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On the metamathematics of weak theories
by

Alessandro Berarduccil! and Rineke Verbrugge?

From the work of Paris-Wilkie [WP87] the theory IAp+Qq has
emerged as one of the weakest theories which is adequate to
arithmetize syntax and for which one can prove the “derivability
conditions” needed to prove Godel's incompleteness theorems
(provided one uses efficient coding techniques and employs binary
numerals). However many questions on the metamathematics of
IAg+Q1q remain open, and in particular it is not known whether
Solovay's completeness theorem [So76] holds for IAp+Qq. In other
words, if we denote by L and PLQ the provability logics of PA and
IAg+Q respectively, we have that L is contained in PLQ while the
opposite inclusion is an open problem. Let C be any class of Kripke
models such that for all K € C, K does not contain five nodes ap, ...,
a5 with aj <ap < ag <ay, ap <ag and a5 incomparable with a3. We
give an upper bound on PLQ by showing that L < PLQ < Th(C)
(where the last inclusion is strict). Similar upper bounds, but weaker,
were obtained by the second author in her Master's thesis. In
subsequent work she showed that PLQ is contained in the theory of

all models of height < 3. The improvement of this paper uses

1Universitad di L'Aquila, Facolta di Scienze, Dipartimento di Matematica Pura e
Applicata, Via Vetoio, 67010 Coppito, L'Aquila, Italy.

2Department of Mathematics and Computer Science, University of Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam, the Netherlands.



analogous techniques but is based on a different definition of the

“Solovay constants” due to the first author.

We denote by O both the arithmetization of the provability
predicate of IAg+Q and the corresponding modal operator. GA is
defined as 710-A and A is OA A A. We recall that PLQ, the
provability logic of IAp+Q1q, is defined as follows: PLQ F A iff for all
arithmetical interpretations *, IAg+Qp F A*.

1. Visser's and §vejdar’s principles.

In [Ve89] Verbrugge proved the following result.

1.1. (Svejdar's principle). We have: 1Ag+Q( FV kO@gA — A) where
OyA is a formalization of the fact that A has a IAp+Q-proof of Godel
number < k.

We also need the following theorem of A. Visser [Vi89].

1.2. (Visser's principle). If S and S; (i = 1,...,k) are X sentences, then
we have IA(p+Qq FOA(S; — O8;) - S] - 0O8S.

An easy corollary (see [Vi89]) is:

1.3. If the Si's are X -sentences, then IAg+Qp FOW;S; —» OW;HS;.



2. A modified Solovay construction.

We assume knowledge of [So76]. Let (K, =) be a Kripke model
based on the frame K (so K is a finite tree). Without loss of generality
K = {1,..., n} and 1 is the least element (the root) of K. We extend the
order of K to the set KU{0} by putting the new node O below every
node in K. We will associate to each node i € KU{0} an arithmetical
sentence L;. Assuming this has already been done we define the
weight w(i) of a node i € K (i# 0) as the least p such that V j <g i (j
y# 0) there is a IAp+Q | -proof of 1Lj of Godel number < p. If p does

b

not exist w(i) = o . Note that “w(i) <o ” is an NP-predicate since it is
equivalent to the conjunction of O7L. over all c <g i. We recall that
IAg+Q is provably complete with respect to NP-formulas, ie. if A is
a suitable arithmetization of an NP-predicate, then IAp+Q FA >
OA. The predicate w(i) < w(j) is not guaranteed to be in NP but it is
certainly Y 1. The main difficulty in adapting Solovay's theorem to
IAg+Q is that it is not known whether 1Ag+Q is provably complete
with respect to X 1-formulas (this is discussed in detail in [Ve89]). An
important (though obvious) property of our weights is that they
respect the order of the Kripke frame, that is: i <g j— w(i) < w(j). Let

i1 j mean that i and j are incomparable in the order <g.

2.1. Definition. Given i . j let il be the least element <y i and
incomparable with j, and ji be the least element <g j and
incomparable with i. If at least one of w(il) and w(ji) is < o, then we

say that P(i, j) holds iff either w(ii) < w(ji) or the weights of i and ji



are equal but i has smaller index than ji (in a fixed enumeration of

K). If P(i, j) holds we say that i has priority over j.

Note that if a < i,b < jand a + b, then P(a, b) & P(, j). By the
diagonal lemma we can assume that the formulas L; are chosen so

that they satisfy the following system of “fixed-point equations™:

2.2. Definition. If i# O define L; by: IAg+Q( FLj & [ w(i) <o AVj>gi
w() = A VjuoiP(,j)]. Define Ly < 1Lja... A 7L,

The above definition can be described informally as follows:
consider all the weights associated to the nodes of the tree K. If they
are all o then L( holds (and all the other L;'s fail). Otherwise look at
the set M of the maximal nodes (in the tree order) among the nodes
with weigth < . The elements of M are totally ordered by the partial
order P(x, y). Let j be the least element of M with respect to P(x, y).
Then Lj holds (and the other L;'s fail).

3. The conditions

First some terminology: we will often write < and < without
subscripts to refer to the order relation on KU{0}. We often write ¢
to mean IAp+Q F¢@. We next state some properties of the constants

L; (i ranges over KU{0}). We omit the proofs of the easy lemmas.

L1. IAg+Qq F 3! ie KU{0} L;.



L2.i<j> |—Li—><>Lj.

Proof. The assertion to be proved follows from the particular case
when j is an immediate successor of i (since if a consistent theory
proves the consistency of another theory, then the Ilatter is
consistent). So without loss of generality we assume that j is an
immediate successor of i. If i = 0, then j = 1 and the thesis follows
from the definition of L plus the observation that FDO-7L{ - w(l) <
o.Ifi# 0 we have F w() <o A El‘le — w(j) <o . On the other
hand, by definition of L;, we have FL; - w(j) = o A w(i) <. The

thesis follows. QED.

L3.j2i=> FLj-—)EhLi unless i = j = 0.

Proof. If j > i we have the chain of implications Lj - El-le -

OoAL; - O-L;, where the last implication follows from (L2). If i = j >

0, the thesis follows immediately from the definition of L;. QED.

L3.1. Nk L.

Proof. An application of L3 with i = j# 0, gives N ¥ L;. Since one of
the L;'s must hold, the only possibility left is N L. QED.

L4. |—L1 - OW;s1L;

Proof. By the previous lemmas, FL; — O7Ly A O7Ly. Since one
of the L;i's must hold FL; —» OW;51L;. QED.



L5. Suppose that a + b and that V ¢ (c <a —» c < b). Then FLy —
OAL,.

Proof. Our assumption implies that F P(a, b) - w(a) <w(b),
hence - P(a, b) -» O ,y1L,. So by Svejdar's principle F w(b) < o
— O(P(a, b) » 1L,). But F L, - P(a, b). So Fw(b) < — O1L,.
Now the thesis follows by observing that F Ly — w(b) <oo. QED.

As an immediate corollary we have:
L5.1. Suppose that a + b and that V ¢ (¢ <a— ¢ <b). Then FLj -
w(a) < oo. Moreover, since w(a) <o is a NP-predicate, - L — E(w(a)
< o).
L6. If a is an immediate successor of 1, then I-Ll - O0AL,.

Proof. By L4 FL; —» OW;51Lj. Every i > 1 is either 2 a or
incomparable with a. In either case FL; - O3L, by L3 and L5

respectively. So FDO(W;s51Lj »0O1L,) and the thesis follows. QED.

L6.1. If a is an immediate successor of 1, then FL; — O(w(a) < o).



L7. Let a + b. Then FO(w(ab) <e) —» O(L, — O7Ly). Moreover,
since Fw(ab) < w(a), we have, a fortiori, FO(w(a) <) — O(L, =

OALy).

Proof. First note that Fw(ab) <eo — P(a, b) v P(b, a). So
FO(w(ab) <) — O(P(a, b) v P(b, a)). Hence by Visser's principle
(1.3) FO(w(ab) <) — O(@EP(a, b) v OP(b, a)). We need to prove
FDO(w(ab) <) — O(L, —» O7Ly). So work inside F and assume
O(w(ab) < o). Then we have seen that O(EP(a, b) v LP(b, a)) must
hold and we must prove O(L, — O1Ly). So move inside O and
assume L,. In the presence of [IP(a, b) v OP(b, a) we have that L,
implies [P(a, b), which in turn implies 007L},. QED.

L7.1. Let a « b. Then FDO(w(ab) <e) - O(L, - w(b) <o0).

Proof. w(b) < oo is equivalent to the conjunction of 0L, over all ¢
< b. Any such c is either incomparable with a or < a. If c + a, then ab
= a¢ and, by L7, FO(w(ab) <) - O(L, » O7L,). If c < a, then FL,
— O1L, so again FDO(w(ab) <) - O(L, - O7L). QED.

L7.2. Let a + b. Then FO(w(ab) <) —» O(L, - B(W(b) <))

Proof. By L7.1 and the fact that w(b) < e is an NP-predicate. QED.

3.2. Definition. Given a € K with a# 1, let a#< a be the least node of K

such that ab < a# for all b + a. In other words a# is the least node

with a# < a such that there are no bifurcation nodes in the half-open



interval [a#, a). In particular a# = a iff the father of a is a bifurcation

node.
L8. FO(w(a#) <o) — OmL, » 0OW;5, LY.

Proof. Immediate from L7 and L3 and the fact that for all bra, ab<
a# (so w(ab) < w(a#)). QED.

L9. Let b be an immediate successor of a. Then FHDO(w(a#) <) —

O(L, -» 0O0°Ly). A fortiori, FO(w(a) <e) - O(L, - OO7Ly).

Proof. Every i > a is either incomparable with b, in which case by
L5FL; »>0O1Ly, oritis > b, in which case again FL; -»O-Ly by L3,
So FWis, Lj » O7Ly. Now the thesis follows from L8: FDO(w(a#) <
o) —» O(L, - OW;5, Lj). Note that we used both §vejdar's (L5) and
Visser's principle (L8). QED.

L9.1. Let b be an immediate successor of a. Then FDO(w(a#) <o) —

O, —» O(w(b) <o0)).
4. Upper and lower bounds on PLQ.

A lower bound on PLQ is given by the containment L < PLQ. In
theorem 4.4 we prove a non-trivial opposite inclusion. Without loss
of continuity the reader can skip the next paragraphs and go to

definition 4.3.



The proof of theorem 4.4. suggests the introduction of the
following terminology: let s be an increasing sequence of elements
a] <ap <..<a, from K such that a; = 1 (the root) and for each i < n
there are no bifurcations strictly between a; and a;,1, i.e. 13 ciaj<c
<aq# If 1< i< n, we write a; -5 @ as an abbreviation for
IAg+Q Lal - E!(L212 - ... —)D(Lai — ¢))..)). If i = 1 this reduces to
IANg+Q1 F L, Bads Whenever we use the notation al~¢ ¢ we impli-
citly assume that s is a sequence aj < ap < .. <a, as above and a is
one of the aj's. We define al- 411 ¢ asal—g ¢ where s is the sequence

of all the elements < a.
4.1. Lemma. F0(w(aj#) <o ) — D(Lai - O(w(aj;1#) < )).

Proof. Since 713c: a; < ¢ < aj,1#, either a; 1# is an immediate
successor of a; in which case we apply L9.1, or aj,1# < a; and we can

apply L3. QED.

4.2. Theorem. a, I DO(W; L:). In particular for every ae K,
n'"s i>ap i P

al- 1 IH(WisaLy)-

Proof. If n = 1 we apply L4. If n > 1, ap# is either a; (= 1) or an
immediate successor of aj. In any case, by L3 or L6.1,l--La1 -
O(w(ap#) < ). Combining this with a repeated use of lemma 4.1
yields: a,_ g O(w(ap#) <o ). On the other hand, by
L8, FO(w(ap#) <o ) — IZI(Lan - D(Wi>anLi)). We conclude,
an_1lg D(Lan—> D(\V/i>anLi)), ie. ay I+ SD(Wi>anLi). QED.



The above theorem implies that the relation al-g ¢ shares most
of the usual properties of the forcing relation I-, except that we are
not able to prove (or disprove) the implication V b> a b5 ¢ =
al-g O¢. If this implication were true Solovay's theorem for IAp+Q
would readily follow. For the moment being we must content

ourselves with a weaker result (theorem 4.4 below).

4.3. Definition. Let K and T be Kripke frames. We say that K omits T if
K does not contain an homomorphic copy of T which preserves the

order relation and the incomparability relation.

4.4. Theorem. Let A be a modal formula such that 1A is true at the
root of some Kripke model (K, I-) whose frame K omits the tree Kg
depicted below. Then PLQ F A. In other words PLQ < Th(Omit(Ky)),

where Omit(Kg) is the class of trees that omit K.

d
C e
b
a
The tree Ky

To prove the theorem we assume, without loss of generality, that
the nodes of K are 1, ... , n where 1 is the root. As above we extend

the order of K to KU{0} by adjoining 0 as a new root. We make the

10



frame KU{0} into a Kripke model by stipulating that for every atomic
modal formula A, O A iff 11— A. For each atomic modal formula A,
we define an arithmetical formula A* given by the disjunction
W;— ALj (note that the definition of L; depends on the tree K, but not
on the forcing relation I-). We extend the map * to an arithmetical
interpretation of all the modal formulas by requiring that *
preserves the boolean connectives and maps the modal operator O

into the provability predicate of IAg+€Qj.

4.5. Lemma. If K omits K, then for every modal formula A we have:
i) 1I-A = IAg+Q) FL{— A*
ii) 11- 1A = IAg+Q1 FLj— 1A*
Moreover for each i >k 1:
iii) il- A = IAg+Q FL1— 0O - A%
iv) il 1A = IAg+Q1 FL{—- O » 1A%)

We prove the lemma by induction on the complexity of A. The
atomic case is immediate from the definition of A*. Boolean
connectives pose no problem because conjunctions commute with
provability and the inductive step for negations has been built in in
the inductive hypothesis. So it is enough to consider the case A =0B.
We prove (i) to (iv).

(i): If 1+—0B, then Vi>1,i B, so by the induction hypothesis
IAg+Q1 FL{— O(L; - B¥*) for all i > 1. Now the thesis follows by
observing that IAg+Qq FL{— O(Wj51Ly).

11



(ii): If 11— 0B, then for some i > 1, il 1B, so by the induction
hypothesis I1Ag+Qq FL{— O(L; - 1B*). Now the thesis follows from
IAg+Q) FL1— ©OL;.

(iii): If i > 1 and i0OB, then for all j >1i,j i B, so for all such j's (if
any), by induction hypothesis, IAg+Q) FL{— I:](Lj — B*). Now we
would like to prove IAg+Qq FLi— O(Lj—> OW;j5;L;) in order to
conclude IAp+Qq FL{— O(Lj— OB*). For this aim it is enough to
prove IAg+Q( FL{— O(L;— El-le) for all j incomparable with i (for
the other nodes, i.e. those with j < i, this is automatically true by
lemma L3). So suppose jri. There are two cases:

Case 1. If V c (c <j—> c < i), then by an application of Svejdar's
principle (L5), IAg+Q FLj—» O1L;, and a fortiori 1Ag+Qq FLy —
OL-0aL).

Case 2. 3c<j:c . i. It follows that the only element below both i
and j must be the root otherwise Ky would not be omitted. Therefore
ij is an immediate successor of 1. By L6.1 we have IAp+Q{ FL{—
O(w(iJ) < ). Now by lemma L7, IAg+Q FO(w(iJ) <) - O -
El'le). Combining these two, we have IAg+Qq FL{— O(L;— I:I'|Lj) as
desired.

The last case to consider is (iv): Assume i > 1 and il 10B. Then
for some j > i we must have jI- 1B, so by induction hypothesis
FL;—- 0O -» 1B*).ByL2 FL; » OL;, so FL;— O(L; > 70B*) as
desired. QED.

Proof of 4.4. If K omits Ky and 11~ 1A, where 1 is the root of K,
then, by the lemma, IAG+Qq FL; — 1A*, where * is the arithmetical

interpretation induced by K. By L3 N kL. So by L2 the theory

12



IAO+QI+L1 is consistent. Hence IAp+Qq FA* and we conclude
PLQ F A as desired. QED.

5. Bifurcation depth

In the above sections, we have tried to obtain the best possible
upper bound on PLQ. In particular, we have proved that PLQ c
Th(Omit(Kgp)). In this section, we will prove that the inclusion is
strict, using the fact that the 'disjunction property' holds for PLQ, as

proved by Montagna.

5.1. (Montagna's disjunction property). If PLQ FOAv OB, then
PLQ - A or PLQ FB.

Proof. Suppose that for some interpretations ° and °°,
1Ag+Q1 FA(PB°) and IAG+Q FB(P °°), where T contains all
propositional variables occurring in the modal formulas A and B. We
have to prove that there is an interpretation * such that
IAg+Q1 ¥ (OAv OB)*. By multiple diagonalization, define for all pje 7
an arithmetical formula p;* such that 1Ag+Q 1 Fpi*e[(OA(P*S
OB(P *) A pi® v @AB(P*)< OA(P *) A pi®®)]. Here OASOB , OA<OB
means that there is a proof of A and there is no proof of B with
smaller, resp. smaller or equal, Godel number.

We will show that IAG+Q - (OA v OB)*. So suppose, to derive a
contradiction, that 1Ap+Qq FOA(P*) vOB(P™*).

Then 1Ap+Q; FOA(P*) < OB(P'*) vOB(P*)<X OA(P *), so, because

[Ap+Qqis a true theory, either

13



1) OA(P*) X OB(P*) and I1Ag+Q F pi*e> pi°® for all i (by definition
of P*), or

2) OB(P*)< OA(P*) and IAp+Q F pi*>p;°° for all i.
In case 1), we have IAp+Q FA(P*), so IAg+Q FA(P °), contra-
dicting our assumption. Similarly, case 2) contradicts the assumption

[Ap+Q1 - B(P°°). QED.

5.2. Definition. We define T, by induction.
Ti(p) = Cpa®p
Ti+1(P, T 1) = O(TP)ABADAO(Ti(F)AL 11), where all propositional
variables in P,q,r are different, and P and @ are of length 2i-1,
The idea behind T, is that if the root of a tree K forces T,, then K
does not omit the full binary tree of bifurcation depth n. This will be

proved in theorem 5.4. below.

5.3. Theorem. For any n, PLQ + T, is consistent.

Proof. By induction.

Basic case: Suppose, in order to derive a contradiction, that
PLQ F 1T ,(p), i.e. PLQ FOp v Op. Then by Montagna's disjunction
property, either PLQ F 1p or PLQ Fp. Both are clearly false: In the
first case, we can take p*=T, and in the second case p*=L.

Induction step: Suppose as induction hypothesis that for any P

consisting of 2i-1 different propositional variables, PLQ + Tiy(P) is

consistent.
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To derive a contradiction, suppose that PLQ b 1T;1(P,q 1), that is
PLQ FO(ATy(P)valr) v O Ty(q)v1dar). Then by Montagna's
disjunction property, either 1) PLQ F Ty(P)v1lr or
2) PLQ F ATy(@)v1dr. We show that 1) cannot hold. By the
induction hypothesis, PLQ F- 7 T{(7). Since r does not appear in Ti(P),
we can take r=T. But then PLQ F[r, so PLQ F 1 T;(P)vGr. By an
analogous proof, we can show that 2) cannot hold, which gives the

desired contradiction. QED.

5.4. Theorem. T, is not consistent with Th(C,), where C, is the class of

trees that omit the full binary tree T, of bifurcation depth n.

Proof. We will show by induction that if K is a finite tree with root
k such that ki~ T,, then we can embed the full binary tree T, (with
nodes numbered 1 to 2n+1-1 in breadth first order) into K. The
embedding will preserve < and ..

Basic case: suppose ki—x Ti(p), then there are nodes i,j such that
k<ki, k€gj, i-x p and ji-g 1p, so i#j. Therefore, the full binary
tree with one level of bifurcation can be homomorphically embedded
into K.

Induction step: suppose that ki g Ti+1(P,T 1), i.e.

k I-x O(Ti(P)ALr) A O(Ti(Tf)AEI ar). Then there are nodes kj,k such
that k<gki, k<xks, ki-x Ti(P)AOr and ky g Ti(q)Adr. By
induction hypothesis, we can homomorphically embed a copy of the
full binary tree T;of bifurcation depth i into the subtree of K of
points =g k;. Analogously, we can homomorphically embed a copy of

T; into the subtree of K of points > k;. Because k; g [Or and k=g
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BOar, kj1ky and the two images are disjoint. Therefore, we can
combine both homomorphic embeddings into one, and map the root

of T;,; into k, giving an homomorphic embedding of T;;; into K. QED.

5.5. Corollary. Th(C;) does not have the disjunction property.

Proof. Suppose n>1. From the proof of theorem 5.4, it follows that
Th(Cp) F 1 Tu(P, T ,1), i.e.
Th(Cp) FO( Ty (P)vEr) v O(Tp.1(T)vE 7).

However, it is easy to see that both Ty i(P)AGr and T,.1(T)ADr
have models on T,.;, and Tp.;e Cp. Thus Th(Cp) ¥ 1Ty1(P)vEr and
Th(Cp) ¥ 1 Tn-1()v1Er. The case for n=1 is proved in an analogous

way. QED.

5.6. Corollary. Let C be a class of trees included in C,. Then Th(C) #
PLQ.

Proof. We have Th(C) o Th(C,), and Th(C,;) £ PLQ. QED.
In particular, PLQ is different from Th(Omit(Ko)).
6. Concluding remarks.
The above section gives some support to the conjecture that PLQ

is equal to L, provided PLQ is equal to the theory of some class of

frames. It can be shown that a necessary and sufficient condition for
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PLQ to be equal to L is that for every finite Kripke tree K, PLQ ¥ 71Ag

where Ak is the conjunction of:

L

O(Li—»<L;) fori<j
O(L;—»07L;) for i4j
O@i—=n1L;) fori#j
O@Lyv...vLy).

In fact we have:
6.1 Proposition. PLQ ¢ Th({K}) < PLQ F 1Ak.

Proof. (& ) If IAg+Q F 1Ax*, let MEIAG+Q(, MEAK*. If we
define for all propositional letters p, p°=W; - pLi*, we can carry out
Solovay's proof inside the model M by proving for all modal formulas
B,i-B = MELO(L;*>B°); so in particular, if 11— B, then MEB°.

(=) We have 11 Ag, so 1Ak ¢ Th({K}). If PLQ c Th({K}), then
PLQ F 1Ak. QED.
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