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On the proofs of arithmetical completeness for interpretability logic.

§0. Introduction. Visser [Vis1] introduced the binary modal logic IL (interpretability logic)
and its extensions ILM (interpretability logic with Montagna's axiom) and ILP (interpretability logic
with a persistent relation in its models) to describe the interpretability logic of PA and the inter-
pretability logic of any sufficiently strong theory T which is finitely axiomatizable and Z; sound. The
modal completeness of IL, ILP and ILM was provided by de Jongh and Veltman [dJV] using so called
Veltman models. These are a very natural generalization of Kripke models. Visser [Vis2] obtained
the arithmetical completeness for ILP and more recently, Berarducci [Ber] and Shavrukov [Sha] have
shown ILM to be complete for arithmetical interpretation over PA . All these proofs of arithmetical
completeness do not directly use the Veltman models. Using a bisimulation Visser [Vis2] showed ILP
to be modal complete with respect to his so called Friedman models and then used these to prove
arithmetical completeness. Berarducci and Shravrukov also used a bisimulation due to Visser [Vis1]
showing that ILM is modal complete with respect to the so called simplified models to prove
arithmetical completeness. The use of simplified models in proving arithmetical completeness for ILM
adds an additional complication due to the fact that in general these cannot be taken to be finite.

Our aim is to provide simpler and more natural proofs of arithmetical completeness for ILP and
ILM. For both we shall use the original Veltman models. As all proofs of arithmetical completeness
known so far, ours are based on the ideas exposed in the pioneering work of Solovay [Sol] and made
explicit in [dJTM].

The organization of this paper is the following: in the next section we recall to the reader the ax-
ioms of ILM and ILP and the corresponding classes of Veltman frames. We shall not give any details.
We refer the reader to the literature (see e.g. [Vis1], [dJV] and [Ber]) both for details and comments as
well as for the proofs of soundness of the axoims. In section 2 we present a general technique
inspired by Solovay 's work to obtain arithmetical completeness for theories containing IL, provided
that we already have modal completeness w.r.t. a certain class of finite frames. The common

preparatory work of section 2 is used in the last two sections for the two arithmetical completeness

proofs.

I would like to thank Albert Visser for correcting and simplifying some of my arguments, Dick
de Jongh and Rineke Verbrugge for their continuous and patient help.

§1. Interpretability logics. The language of the logic of interpretability contains (atomic)
propositional letters po,p;,..., logical connectives —, —7 and a binary modal operator - > -, All other
connectives, as A,V and <> are defined in the usual way. We use L for falsum and T for true. The

unary modal operator [1- is defined as - > 1. The axiom of IL are:



(LO) All tautologies of the propositional calculus.

(L1) O(A—-»B)—» (OA—[B).
(L2) OA-0O0OA.

(L3) O@OA—->A)->OA.

an O —-B)—ADB.

d2) (ADBABD>C)— ADB.
J33) AD>B—-(OA—- OB).
34) OADA.

The deduction rules of IL are modus ponens and necessitation The following two other axioms are the
characteristic axioms of ILP and ILM.
® AD>B—(AAOCD>BADOCQC).
™M) AD>B-O(AD>B).

A Veltman frame is a triple <W,S,R> where W is a set called universe ,R and S are respectively
a binary and a ternary relation on W. The elements of W are called nodes . We shall write xRy for
<x,y>€R and ySxz for <x,y,z>€S. It is further required that R is transitive and conversely well
founded and that for every xe W, Sy is a reflexive and transitive relation on {y|xRy}SW.
Moreover for every x,y,ze W, xRyRz implies ySxz.

A Veltman model is a Veltman frame together with a forcing relation I between elements of W
and the formulas of IL commuting with the logical connectives and satisfying the following:

xIFOA iff Vy (xRy =3 yl- A),
xlFAD B iff Vy [(xRy & ylF A)=> (3z ySxz & zIF B)].

As usual we shall improperly use the same letter W both for the model, the frame and the underlying
universe. If W is a frame we write W A iff for all forcing relations on W and all nodes of W, x I A.

We shall consider two other possible properties of Veltman frames:
P: If xSwy then xS,y for every z such that wRzRx.
M: If xSwyRz then xRz.
We call W a P-Veltman model (resp. M-Veltman model ) if the underlaying frame satisfies P
(resp.M).

The modal completeness of IL, ILP and ILM has been proved by de Jongh and Veltman. In

particular, they proved the following three theorems:
(1) ILF- A iff for every finite Veltman frame W, WE A.
(2) ILPF A iff for every finite P-Veltman frame W, WE A.
(3) ILMF A iff for every finite M-Veltman frame W, WE A.

§2. A Solovay style strategy. We want to find a general strategy for proving the

arithmetical completeness of the interpretability logic for various arithmetical theories. Let T be a



theory in the language of the arithmetic which is 1 sound and 21 complete and enough strong to
formalize syntax. Given two arithmetical sentences o and B we shall write ot[> B to mean the
arithmetical formalization of the statement: "T+ ¢ interprets T+ " . It will be always clear from the
context to which theory T we refer. We will use Latin letters for modal formulas and Greek letters for
arithmetical formulas so that no confusion will arise from the fact that we are using the same symbols
D> and O both for the modal and for the arithmetical operators.

An interpretation is a mapping 1 from modal formulas to sentences of the language of the
arithmetic such that:
(1) \A-B)=1A)—>1(B)
2 (1A= A)
3) VAD>B)=1A)D>(B)
Let us write IL(T) for the set of modal formulas which are provable in T for every interpretation 1, i.e.
IL(T)=({A | V1 TF1(A)}. Let ILX be a modal theory in the language of IL containing IL. We say
that ILX is arithmetically sound for T if for every modal formula A if ILXF A, then for every
interpretation 1, TH1(A), i.e. if I(T)2ILX.  We say that ILX is arithmetically complete for T if
the reverse inclusion also holds, i.e. whenever A is not a theorem of ILX then there is an interpretation

1 such that 1(A) is not provable in T.

Claim. Let us suppose there is a class of finite Veltman frames X with respect to which we have
modal completeness for the theory ILX. Let us suppose also that IL(T) 2 IL. If for any frame We X,
there is a set {Ax | xe W} of arithmetical sentences such that (0)-(iv) below are satisfied, then
IL(T)SILX.

(0) for every x,ye W if xty then TH —1(Ax A Ay)

(1) for every xe W, T+A is consistent.

(ii) forevery xe W, THAx— L_vaRy Ay.

(iif) for every x,y,ze W such that ySyz, TFAx— Ay D> A,

(iv) for every x,ye W such that xRy, THAx— 7(Ay > Vys,z Az)

Proof of the claim. We assume ILX ¥ C and define and interpretation 1 such that T #1(C). By the
modal completeness there is a finite model W with frame in X such that W EC. Let {Ax | xc W} be a
set of arithmetical sentences satisfying conditions (0)~(iv). Let t the interpretation which maps the
atomic proposition p occurring in C to t(p):=V {Ax | xIF p}. We shall show by induction on the com-
plexity of the modal formula A that for every xe W:

(@) xIFA = THAx—>1(A)

(b) xIFA = TkAix— T1(A).



This will suffice to prove the arithmetical completeness, because if WA C then for some forcing
relation on W and some xe W, xJK C, from which then by (b), THAx— 71(C). By (i), Ax is
consistent with T, as is therefore 711(C). Hence T ¥1(C).

It remains only to prove (a) and (b) by induction on the complexity of the formula A. By
condition (0) it is clear that (a) and (b) hold for atomic sentences. The inductive step for — and — are
straightforward, so let us consider just the inductive steps for [>.

Let us prove first (a). Assume x| A > B. Then for every y such that xRy, if yl A, there is a
node z such that ySxz I B. By the induction hypothesis we can write: for every y such that xRy, if
ylF A, there is a node z such that ySxz and Tk A;— (B). Using (iii) and £; completeness and the
soundness of IL (i.e. making few steps of reasoning in IL) we get THAx— AN xRyl-A (Ay>1(B)) and
finally THAx— (Vny A Ay>UB)) . On the other hand, by (ii) and using the induction hypothesis
(b) we obtain TH1(A)— ™ Vy ¥ A Ay, from which, since we assumed TH2Ax— EIVny Ay, we get
THAx— OWA)— Vnyu- A Ay). Again by the soundness of IL, Tk Ax— W(A) D> Vny“- AAy.
Thus the proof of (a) follows.

We prove now (b). Assume x ¢ AD> B. Then there is a y such that xRy and y I A and for every
node z such that ySxz, zJK B. Thus, for some y such that xRy we have: ylFA A A yS,zz¥B. By
the inductive hypotheses we have TH2Ay—1(A) and TH VyS,zM'—) —1(B). By X1 completeness we
have THDO[Ay— WA)] and TFO[B)— VyS,z’\vz], from which by the soundness of IL we get
THAyD>UA) and THUB)D> Vysxzkz. Reason in T and assume Ay. Assume for a contradiction
that 1(A)>u(B). By the soundness of IL we would have Ay > ‘IV),Sxz Az, so from (iv) we obtain the
desired contradiction. This completes the proof of the claim.

We conclude this section by remarking that conditions (0)-(iv) are not in general necessary, we
believe that with a little additional work one can obtain more general, sufficient and necessary,

conditions as is done in [BV] for the case of provability logic.

§3. The interpretability logic of finitely axiomatizable theories. In this section T
may be any finitely axiomatizable Z; sound theory extending IAg+SUPEXP. The main property
which distinguishes interpretability over these theories is that the interpretability predicate in T is X;
from which the soundness of the modal axiom P follows immediately. In T it is possible to
characterize interpretability as follows. Let Agxp be tableaux provability in IAG+EXP, A tableaux
provably in T and V="1A 7, i.e. the tableaux consistency in T. According to the Friedman-Visser
characterization [Vis2], o interprets B iff Agxp(Va— V).

We want to prove that IL(T)=ILP. We leave, as usual, the proof of soundness to the reader and
we shall prove only IL(T)SILP. We shall find sentences (0)-(iv) as in the previous section. The
method is as in Solovay [Sol]. We define a function F using the fixed point theorem and let the A, be

some limit statements concerning F.



Assume for convenience W has been given as a finite set of nonzero natural numbers. We shall
use the symbols x,y and z only for elements of W. Let Ax be the sentence limyF(n)=x and
Ao:=V'nF(n)=0. Together with the function F we will define also an auxiliary function G which will
aid us in book keeping. The function G will always "follow" the function F, i.e. if for some n, F(n)=x
then G(n)=F(m) for some m<n. Speaking informally, G(n)#F(n) will warn us of the fact that there is
no proof of code less then n of 7Ag(m). This has to be considered as a "dangerous signal” since we
would like in the end to have Ax— O 1Ax. When such a situation occurs then only "safe" moves are

allowed, i.e. F as well as G will move only to a node y for which there is a proof of —1Ay.

The definition of F and G is the following:
(a) F(0)=G(0)=0. If F(n)=0 and for some xe W, n witnesses A 71\, then F(n+1)=G(n+1)=x.
(b) If F(n)=G(n)=xe W and for some node y such that xRy, n witnesses Agxp(VAy— V7 Vyslez),
then F(n+1)=y and G(n+1)=G(n).
(c) If F(n)=y and G(n)=x, for some z, ySxz and n witnesses A 1A, then F(n+1)=G(n+1)=z.
(d) In all other cases F(n+1)=F(n) and G(n+1)=G(n).

Let pix be the sentence limp G(n)=x. We shall eventually prove that the two functions have the
same limit, i.e. Jlx <> Ax, but for proving this we need the cut elimination theorem. The formalization
of the cut elimination theorem is provable in T since T contains SUPEXP but is surely not provable in
EXP. To carry on with our proof we need to know what IAg+EXP proves about the functions F and

G, hence the following:

Lemma 1. IAo+EXP proves the following:

.1 Forevery we W, Ly = AV yrx Ak

.2 For every w,xe W, if x#w then Ly, AAx — A\/xswy Ay.

3 Forevery we W, uwAly — Viy.

4 For every x,y,we W, if xSwy then pwA Ax — Viy.

Proof. Directly from the definition of F, IAg+EXP proves that if, for some n, G(n)=w then after
stage n the function F remains either in w or in the upper cone above w. Thus the limit of F is either w
or is some node above w. If G(n)=w then by provable £; completeness, Agxp(G(n)=w) and a
fortiori A(G(n)=w). The proof of (.1) follows by combining all this with the fact that G(n)=w implies
A Ay. To prove (.2) assume that for some x#w we have Hw A Ax. Then for some n
Agxp(G(n)=w A F(n)=x). Again, observing the definition of the functions F and G, it is easy to argue
that whenever G(n)=w A F(n)=x for some w#x, the function F never leaves the set of nodes which are
in Sy, relation with x. This gives (.2); (.3) is immediate and (.4) becomes obvious by inspection of
case (b) in the definition of F.



For the following lemma we need that the formula (VoA o> B)— V) is provable in T. It is
easy to chek that T (or even IA(+EXP) proves (O aAabl> B)— O B), and since in T the
formalization of the cut elimination theorem is provable, we can substitute tableaux consistency with

normal consistency, so also the former formula is derivable in T. We can prove the following:

Lemma 2. For every xe W, Tk iy« Ax.

Proof. Reason in T and assume for a contradiction that Ax A 71jx. Then for some wRx we have Uw-
This implies V Ax, for otherwise the function G would have jump to x. Since x#w the last move of
the function F has been from w to x using condition (b) and therefore Ax > — szwy Ay. Bythe remak
above we get immediately ﬂAszwy Ay. From lemma 1.2 we get also A\/xswy Ay. Thus we have

the desired contradiction.

Lemma 3. For every x,y,ze W such that ySyz, THAx— Ay > A,

Proof. Reason in T and assume Ax. We want to show that for every y,z such that yS,z, MDAz ie.
Agxp(VAy— VAz). By lemma 2 we have i and by provable £; completeness we have that for
some k, Agxp(G(k)=x). Reason in IAG+EXP. Assume V?»y and let w be the limit of the function
G. Since G(k)=x, the limit w is either x or is above x. By lemma 1.1, from V Ay we know that w
has to be strictly below y. Thus either x=wRy or XRwRy and, by the characteristic property of the P-
Veltman frames, from ySxz we get ySyz. Let u be the limit of F. If u=w from wRz and lemma 1.3
the lemma follows immediately. Otherwise by lemma 1.2 and V Ay one has uSyy. By the transitivity
of Sy we obtain uSyz and thus finally, by lemma 1.4, VA,

Lemma 4. For every xe W, THAy— Avayky
Proof. Immediate by lemmas 1.1 and 2.

We can now easily check that the set of sentences {Ax | xe W} satisfies (0)-(iv). In fact (0) is
trivial, the proof of (i) is completely standard, (ii) derives from lemma 4 and the provability in T of
the cut elimination theorem. Condition (iii) is lemma 2 and (iv) is obvious by the definition of F. This

concludes the proof of the completeness theorem.

§4. The interpretability logic of PA. In this section we want to prove that IL(PA)=ILM.
The main characteristic of the interpretability in Peano arithmetic is the Orey-Hajek characterization: let
OkB be the formalization of the sentence “there is a proof of B which uses only the first k axioms of
PA”, let Ox="10k™, then it is provable in PA that o interprets B iff Vk(0.— < B). Another

characteristic property of PA is that it proves full reflection for any of its finite subtheories, moreover



this is formalizable in PA, namely: for every o, PAF VkO(Ogo— o). These facts would be
sufficient to carry out the following proof, but for sake of better readability we shall, following
Berarducci, work in ACAy rather then in PA. The second order theory ACAy is a conservative
extention of PA; in ACA( we can speak of models of PA and easy theorems of basic model theory are
formalizable and provable in ACAy. In particular in ACAg we have the following characterization of
the interpretability over PA: "PA+a interprets PA+f iff every model of PA+ o has an end extension to
a model of PA+B". In ACA, the standard model is the set {x|x=x)} with the obvious choice of
operations, any other nonstandard model has an initial segment which is isomorfic to it. Numbers
belonging to this initial segment are called as usual standard numbers . Full reflection translates in
ACAy in the following manner: "for every model Y of PA and every standard number k,
YEOw— a.

As in the previous section we shall prove only that IL(PA) S ILM, leaving the converse to the
reader. The sentences which are meant to satisfy (0)-(iv) are defined as limits of a recursive function F
exactly as in the previous proof . Define, as in [Ber] for every xe W, rank(x,n):="the minimal k such
that there is a witness <n of [0y 71A," . If k is a number, x,ye W, xRy then we define the sentence
0x,y(k) as Vj2k[F(j)=x V F(j)=y]l. Our definition of the function F resembles Berarducci's as far as it
is concerned with the S—jumps but it differs in the R-jumps. Roughly speaking we allow the function
F to make an R—jump if there is a proof that this will not be the last move. We assume for convenience
that W has been coded as a finite set of nonzero natural numbers, we shall use the symbols

W,X,¥,...etc. only for elements of W.

(a) Let F(0)=0 and if F(n)=0 and for some xe€ W, n witnesses 0 1A, then F(n+1)=x.

(b) If F(n)=x and for some ye W and some k<n such that V je [k,n] F(j)=x and xRy, n witnesses
O70x,y(k) (here the bold k means the numeral of k), then F(n+1)=y.

(¢) If F(n)=x and for some nodes y and z, such that xS;y and Ji<n[rank(y,n)<i<rank(x,n) A F(i)=z],
then F(n+1)=y. (If this condition obtains for two different nodes, choose the one with minimal code.)
(d) In all the other cases F(n+1)=F(n).

Note that any two points in the orbit of F are connected by an S and/or R arrow. We shall write
YE..x..y if, according to the model Y the function F goes from x to y (possibly in a nonstandard
number of steps). We write YE...xRy... (resp. YE...xS;y...) if, in the model Y, F moves in one step
from x to y and xRy (resp. xSzy). If in a model Y the function F moves at stage n from x to y, then

! The reader might find the following alternative definition of 0ix,y(k) more intuitive: Ip[Vje [k,p] F(G)=x A Vj>pF(j)=y]

This means "from k on the function F remains in the node x until a stage p is reached at which it Jjumps to 'y and stays

there forever" .



we say F moves with an R-step (resp. with S-step) if at stage n condition (b) (resp. condition (c)) has

been applied. If, at stage n, F moves from 0 to some node x, we say that F moves with an (a)-step.

Lemma 1. In PA it is provable that the function F has a limit.

Proof. This is not obvious since the S-relations are in general not well founded. It is clear that if h is
the height of the frame the function cannot make more than h consecutive R-moves. By the property
M of the M-frame F cannot make more than h R-moves, whether they are consecutive or not. Thus
eventually F is allowed only to make S moves. If S would not have a limit we could construct a

definable infinite decreasing sequence of ranks. This is provably false in PA.

We are eventually going to prove Ax — [171Ay, but to achieve this goal we need to prove first a

weaker form of it.

Lemma 2. For every xe W and for every ke @, PAF F(k)=x— O3j>k F(j)#x.

Proof. Assume F(k)=x. Reasoning in ACAq we claim that for model Y of PA, Y 3j>k F(j)#x. If F
moved to x with an (a)-step or with an S-step we would have [0 A, and then YE —1Ax so our claim
would hold trivially. So, assume that the last move of F has been an R-step, and that say at stage h,
the function F moves from z to x. Then for some i<h such that V'je [i,h] F(j)=z, h codes a proof of
T0z,x(1). So, YF 3j2i [F(j)#z AF(j)#x]. We have assumed V'je [i,k] [F(j)=zV F(x)], this is a £,
statement so, by provable X; completeness, it is true also in Y. Thus Yk 3j>k F(j)#x and our claim is

proved.

Lemma 3. For every xe W, PAFAx— DVny Ay.

Proof. It is sufficient to prove that for every x and y, if =/ xRy then PAF Ay — O Ay. Reason in
ACAo and assume for a contradiction that Ax, OAy and 71xRy. Let k be the minimal number such
that ¥ j>k F(j)=x and let Y be a model of Ay. By provable £; completeness we have that
YFEF(k+1)=x. Now, in Y, let z be the last node that the function passes through before arriving to
y. The last step must be an S-step otherwise zRy and by the M property of the M-Veltman frames we
would have xRy. We shall picture the situation as YF ...x...zZSwy but we have to remember that z
could be equal to x. (Anyhow, by the previuos lemma we can exclude that both z and y are equal to
x.) By the definition of F we have that at some stage n, for some i<n, rank(y,n)<i<rank(z,n) and
F(i)=w. Since zSyy and in particular wRy we have that w#x. By the reflection principle rank(y,n) has
to be nonstandard in Y, and since we have chosen k standard, rank(y,n)>k. Thus also i>k and so
YE ..F(k)....F(i) and therefore Yk ...x...w...zSyy. By the M property of the M-Veltman frames from
wRy we get xRy. Contradiction.



Lemma 4. For every x,y,ze W such that ySyz, PAFAx— Ay D A,

Proof. Assume Ax and ySxz. We shall prove in ACA that, for arbitrary large k, in any model Y of
PA, Ay— Oy Az Let k be such that F(k)=x. Suppose for a contradiction that there exists a model
Y EAyA Ox~1Az. Then for n large enough we have YF rank(z,n)<k<n. Suppose n is also large
enough so that (in Y) F has already reached its limit. By the reflection principle rank(y,n) must be
nonstandard in Y. Then Y F rank(z,n)<k<rank(y,n) A F(k)=x. So, Y F F(n+1)=z which contradicts the
fact that F has already reached its limit.

Lemma 5. for every x,ye W such that xRy, PAFAx— 71(Ay > 7 Vys,z Az).

Proof. Reason in ACA and assume for a contradiction that Ax and AyD> 7 Vysxz Az. Then every
model YF Ay has an end extension to a model of Vysxz Az. Let Z be any end extension of such a
model Y and let z such that ZF A,. We shall obtain a contradiction by showing that ySyz. For this
purpose we have to choose the model Y a bit carefully. Let k be such that V'j>k F(j)=x. Since xRy
we have: <>0Lx,y(k) otherwise the function would jump from x to y contradicting Ax. Then let
Yk Vj>k[F(j)=x V E(j)=y]; from the latter, since we have assumed A and therefore (by lemma 3)
YF 71Ax, we can conclude that Y Ay. Let Y S ¢ZE ), and let n be the minimal number in Z such that
such that ZF F(n+1)=z. By provable Z; completeness and since X; formulas are conserved by end
extensions, we have ZF .. xRy.....z. Let w be the last node reached with an R step i.e. for some u,
ZF ..xRy...uRw...z and between w and z only S steps occur. Then the rank of all the steps between
w and z is larger than rank(z,n). By the reflection principle rank(z,n) is a nonstandard number in Z. If
all the step between w and z are S steps, we are done, otherwise let St be the last non Sy step
between w and z i.e. ZF ..xRy...uRw...Stv Sy....Sxz. Let i>rank(z,n), be such that F(i)=t. Since

rank(z,n) is nonstandard in Z, t cannot occur in the orbit of F before x, so either t=y or

We can now easily check that the set of sentences {Ax | xe W} satisfies (0)-(iv). In Fact (o) is
trivial, the proof of (i) is completely standard, (ii) is lemma 3, (iii) is lemma 4 and (iv) is lemma 5.

This concludes the proof of the completeness theorem.
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