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Algebras

Inge Bethke
Faculteit Wiskunde en Informatica, Universiteit van Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

Abstract

Inside a combinatory algebra, there are ’internal’ versions of the finite
type structure over w, which form models of various systems of finite type
arithmetic. This paper compares internal representations of the inten-
sional and extensional functionals. If these classes coincide, the algebra
is called ft-extensional. Some criteria for ft-extensionality are given and
a number of well-known ca’s are shown to be ft-extensional, regardless of
the particular choice of representation for w. In particular, D4, P,, T,
H, and certain Ds-models all share the property of ft-extensionality. It
is also shown that ft-extensionality is by no means an intrinsic property
of ca’s, i.e. that there exists a very concrete class of ca’s - the class of
reflexive coherence spaces - no member of which has this property. This
leads to a comparison of ft-extensionality with the well-studied notions of
extensionality and weak extensionality. Ft-extensionality turns out to be
completely independent.

1 Introduction

Combinatory logic contains the means for introducing natural numbers, func-
tions on the natural numbers, functions on functions on the natural numbers
and so on. Any model of combinatory logic, i.e. any combinatory algebra, comes
therefore along with an internal representation of the natural numbers and fi-
nite type functionals. In particular, it comes along with an intensional and an
ezxtensional finite type structure.

At first sight, there is no immediate reason for expecting that these classes
of functionals are closely related or even coincide. After all, extensional func-
tionals are locally determined by the restricted graph of a lower type argument,
whereas intensional functionals may also take other data, such as the different
ways of representation, of a lower type functional into consideration in order to



determine the value. In particular, as we are in an untyped structure, it is to
be expected that the value an intensional functional is assigning to a lower type
argument may depend on its extended graph, i.e. the applicative behaviour
of that argument outside the type structure. However, behind the scenes, this
turns out to be not always the case. In quite a number of very well-known mod-
els the two type structures do coincide. The purpose of this paper is therefore to
compare internal representations of the intensional and extensional finite type
structures. It is organized as follows:

In section 2, we collect some well-known notions and facts concerning combi-
natory algebras. The notion of a ca* is taken from Beeson [1985]. The section
ends with the introduction of finite type ertensionality: a combinatory alge-
bra is called ft-extensional if the internal representations of the intensional and
extensional finite type structure coincide.

In section 3, a criterion for ft-extensionality is given. Here, we only consider
monotone combinatory algebras, i.e. combinatory algebras in which application
is monotone. Such a combinatory algebra is called finite type connected, if every
pair of equivalent functionals is connected via a zigzag consisting of functionals
of the same type. '

In section 4, we exploit the notion of ft-connectedness: D4, P.,, D obtained
from a complete lattice, H,, and T* all turn out to be ft-connected and therefore
ft-extensional.

Finally in section 5, we show that ft-extensionality is by no means an intrinsic
property of combinatory algebras. However, finding combinatory algebras that
are not ft-extensional, does not seem to be an easy business. We had to resort
to so-called reflezive coherence spaces, and it is worth pointing out that this
kind of semantics was not conceived as models of combinatory logic or pure A-
calculus, but provided the first denotational model of second order A-calculus.
Section 5 also includes a comparison of ft-extensionality with the well-studied
notions of extensionality and weak extensionality. It turns out to be completely
independent.

2 Preliminaries

To fix our terminology and notation, we shall collect in this preliminary section
a few well-known notions and facts.

Definition 2.1 (i) An applicative structure is a structure (4, *) with * a binary
operation on A, called application.

(ii) A combinatory algebra (ca) is a structure (4, *, K, S) with (4, *) an applica-
tive structure and K, S € A such that for all a,a’,a” € 4

(1) Kaad' =a,

(2) Sad'a” = aa"(a'a").



As in algebra a * @’ is usually written as aa’ and (...((¢1a2)a3)...an) will be
abbreviated by aias...a,.

(iii) A cat is a structure (4, *, K, S, 0, Sy, Py, D, N) with (4, *, K, S) aca,
0,Sn, Pn,D € A and N C A satisfying

(3) 0eN A Va€e N(Syva€N A Py(Sva)=a A Sya#0),
(4) Va€ N(a#0—- Pya€eN A SN(PNa)=a),
(5) Ya,a' € NVb,b' € A(Dbb'aa =" A (a# a' — Dbb'aa’ =b)).0

A common and important feature of nontrivial ca’s , i.e. ca’s the cardinality
of which exceeds 1, is that in them one can define the additional combinators
0,Sn, Py and D with the aid of the combinators K and S. These are stan-
dard tricks in combinatory logic of which we shall now give a flavour (cf. also
Barendregt [1984, ch.6,§2]).

Proposition 2.2 Every nontrivial ca M = (4, %, K, S) can be expanded to a
+
cat.

PROOF. First recall that for any given term t over M one can define a term
Az.t over M such that for all a € 4 one has that

1) (Qzt)a=t[z:=d]
(cf. e.g. Barendregt [1984, ch.5,§1). We now abbreviate
I:=SKK, T:=K, 1L:=KI,
and introduce the combinatory numerals, the successor Sy and predecessor Py:
0:=1,
0:=0, n+1:=Xy.yl?m, N:={7|n €w}
Sy := Azy.ylz, Py := Az.zl.

Obviously 0, Sy, Pvn+ 1 € N, Py(Sy®) =Tand Sy(Pyn+1)=n+1. Itis
also readily checked that Sy # 0. Note, however, that nontriviality is essential
for this inequality to hold.

To prove (5) we shall use for t1¢2t3 the suggestive notation if ¢, then t2 else
t3, for if t; = T (true) then t1t2t3 = 3, and if t; = L (false) then t;t5t3 = ¢3.
Now observe that by () there exists the fixed point operator FIX = Az.xx
with x = Az.z(z2) in M satisfying

FIXa=a(FIXa)
for all a € A. If we thus put
R := duzyz.if zT then z else y(Pnz)(uzy(Pnz))
and REC := FIX(R) then REC behaves as a recursor, i.e.



RECad'0= FIX(R)aa'0
= R(FIX(R))aa'd
=if 0T then a else a'(Py0)(FIX(R)aa'(Pn0))
= if T then a else a'(Py0)(FIX(R)ad'(PN0)) =a

and

RECaa'n+ 1= FIX(R)aa'n +1
= R(FIX(R))aa'n +1
=if n+ 1T then a else a'(Pyn + 1)(FIX(R)aa'(Pyn + 1))
=if L then a else a'T(FIX(R)aa'R)
= a'R(FIX(R)ad'n) = a'T(RECaa'n)

Hence on the set N of numerals we have explicit definition (via Az) and primitive
recursion; Z := KO represents the zero-function and II? := Az;...z,.z; a projec-
tion. We thus have all primitive recursive functions available and can therefore
construct a term t such that tmm = |n — m|. The numerical definition-by-cases
operator D can then be defined by

D := Azyuv.if tuvT then z else y.0

The reason why we define the expansion separately is that we don’t want to
restrict ourselves in the choice of models by the special relationship between the
additional constants and the combinators K, S.

Example 2.3 (Engeler [1981]) Let A be any nonempty set, and let G(A) be
the least set containing A and all ordered pairs (B,b) consisting of a finite
set B C G(A) and an element b € G(A), assuming that elements of A are
distinguishable from ordered pairs. On P(G(A)) one can define an application

operation * by
X+xY={b|IBCY((B,b) e X)}.

Dy = (P(G(A)), *) is called the graphmodel. It can be made into a ca by taking
e.g.

K :={(B,(C, b)) € G(4)|b € B},

S :={(B,(C,(D,b))) € G(A)|b € BD(CD)}.

D, is clearly nontrivial and can thus be expanded to a cat.

Consider the special case where A = w. Here instead of appealing to the
combinatorial construction in proposition 2.2 one can define N, 0, Sy, Py and
D directly by

N ={{n}|new},
0= {0}’
Sy ={({n},n+1)|n €w},
Py ={({n+1},n)|n € w},



D = {(B,(C,({n},({m},)))) € G(w) |n,m e w A
((n=m AbeC) VvV (n#m A beB))}L
We leave the verification of 2.1 (1)-(5) to the reader. O

Inside a cat M there are internal versions of finite type structures over w, which
form models of various systems of finite type arithmetic. In this paper we shall
only consider the following standard finite type structures of pure types!:

Definition 2.4 Pure types, denoted by natural numbers, are 0 and with = also
n+1. 0O

Intuitively, we think of 0 as the set of natural numbers; the induction step then
permits the formation of the collection of functions from the elements of type n
into w. The following gives the two standard interpretations of pure types.

Definition 2.5 Let M be a ca™.
(i) The intensional type structure over M, IT(M), is the collection < IT, >new
where

IT() = N,
ITp ={a€ A|Va € IT,(ad’ € N)}.

(ii) The eztensional finite type structure over M, ET(M), is the collection
< ET, >new Where

ETy =N,
ET, 41 = {a € A|Vd',a"(a’ =n @ — ad' = aa")},
and
a=¢a' «—a,d €N ANa=4d,
a=p410a — a,a' € ETp41 A Va" € ET,(ad"” = ad'd"”).0

Note that these type structures always coincide at level 0 and 1, i.e. ITp = ETy
and IT; = ET, and that therefore, moreover, ET, C IT,. What, however, can
be said about the coincidence or divergence of these type structures at levels
higher up in the hierarchy of types? Let us concider D, as described in example
2.3:

Example 2.6 In D, one has that any type 2 object is extensional, i.e. IT; C
ET3, so that the two type structures also coincide at level 2. To understand
this coincidence observe the following:

Any function f : w — w can be canonically represented in D, by the type

1For a treatment of arbitrary finite types, the reader is referred to Bethke [1988].



1 object F = {({n}, f(n))|n € w}, since by the definition of application F x
{n} = {f(n)}. This representation, however, is by no means unique. If, for
example, f is constant, it is also represented by {(9, f(0))}, and, in general, it
is also irrelevant what pairs of the form (B, b), where B is neither empty nor a
singleton, are contained in any representation of f. This means that every type
1 function f has a whole range of representations in D,,. But note that if X;
and X, both represent the same function, i.e. X; =; X2 , then X; U X3 also
represents that function, since application is additive in the first argument, i.e.
(X1UX2)*Y = (X1 *Y)U (X2 #Y). Hence X; =; X; UX, =3 Xp. Since
application is monotone in the second argument, it then follows that any type 2
object must be extensional, i.e. if Z € IT;, and X; =1 X3, then ZxX; = Z*X);
for Z+ X1 C Z*(X1UX3), Z*X; C Z+(X1UX3) and as the results of these
application are all singletons, we have in fact that Z+X; = Z%(X1UX3) = ZxX,.
m}

‘We shall see in the next section that this particular coincidence at level 2 extends
in D,, to all pure finite types and that D, is therefore eztensional on finite types.

Definition 2.7 A cat M is called fi-eztensional (extensional on finite types)
iff

IT(M) = ET(M).O
In the next section we shall present sufficient conditions on cat’s in order to be
ft-extensional.

3 FT-Connected ca™’s

The crux of the proof that every type 2 object in D,, is extensional is threefold:
firstly, every pair of equivalent type 1 objects is bounded above by another
type 1 object, namely it’s union; secondly, application is monotone; thirdly, the
numerals are consistent, i.e.

VX,Y EN(XCY — X =Y).

The latter property, however, is independent of the special choice of N in D,
and is shared by all monotone ca®’s, i.e. cat’s that are monotone as applicative
structures.

Definition 3.1 A monotone applicative structure is a structure (A, *, C) where
(4,C) is a poset satisfying for all a,ad’,a” € A

! !
aCad —ad' Cdd A daCad'd.0

Lemma 3.2 Let (M,C) be a monotone ca*. Then M satisfies the following
consistency property

Va,a' € N(aCad —a=4d").



PROOF. Let a,a’ € N be such that a C a’. Assume a # a’. Then it follows
from the monotonicity of M that a’ = Daa’aa C Daa’aa’ = a. Hence d' C @
and therefore a = a’. Contradiction. O

So monotonicity guarantees consistency, or to put it in another way, the incom-
parability of the numerals. Monotonicity, however, does not guarantee that, as
in the case of D, ITy, or in general IT,, is closed under the joins of equiva-
lent objects. This property is an important ingredient of the proof that D, is
ft-extensional. It can, however, in a more general setting be weakened to the
notion of finite type connectedness.

Definition 3.3 Let (M,C) be a monotone cat. Then

(i) a,a’ € IT, are called n-connected iff there exists a sequence ao, ..., am+1 in
IT, such that @ = ag,amy1 = a' and a; E a;41 or @; J a4y, forall 0 <i < m.
If a,a’ are n-connected, we shall write this as a «w,, d'.

(ii) M is called ft-connected iff for all n € w and all a,a’ € IT;,

IT,=ET, ANa=,a —saen,d. O
As the numerals are incomparable, one then has

Theorem 3.4 Let (M,C) be a ft-connected cat. Then M is ft-extensional.
PROOF. As ITy = ETy, it is sufficient to prove that

ITn = ET,, — ITn+1 = ET,H_].

Assume IT, = ET,. Then ET, 1 C IT,+1. For the converse let a € IT, 41 and
b, € ET, be such that b =, b'. Since M is ft-connected there is a sequence
bo, -3 bn41 € IT, such that b = bo, b’ = bm41 and b; T bi4q or biy1 1 b;, for all
0 < i < m. Then aby,...,aby+1 € N and, since application is monotone, ab; C
ab;41 or ab;y1 I ab;, for all 0 < i < m. Hence ab= abg = ... = abm41 = ab’, by
lemma 3.2. Thus @ € ET,,41. O

Having seen that ft-connectedness is a sufficient condition on ca*’s in order
to be ft-extensional, we can also seek for sufficient conditions for ft-connectedness.
The one we shall give below is again inspired by the algebraic structure of and
the behaviour of application in D,,.

Definition 3.5 A monotone applicative structure M = (A, *, C) is called
finitely additive in the first argument (fafa) iff for all a,d’,a" € A

(i) aud’ exists in (4, C),
(ii) (aUa’)a” = ad” Ua'a”.0

Proposition 8.8 Let M be fafa and M’ be a ca®t-expansion of M. Then M’
is ft-connected.



PROOF. One proves by induction on n that for all a,a’ € IT,
IT, =ET, A a=na —aUd €IT,.

For the induction step let a,a’ € IT, 1 be equivalent and assume that IT, 41 =
ET,;1. In order to prove that a U a' € IT, 1, it is sufficient to prove that
aUa € ET,.1, and for this it suffices to show that (¢ U a')b = ab, for all
b € ET,. Thus let b € ET,. Then, as a and a' are equivalent, it follows that
ab = a'b. Whence (aUa’)b=abUa’b=ab. O

Corollary 3.7 Let M be fafa and M’ be a cat-expansion of M. Then M’ is
ft-extensional. O

4 Examples.

In this section we shall discuss several examples of ft-extensional cat’s such as
Dy, P, certain Do-models, H, and T%.

The Graphmodels Ds. Every graphmodel D4 is clearly fafa and thus ft-
extensional. O

The Graphmodels P,,.(Plotkin [1972], Scott [1975]) P, is a coded version of
D, and has been extensively studied in the context of models for the A-calculus.
Its universe is P(w) and application is defined by

X*Y ={m|3e, CY((n,m) € X )}

where (.,.) is some bijective coding of pairs of natural numbers and {e, | n € w}
is some enumeration of the finite subsets of w. The structure of these models,
as has been shown by Baeten and Boerboom [1979], depends heavily on the
specific coding used in the construction. Although P,-models and D4-models
are never isomorphic as ca’s (see Longo [1983]), they enjoy the same sufficient
properties in order to be ft-extensional: again P, is closed under unions and
application satisfies (X UY)Z =XZUYZ. O

Additive Reflexive Complete Lattices.(Scott [1969]) The first structures
used as a mathematical foundation for the semantics of the untyped A-calculus
were reflexive complete lattices. Let us briefly recall the key concepts.

Let A be a complete lattice. A subset A’ C A is directed if, for every finite
set A” C A', there is an upper bound a € A’ for A”. Given complete lattices
A, B, a function f : A — B is said to be Scott-continuous if f is monotone and
preserves joins of directed subsets of A. [A — B, the set of Scott-continuous
functions between A and B, partially ordered pointwise is then itself a complete
lattice with | | F = Aa. [ U{f(a)|f € F}.

A reflezive complete lattice is a triple < A, F, G > with A a complete lattice
such that the set of Scott-continuous self-maps, [A — 4], is a retract of A via



F,G,i.e. F: A—[A— A], G:[A — A] — A are Scott-continuous maps such
that F oG = idj4_, 4] These structures define in a natural way A-models where
the application operation * is given by

a *a' = F(a)(a).

As * is continuous (and hence monotone), (4, *) can be made into a monotone
ca by defining the combinators in terms of A-abstraction as follows:

S = Azyz.zz(yz) K =Azy.zx

One can restrict the class of reflexive complete lattices by the additional require-
ment id4 C G o F. This yields the class of so-called additive reflexive complete
lattices the members of which, as we shall show below, are fafa and therefore
enjoy the property of ft-extensionality.

Lemma 4.1 Let < A4, F,G > be an additive reflexive complete lattice. Then
F preserves L, i.e.

Va,a' € A F(aUua') = F(a) U F(a').

PROOF. Let a,a’ € A. Since F is monotone, we have F(a), F(a') C F(aUa').
Now suppose that f € [A — A] is an arbitrary upper bound of {F(a), F(a')},
i.e. F(a)C f and F(a') C f. Thus

a L G(F(a)) E G(f)

and
d' C G(F(a") C G(f),

since G is monotone and < A, F,G > is additive. Therefore a U @' T G(f),
whence F(aUa') C F(G(f)) = f. This shows that F(a U a') is indeed the least
upper bound of {F(a), F(a')}. O

Now let the ca M be obtained in the canonical way from an additive reflexive
complete lattice < 4, F,G >. Then

Theorem 4.2 Let M’ be a cat-expansion of M. Then M’ is ft-extensional.

PROOF. It suffices to prove that M is fafa. Clearly, (4, *, C) is monotone and,
as A is a complete lattice, a U a’ € A, for all a,a’ € A. Moreover, by the
preceding lemma we have that

(aua)a" = F(aUd')(a")
= (F(a) U F(a"))(a")
= F(a)(a") U F(a')(a")

" 1 n (]



Note that this also covers Scott’s famous inverse limit spaces Do, where the
initial space Dy is a complete lattice. O

All the examples discussed so far are complete lattices and ft-extensional by
virtue of corollary 3.7. The situation is slightly more complicated with respect
to the last two examples, the hypergraphmodel H,, and the model T%.

The Hypergraphmodel H,,.(Sanchis [1979]) Sanchis’ H,, is the monotone ca
(P(w), *, C) where application is defined by

X +Y := {m|VfIpIe, CY(< f(p),n,m >€ X)}.

Here, < .,.,.> is some bijective coding of triples of natural numbers, {e, |n €
w} is some enumeration of the finite subsets of w and, if f is a function from w
to w, then f(p) is some code for the sequence f(0), ..., f(p—1). H,, is a complete
lattice but not fafa.

Proposition 4.3 H,, is not fafa.

PROOF. Put (assuming eo = 0)
X :={<f(1),0,0> |f:w—w A f(0) >0},
Y := {< Xz.0(1),0,0 >}

and let Z C w. Then

(i) (X UY)Z = {0}, since, if f(0) = 0 then < f(1),0,0 >€ Y C X UY, and, if
£(0) > 0 then < F(1),0,0 >€ X C X UY,

(ii) XZ = 0 = Y Z, since < Az.0(p),n,m >¢ X, and < Az.1(p),n,m >¢ Y, for
every e, C Z, p,m € w.

Whence (X UY)Z £XZUYZ. O

There exists, however, a closure function vy : H, — H, which associates
with each subset of w its closure under ’extensions’ of triples while preserving
its applicative behaviour.

Definition 4.4 If X € H,, define
Y(X) :={<a,n,m> |3B < ader C en(< B, k,m >€ X)},

where we let a, 3, range over codes of finite sequences and write o < 8 if «
codes a sequence that is an initial segment of the sequence coded by 8. O

v as defined above has the following properties:
Proposition 4.5 For any X,Y,Z € P(w):

(i) X Cv(X)

(i) »(X)Z = X7,

10



(iii) XZ =YZ — (v(X) N(Y))Z = X Z.

PROOF. We leave (i) and (ii) to the reader. For (iii) observe that, since v(X)N
1(Y) C v(X), it follows that (v(X)N¥(Y))Z C v(X)Z = XZ, by monotonicity
and (ii). For the converse, let m € XZ and f be any function from w to w. As
m € YZ, there are p,q € w and en,e; C Z such that < f(p),n,m >€ X and
< f(q),1,m >€ Y. Hence < f(r), k,m >€ v(X) N(Y), for r = maz{p, ¢} and
er = e, Ue;. Whence m € (v(X)ny(Y))Z. O

From proposition 4.5 it now follows that every pair of equivalent functionals is
connected by a sequence of functionals of the same type.

Theorem 4.6 Let M be a cat-expansion of H,, . Then M is ft-extensional.

PROOF. We shall prove that M is ft-connected. Equivalent type-0-objects are
trivially 0-connected. Assume that IT, 41 = ETp4+1 and let X, Y € IT, 41 be
equivalent. Then v(X),y(Y) € IT.41, by 4.5(ii). Moreover, as X =n41 Y,
it follows from 4.5(iii) that (v(X) N v(Y))Z = XZ, for all Z € ET,. So
YX)N¥(Y) € ETy41 = ITy41. Hence

v(X) v(Y)

X 7(X) Nv(Y) Y

constitutes an n + 1-connection by 4.5(i). Therefore X em,41 Y. O
The Model T“.(Plotkin [1978]) T* was first introduced by Plotkin. However,
here we refer to the description given by Barendregt and Longo in [1980].

T% is a subset of P(w)? equipped with a very special application operation.
The importance of this model lies in the effectiveness properties of its semantics
and the way its natural order matches the partial order on B, the A-model of
Bohm-like trees. We shall neither use nor comment on these properties. The
only reason for including this model in our list of examples is that it is, as
opposed to the preceding examples, not a complete lattice. For a thorough
investigation of T* we refer the reader to Barendregt and Longo [1980].

The universe of T is {< A,B> |A,BE€P(w) A ANB=0}.Ifa € T* we
write a =< a_, a4 > and call a € T¥ finite if a_ Uay is so. We let {e, | n € w}
be some enumeration of the finite elements of T% and (.,.) be some bijective
coding of pairs of natural numbers.

On T one can define a partial order by

aCbe——a_ Cb_ and a} C by.

11



It is readily checked that (7%, C) forms a complete partial order with bottom
< 0,0 > and | |D =< U{d- |d € D},u{dy |d € D} >, for directed D C T*.

T belongs to the class of reflexive complete partial orders and defines - in
the same way as reflexive complete lattices - a A-model where application is
continuous, and therefore a monotone ca. F : T — [T¥ — T¥] and G : [T¥ —
T%] — T are defined as follows:

Definition 4.7 For n,m € w, a,b € T¥ and f € [T — T*], define
@nTme—FaeT(enCa A en Ca),

(i) D(n,2m+1) :={(n',2m)|n' T n A (n',2m) < (n,2m+ 1)},
D(n,2m) := {(n',2m + )|n' tn A (7,2m+1) < (n,2m)},

(i) (F(a)(8))- = {m|Jen T B((n,2m) € a— A Diaamy € a4)),
(F(a)(®))4 :={m|Jen Cb((n,2m +1) €a_ A D(n,2m+1) € a4 )b

(iv) (G(f))- = {(n,2m)|m € (f(en))-} U {(n,2m + 1) | m € (f(en))+},
(G(H)+ =A{(n,2m)|I(en Eer A m € (f(e1))+)}
U{(n,2m+1)|3(en C e A m € (fea))-)}. D

To prevent any misgivings as to the relationship between the sets D, and the

numerical definition-by-cases operator D, let us stress that there is none. We

just keep close to the notations introduced in Barendregt and Longo [1980].
T is not fafa. First of all, T is not closed under finite joins: e.g.

< 9,{0} >, < {0},0 > T¥, but if < @, {0} >, < {0},0 >C a, then 0 €a_ Nay.

But even if @ U b does exist it does not necessarily satisfy (a U b)ec = ab U be.

Observe, however, that T is closed under finite meets, i.e. for all @,b € T*

eNb=<a_nNnb_,ay Nby > T*.

But M does not in general satisfy (a M b)c = ac N be either, so that the whole
enterprise is not merely a matter of reversing the order. Application does,
however, preserve meets of certain elements which we, for the purpose of this
paper, shall call sober and saturated.

Definition 4.8 For ¢ € T, define

(i) a is sober if, for all m € w

m€a_ — Dp, Cay,

(i) a is saturated if, for all n,m,l € w

(n,m)€a_- AN exCe—(I,m)€a_.O
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a is sober, if every m € a_ actually contributes to a’s applicative behaviour, and
it is saturated, if it is - in a certain way - upwards closed. These two properties
are, in particular, shared by all canonically chosen representatives of continuous
self-maps, i.e.

Lemma 4.9 Let f € [T¥ — T%]. Then G(f) is sober and saturated.

PROOF. To prove that G(f) is sober, let m € (G(f))-. Say m = (n,2l) (the
case m = (n, 2l + 1) is proved similarly). Then I € (f(es))-. Now suppose that
(n',21 4+ 1) is an arbitrary element of D(, 5. Then e, and e, have an upper
bound in T%, and hence e, L e, € T“. Say e, Ll ey = ex. Then e, C e and,
since f is monotone, I € (f(en))- C (f(ex))-. Whence (n', 21+ 1) € (G(f))+-
The fact that G(f) is saturated follows from the monotonicity of f. O

Lemma 4.10 For all a,b,c € T%:
(i) If @ and b are both sober and saturated, then (a Mb)c = ac M bec.
(ii) (G(F(a)) N G(F(b)))c=acnNbe
(iii) If a is sober and saturated, then

V' Ecacd = b’ — (anb)e=ac

(iv) (G(F(a))Na)b=ab

PROOF. (i) Clearly (a N b)c C ac be, since application is monotone. For the
converse, let m € (acMbc)- = (ac)- N (bc)-. Then there are e,,e; T ¢ such
that (n,2m) € a_,(l,2m) € b_, D(n,2m) C a4 and Dg,2m) C by. Now put
e := ep Lle;. Then, as a and b are both saturated, it follows that (k,2m) € a_
and (k,2m) € b_. Moreover, by sobricity, we have that D sm) C a4 and
D(x,2m) C a4. Whence (k,2m) €a_ Nb_ = (aNb)-, and D 3m) C a4 Nby =
(anb)4. Therefore m € ((anb)c)—, since ex C ¢. Thus (acNbe)- C ((@aNbd)c)-.
(acNbe)+ C ((@anbd)e)y is proved similarly.

For (ii) combine the preceding lemma with (i) and the fact that T* is reflexive,
ie. FoG= id[Tw_,Tu].

(iii) (a M b)c C ac follows by monotonicity. For the converse, let m € (ac)-.
Then m € (bc)- and therefore (n,2m) € b_ and D(4,2m) C b4, for some e, C c.
Then also m € be, = aen. Thus (I,2m) € a- and D 3m) C a4, for some
e1 C es. Hence (n,2m) € a- and D(n 2m) C a4, since a is sober and saturated.
This proves that (n,2m) € (a Mb)- and Dy, 2m) C (a M b)y4, for certain e, C c.
Whence m € ((aMb)e)-. So (ac)- C ((aNb)e)-. (ac)+ C ((aNb)e)y is proved
similarly.

(iv) follows again from (iii). O

In the same way as in the case of H,,, we can apply this lemma in order

to show that every pair of equivalent functionals is connected by a sequence of
functionals of the same type.
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Theorem 4.11 Let M be a cat-expansion of 7%. Then M is ft-extensional.

PROOF. Let a,b € IT, +1 be equivalent. Then

a G(F(a)) G(F(b)) b

G(F(a))Na G(F(a)) N G(F (b)) G(F(®)nbd
constitutes a n + 1-connection by lemma 4.10. Hence @ +~,41 b. O

In the next section we shall show that ft-extensionality is by no means an
intrinsic property of ca’s, i.e. that there exists a very concrete class of cas no
member of which has this property.

5 Coherence Spaces

We have so far seen that quite a number of well-known ca’s exhibit the property
of ft-extensionality. The question then is whether this is necessarily so, i.e.
whether ft-extensionality is an intrinsic property of ca’s, or whether this is due
to the particular choice of examples. In this section we shall show that the latter
is the case, that, as a matter of fact, there is a whole class of ca’s - the class of
reflexive coherence spaces - each member of which is not ft-extensional.

There is a second question which we wish to address in this section, namely

the question of the interdependencies between certain degrees of extensionality
within the hierarchy of ca’s.
In ca’s, every algebraic function is representable. In so-called A-algebras, this
representation of algebraic functions can be given uniformly by the interpreta-
tion of A-terms. In A-models - or, equivalently, weakly eztensional \-algebras
- there is even a canonical representation for every representable function, the
association of which to any representable function being representable itself. In
the ultimate structures of this hierarchy, eztensional ca’s, every representable
function has a unique representative. We thus end up with three degrees of ex-
tensionality: ft-extensionality, weak extensionality and (global) extensionality.
There is the well-known fact that extensionality implies weak extensionality.
This however - and showing this is the second aim of this section - is the only
dependency. That is,

14



ft-extensionality extensionality

(3)

() (1)

weak extensionality

(1) is known from the literature: e.g. P, is weakly extensional without being
extensional (cf. Barendregt [1984, ch.18,§1]), and in the previous section we have
already encountered an example for (2): H, is ft-extensional but not weakly
extensional (cf. Koymans [1984]). (3) will follow from the remainder of this
section.

Let us first recall some of the definitions coneerning coherence spaces and
briefly review the theory of A-structures obtained from them. Our exposition is
based in part on Girard [1986] and Girard, Taylor and Lafont [1989].

Definition 5.1 A coherence space is a set (of sets) A which satisfies:
i) Down-closure: if X € A and X' C X, then X’ € A,

ii) Binary completeness: if A’ C A and if for all X, X’ € A/ (X UX' € A),
then JA' € A. O

In particular, we have the undefined object, § € A. One may therefore consider
A as a cpo (partially ordered by inclusion), and as such it is algebraic, i.e. any
set is the directed union of its finite subsets. So coherence spaces are a very
special sort of cpos. However, they are better regarded as undirected graphs.

Elements of the set | JA are called atoms. This set will also be denoted by
|A|. The compatibility relation between atoms is defined by

aZ d' (mod A) iff {a,a’} € A.

This constitutes a reflexive symmetric relation on |A4|, so (|4|,Z ) is a graph,
called the web of A.
The construction of the web of a coherence space is a bijection between coherence
spaces and (reflexive symmetric) graphs. From the web one can recover the
coherence space by

XeA—— X C|A| A Va,a’ € X(ald).

So a coherence space A is the set of all coherent subsets of |A|.
Whereas in Scott-style domain theory the functions between domains are
exactly those which preserve directed joins, this is no longer the case here.

Definition 5.2 Given two coherence space A and B, a function f from A to B
is stable if
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i) if X C X’ € A, then f(X) C f(X') (monotonicity)
ii) if A’ is a directed subset of A, then f(|J.A’) = |J f(A’) (directed union)
iii) if X, X', X UX' € A, then f(X NX') = f(X) N f(X') (stability). O

Whereas the first two conditions are entirely familiar from the topological set-
ting, the third - the stability property itself - does not have any obvious topo-
logical significance. However, if the ordered sets A and B are considered as
categories, then i) states that f is a functor, ii) that it preserves directed joins
and iii) that it also preserves pullbacks.

Example 5.8 Clearly, every stable function is Scott-continuous. A typical ex-
ample of a function which is continuous but not stable is the following: Let 2
be the coherence space obtained from the set of atoms {0, 1} and the universal
compatibility relation. 2 can be represented pictorially by

{0,1}

{0} {1}

0

Let furthermore B be an arbitrary but not atomless coherence space and pick
b € |B|. Define f : A — B by

f(X):{ éb} if X #0

otherwise

Then f is Scott-continuous, as it is monotonic and preserves directed unions.
However, f does not meet the stability condition:

f{oyn{1}) = f(0) =0 # {8} = f{0}) N f({1}). D

As such, the collection of stable functions from A to B is not presented as a
coherence space. However, it can be considered as belonging to this very special
class of spaces. Here the crucial observation is that for a given stable function,
a fixed argument and a finite portion of its value there is a finite least part of
that argument which suffices to give that value portion. Or loosely speaking,
if one has some information on the output, one knows which part of the input
was used to get it.
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Lemma 5.4 (Normalisation Lemma) If f is a stable function from A to B,
X € A and b € f(X), then there is a finite Z C X such that

bef(Z) ANVYCX(bef(Y)—ZCY).
PROOF. See e.g. Girard [1986]. O
Since a stable function f from A to B is determined by its values on least
finite sets, f has a unique graph representation, called trace. This gives a

bijection 7 between the set of stable functions and the coherence space of traces
with an obvious inverse F which maps traces onto stable functions.

Theorem 5.5 (Representation Theorem) Let .4 and B be coherence spaces and
Ayin be the set of finite sets in A.

i) Define a compatibility relation on Ayis x |B| by (Z,b) Z (2', V') iff

1. ZUuZ'e A— bV,
2. ZUZ' € A AbD=VY — Z=2".

Moreover, let [[A —, B] be the set defined by
X €[A—, Bl X CAypin x |B] A Ve,z’ € X(zZ2').
Then [A —, B] is a coherence space.

ii) Let f be a stable function from A to B. Define the trace of f, T(f), by
T(f) ={(2,b) € Asinx|B||b € f(Z)AVZ' C Z(be f(Z') — Z' = Z)}.
Then T(f) € [A —, B].

iii) Let X € [A —, B]. For Y € A, define F(X)(Y) by

FX)Y) = (b€ B3V CY ((V',5) € X)}.
Then F(X) is a stable function from A to B.

iv) 7 and F are mutually inverse constructions, i.e. for all stable functions
f from A to B and all X € [A —, B] one has f = F(7(f)) and X =
T(F(X)).

PROOF. See e.g. Girard [1986]. O
Being a coherence space, [A —, B] is naturally ordered by inclusion. The

bijection between [A —, B] and the stable functions from A to B then induces
an order relation on the set of stable functions by

fE9g—T(f) S T(9)
C is strictly coarser than the pointwise ordering. Note that f T ¢ implies
F(X) C g(X) for all X. However, the reverse is false:
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Example 5.8 Let 1 be the coherence space consisting of § and {0}. Then there
are three stable functions from 1 to itself:

f1(0) = 1({0}) =0
f2(0) = f2({0}) = {0}

f3(0) =0 fs({0}) = {0}.

Their respective traces are 7(f1) = 0, 7(f2) = {(9,0)} and T(f3) = {({0},0)}.
Typically, f3 C f» fails, while f3(X) C f2(X) for X € 1. Hence [1 —, 1] can
be represented by

{(9,0)} {({0},0)}

0

Roughly speaking, a function which is C-bigger is just ’wider’ (in that more
elements have at least a given value), whereas a pointwise-bigger function can
be ’higher’ as well.

Coherence spaces can be used to give a semantics to the untyped A-calculus.
Here one can proceed in the same way as in the case of reflexive complete lattices
or reflexive complete partial orders, that is

Definition 5.7 Let A be a coherence space.
i) A is reflezive if [A —, A] is a retract of A, i.e. there are stable functions

F:A-[A—, A
G:[A—, A — A

such that F o G = idj4, 4]
ii) Let A be reflexive via the maps F and G.
1. For X,Y € A, define
X+Y ={a€|A|FY' CY((Y'a) € F(X))}.

2. Let p be a valuation in A. Define the interpretation [ ] A — Aby

induction as follows

[], = o(2)
[MN], = [M], «[N],
I[/\x.M]]p =G(T(A\ X € .A.|[M]|p(z:=x))). ]
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Checking that [ ], is well-defined is a boring but straightforward exercise. For
this and the following theorem we refer the reader to e.g. Girard [1986].

Theorem 5.8 Let A be a reflexive coherence space via F, G and let M =
(A,%,[]). Then

i) M is a A-model.
il) M is extensional iff Go F = id4. O

Whereas * is continuous in both its arguments in the case of e.g. complete
lattices, it is stable here.

Proposition 5.9 Let A be a reflexive coherence space via F', G. Then * is
stable in both its arguments. In particular, one has that for all X, X', Y, Y’ € A4,
if XUX', YUY’ € A, then

(XNX)+(¥ NY)=X+YNX Y.

PROOF. Since X *Y = F(F(X))(Y) and F(F(X)) is stable, it follows that * is
stable in its second argument, and, since F' is monotone and preserves directed
unions, it follows that * is monotone and directed union preserving in its first
argument. In order to prove the stability condition for the first argument, it is
sufficient to prove the second claim.

Thus let X, X’ € A and Y,Y’ € A be bounded above. Then

(XNX)*x(YNY)CX*xYNX Y’

follows by monotonicity. Conversely, if a € X * Y N X’ « Y’, this means that
(Y1,a) € F(X), (Yz2,a) € F(X'), for some ¥; C Y and ¥; C Y'. Then
(Y1,a) Z (Y3, a), since (Yq,a),(Y2,a) € F(X U X'). Whence Y; = Y3, since
YUY, CYUY' € A Tt follows that Y; C Y NY’, and, as F is stable, also
(Y1,8) € F(X)NF(X') = F(XNX'). Thereforea € (X NX')* (Y NY’). O

Coherence spaces and rigid embeddings form a category. Girard [1986]
showed that the stable function space constructor [. —, .], the cartesian prod-
uct constructor x and the coalesced sum constructor + are functorial in this
category. Moreover, these functors are well-behaved in the sense that recursive
equations in this category written using them can be solved using standard limit
constructions. In particular, the equation A = [A —, A] has nontrivial solu-
tions which, according to theorem 5.8, provide us with nontrivial extensional
A-models or equivalently, nontrivial extensional ca’s.

Example 5.10 Let Ap=1 and A,41 = [4An —s Ap]. One can define two
stable functions ¢s, ¢p between Ag and A; by ¢5(0) = ¢p(0) = 0, ¢s({0}) =
{(0,0)} and ¢p({0}) = {({0},0)}. One then obtains two solutions Ag, Ap to
the equation A = [A —, A] by taking the inverse limit lim, (A4, ¢,) with initial
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projection ¢5 and ép, respectively. The subscripts S and P are reminiscent of
the two analogue solutions which were given respectively by Scott [1972] and
Park [1976] to the equation D = [D — D] in the category of Scott domains.

In the remainder of this section we shall now assume that M is a nontrivial
(not necessarily extensional) ca which is obtained in the canonical way from
a reflexive coherence space. That is, M = (A, %), |A| # 0, A is a reflexive
coherence space (via F,G) and * is as in definition 5.7. We shall prove that M
is not ft-extensional.

The first thing to note about M is that A is not closed under arbitrary
unions or, to put it in another way, the web of A is not the universal one.

Lemma 5.11 There are a,a’ € |A| such that ~(a Z a').

PROOTF. If the web of A would be the universal one, then .4 would be a complete
lattice, and, as A is reflexive, [4 —, A] would be a complete lattice too. It is
therefore sufficient to observe that [A —, A] is not closed under arbitrary
unions.

Let @ € |A|. Then {a} € A. So (0,a),({a},a) € Ajin x |A| and therefore
{(9,a)},{({a},a)} € [4 —, A]. But as (0,a) and ({a}, a) are incompatible by
5.5.i)2., it follows that {(0, a), ({a},a)} ¢ [A —, A]. O

Let us now expand M to a cat, say M’. Then, the next thing to note about
such an expansion is that our natural numbers are not bounded above.

Proposition 5.12 VX, X' e N(XuX' e A — X =X').

PROOF. Let a,a’ € |A| be incompatible and X,X’ € N be bounded above.
Assume X # X’ € Aand put Y = D x {a} *x {a’} * X. Then

{a} =Y+ X' CY*(XUX'),
{d}=Y*xXCY*(XUX'),

since application is monotone. Thus a, a’ are compatible. Contradiction. O

As a matter of fact, this already holds for finite approximants of the natural
numbers. That is, we can carefully choose finite subsets of the natural numbers
such that no pair in the resulting collection has an upper bound. This con-
struction makes again essentially use of the fact that we have at our disposal
incompatible atoms in |A| together with the D operator.

Definition 5.13 Choose incompatible a,a’ € |A| and put
Yr = D+ {a} *{a'} % 0.
Define I' C Ayin by
Zel «—(Z,a) e F(Yr) V (Z,d')€ F(¥r). O
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Lemma 5.14

i))VX e NIZC X(Z€T)
i)vVZ2,2’eT(ZuZ e A—2Z2=2")
iii)0gr

PROOF.(i) Depending on whether X = 0 or X # 0, one has that Yp * X = {a}
or Yr * X = {a'}. Thus (Z,a) € F(¥r) or (Z,a') € F(Yr), for some Z C X.
Hence Z €T, for some Z C X.

(i) Let (Z,a1),(Z',a2) € F(¥7) for a1,a2 € {a,a’}. As F(YT) is a set of
compatible atoms, it follows that (Z,a;1) Z (Z’,a3). Assume ZU Z’ € A. Then
a1 = ag and hence a; = a3, since a and a' are incompatible. So Z = Z'.

(iii) If (0,a) € F(Yr), then a € Yp %0 C Yr 0 = {a}, and if (0,d') € F(YT),
then @' € Yrx0 C Yr*1 = {a},i.e. a=a'. Hence 0 gT. O

The existence of this set of finite approximants allows us to construct two
C-incomparable but equivalent type-1 functions. They will be both constant 0
on N, however, whereas one will be constant 0 on the whole of 4, the other
will exhibit this behaviour only for those arguments which are approximated by
members of T'.

Proposition 5.15 There are equivalent X, X’ € IT; such that X *® = 0 and
X'x0=0.

PROOF. Put X := G(7T()Y.0)) and define f : 4 — A by

_fo if3zerzcCy
f¥)= { 0 otherwise

Observe that f is stable: for the stability condition apply lemma 5.14(ii). Thus
X' := G(T(f)) € A. Moreover, X' xY = 0 for all Y € N, by lemma 5.14(i).
Thus X =; X’'. But X’ * 0 = 0 by lemma 5.14(iii). O

Finally, we shall show that the finite type structures do not coincide in M’.
The reason for this disagreement is that we have in M’ a type-2 functional
which distinguishes type-1 functions according to how much input is needed to
compute the value at 0, i.e. a functional that takes the trace of a type-1 function
into consideration rather than its applicative behaviour on V.

Definition 5.16 Define h: A — A by
0 f3IZel(ZCX*0)
MX)=< 1 f3ZeT(ZZL X0 N ZCX*0)
0 otherwise. O

Proposition 5.17 h is stable.
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PROOF. First observe that, if X, X’ € A are bounded above, ¥, Y’ € {0, 0} and
Z,Z' €T, then

ZCX+Y A Z'CX'+Y — Z'C(XNX)* (¥ NY'). (1)

For,if ZC X *Y and 2’ C X' xY”, then Z,Z' C (X UX')* (Y UY’), and
hence, Z = Z’, by lemma 5.14(ii). Thus

ZCX*xYNX'xY' =(XnX")x(¥Y nY')

by proposition 5.9.

It follows that h is well-defined (in (1), take X = X', Y =0 and Y’ = 0).
Monotonicity: Observe that the only nontrivial case, where X’ C X and
h(X') =1, is again covered by (}).

Directed union: Let A’ C A be directed. Then |Jh(A') C h(UA’), since h is
monotone. The converse inclusion follows from the fact that Z € T is finite and
the preservation of directed unions by *.

Stability: Let X, X' € A be such that X U X’ € A. Clearly, h(X) N h(X') =
(X N X') if A(X) = 0 or h(X') = 0. So assume that h(X), h(X') € {0,1}.
Then there are Z,Z' € T such that Z C X x0 and Z’ C X' 0. Hence
Z' C (X NX')*0 by (}). Therefore h(X N X') € {0,1}. Thus,as0Z 1,1 Z 0
and h(X N X") C h(X),h(X’), it follows that h(X) = h(X N X') = h(X').
Whence h(X N X') = h(X)Nh(X'). O

‘We have now arrived at the position where we have all the necessary ingredients
at our disposal in order to prove that
Theorem 5.18 IT(M') # ET(M’)

PROOF. G(7(h)) € A, since h is stable. Moreover, G(T(h)) € IT;: let X €
ITy. Then X *x0 € N. Hence Z C X %0 for some Z € I. Thus

G(T(h)) * X € {0,1}.

Now let X, X’ € IT; be as in proposition 5.15. Then h(X) = 0 and h(X’) = 1.
Thus
G(T(h)) + X # G(T(h) X,

and therefore ITy # ET;. O

What we have shown is that the class of A-models obtained in the canonical
way from reflexive coherence spaces lacks the property of ft-extensionality. And
as this class is rich enough to include extensional models, we may conclude that

Corollary 5.19 Extensionality does not imply ft-extensionality, i.e. there is
an extensional ca® M such that IT(M) # ET(M). O
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