turn the above results into a recursive
enumeration of the equations holding in RCAy for o an arbitrary
infinite ordinal. We only treat the case x=w. First, we need the
corollaries 4.1.15,16 of [HMT] to obtain the following

Proposition 4.5. If x< w and ¢ is an equation in Ly, then
RCAx F ¢ & RCAyF ¢.

wWe define the set 2 of L,-equations in the same way as the Zy's
with a < w, the only difference being the rule CRy which may only be
applied for finite I'. (Of course, otherwise cr would not be defined.)
Clearly then 3¢ = Uy < o

Theorem 46. 3, = EQpcaw.

Proof.

Let ¢ € Z¢. It is straightforward to show that there must be an
x < w such that ¢ € Zo. By the previous theorem, RCAy F ¢ so by
the above proposition 4.5 we have RCA, F s.

For the other direction, 1et RCA,, E ¢ and let @< w be such that
¢ € Lo. Then RCAy F ¢ by proposition 4.5, so ¢ € 2 by Theorem 4.4.
Then clearly € € Zq,. O

Note that the scheme CR¢, now consists of infinitely many rules CRr,
as the set of finite subsets of w is (countably) infinite. On the other
hand, we call 2, an "almost finite" derivation system because of the
following observation:

Let € be an L¢,-equation for which we want to give a derivation in Z,.
As ¢ contains only finitely many symbols, there is an @ <  with ¢
€ Ly By proposition 4.5 it then suffices to use the finite subsystem
2« 0f Z¢y to search for a derivation of ¢.

We finish this section with a short remark concerning a connection
between Theorem 3.2.13 of [HMT] and our results. We would like to
thank H. Andréka, I. Németi and 1. Sain for bringing this theorem to
our notice. :

We conjecture that our result can be seen as a way to turn the
mentioned (representation) theorem into a derivation system, but we
feel that this matter should be investigated from a more general
perspective and will not go deeper into it here.

23



9. Type-free valid formulas.

As CA's form an algebraic approach towards the predicate calculus,
we may see whether our axiomatization result has any consequences
for the latter subject. Interestingly, it turns out that we can give a
proof calculus for the so-called type-free valid formulas which
involves only these type-free valid formulas, thus indicating a
positive solution to Problem 4.16 of [HMT]. (We would like thank H.
Andréka, I. Németi and I. Sain for pointing out this corollary of
Theorem 4.4.)

For a detailed treatment of the connection between the predicate
calculus and CA's the reader is referred to section 4.3 of [HMT], and
to [N]. Here we will only define the notions needed to state our
result.

A very ordinary language for the predicate calculus is a pair A =
(R,¢) such that R and ¢ are functions with domain w. Every Rj is a
relation symbol of rank ¢i; there are supposed to be infinitely many
relation symbols. Formulas are defined in the usual way, using
variables vo,v1,.. Restricted formulas are those in which every
relational atomic subformula has the form Ri(vo,...,v91_1). Note that
every formula has a restricted equivalent. Note too that, given a
language A = (R,¢), we may write R; in stead of Rj(vo,...,vgi-1)
without loss of information.

Now let f be a permutation of w. We denote by f* the permutation of
first order formulas, induced by f as follows: for any @, f*@ is the
formula obtained from ¢ by replacing each atomic subformula Rj (or
Ri(Vo,..,Vpi-1) ) of @ by Ryj (or Ri(vo..vgri-1) ). A restricted formula is
type-free valid if E f*@ for every permutation f of w, where E
denotes ordinary first order validity.

Andréka and Németi gave a proof theory for these formulas (cf [AGN],
[AN1], [AN2]), but this calculus involves a roundabout through the
ordinary proof calculus of first-order formulas.

The notion of type-free valid formulas (for short: tfvf's) arises
naturally in the light of the connections between CA's and first order
predicate calculus. To see this we first define a translation from
Lu—terms to predicate formulas:

Let Au be a very ordinary language. For t a term of L, &'(t) is
defined as follows:

&'(xy) = Rjy
E'(dij) = Vj = Vj
g'(sAt) = &'(s) A &'(t)
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g'(svt) = &'(s) v &'(1)
g(-t) = 71&'(t)

2'(0) = L

(1) =T

g'(cit) = vy &'(L).

Clearly &' is a bijection onto the set of restricted Au-formulas; let
Tu' be its inverse.

A fundamental result concerning tfvf's is given by Theorem 4.3.64 of
[HMT], here partly stated as

Proposition 5.1.
For every formula @ the following are equivalent:

(i) RCAw E Tu'(p) =1
(ii) @ is type-free valid.

Now, having an axiomatization of all RCA-valid equations, and the
bijection &', we can immediately give the desired proof calculus for
type-free valid formulas.

To state the special derivation rule needed here, we let, for a finite
sequence Q = <qo,...qn> of finite ordinals, Vg denote the quantifier

sequence Vqo..Van.

Now let A = (R,p) be a very ordinary language.
TAA is defined as the smallest set @ of A-formulas satisfying

(I) & contains the TAA-axioms, these being all restricted instances
of one of the following schema's:

(TAO) (o, ( a propositional tautology

(TA1)  T3vil

(TA2) @ — 3vip

(TA3)  3vile A viy) & (Fvie A viy)

(TA4)  3Jvidvj @ — Jvjavi @

(TAD)  vj=vj

(TAB)  vi=vj— v (vj=vg A Vg =Vj) if k= i,
(TA?)  Avilvi=vjA @) = Vvilvi=vj > @) if i ]
(TA8)  vi=vjAdvile Ay AIvile A Ty))

— 3vjlvi = vj A 3vip) ifi=]

(I1) & is closed under the following rules:
(MP) y € & whenever @, @ — ¢ €.
(UG) Vvilp € & whenever g € @
(CR) ped
whenever Rk is not a relational atomic subformula of ¢, and
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Va (VVjRk A Vvjlvi = vj = Vvi(Tlvi = vj = VVjTIR)) — @
is in ® for some finite sequence Q of finite ordinals in which
i and j do not occur.

Theorem 5.2.

For A a very ordinary language and @ a A-formula, the following
are equivalent:

(i) @ e TAA |

(ii) @ is type-free valid.

Proof.

By a straighforward (proof) induction one can show that @ € TAA
& TU'(@p) € 3. The result is then immediate by theorem 4.6 and
proposition 5.1. O
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Appendix.

Here we give the (sketchy) proofs and derivations which we left out
in the previous sections.

Deductions of the theorems in section 3.

In the derivations we do not give every step; e.g. we immediately
conclude F y— L1 from F (&;A<i>p)— L. In this and similar cases
we use the following abbreviations which give an indication of the
type of step left out:

PL Propositional logic, e.g. F p—(g—r) = F p-=(Tg-r)

ML Modal. Logic, e.g. Fe—-y = Flc(i)le — [c(i)]y.

CML Cylindric Modal Logic, e.g. the above example, or the fact that

every [i] is an 55 modality.
df definition, e.g. FLi,jl1 — ¢ by CML and definition of [i,jI.

(a) T1 = 7.
0 F (§10A<IXI0,1IQAY A <OXIO0,1IATY))) -
<O>(T1810A<1>L0,11¢) (C8)
1 F (8§10A<1X([0,1T9AY A <OXIO0,11Q0AY))) — (O,ML)

<0>(T1&10A<1>10p)

2 F (§10A<1>(L0,11@ Ay A <OX(LO0,11@A T y))) — [0,11¢  (CML)
3 F (§10A<1IX(L0,119AY A <OXILO0,11pAy))) —
[01(T&19—-[1]1711p) (2,def.[0,11
4 F (§10A<1I>(I0, 1T AY A <OX(IO0,1IpATTY))) —» L (1,3,ML)
5 F (I[0,17@A Yy A <OXIO0,11@AY)) - L (4,CML)
6 F ([0,17¢Ay) — [0N[0,11@—y) (5,ML)
7 F <O>I0,119Ay) — [0N([0,11¢ — y) (6,CML)
(b) T2=17, T3 =29, T3 = 33:
8 F 4jje<k>4yj (CML)
9 F Tje<k>TE5 (CML)
10 F [KI(T 44— @) = (74— [kle) (ML,8)
1 F <K(T455A @) - (T4A<k> 1) (ML,9)
12 F (T¢5-1kle) - [k ) (11,PL)
13 F (T4i5—-[kle) & [kKI(T455—- @) (10,12,PL)
14 + Liljllkle  [KICilj1e (13,CML)
15 F LiljI@ & [jILiljIe o LiljIljle (CML)
16 F LiljIlc(i)le « [c(i)ILiljIe (14,15)
17 F THISi — [c(i)ITHIS ¢ (16,ML)
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18 F (&ja<id(@Aay) A <KidX(pATIY)) ) = <iX(T1655A<j>@) (C8)
19 F (pAy) = Kid(QA W) G>(&55AI(T655A<)>@)))  (18,CML)
20 F (pAyY) — ([]](61j—>[1]('161]—>[]]'1tp)) - [il(p—-y)) (19,PL)
21 F (g A Li,jle) - [il(e—>y) (20,PL)
22 F ([i,jl¢@ ALi,jlg) - [il(p — Li,jlp) (21)
23 F [jICi,jIe — [jllil{¢ — [i,jle) (22,ML)
24 + [i,jle — [jllil{e — Li,jIp) (23,15)
25 + [c(i,)I0i,j1e —» O(e — [i,jle) (24,ML)
26 F (@ATHISip) — (LiljIT@ — [il(@¢ - THISi®)) (20)
27 F [c(i)]ITHIS @ — ([c(DILilj11e@ — O(p@— THIS @) (26,ML)
28 F THISjp — ([c(DILiljTI@ — O(p— THIS ) (17,27,MP)
29 + THISij — O(@ — THIS;®) (25,def. THIS)
30 F (&jATHIS @A <i>(_‘61jATHIS1'lp)) - 1 (def THIS;)
31 F (6ijA<j>(TH181LpAL|JA<i>(THISitpA‘lt|J))) - 1 (30,C8)
32 F (THIS;@ AWACIMTHIS{@A ) - L (31,CML)
33 F <IXTHISjpAY) - [I(THISi@ - W) (32,ML)
(c) TS = 42, T6 = 59:

34 F &= (ITEAD(45A ) = <IX(T1645A< >9)) (C8)
35 F 61 — ([11(76i5=[j179) - [JI74;; —>-|<1>(<s, AQ))) (34,PL)
36 + (6,]A[]]tp/\[1]('161 —>[]]"|tp)) - []](‘I«S1 —>"1<1>(61 Atp))(35 PL)
38 (61 AL J]ltp) - <1>(61]/\[]](_'61]-—>_l<l>(<SU/\(9)) (3?,l:ML)
39 (61 /\l['l ]]](-P) - <l>(61JA[]](_|61J-9[1]_|<l>(61j/\19)) (38,CML)
41 F (61]/\I[l ]]ltp) —>[1]<1>(61 AR) (40,CML)
42 F (&1jALL,jIg) -], 1](1)(613/\(9) (39,41,PL)

we now give the derivation of T6 with i=0, j=0; in 43-59, k¢{0,1}.
We abbreviate A = §o1ATHISop, ¢ = <0>(8o1Ap), i.e. we want to
prove A  THIS .

43 A F [01(71491 — [11[c(0,1)1p) (df THIS)
44 A F [0X(T610—[c(0,1)I[11(&10— 1)) (43,CML)
45 A F [01(T&10—-[c(0,NI[jI11(&10— 1 1p) (44,CML)
46 A F [c(1I(T610-[11[j1(&10— 1) (45,13)
4? F 2—-(81j8) (PL)

8 ALk [0(1)1((‘1610/\61 ) = [11[j1(&10— 1)) (46,47 ML)
49 A+ [e(1)I(&15A T140; ) - [1I[jI&10— 1)) (48,CML)
50 A F [c(1)](&1; —»[1](—I<so —(&10—[j1710))) (49,13)
51 A F [c(1)](41J—>[1](-141]-+(410—>[J]-|tp))) (50,CML)
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52 A F [jl(&1j=[11(T&1j>[c(1)(810— T19))) (51,13)
53 A F [jI&1j=[11(7615>[c(1)I0)&o1— 1)) (52,CML)
54 A F [jI(&15=[11(7415-[j1lc(1)] 1)) (df y)
55 A F L11jIc(1)] Ty (df L11j1
56 A F [c(0,1)1(&p1A®) (df THIS)
57 A F [c(0,1)][01K0>(&01A ) (56,CML)
58 A F [c(1)]y (57,dfyp)
59 A F THISqy (55,58)
(d) T? = 72, T8 = 74.
60 F OHE — (<c(i)>@ A A\ jLiljIc(i)I<cli)>e (def.OH)
61 F OHp — THISKc(i)>@ (60,CML))
62 F OHp — O(<c(i)>p — THISKc(i)>p) (29,61)
63 F OHe — O(p — /ATHISKc(i)>®) (62,ML)
64 F OHe — O(@ - /Ay /A jLiljIc(] (i) (df THIS;)
65 F OH@ — O(@ — OHy) (64,CML,df OH)
Now let ' € o be such that i € I". Then
66 F OH@ — [iljIfc(i)]g (62,df THIS)
67 + OHe — [FICiljIe (66,16)
68 F ( OHEAKTU{i}>(TTWAOHY) ) -

KF>(<IX(TTWAOHR) A LiljIg ) (67,ML)
69 F ( OHEAKTU{i}>(TTwAOHY) ) -

<KPX>(KI>(MYPAOHY) A LiljTI0HE ) (68,65)
70 F (OH@ AT U{i}>(TTWAOHE) ) = <I>(TTP AOHP) (69,CML)
71 F (OHEAO(TTWAOHY) ) - (TTyACH®) (?1,repeatedly)
72 F O(PpAOHP) — O(OHY - ) (?1,CML)

73 + (O(OHE A p) A O(OHE A <idOHE)) —
O(0HE A <i>0HE A O(0HY — y)) (?2,CML)
74 F (O(OHe A y) A O(0HZ A CidOH)) —» O(0HE A <idy) (?3,ML)

Proof of proposition 3.8.

(1)=(3):
Take @(i,a) = <c(i)>@,, and use thesis 61.
(3)=(2):
Take @(a,i,j) = @(i,a), and use thesis 16.
(2)=1(1):

Take @(a) = /N\j.i®(a,i,j), and use thesis 16.
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Proof of corollary 3.6.

Without loss of generality we may assume that A is maximal and
i=0. It is easy to verify that there is an L-MCS H with A =g H and
eH. Let g4,...,qx-1 be distinct propositional formulas not in Lu{p};
defineL'= L U {p} U {qil 0< i< a}.

By proposition 3.5, H U { /A j.olc(0,1)][0,ilg;} is consistent, so it has
a maximal consistent extension H'. As the set A U {@| [0lp € H'} is
consistent, A has a L'-maximal consistent extension A'=qg H'.

Let ¢ be the formula <c(0)> /N jxo00qi. As /R jxolc(0,i)IL0,ilq; is
provably equivalent to THISoy, we have:

@ATHISijw e H' =

GX>(PATHISiP) € A' =

A ¥+ [iITHISjp—- ) =

A ¥+ [iI(THISip—> @) =

A U {Ki>(@ATHIS;p)} is consistent. O

Proof of proposition 4.3,

The proof of the 1eft inclusion is by induction on the length of the
proof for (.

First, et @ be an axiom of A'w. If (@ is an instance of MCO, MC1, or
one of MC4,..,MC8, it is immediately clear that p'(¢p) € 2.
If @ is an instance of MC2, ie. @ = ¢y — [ilKi>yp then

0'(@) = -o(y) v -ci-ciply) = 1,
so g'(@) is equivalent to g(y) < -ci-cip(y).
Then g'(p) € 2y, as p(y) < cjp(y) € =4 by C2, and

cie(y) = -ci-cio(w)
by Theorem 1.2.11 of [HMT].
For @ an instance of CM3, the proof goes likewise, using Theorem
1.2.3 of [HMT]..
Now suppose we obtained @ as a F*y-theorem after using a
consistency rule. we only treat the following case:
F*« @ because of +*y [[]Li,jIp;j — @, where the usual restrictions
hold. By the induction hypothesis,

cr (cjxi v cjldij A ci(-dij A cjxi))) V e(@) = 1
is in Z4, and as xj can not appear among the variables of p((@), this
immediately gives p'(p) € 4.

For the other direction, we only treat the case in which @'() is an

instance of C1 or C3.
C1: By Necessitation we have F*y [i]1T, so ¢'([ilT) = -ci0 = 1 € 4.
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C3: For any modal 55-operator O, O(p A QW) & Op A Oy is a
theorem, so F*4<id>(p A <idY) & <id>@ A <i>y. After some Boolean
manipulations, this gives ci(g(@) A cip(w)) = cijo(p) A cip(y) € Zq.

O
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