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Collapsing graph models by preorders
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Abstract

We present a strategy for obtaining extensional (partial) combinatory algebras by
slightly modifying the well-known construction of graph models for the untyped lambda
calculus. Using the notions of semi-functor and semi-adjunction an elegant interpretation
of our construction in a category theoretical setting is given.
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1 Introduction

A lattice L is called reflezive if it contains a copy of its own function space (i.e. the lattice
[L — L] of (Scott-)continuous mappings L — L). To be more precise, a lattice L is reflexive
if there exist continuous mappings F : L — [L — L] and G : [L — L] — L such that
FoG =1idy_

For any infinite set X, the lattice (P(X), C) is reflexive: given some embedding (-,-) :
X<¥ x X — X (where X<% denotes the collection of finite subsets of X') one easily checks
that the mappings F and G defined by F(z)(y) := {b | 36 C y.(8,b) € z} and G(f) :=
{(B,b) | b € f(B)} are continuous and witness reflexivity. Structures (P(X), F, G) are called
graph models. Well-known canonical examples are Engeler’s D4 and the Scott/Plotkin-model
Pw (see also Schellinx(1991)).

Reflexive lattices L are natural models for the untyped lambda-calculus. In particular,
through the mapping F, they define applicative structures (L, o) that are combinatory algebras:
just define a o b (‘application of a to b’) := F(a)(b) (see e.g. chapter 5 of Barendregt(1984)).

An applicative structure (L, e) is said to be extensional if, for all a,b € L, we have that
Vz.aez = bez holds if and only if @ = b: i.e., each element of L uniquely represents a mapping
L — L. It is easy to show that reflexive lattices (L, F, G) induce extensional combinatory
algebras (L, e) iff they are strict reflexive; i.e., the mappings F, G additionally have to satisfy
G o F = idy. Clearly the applicative structure (P(X),s), obtained from a graph model is
not extensional: we have {(0,b),({b},b)} ez = {(0,b)} e z for all z € P(X), while obviously
{(0,0), ({b},b)} # {(0,b)}. Therefore a graph model (P(X), F,G), though reflexive, never is
strict: we can not have G o F = idpx).

In section 2 we present an “extensionalising strategy” for graph models that finds its origin
in Inge Bethke’s modification of Engeler’s D 4- construction, as described in Bethke(1986). We
show how to get strict reflexive cpo’s, by starting from some infinite preorder (X, X) (i.e. X
equipped with a reflexive, transitive relation <), and defining structures M« := (M<, F',G’),
with M< a complete lattice obtained as a quotient from P(X) by means of <, and F',G’
continuous mappings defined in analogy to F' and G: we will formulate conditions on the
preorder (X, X) necessary and sufficient for the structure M« obtained to be strict reflezive.

After having looked at a number of examples of this construction in section 3, we turn to
a description of the process in terms of semi-notions in category theory. It is shown that the
extensionalisation procedure by means of preorders boils down to mapping (reflexive) objects
in a weak cartesian closed category (the category of graph models GRA) to strict reflexive
objects in the Karoubi envelope K(GRA), which is cartesian closed (and equivalent to the
category of continuous complete lattices).

We end our story by taking a look at a similar procedure for partial graph models, which are
combinatory algebras with application not everywhere defined. Application of our construction
then results in extensional partial combinatory algebras.

2 Construction

Take some non-empty set X and a mapping (-,-) : X<“ x X — X. Next fix some reflexive,
transitive < on X, making (X, X) a preorder.



Then

e (i) <X induces an extension e of the membership relation € between elements of X and

subsets of X:
ez iff Ja' €z.a<d;

e (ii) = induces an extension C of the set inclusion relation C on P(X):

zCy iff Vaez.ary (iff Va € z.axrvy);

e (iii) C induces an equivalence relation = on P(X):

z=y iff zCyCz.

Now let [z] be the =-equivalence class of z; let [z] < [y] iff z T y; then [z] = [y] iff z = 4.
(Sometimes we will write a & [¢], meaning ar y for some y = z;as y =z iff azy & axz, this
is harmless and often facilitates notation.)

Define M := (P(X)/=,<).

2.1. PROPOSITION. M is a complete lattice with bottom [0] and supremum sup A =[U{y |
[y] € A}] for all A C Mx.

ProoF: Obvious from the definition of < in terms of C and the fact that C extends C and
has the property that for any D C P(X),if Vy € D,y C 2, then UD C z. O

Now, following the construction of the graph model (P(X), F, G), we define a mapping G’ :

G'(f):={{r,e) [ e= F([YDH,

and F' : M< — Miwi(the set of all mappings M< — M<) by

F'([zD(lw]) == [{0 | 38 E v.(B,b) e }].

2.2. ProposiTION. (i) F' € [M<— [M< — M]];
(H) G' e [[M._( — Mj] — Mﬁ]'
Proor: (i) Let Y C Mx be directed, [z] € M<. Then
F'([])(supY) =
= [{6138 C supY.(8,8)2 0}

= [Ui{s138C 248,b)2 5} | [ eV}



= sup{F'([z])([2]) | [z] € Y},

so for all [z] € M< we have that F'([z]) is continuous.
Furthermore

F(supY)([z]) =
=[{b | 38 C 2.(8,b) & sup Y}]
=[5136 C 2.(8,0)s U{z| 2] € Y}}]
=[Ul{b138C 2(B,b)e2} | [ €Y}

= sup (F'([2)([z)) = (sup F'((2)))([2),
[z]leY [z]eY

so F'(supY) = i F'([2]), i.e. F' is continuous.
(i) Let Y C [M< — Mx]. Then supY = Az.sup{f(z)| f € Y} and
G'(supY) =
=[{¢r,)le= sup{f([1)) | f € Y}}]
=[{treMes Uy |y = F(D}}]

fey

=[U{me)le= f(1D}]

fey

= sup G'(f),
fey

so G’ is continuous. O
Now the following holds:
2.3. THEOREM. Mx := (Mx, F',G') is strict reflexive if and only if the preorder (X, <)
satisfies
o (i) (B,b) 2 (a,a) iffa C B and b X a;
o (ii) for alld : 36 € X<“3b € X.d < (B,b) < d.

Proor: (<) reflexivity:  F' o G' = idpr o my)-

For, (F'(G'(f))([z]) =



= [{b136 C 2.(8.b)» G'()}]

= ({8136 € 2.(8,8) = {(¥, ) | = F(HD}}]
=[{l3yCzbe F((1DY]  (by ()—)
=[U{{e I b5 f(D}hr E <}

= [S]‘?[)]f(h]) = f([z])  (by continuity of f).

strictness: G'o F' =idpy <
For, (G'(F'([z])) =

= [{tr,0)les F/(D)((1])})]
—[{(7,)les {613 C 7.(8,b)= 2}}]
=[{n kel (by ()
[z]  (by (i)

(=) Let M be strict reflexive. By extensionality of the induced applicative structure
we have, for all z, {{v,¢) | (7,¢)e 2} = . Now take any d and put z = {d}. Then clearly we
find 3y3ec.d < (v,c), and (y,¢) e z, so (y,c) < d. This proofs (ii).

By reflexivity the equality F' oG’ = id[p,—p is valid. So, from the transition above marked
«(by (i)—*)”, - -

Il

V2V £¥b (3B C o373e((8,5) = (v, ¢) A cx f([7]))
— 36 C 23d(d= f([6]) Ab < d)). (%)
In order to prove (i)—, suppose (i, m) < (v,n). We define a mapping f, by putting f,.([z]) =
[{n}], for all z. Obviously f, is continuous. By taking z = X and f = f, in (x) we have
Vb(36373c((B,) < (1,c) A n)— Jd(d < nAb < d)).

As (u,m) <X (v,n) and n X n, putting b = m, we conclude: 3d.d X nAm < d. Som < nby
transitivity of <.
To prove that also v C p, we define a mapping f,, as follows:

0, T
fru([z]) = { [{n}], otherwl;se.

It is easy to check continuity of f,,. Now take z = p and f = f,, in (x). Then

Vb(aﬁ C p3y3e((B,0) 2 (v,¢) A cr fuu([7]))



~ 36 C p3d(ds fau([8]) A b = ).
Suppose v Z p. In that case fru([v]) = [{n}], so n& fou([v]). As (u,m) < (v,n) we conclude
36 C pdd(de fau([6]) Am =< d).

But § C p implies f,,,([6]) = [0] by definition of f,,. Contradiction. Therefore v C p, finishing
the proof (i)—.

Finally, as by strictness the equality G’ o F' = idps is valid, we find (from the transition above
marked “(by (i)«<)”) that -

va;vyvc(aﬁab(ﬁ CyA{B,b)ezAc=b)> (y,c)e a;)
Taking z = {(e, a)} we find
ViVe.aEyAc=a— (v,¢) X (e, a).

This proves (i)«, and ends the proof of our theorem. O

3 Some remarks and examples

As we saw in section 2, it is not necessary to start from an embedding (-,-) : X<“ x X — X.
Any mapping will do. In fact, from the proof of theorem 2.3 it follows that we also have the
following

3.1. PROPOSITION. M := (Mx, F',G') is reflexive iff the preorder (X, X) satisfies

(8,0 < {a,a) = oaCp and b=<a O

Taking equality (=) for <, this shows us that we recover our ‘plain’ graph models precisely
in case the mapping (-,-) : X<¥ x X — X we start from is an embedding.

We should note that, independent from our work, the same result (theorem 2.3) has been
obtained by Jean-Louis Krivine (see Krivine(1990)). Krivine moreover observes the following:

3.2. ProroSITION. Every graph model can be collapsed by a preorder.
ProoF: Krivine(1990), page 106/107. O

The first example of an extensional combinatory algebra obtained by means of the con-
struction described above was given by Inge Bethke in Bethke(1986), modifying the definition
of Engeler’s graph model D4 by using a preorder satisfying the conditions of theorem 2.3.
But, in fact, to any graph model M := (P(X), o) (which is fully determined by the embedding
(-,+) : X<9 x X — X defining the application-function ) we may associate a collection £(M)
of extensional combinatory algrebras (fully determined by the collection of preorders < on X
that satisfy the necessary conditions).



We observe that any element of £(M) can be isomorphically embedded in M:
let (P(X)/=,%) € M. and define ¢ : (P(X)/=,%) = (P(X), ) by ¢(la]) = U{b | [¢] = [a]}-
One easily checks that ¢ is 1 - 1 and moreover ¢([a]) o ¢([a’]) = ¢([a] % [a']).

The cardinality of the collection £(M) depends on the graphmodel M at hand: with a
graph model D 4 we can associate many non-isomorphic extensionalisations; on the other hand
there are also graph models M for which £(M) is a singleton (e.g. the Plotkin/Scott-model
Pw). This will become clear from the examples given below.

First we will turn our attention to variations on Engeler’s D4. In order to do so, let us
quickly review the definition.

3.3. DEFINITION. Let A be any non-empty set and put:

Go(A) = A
Gni1(4) = Gn(A)U(Ga(4)% X Gu(4))
G(A) := U]NG,,(A).
ne

(So G(A) is the smallest set X D A such that for all finite B C X and b € X we have
that (3,b) € X. The application-defining embedding is just the identity.)
D, will denote the graph model (P(G(A)), ). 0O

3.4. DEFINITION. Let A be any non-empty set, G(A) as in the definition of D4. Suppose
f:A— Ais a1-1 mapping, € : A — A<“ an arbitrary mapping. Define, for z,y € P(G(4)),
tCfy iff Vae€zdb€y.aXy b,

where a <. b holds iff either
(1) a=b,or
(2) 3f3c (a=(B,c)AbE ANc =yt f(D)A e Cye B), or
(3)Jadec (a€ AANb=(a,c)A f(a) Zge cAa Ty €), or
(4) 3a3B3cad (a = (a,c)Ab=(B,d)AB Cse a Ac g d). O

3.5. REMARK. Given A, f, ¢ as above, <y, is well-defined, in the sense that for all n and
a,b € G,(A), a <4c bis defined in terms of the restriction of <y, to U G (A). For this we

m<n
need that the range of f is contained in A and that the range of ¢ is contained in A<“. O

3.6. LEMMA. Given A, f, € again as above
o (i)Va€ A Vb. a =Xyt b<= (€, f(a)) =g b;
o (ii)Vae A Vb. b=y a<= b=y (€, f(a));

e (iii) Xj. is transitive.



Proor: For this we need the injectivity of f. The proof is similar to that of proposition 1.3
in Bethke(1986). O

Let A be a non-empty set and f, € mappings as above. Define =4, on P(G(A)) by
T=fl iff zl;fey and ygfew-

By M(A4, f, €) we will denote the structure P(G(A))/—, ,<ye) as defined in section 2.
fo =f

3.7. ProOPOSITION. M(A, f,¢€) is an extensional combinatory algebra.
Proor: By definition 3.4 and 3.5, 3.6 the conditions of theorem 2.3 are met. a

The extensional combinatory algebras M(A) defined by Inge Bethke in Bethke(1986) are
precisely the models M(A4,1d,0) we get by taking f to be the identity mapping on A and e
the constant mapping ¢, = @, for all a € A.

Whereas the models M(A4,:d, () have the property that [G(A)] = [A], this is no longer
true as soon if we e.g. take ¢, to be non-empty for all ¢ € A. For then (0,z) A4 a, for
all z € G(A), so G(A) Zse A. Therefore taking € # (), one would expect to find extensional
models not isomorphic (as applicative structures) to M(A,id,0).

We will here confine ourselves to showing this to be the case for finite A, f = id and
€, # 0 for all @ € A. For then we have [§] # [G(A)] for all finite 3 C G(A): suppose
B = {z1,...,%n}; let (0™,b) denote the element of G(A) given by (9,...,0,b), where b is
preceded by m occurrences of §. By the pigeonhole-principle G(A) C  would imply, for any
z € G(A), the existence of 1 < k < n such that (™,b) <z zx for infinitely many m. Say
zr = (Y1, . +»¥n,a), with a € A. Then there is an m > n such that (0™,0) < (71, ..,V a),
implying €, C 0, which is a contradiction, as €; # 0.

Inspection of the proof of lemma 2.3 in Bethke(1986) now shows us that in M(A,id, €)
we have

Viz].(3y], [2]-([y] # [z] A [2] @ [2] = [2] A V[2'] # [z].[2] 0 [&'] = [4])) (%)
iff [z] = [0], whereas in M(A, id,?) we have for finite A
(x) iff [e]=1[0] or [z]=[A]

Therefore M(A4, id, €) and M(4, id, 0) are not first-order equivalent. Then certainly M(A4,d, )
% M(A,d,0) (see also Schellinx(1991)).

The relation <. from definition 3.4 is such that its restriction to A is just the usual
identity-relation. By adding order structure to the atom-set we are able to define even more
extensional combinatory algebras. In order to do so, let R be a reflexive transitive relation on
the atom-set A, and replace condition (1) in definition 3.4 by

(1) a=b Vv (e,b€eA A aRdD).



Let f : A — A be a mapping such that for all a,b € A we have aRb iff f(a)Rf(b), and
€: A — A<¥ arbitrary. We then have a relation €f. on P(G(A)) defined by

zesey iff Vae€zdbeya<yed,

where a <. b holds iff (1') as above or (2),(3),(4) as in definition 3.4.
One may check that, assuming R to be decidable, lemmas 3.5 and 3.6 remain valid.
As before we may define a relation =¢ on P(G(A)) by

a=fb iff a€p b and beyea.

By M((4,R), f,€) we will denote the structure (P(G(A))/=f€, Sﬁ). (Note that M(A, f,¢)
= M((Aa =>a f 6))

The following then is obvious.

3.8. PROPOSITION. Let A be a non-empty set, R, f,e as above. Then M({A,R), f,€) is an
extensional combinatory algebra. O

The addition of structure to A indeed gives us different models, as can be seen from the
next example, for which we need two lemmas.

3.9. LEMMA. Let (A, R) be as described above. Then in M({A4,R),d,0) we have for all [z],
[z]e[z] =[] iff Ty S P(A).[2] = [y].

PrOOF: (—) Suppose Vz.[z] e [z] = [2]. Define y := {a € A| Jz.[z] = [z]Aa € z}. Lt is

left to the reader to show that [z] = [y].

(<) T [2] = [g] for y € P(A) then, for all @, [2] e [a] = [y] @ [a] = [{b | 38 € 2.{(B,b)} e
W=Wl=[ O

3.10. LEMMA. In M(A,1d,0) we have, for all y1,y2 C A, [y1] = [y2] if y1 = ya.
Proor: Easy. O

Let A = {a,b} be a two-element set, and R = {(a,a),(b,b),(a,b)} € AXx A. Consider the
extensional combinatory algebra M((4,R),1d, 0).

3.11. PrOPOSITION. For all A # (), and R as above:
M(({a,b},R),id,0) ¥ M(4,id,0).

ProoF: Let A be any non-empty set. Take ¢ to be the L-sentence ” There are precisely 3
different z such that Vz.zz = 2”. In M({{e,b},R),1d,0) we have that [{b}] = [{a,b}], so, by



lemma 3.9, ¢ holds. By lemma 3.10 ¢ will not hold in M(A,d,). So the models are not
elementary equivalent, therefore they can not be isomorphic. O

Besides D4, we can obtain other easy definable examples of graph models by using the
set IN of natural numbers. We consider embeddings (-,-) : IN<“ x IN < IN given by means of
an injective (but not necessarily surjective) coding p : IN X IN — IN of pairs of natural numbers
as natural numbers and a bijective coding e : IN < IN<¥ of finite sets of natural numbers by
natural numbers, as follows:

(a, m) = p(e_l(a), m).
Putting e, for e(n) we then can rewrite the definition of application through an embedding
by codings p and e as:
zey={m]|Je, C y.p(n,m) € z}.

3.12. DEFINITION. A P(IN)-structure is a graphmodel [p, e] := (P(IN), s) with application
defined by the codings p and e as above.

The Plotkin-Scott model Pw is the structure [p*, *] defined as follows:

for all n,m € N : p*(n,m) = 2(n + m)(n+m+ 1) + m;

foralln € IN : e = {ko, k1,...,kmo1} iffn =3 2K (ki # kj if i # j);

i<m
e =0. = m]
The following proposition tells us that £(Pw) is a singleton.

3.13. PROPOSITION. For the embedding (-,-) : N<“ x IN — IN defined by [p*, e*] there is a
unique reflexive, transitive relation on IN that satisfies the conditions of theorem 2.3.
Proor: Define, for z,y € P(IN),

zCy iff VaezIbey.aXd, (1)
where a < b iff either

e (i)a=b, or

o (ii) InyIngImyImy  (a = p*(n1,m1) A b = p*(n2, m2) A€y, C ey, Amy X my).

Note that the codings p*, e* have the properties
Vkz € ef = ¢ < k;

Vm,n.m,n < p*(m,n).

(We call codings with these properties basic codings.) From this we see, by an easy induction
argument, that < on IN is well-defined, in the sense that for all n, all a,b < n, a < b is defined
in terms of < restricted to {k | k¥ < n}. Again using induction, one readily shows transitivity
of <:

Vn € N.Vzy, 29,23 <1 : T1 R T9 ATy RT3 => T1 X T3.



Now let < be another reflexive transitive relation on IN. Let < be the extension of < to P(IN)
as in (1) and suppose < and < satisfy conditions (i) and (ii), i.e.

p*(n1,m) < p*(ng,ms) iff €, €e; and my; < m,.
We conclude < = < from
VneNVz,y<mn: TRYy<<SzT <Y,

which once more is readily shown by induction on n. g

Let Pw be the cpo (‘P(]N) / =< ) as in section 2, using the relation < given in the proof

of proposition 3.13. Then Pw is an extensional combinatory algebra, and £(Pw) = {Pw}.

For P(IN)-structures in general, as for D 4, relations satisfying the conditions of 2.3 will
not be unique, even if we restrict our attention to the collection of P(IN)-structures defined
through surjective codings p. Proposition 3.13 clearly holds, though, for all P(IN)-structures
defined by means of basic codings p, e for which moreover p(n,m) = m iff n = m = 0.

Obviously isomorphic graph models G; = G, will give rise to isomorphic extensionalisa-
tions £(G1) = £(F2) (in the sense that for all A € £(G;) there exists a B € £(g;) such that
A = B). Conversely though, we may have A € £(G), B € £(H) such that A = B, but G % H.
As Dy, % Pw (see Schellinx(1991)), the following proposition gives an example.

3.14. ProposITION. Pw = M({a},1d,0).
ProoF: Let <X,,C,p, <, denote the relations used in the definition of Pw; let <, Epn, <m

denote the relations used in the definition of M({a}, id,0).
Define ¢ : G({a}) — IN by
¢(a') =0,
$((8,0)) = p*((e*) " ({#(c) | ¢ € B1), (b))-

(1) We show by induction on 7 that ¢ is onto:
VaVk < nEItk.¢>(tk) = k. (T)
Let n > k = p*(a,b). If z € €} then z < a < n, so by inductionhypothesis Vz € e}3t,.¢(t;) =

z. Put B := {t; | ¢ € es}. As b < k and (}) by definition is true for n = 0, we have by
inductionhypothesis that ¢(¢5) = b for some ¢,. But then ¢((8,%)) = p*(a,d) = k.

(2) Now define 9 : M({a},id,0) — Pw by
P([z]) = [{¢(b) | b € <}].
In lemma 3.3 in Bethke(1986) it is proved that
VnVb,b' € Gn(4). #(b) = $(b') = b < b’ < b.
Using this one shows by induction on n that

Vavh,b' € Gn(A). ¢(b) <p d(b) <= b < U,
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and then derives that 9 is a well-defined 1-1 mapping. Also it is easy to see that % is onto.
(3) Finally let e be the application on M({a},%d,?), * the application on Pw. Then

P([z] @ [y]) = [{#(6) | 3[B] <m [¥].{(B,0)}] <m [2]}] =
= [{e | 3] <p P([wD)-H{r* ()7 (1), )N <p $([2D)}H] = $([=]) * $([9]),

as the reader may verify. So 7 indeed is an applicative isomorphism. a

4 Category theoretic preliminaries

We will now review some of the notions that are essential for our description of the extensionali-
sation procedure in a category theoretical setting. We assume the reader to be familiar with
the more basic notions of category theory. (See e.g. MacLane (1971).)

4.1. DEFINITION. By a semi-functor we mean a mapping F between categories .A and B
having the same properties as a functor, except that F' need not preserve identities. So F takes
objects/arrows of A to objects/arrows of B and, if f : A — B in A, then F(f) : F(A) — F(B)
in B. Moreover, F is a homomorphism with respect to composition of arrows.

Given a semi-functor F : A — B, there is a natural transformation F(id) : F — F with
components F(id¢) : FC — FC. We write B(FC, D), for the set of arrows f : FC — D in
B that satisfy f o F(id¢) = f. The set B(C, FD), is defined analogously. A semi-adjunction
is a tuple (F,G,p), where F : A - B, G : B —» A are semi-functors, and p is a natural
transformation with components

kep : B(FC,D), = A(C,GD),.

(The notions of semi-functor and -adjunction were introduced in Hayashi(1985); however, the
definition of semi-adjunction given here is slightly different from Hayashi’s original one (see
Hoofman(1990/3).) We write F' -, G when F,G are part of a semi-adjunction. If F,G are
functors, then F I, G iff F |- G. O

Contrary to an ‘adjoint of a functor’, a ‘semi-adjoint of a (semi-)functor’ is not unique
up to natural isomorphism. As an example, consider the category 1 having one object * and
one arrow id,. For any category C there is a (unique) functor T : C — 1 defined by T(4) = *
and T'(f) = id. Right semi-adjoints of T correspond to semi-terminal objects of C, i.e. objects
1 in C such that for each C € C there is an arrow ¢, : C — 1 and if f : C — C’, then
t., o f = t;. Semi-terminal objects obviously need not be unique. E.g., in Set every object
# 0 is semi-terminal.

On the other hand, semi-adjoints are unique up to sem: natural isomorphism. (See
Hoofman(1991))

4.2. DEFINITION. A cartesian closed category C is a category C with three specified right
adjoints for the functors

11



—XxXb
C—1 C—CXxC C—C

c—0 ¢ {c,c) a—axb

Replacing these adjunctions by semi-adjunctions, we obtain the notion of a semi cartesian
closed category (semi-CCC). The replacement of adjunctions by semi-adjunctions may be
partial, as is witnessed by the notion of weak cartesian closed category (wCCC): a category
C with terminal object 1, binary products A x B for all objects A, B and a semi-adjunction
between the functor (-) x B and a semi-functor - = B.

The following is an equivalent algebraic formulation of wCCC:

A weak cartesian closed category 1is a category C with a terminal object 1 and binary
products A X B, and with the following data:

e For each pair of objects A, B € C an object A = B € C, and an arrow ev, , € C((4 =
B) x A, B). Furthermore, for each arrow f € C(D X A, B) an arrow cur(f) € C(D,A =
B).

satisfying the following equations (omitting subscripts):
1. evo (cur(f) xid) = f
2. cur(fo(g x id))=cur(f)og

(From the algebraic definition we obtain a semi-(bi-)functor (- = -) defined on arrows
f:X-Y,g:U—-Vby(f=g):=cur(goevo(idx f): (Y =U)-(X=V))

A cartesian closed category then is a wCCC in which also cur(ev) = id holds. 0O

Observe that, like ‘being cartesian closed’, the properties ‘being semi/weak cartesian
closed’ are essentially categorical properties, i.e. they are preserved under equivalence of
categories.

4.3. DEFINITION. A pair (f,g) of mappings f : X — Y,g:Y — X is called a retraction iff
fog=1id,. We say that Y is a retract of X. O

E.g., by definition a lattice L is reflexive just if the lattice [L — L] of continuous mappings
L — L is a retract of L.

4.4. DEFINITION. A strict reflezive object A in a wCCC is an object A such that A = (A =
A). O

4.5. PROPOSITION. A strict reflexive object A in a weak cartesian closed (and locally small)
category C induces a retractionC(1, A) = C(A, A) in Set. IfC is cartesian closed, the retraction
in fact is an isomorphism.

PrOOF: Let A be a reflexive object in C and let ¢ : A = (4 = A) be an isomorphism.
Let k£ be the canonical isomorphism A 2 1 x A. Then F := Az.ev(¢z X id)k is a mapping
C(1,A) — C(A, A), and G := Af.¢ " 'cur(fk™!) is a mapping C(4,A) — C(1, A). One easily

checks that F o G = id and in case cur(ev) = id, also Go F = id 0O

c(A,4) c(1,4)°
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If we take for C the category CPO of complete partial orders and continuous functions, we
even obtain a retraction in CPO: C(1,A) & A,C(A — A) = [A — A] and F, G are continuous.

4.6. DEFINITION. Given a category A, the Karoub: envelope of A is the category K(.A) having
as objects pairs (4, f), where A is an object from A and f € A(A4, A) an idempotent A-arrow,
i.e. fof = f. Morphisms (4, f) — (B,g) in K(A) are arrows h : A — B in A such that
goho f=h (or equivalently go h = h and h o f = h). Composition of arrows is composition
in A;id4,5) = f.

As any idempotent arrow f uniquely determines its target and source 4, we will often
identify an object (4, f) in K(.A) with its ‘arrow part’ f. O

Let F : A — B be a (semi-)functor. Then define K(F) : K(.A) — K(B) by

K(F)(4, f) == (F(A),F(f)), K(F)g):= F(g).

The proof of the following proposition is an amusing exercise.

4.7. ProrosITION. The Karoubi envelope K(F) of a semi-functor F is a functor. a

One easily checks that if F -, G, then K(F) I K(G). The following then is immediate:

4.8. THEOREM. If A is a semi/weak cartesian closed category, then its Karoubi envelope
K(A) is cartesian closed. a

Now the next fairly trivial observation will appear to be at the heart of the extensional-
isation procedure given in section 2: let A be any object in a weak cartesian closed category
A, and let f: A — A be an idempotent arrow in A. Let also mappings ¢ : (A = A) — A and
j:A— (A= A)in A be given. Then we have:

4.9. PROPOSITION. The arrows (f = f)jf and fi(f = f) determine an isomorphism f =
(f = f) in K(A) if and only if

o (i) filf = fif=F;
o (i) (f = Nifi(f = f)=(f=f)

ProoF: Easy. a

5 The category GRA of graph models

By the category of graph models we mean the category GRA, having as objects all powersets,
i.e. all sets of the form P(X), where X is a set; morphisms are all functions continuous with
respect to the Scott-topology on the lattices (P(X), C).

o P(0) = {0} is terminal object in GRA.
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o Writing X WY for the disjoint union of the sets X and Y, one easily checks that GRA
has binary products P(X)x P(Y) :=P(XwY).

e For the semi-exponents, we put (P(X)= P(Y)) :=P(X<“ xY).

Let F € P(X<“xY). We define an evaluation function ev : (P(X) = P(Y))xP(X) — P(Y)
by
ev(F,a) := {c| 3y Ca.(y,c) € F}.

For f: P(X) x P(Y) — P(Z) define cur(f) : P(X) - P(Y<¥ x Z) by
cur(f)(b) := {(7,¢) | c € f(b,7)}-

Clearly ev and cur(f) are continuous. We leave it to the reader to check that conditions 1
and 2 of definition 4.2 are satisfied. Therefore GRA is a weak cartesian closed category.

Any concrete embedding (-,-) : X<¥ x X — X induces (as in the proof of proposition
4.5), through the mappings cur and ev a retraction (F,G) between P(X) and the lattice
GRA(P(X),P(X)) = [P(X) — P(X)] of continuous functions from P(X) to P(X) known
from the definition of graph models. In particular, also strict reflexive objects in GRA (given
by surjective embeddings) induce these retractions, which never are isomorphisms. The result
always is a non-eztensionallambda model.

We will show that the construction of eztensional combinatory algebras as described in section
2 in fact boils down to the construction of strict reflezive objects in the Karoubi envelope
K(GRA) of the category of graph models. As K(GRA) is cartesian closed, these strict
reflexive objects induce an isomorphism between the object and its hom-set, and therefore
give rise to extensional lambda models.

Let f be some continuous idempotent mapping P(X) — P(X). Then f is an object of
K(GRA), with exponent (f = f) := cur(foevo (id x f)).

Suppose (-, ) is some mapping X <“ x X — X. Then the mappings j : P(X<“ x X) — P(X)
given by = — {a | a = (B, b)&(B,b) € o}, and i : P(X) » P(X< x X) given by y 1 {(6,0) |
(B,b) = a € y} are continuous, so they are arrows in GRA and proposition 4.9 tells us under
what conditions f is a strict reflezive object in K(GRA).

Returning to the construction described in section 2, we observe the following: take < to be a
preorder on some set X, then, for z € P(X), define [z] := {b | 30’ € z.b <X b’'}. Now it’s easy to
see that p := Az.{b| 36 C z.b € [B]} is an idempotent arrow in GRA.. Note that p(z) = [z].
Furthermore (p = p)(¢) = cur(poevo(idxp))(s) = {(1,¢) | ¢ € [{¢' | Iy’ C 1] (+',¢) € z}]}.
Using proposition 4.9 we then can prove the following

5.1. THEOREM. The arrows (p = p)ip and pj(p = p) determine an isomorphismp = (p = p)
in K(GRA) if and only if the preorder (X, X) satisfies

o (i) (B,b) X (a,a) iffa C B and b < a;

o (ii)foralld:36 € X<“Ib e X.d < (B,b) < d. O

In fact, we will not give the proof here, but leave the calculations to the zealous reader. We
shall however provide the (quite similar) details in the next section, while working in a more
basic category, equivalent to GRA.
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6 A category of relations equivalent to GRA

We take a look at the following category: objects are sets, arrows f : A — B are relations
R C A<% X B satisfying the following monotonicity condition:

B C B & BRb = ['Rb.

For the identity on an object A we take the arrow id, defined by a(id,)a ¢ a € a. Composition
S xR of arrows R: A — B,S : B — C is defined by

a(S x R)c & 3B(aRB A BSc),

where aRf is an abbreviation for Vb € §.a.Rb. Similarly we will write aRb for {a} Rb.
We will denote the category thus defined by K{(REL) as it is in fact known as the semi-Kleisli
category of the category of relations (see Hoofman, 1990/2).

6.1. ProposiTioN. KI(REL) is equivalent to the category of graph models, KIREL) =
GRA.

Proor: We will define appropriate functors, and leave the details of verification to the
reader.

e The functor F : KI(REL) — GRA is defined on objects by X — P(X), on arrows by
R Xz.{b| 36 C z.BRb};

e The functor G : GRA — KI(REL) is defined on objects by P(X) — X, on arrows by
f=A{B,b)|be f(B)}. O

6.2. DEFINITION. Let R : A — B be an arrow in K(REL). We say that R is linear iff it
satisfies aRb & Ja € a.aRb. O

So a linear arrow is fully determined by its values on singletons.

As can be readily verified (e.g. using proposition 6.1) KI(REL) is a wCCC and hence we
now have a (bi-)functor - = - : KI(REL)? x KI(REL) — KI(REL) acting on objects A, B
by (A = B) := A<“ x B and on arrows R: A — A',S: B’ > B by Z(R = S)(8,b) & {a |
(e, a) € E.6Ra}Sb.

6.3. LEMMA. IfS: A— B andT : B — C are linear, thensoisTxS:A—- C. IfR:A— A
is linear, then so is (R => R); furthermore we have (3,b)(R = R)(a,a)iff a RS and bRa.
Proor: Easy. O

Now take an idempotent arrow R : A — A in K(REL), so RxR = R. Let I : (A =
A) —» A,J: A — (A= A) also be arrows in KI(REL). Again, using proposition 4.9, R is a
strict reflexive object in K(K{(REL)) if and only if

(i) (R=R)=(R= R)JRI(R= R);

(i) R=RI(R= R)JR.
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In order to obtain in K((REL) the analogue of theorem 5.1 we have to impose some
further restrictions on the arrows R, I, J: if we take R,I and J to be linear arrows we can,
using the definition of composition and lemma 6.3, rewrite these conditions as:

(1) aRB AbRa iff

3,7 ¢,c/,d,d' yRBABRc A (v,¢)IdA dRA' Ad'T(y',c') A aRy' A c'Re.
i)  bRa iff
3v,v',¢,¢',d, D'.bRd' Ad'J(y',) AyRyY A 'Rc A (v,¢)Id A dRa.

In order to increase legibility, let us write < for R. Hence a < g stands for Vb € f(a < b),
and by linearity of < this becomes Vb € f3a € a(a < b). Furthermore, we write (a,a) < (8,b)
for B < a A a < b. Now the two conditions can be written as:

1. (8,0) < (a,a) iff 3I(v,¢),(7,c),d,d.(B,b) < (v,e)Id< d'TJ(¥,c) < (a,a);
2.b<a iff 3Iy,0),(@,c),d,db<dI(H, )< (v,0)ld< a.

Note that by idempotency of the relation < we have for all a,3,a,b

()a<be Jca<c<b;

(i) a<B e Iya<y< B ‘

(i) (8,5) < (2,a) ¢ 3(7,¢).(B,6) < (7,¢) < (@, a).

By restricting the relations I, J we obtain various specific instances of the conditions for <
to be a reflexive object in K(KI{(REL)). For example, let I be a function (-,-): AU X A — A,
and define J by aJ(8,b) & a = (B,b). Our two conditions may then be written as:

v (B8,0) < (a,a) iff F7,7,¢,¢.(B,0) < (7,¢) A{v,e) < (¥, ) A (7,¢) < (e,0)
22b<a iff Fv,7,¢,db < (Y, YA (7,) < (7,¢) A{v,¢) <a.

Adding one more restriction, namely reflexivity of the relation, now once more leads us
to the conditions we encountered in the extensionalisation procedure of section 2:

6.4. THEOREM. Let <,I,J be as defined above, and < reflexive. Then (< = <) and < are
isomorphic in the Karoubi envelope if and only if

1. (B,0) < (a,a) iff (B,0) < (a,q)
2. Va3B,b. a < (B,b) < a.

Proor: We show that 1, 2 are equivalent to 1°, 2’ above. First suppose 1, 2 hold, then 1’
holds:

« If (8,b) < (a, ), then (8,) < (B,b) A (8,8 < (B,5)A(8,5) < (e, a) by reflexivity of <.

o If 3y,79',¢,c.(B,0) < (v,e)A (v,¢) < (¥, YA (¥, ') < (e, a)), then Fy,79',¢,c.(B,b) <
(7,¢) < (7,¢) < (a,a)) by 1. Hence (8,b) < (a,a) by transitivity of <.

and 2’ holds:
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e If b < a, then by 2 there exists (y,c) such that b < (y,¢) < b < a. Hence b <
(1) A (1,6) < (7,€) A {y,¢) <a.

o If 3y,9',c,c'b < (¥, YA (7,¢) < (7,¢) A{7,¢) < athen Fy,v,¢c,2".b< (7v,¢) <
(¥,¢) < a) by 1. Hence b < a by transitivity of <.

The other way round, suppose 1’, 2’ hold, then 1 holds:

o If (5,b) < (@, a), then (8,b) < (B,b)A (B,b) < (a,a) A{a,a) < (a,a) by reflexivity of
<. Hence (8,b) < (a,a) by 2.

o If (3,0) < (a,a), then (8,b) < (B,b) A{(B,b) < (a,a)A (a,a) < (a,a) by reflexivity of
<. Hence (8,b) < (a,a) by 1’.

and 2 holds:

e We have a < a by reflexivity of <, and hence 3y,7',¢c,c.a < (v,Y A (7',¢') < (7,¢) A
{(v,¢) < a) by 2’. From (v/,¢') < (7,c¢) it follows that (v',¢’) < (v,¢) by 1 (which we
have already established). Hence @ < (v,c¢) < a by transitivity of <. O

Also interesting is the case in which I is defined as before, but J is defined independently
of I by aJ(B,b) & a = [B,b], where [—, —] is a function A<“ x A — A. The conditions for
isomorphism in the Karoubi envelope now reduce to

1”7 (B,0) < (a,a) iff Fv,7,¢,¢(B,0) < (7,¢) Ay e) <[y, cTA(Y,¢) < (e,a);
22 b<a iff Fv,¥,e,db<[y,IAN(H,) < (7,6)A{7,¢) < a.

Again, if < is reflexive we can give more simple sufficient, but this time not necessary, require-
ments.

6.5. THEOREM. Let <,I,J be as defined above, and < reflexive. If
1. (B8,b) < (a,a) iff (B,b) < (e,a),
2. VYa3p,b. a < (B,b) < a,
3. Va,a. [a,d] < (a,a) < [o,ad],

then (< = <) and < are isomorphic in the Karoubi envelope.

Proor: It is an easy exercise to prove that the requirements of the theorem imply the
requirements 1”,2” above. O

To complete the picture, let us study the way in which theorems 2.3, 5.1 and 6.4 are
related. For this the following lemma will be of use.
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6.6. LEMMA. Let A, B be categories. If A = B, then K(A) = K(B).

PrROOF: Suppose A = B, as witnessed by functors F : A — B,G : B — A, and natural
isomorphisms p : FG — id,,v : GF — id,. Then (K(F),K(G),K(¢),K(v)) determines an
equivalence K(A) = K(B). O

Now using the functor G from proposition 6.1, from the idempotent arrow p in GRA (as
in 5.1), we obtain a reflexive idempotent linear relation G(p) in K(REL).

Conversely, given a reflexive idempotent linear relation < in K{(REL), we obtain an
idempotent arrow F(<) in GRA defined by F(<) := Az.{b| 38 C 2.8 < b}. Then

axb iff {b}<ea

defines a preorder on X and F(<) = Az.{b| 38 C z.b € [A]}.

Therefore, as GRA = KI(REL), in fact theorems 5.1 and 6.4 are the same statements,
expressed within different, but equivalent, categories.

Finally, to establish the relation with theorem 2.3, we note the following

6.7. ProrosiTioN. K(KI(REL)) = CCLat, where CCLat denotes the category of com-
plete continuous lattices.
Proor: For (X, R) in K(KI(REL)) we define Pt(X,R) := ({[A4] | A € P(X)},C), with
[4] := {a | 38 C A.fRa}. Then Pt(X,R) is a complete continuous lattice. For arrow
T : (A,R) — (B,S) we define Pt(T) := Az.{b | 38 C z.6Tb}. This defines a functor Pt :
K(KI(REL)) — CClLat.
Conversely, let (D, <) be a complete continuous lattice with basis Bp. Define R : Bf* — Bp
by

BRb iff b<\/B,
(where z < y (“ z way below y”) iff for each directed subset S of Bp we have that y </ §
implies that there is an y’ € S such that ¢ < ¥'.)
Now one can check that Rep(D, <) := (Bp, R) is in K(K/(REL)).
For continuous f : (D, <) — (D', <’), define Rep(f) : Rep(D, <) — Rep(D’,<’) by

BRep(f)b iff b< f(\/B)

This defines an arrow in K(K/REL)), and Rep is a functor CCLat — K(KI(REL)). In fact
the functors Pt, Rep establishes an equivalence of categories. For details we refer to Hoofman
(1990/1). O

Now, by applying the equivalence, we find that the isomorphism in K(K/(REL)) under
the conditions of theorem 6.4 induces precisely the isomorphism between continuous lattices

given by the construction of section 2.

The following diagram summarizes our observations:
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6.4

KI(REL)— K(Kl(REL))\
\
m I oo
GRA K(GRA) ©
5.1
wCCC cce

7 Getting partial

In this final section we will briefly describe an interesting modification of the construction given
in section 2. Recall that the concept of combinatory algebra can be extended to applicative
structures on which the application is not everywhere defined (see Bethke(1987)). We will
refer to such structures as partial combinatory algebras (pca). Concrete examples of pca’s
can be constructed as follows: take some infinite set X, and (-,-) a non-surjective embedding
(X<“\0) x X — X. By non-surjectivity we may fix some p not in the range of (-,-).

Also recall that given some cpo M with bottom L, a continuous function f from M to
M is called strict if f(1) =1. We write [M - M] for the cpo of strict continuous functions
from M to M. Then, for z,y € P(X), define F(z)(y) := {b | 38 C y.(B,b) € z}. For
f € [P(X) = P(X))] define 6(f) := {{v,c) | c € f(1)} U {p}.

Next a partial application x on P(X)\0 is given by

Ty = { F(z)(y),  ifF(z)(y)#0;

undefined, otherwise.

Let G := (P(X)\0,*).
We will call the partial applicative structures thus obtained partial graph models.

7.1. Lemma. (i) F € [P(X) — [P(X) 5 P(X)]|;
(i) G € [P(X) > P(X)] — P(X)] and Range(6) C P(X)\B;
(ifi) F 0 G = idp x 2.y

Proor: Straightforward. a

7.2. DEFINITION. A cpo M for which there exists mappings F : M — [M 3 M] and
G: [M 3> M] — M satisfying the conditions of lemma 7.1 is called p-reflezive. O

7.3. DEFINITION. As usual, we write z ~ y for “if either ¢ or y is defined, then both are
defined and equal”. We say that a partial applicative structure (M, o) is extensional iff for all
z,y € M we have that (Vz € M.z e z ~ y e z) implies that z = y. a
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7.4. PrOPOSITION. Partial graph models are non-extensional partial combinatory algebras.

Proor: From 7.1 it follows that partial graph models are p-reflexive cpo’s via the mappings
F and G. Therefore they are partial combinatory algebras (for details see Bethke(1987), theorem
2.8). To see that partial graph models never are extensional, just observe that for all z,y €
P(X)\0 we have (z U {p}) *y ~ z * y, while clearly z U {p} # z, whenever p € z. O

In Bethke(1987) it is shown that for a p-reflexive cpo (A, F, G) to determine an extensional
pca it is necessary and sufficient that the cpo is also p-strict, i.e. Go F = id4 (1} So by 7.4
we have that a p-reflexive cpo (P(X),F,G) as defined above can never be p-strict.

Constructing extensional partial combinatory algebras

Take a non-empty set X and let us fix some mapping (-,-) : (X<¥\0) x X — X as well as
a preorder X on X. Define M := (P(X ) / =, S) as in section 2. By Proposition 2.1 M is
a complete lattice with bottom [§] and supremum sup A =[J{y | [y] € A}], for all A C M.
We now fix some element p € X and following the construction of the partial graph model G,
define mappings G’ by
¢(f) :=[{{r,e) | ¢ = (YD} U {p}]
and F’ by
F'([=])([9]) :=[{6 | 38 € y.(8,0) = 3}].

7.5. LEMMA. (i) F' € [M — M M]];
(i) ¢ €[[MSM — M];
(7i7) Range(G') C M\[0].
Proor: Left to the reader. O

Again we can define a partial application x on (M\[0]) by

[2] % [y] = {F'([w])([y]), if F'([e])([v]) # [9);

unde fined, otherwise.

Thus we obtain a partial applicative structure G< := (M\[0], ).
The next theorem tells us which conditions on the preorder (X, <) are sufficient and
necessary for G< to be an eztensional pca.

7.6. THEOREM. G< := (M,F,G’) is p-strict p-reflexive if and only if the preorder (X, =)
satisfies

o (i) forallB,b:(B,b) 2 p;

o (i) foralld:p=d;

o (iii) foralld:d £ piff3B,b.d= (B,b) = d;

o (iv) foralla,f+#0:(B,b) < (a,a) ifa TS and b < a.
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ProOF: (<) p-reflezivity: F oG = id[ MEM]

For, (F/(¢/(£)))([z]) =
=[{4138 C =.(8,b) 2 ¢'(f)}]
=[{b3B T 2.8,) = {(v,¢)| ¢ = f(ID} U B} }]
=[{bBB T 2.(8,8) = {(n, e}l c e F(DY}]  (by ()
=[B3vCoa#0nbsF(D}]  (by (V)-)
= f([z])  (by strictness and continuity of f).

p-strictness: G o F' = idpq\[g)-
For, let [z] € M,z # 0.
Then, (6'(F'([<])) =

=[{tr, e = F'([aD((D} {p}]
=[{tr,e)le = {6138 C 7.(8,b) = z}}U{p}]
= [{(fy, e)(y,¢) ez} U {P}] (by (iv)«<)

=[z]  (by (i) and (iii)).

(=) Suppose (M,F',G')is a p-strict p-reflexive cpo. By p-reflexivity the equality F'oG’ =

id[ MEM] is valid. Now let (3,b) < p. Then define
ifz C B

(=] = {{2]],, otherwise.

Clearly f is strict and continuous, and f([8]) = [#]. But b = F'(G'(f))([8]), contradicting
p-reflexivity. This proves (i).

By extensionality of the induced partial applicative structure and (i) we have for z # 0,
that [{{(y,¢) | (7,¢) ez} U {p}] = [z]. Then p <X d, for any d. So (ii) is clear. Also by
extensionality, if (y,¢) <X d, then {(v,¢) | (v,¢)r {d}} = {d}, so Ip3b.d X (B,b) =< d.
Therefore, if for no (3,b) we have d < (8,b) < d, we cannot have (y,c) < d. But then, by
extensionality, {d,p} = {p}, so d X p. Conversely, if (8,b) < d and d < p we have (3,b) X p
by transitivity, contradicting (i). So d A p, and we have proved also (iii).

The proof of (iv) is similar to the proof of (i) of theorem 2.3. We leave the details to the
reader. O

As a corollary of the proof of the theorem we obtain:
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7.7. PROPOSITION. G« := (M,F',G’) is p-reflexive if and only if the preorder (X, X) satisfies

o (1) forall3,b:(B,b) £ p;
e (2) foralla,B#0:(08,b) X (a,;a) = aCpP and b=<a. 0O

i

This shows (by taking equality (=) for <) that we recover our ‘plain’ partial graph models

precisely in case the mapping (-,-) : X<“\0 x X — X we start from is an embedding, which
moreover is non-surjective (as p may not be in its range).

For an example of a structure satisfying the conditions of theorem 7.6 we refer the reader
to Bethke(1987) (definitions 2.9, 2.10).

Like for the construction in section 2, we may alternatively give a description within
the category GRA and its Karoubi-envelope K(GRA): when f is the idempotent mapping
in GRA induced by a preorder < (see section 5), then (f = f) := cur(f oevo (id x f))
is an idempotent mapping P(X<¥ x X) — P(X<“ x X), but also an idempotent mapping
P(X<“\0 x X) —» P(X<“\0 x X). Take a mapping (-,-) : X<“\@ x X — X and fix p € X.
Then define i : P(X<“\@ x X) —» P(X) by z — {a | a = (B,b)&(B,b) € z} U {p} and
j:P(X) = P(X<\0x X) by y > {(6,0) | (8,5) = a € y}.

In K(GRA) we need to satisfy the following:

e (1) (F=Pifilf=H ==
e (2) fora#0:fi(f= fif = f.

It is not difficult to check that (1) and (2) hold if and only if the mapping (-, -) and the preorder
< fulfill the conditions (i) - (iv) of theorem 7.6.
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