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Abstract

We define the non-¢ rule as a derivation rule for multi-modal logics.

This rule is a generalized version of Gabbbay’s irreflexivity rule. We prove
a meta-theorem on completeness, of the following kind:

If A is a derivation system having a set of axioms that are special Sahlgvist
formulas, and A is the extension of A with a set of non-£ rules, then Atis
strongly sound and complete with respect to a class of frames determined
by the axioms and the rules.
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1. Introduction

Let us for the moment consider the simplest tense similarity type' with two
operators F and P. It is well-known that the logic K*L, being the extension of
the basic tense logic K* with the axioms

(4) FFp—Fp

(H) Fp— G(FpVpV Pp)

(H) Pp— H(PpVpV Fp)
completely axiomatizes the class LO of linear orders. Adding the axiom (T)
Gp — p then gives a complete axiomatization of the class LR of reflexive linear
orderings.
Now suppose we want to axiomatize the class LI of irreflexive linear frames.
There is no modal or tense formula corresponding to irreflexivity in the same
manner as (4), (H) and (T) correspond to resp. transitivity, linearity and re-
flexivity. So (in principle) LI is much harder to axiomatize than LR or LO. The
usual procedure, establishing the completeness of K*L itself? for LI, consists of
starting with some model M for a consistent set of formulas ¥ and then trans-
forming M into an irreflezive model M’ for X.
A different road was taken by Gabbay in [5], where he suggested to add to K*L
a special derivation rule, which he baptized the irreflezivity rule. This rule can
be formulated as follows:

(IR) If - =(Gp — p) — ¢ and p does not occur in ¢, then - .

Gabbay’s completeness proof then consists of constructing a linear irreflexive
model right away, without passing models that may be bad in the sense that
they have reflexive points.

This idea was followed by many authors who wanted to give axiomatizations
for classes of frames defined by conditions which are not directly expressible in
the intensional language. Examples include [4, 31] for branching-time temporal
logics, [24, 27] for modal logics of intervals, [14, 25, 26] for many-dimensional
modal logics, and [7, 17, 18]. There is an independent Bulgarian line of pa-
pers [16, 8, 9, 8] where similar rules are used in a context of enriched modal
formalisms. Finally, in the temporal logic of program verifications there is a
related concept called ‘clock rule’ (cf. [1, 21] and the references therein).

So the question naturally arises whether anything general can be said about

1We follow the conventions in non-classical logics and its semantics as laid down in e.g.
[10, 6]. However, we want to be quite general in the sense that we consider languages with
arbitrarily many operators, sometimes of arbitrary adity. We use the term (modal) similarity
type to range over these situations. The reader unfamiliar with non-monadic modal operators
may just read ‘set of diamonds’ instead of ‘similarity type’.

2In this sense the example is not representative: For K*L, the irreflexivity rule is conser-
vative (cf. section 7).



logics having rules like the irreflexivity rule. Let us first have a closer look at
(IR); we suggest to concentrate on the ‘converse’ statement, i.e.

If ¢ is consistent and does not use p,
then ¢ A ~(Gp — p) is consistent.

In other words, to a consistent formula ¢ we may always add a conjunct of the
form —(Gp — p) witnessing irreflexivity.

More general, we set

Definition 1.1.

Let ¢ be a modal formula in the proposition letters po,...,pn—1. For a class K
of frames, set K_¢ as the class of non-€ frames in K, i.e. the frames F' = (W, R)
in K such that for no world w in W, F,w [= £€. For E a set of formulas, K_z is
the intersection of the K_¢, £ € E. |

Note that in general, the following three classes of frames, all defined using the
negation of £, are distinct:
(i) Ko¢ (i-e. the class of frames with F |= —¢.)

(ii) Kg (i.e. the complement of K¢.)

(i) K-g
For, F is in K¢ iff for all valuations V' and all worlds w, F,V,w E ¢, Fisin
the second class iff there are a valuation V and a world w with F, V,w |= —§, and
F € K_¢ means that for every world w there is a valuation V with F,V,w E= €.
This means, so to speak, that —¢ ‘corresponds’ to the second order formula

Vmoapo e Pn_l—lﬁl (ivo)

where £1(z0) is the local first order model correspondent?® of £, every monadic
predicate P; being the first order counterpart of the propositional variable p;
in £&. Thus we are studying classes of frames that are definable in a version
of second order logic where we have a restricted possibility to use existential
quantification over monadic predicates.

As an example, consider the formula £ = Gp — Pp which is locally equivalent
on the frame level to 3y(Rzy A Rzy). So K_¢ is the class of frames F' with
F |= VaVy(Rzy — —Ruy) ie. the class of asymmetric frames, while K is the
class of frames with F' = 32Vy(Rzy — —Rzy). The negation Gp A H-p of £
can be shown to be globally equivalent to the formula =3z3yRzy, so K¢ finally
is the class of frames with empty R.

As another example, one can show K_(gp—rrp) to be the class of intransitive
frames. In these two examples the second order definition of K_¢ can be replaced
by a first order one, but this need not always be the case.

3cf. [2, 3]. If E(Pl) = <¢0Op, then fl(mo) = Hzl(Romoa:l A Va:z(Ro:cl z9 — Pixs ))



Now suppose we want to axiomatize the logic ©(K_¢) consisting of all formulas
valid in K_¢. Let ¢ be a ©(K_¢)-consistent formula, then there is a model
M = (F,V) such that F is in K_¢ and with a world w in M where M, w E é.
Let po,...,pn—1 be new propositional variables, in the sense that they are not
elements of Dom(V). As F,w [£ €, there is a valuation V' such that F,V',w |=
—&(po, - - - ,Pn—1). Now let V"' be defined by

V'(q) = V(g ifge Dom(V)
V'(p:) = V'(pi) fori=0,...,n—1

then clearly we have (F,V"),w = ¢ A €.

This means that

¢ A —E(Do, - - - ,Pn—1) is O(K_¢)-consistent if ¢ is ©(K_¢)-consistent
and none of the p; occurs in ¢.

Taking the converse again of the above proposition, we have a formulation of
the —£-consistency rule:

Definition 1.2.
Let ¢(po,--.,Pn—1) be a modal formula. The —=£- consistency rule, or shorter:
the non-£ rule is the following derivation rule:

l— “5(1’0:- .o 7pn—1) —¢ >k
(NER) provided none of the p; occurs in ¢.

B

The paragraph above definition 1.2 can be seen as a proof of the soundness of
N¢R with respect to K_g: if K_¢ = —¢(po,...,Pn-1) — ¢ and no p; occurs in
¢, then K_¢ |= ¢.

The aim however is of course to try and show completeness for non-£ rules; this
will be the main subject of this paper. We should note at this moment that in
general we do not have an isolated N¢R added to a minimal (tense) logic, but a
situation in which we add possibly more than one N{R to a logic having other
axioms besides the basics.

So the general context is the following: we have a similarity type S, an S-logic
A which is (strongly) sound and complete with respect to a class of frames K,
and a set of formulas =. Let AT be the logic obtained by adding the non-§ rule
to A for all £ € . The question now is the following

Is AT strongiy complete with respect to K_z 7

In [5], Gabbay proves a generalized irreflexivity lemma stating that a At-
consistent set ¥ of formulas has a model M with M }= ©(Kj),-z). Unfor-
tunately, this is not enough to prove completeness, for we have to find a model



M such that the underlying frame is in K_z.

In general this seems to be difficult and maybe even impossible to establish.
Therefor we concentrate on logics with a special, nice kind of axioms, viz. so-
called Sahlqvist formulas. For some of these logics we can get a positive answer
to the above question. The answer we obtain is partial because our proof method
will turn out to be highly sensitive to the similarity type of the logic. In par-
ticular, and maybe surprisingly, there is a striking difference in our approach
between tense similarity types (i.e. where the language has a ‘converse’ opera-
tor for each of its diamonds) and uni-directional ones (where no operator has a
converse).

Furthermore, we feel our proofs become more perspicuous if we add a special
operator, the so-called difference operator, to the language. In many applica-
tions this will turn out to be only an apparent extension of the language because
the operator is definable in the old language, at least over the class of frames
that we want to axiomatize.

The organization of this paper is as follows:

In the next section we define and discuss the set of formulas that are admissible
as axioms in our completeness result. As a corollary of the proof method, we
can give a perspicuous formulation of the algorithm producing the first order
equivalent of a Sahlqvist formula. After that, we give some definitions and facts
concerning the difference operator. Section 4 contains the basic idea of our ap-
proach, for tense similarity types. In section 5 we show what goes wrong in a
context where not every diamond has its converse in the language. In section
6 we state and prove the general theorem, and in the last section we draw our
conclusions, give a motivating example and pose some questions.

The main results of this paper were obtained in the winter of 1990/1991, while
the author was visiting the Department of Computing at Imperial College in
London, on a grant from the Erasmus schedule nr. ICP-90-NL-0211. We
would like to thank Dov Gabbay, Ian Hodkinson and the other members of
the temporal logic group for stimulating discussions on modal derivation rules
and providing a very encouraging research climate. We are also indebted to
Maarten de Rijke for a thorough and inspiring discussion on the ins and outs of
Sahlqvist’s theorem.

Putting the finishing touch to this paper, we received a letter from V. Goranko
announcing a similar and even more general result than ours. In the future we
hope to be able to compare our proof with his.



2. Sahlqvist tense formulas.

It is well-known* that on the level of frames every formula ¢ locally and globally
has a second order equivalent ¢%. In many important cases however, it turns
out that this formula ¢? has a much simpler first order equivalent (in Ls).
Well-known examples include reflexivity for p — ©p and the Church-Rosser
propeerty for ©Op — OOp. A general theorem in this direction was found
by Sahlqvist (cf. [19]). The correspondence part of Sahlqvist’s theorem gives
a decidable set of modal S-formulas having a local equivalent in Ls. In [3],
van Benthem provided a quite perspicuous algorithm to find this first order
correspondent ¢° of a Sahlqvist formula ¢. (At the end of this section, we will
give our version of this substitution method.) The second, completeness part
of the Sahlqvist theorem states that adding a set X of Sahlqvist axioms to the
minimal S-logic K5, we obtain a complete axiomatization for the class of frames
Kg. An accessible version of the proof of this part can be found in [22], from
which we have borrowed much of the terminology in this section. The essential
observation in the proof is that Sahlqvist logics are canonical, or equivalently,
that Sahlqvist formulas have the following property:

If G = (F, A) is a descriptive general frame such that G |= o, then
FEo.

In this section we will prove a related result, for a subset of the Sahlqvist for-
mulas. In fact we will show that van Benthem’s substitution method (which
deals with Kripke frames) also works for a certain class of general frames to be
defined later on.

In the remainder of this section we fix a similarity type S. A crucial distinction
will be made among the diamonds of S, between the uni-directional ones and
those of which the converse diamond also belongs to S.

Definition 2.1.

Assume that a subset T of the diamonds of S is given as T = {Fj, P; | j € J}.
Diamonds in this set are called tense diamonds, their duals tense bozes. We call
F; the converse of P; and the other way round. If ¢ is a tense diamond, its
converse is denoted by ¢~ A diamond that is not in T is called uni-directional.
If a similarity type has only tense operators, we call it a tense similarity type.
A frame (F, Ry)ves for S is called a tense frame if for every & € T, the acces-
sibility relations of © and ¢~ are each other’s converse, i.e. Ro- = (Ro)~ B

With emphasis, we want to note that the above definition should be understood

4cf. [2, 3]. If €1 is the model correspondent of £(p1), then €2 is (locally) VP& (o),
(globa.lly) Va:oVPlfl(:to).



as to include the case where a modal operator is its own converse.

Definition 2.2.

A strongly i(ense)-positive formula is a conjunction of formulas Oj ... Omp;
(m > 0) where every O; is a tense box. A formula is positive (negative) if
it is obtained from propositional variables (resp. negations of propositional
variables), constants and negations of constants, by applying V, A, existential
moda] operators and their duals. A modal formula is untied tense if it is ob-
tained from strongly positive formulas and negative ones by applying only A
and arbitrary existential modal operators. Formulas of the form ¢ — ¢ with ¢
an untied tense formula and 1 a positive one, are called basic Sahlquist tense
formulas. Sahlquist tense formulas, or shortly: St-formulas, finally, are of the
form O™o with o a basic Sahlqvist tense formula.

Sahlquist formulas are St-formulas with a weakened condition so that all boxes
may appear in strongly positive formulas. |

A typical example of a Sahlqvist formula which is not an St-formula, is given by
<©0Op — OCOp (at least, if O is not an S-operator.) Note that the ‘tense axiom’
(p — O°Op) itself can be replaced by the St-form (OO=gAgq) — L.

Sahlqvist formulas are defined in a syntactic mannner, but in fact the important
constraint on the consequent is a semantic one, viz. monotonicity:

Definiton 2.3.

Let V and V' be two valuations on a frame F. V' is wider than V, notation:
V < V', if for all atoms p, V(p) C V'(p). A modal formula is monotone if for
all frames F,V,V’' and w:

FViwl¢andV < V'imply F,V',w = ¢

We also need related concepts for the first order model-language.

Definition 2.4.

Let Q be the set of propositional variables of the language. Ls,q denotes the
first order language with S-accessibility predicates and a monadic predicate P;
for every propositional variable p; € Q. The sign of an occurrence of a predicate
T in a formula ¢ is defined by induction to ¢: T occurs positively in the atomic
formula T ...2n,_1. If T occurs positively (negatively) in ¢, then it occurs
negatively (positively) in —¢, and positively (negatively) in ¢ V¢ and Jz¢. An
Ls,qg-formula is positive (negative) if all occurrences of Q-predicates are positive
(negative).

An Lgo-formula ¢(z1,...,z,) is monotone if for all valuations V, V' and all
n-tupels wi, ..., Wn:

F,V = ¢lwy,...,wn] and V < V' imply F, V', w |= ¢[wo, ..., wn]



Note that in the above definition it does not matter how the accessibility pred-
icates occur in a formula. There is a lot to be said about the above concepts,
but we confine ourselves to the following:

Lemma 2.5.
(i) If ¢ is a positive (negative) formula, then so is ¢!.
(ii) Negations of positive (negative) formulas are equivalent to
negative (positive) ones.
(iii) A formula is monotone if it has a positive equivalent.

Proof.
Standard. 2}

Before stating the main theorem of this section we need one more definition:

Definition 2.6.
A general frame G = (F, A) is discrete if for all worlds w in F, {w} € A. @

So a general frame is discrete iff it contains all singletons. Note that ordinary
Kripke frames, seen as full general frames, are discrete. The theorem below
states that St-formulas are persistent with respect to the class of discrete frames.
For a motivation of its importance we refer the reader to the next section.

Theorem 2.7.
Let G = (F, A) be a discrete general tense frame and o a Sahlqvist tense formula
such that G = 0. Then F = 0.

The remainder of this section will be devoted to the proof of theorem 2.7.
From now on we fix the St-formula o and the general frame G = (F,A),
F = (W,Ry)ves. To establish the validity of o in F, we must prove that
for every valuation V, the model F,V |= 0. So let us start with defining a set
of valuations for which we already know that F,V = o:

Definition 2.8.
A valuation V is admissible if V(p) € A for all atoms p.

Lemma 2.9.
For all admissible valuations V, F,V = o.

Proof.
Standard. BLemma 2.9.

We now proceed to define a second kind of valuations, intuitively those forming
the minimal valuations needed to make the strongly positive formulas, (these
being the ‘real’ antecedent of the Sahlqvist formula o,) true in a world of W.



Definition 2.10.

First we define basic rudimentary formulas, or short, br-formulas: a basic rudi-
mentary formula of length 0 is of the form B(z,y) = = = y. If f(z,z,) is a basic
rudimentary formula of length n and Ro is the accessibility relation of a tense
diamond, then 3z, (8(z,zn) A Rozay) is a basic rudimentary formula of length
n+ 1.

A rudimentary formula, or short, an r-formula, is of the form

p(T1,. e T, y) = V Bi(zi,y)

1<i<n

where every f; is a disjunction of basic rudimentary formulas in z; and y.

A subset X of W is rudimentary in wy,...,w, € W if for some rudimentary
formula p(z1,...,%n,y), X ={v € W | F £ p(ws,...,Wn,v)}.

A valuation V is rudimentary if for all atoms p, V(p) is rudimentary. ]

Note that, intuitively, a basic rudimentary formula 8(z,y) of length n describes
the existence and form of an path from z to y following tense accessibility
relations. A rudimentary formula p(z1,...,%n,y) describes the position of y
with respect to i,...,%, in the frame, in terms of ‘tense paths’ leading from
x; to y, for every z;.

Lemma 2.11.
Rudimentary valuations on discrete general tense frames are admissible.

Proof.

It is sufficient to prove that for every r-formula p(z1,...,Zn,¥), the sets X, 5 =
{ve W |F [k p(wi,..., wa,v)} are in A for all n-tupels @ = (wy,...,wn) of
worlds in W. Because A is closed under finite unions, we can do with showing
the above for basic rudimentary formulas. By induction to the length k of a
basic formula B(z,y) we prove the following claim:

For every w € W, Xg,. € A.

For k = 0, we have X, = {w} in A by the discreteness of G.

For k = m + 1, let B(z,y) be of the form 3z, (8' (2, 2n) A Rozny) where O is a
tense diamond.

Now X = {v € W | F |= f(w,v)} is the set of worlds v such that there is a
u € W with F |= f'(w,u) and F = Rouv.

So Xg,. contains precisely the worlds having an Ro-predecessor in Xgt 4, OF

Xp . = {v €W | vhas an (Ro)“successor in Xpr,.}

By the induction hypothesis, X, is in A, and by the fact that we are in a
tense frame, (Ro)"is the accessibility relation of &% So Xg,4 is in A.
BLemma 2.11



Note that in the above proof it is essential to have tense operators in tense
frames. :

Lemma 2.12.
Let ¢ be an untied formula. Then its first order model-equivalent ¥*(zo) is
equivalent to

Jo1...2a (7 A P\ Vol(os(Ey) = Py) A ]\ Nj(u;))

i<k j<m

where the z;’s are distinct variables different from x, all the variables u; are
among Zo,...,Tn, T is a conjunction of atomic Ls(z,...,%n)-formulas (i.e.
atomic accessibility formulas of the form Ry (i, ..., %i,y,) With V an arbitrary
S-operator and every variable in {z,...,%,}), the p;’s are suitable rudimentary
formulas, and the N;’s are negative.

Proof.

By a straightforward induction to the complexity of untied formulas, cf. [22].
BLemma 12

Lemma 2.13.

Let o = 9; — 12 be a basic Sahlqvist formula. Then o!(z) is equivalent to
Ve, ... wn((ﬂ' A /\ Vy(pz(i,y) - 1:‘/)) - 72(330’ oe :mn))
i<k

where the antecedent is as in the previous lemma and the consequent v, is some
monotone formula.

Proof.
Let N(zg,...,%n) be the formula /\j<m
2.12, the local model correspondent o (zo) of o is equivalent to

Vor...za((r A N\ Vu(pi(#,9) — Py) AN) — $3(z0))
i<k

N;(uj), then N is negative. By lemma

So, by moving the negative N from the antecedent to the consequent, we obtain
V... :Bn((ﬂ' A /\ Vy(pi(Z,y) — iy)) - (-xN \Y gb;(:vo)))
i<k

where the antecedent is already as desired, and the consequent is monotone as

it is a disjunction of two monotone formulas.
BLemma 13

Proof of theorem 2.8.
Let o be of the form Oj ... O, (31 — 92), where every O; is a tense box, ¥ is

10



an untied formula and v, is a positive formula.
We assume m = 0. (The wider case is a straightforward generalization.)
Using the notation of the previous lemmas, set

Y (@, .., zn) =7 A N\ Vy(pi(E,y) = Piy)
i<k

Obviously, o!(zo) is equivalent to Va1 ...Z(y1 — 72), where 72 is monotone.
So by the fact that G = (F, A) |= o we get

for all admissible valuations V, F,V | Vzqo...2a(v1 — 72) (1)
Our aim is to show that this implies F' |= o, or equivalently
for all valuations V, F,V |=Vzq...za(11 — 72) )

So let a valuation V be given, together with worlds wo,ws,...,w, € W for
which we have

F,V & vi(wo, w1, .., Wn) (2)

Now let V'~ be the rudimentary valuation that precisely ‘fits’ in 71, i.e. V™ (pi) =
{ve W |F k pi(#,v)}, then

F, V™ E v1(wo,w1,...,Wn) (3)
V'~ is admissible by lemma 2.11, so (1) and (3) give
F,V™ E y2(wo, w1, .., wn) (4)

But by (2) and definition of V~, we have V™~ < V. Together with the fact that
v, is monotone, this yields

F,VI:'yg(wo,'wl,...,wn) (5)

which ensures (1).
#HTheorem 2.7

As a matter of fact, from this proof it is only a minor step to give the algorithm
producing the correspondent o*(2o) of an arbitrary (i.e. not necessarily tense)
Sahlqvist formula:

Definition 2.14.
For a Sahlqvist formula o, let o*(zo) be the Ls-formula

Ve1...2a(m — (2(20,- .., 2a)[pi(&, u)/Piul))

(i.e. we substitute, everywhere in 72, p;(Z,u) for the atomic formula Pu.) H

11



Theorem 2.15 (Sahlqvist correspondence).
Let o be an arbitrary Sahlqvist formula, w a world in a frame F. Then

FwlEo < F [Eo’(z)
Proof.

From left to right:
Let wy,...,wn be such that F = w[wo,...,w,]. This implies that, with V'~ the
valuation such that

Vo(pi) ={veW|FE pi(w,v)},
we have
V- '= A Vy(/’i(i,y) - iy))['wo, e a'wn]

So by lemma 2.13, F,V~ | v2(zo,...,%n). By definition of V'~ this immedi-
ately gives
F E (72(20,- -, @a)lpi(&, w) / Piu])) [wo, ... ,w)]

which is what we desired.
From right to left:

Here we can copy the proof of theorem 2.8, after making the observation that
now

FV i ,wo o

by definition of o and the assumption F |= o*[w,).
BHTheorem 2.15

3. The D-operator.

An important réle in this paper is played by the so-called difference operator
D. This operator is special in having the inequality relation as its intended
accessibility relation:

Definition 3.1.
Let S be a similarity type containing the monadic operator D. An S-frame
F = (W, Ry)ves is called (D-)standard if

Rp ={(s,t) € *W | s # t}
As abbreviations we use D¢ = D¢, Op = ¢ AD~¢, E¢ = ¢V D¢.

For K a class of S-frames, we denote the class of standard frames in K by K#.

12



In the sequel we will occasionally drop the adjective ‘standard’ when referring to
the intended semantics, explicitly using the term ‘non-standard’ for the frames
with Rp # {(s,t) €2 W | s # t}. Note that in a standard model we have

M,w = D¢ iff there is a v # w with M,v |= ¢.
M,w |= O¢ iff w is the only world with M, w |= ¢.
M,w = E¢ iff there is a world v with M,v = ¢

In many examples the D-operator is definable in the poorer language; for ex-
ample, over the class LI of irreflxive linear orderings we have

Ll k= D¢ — (Fé V Pg)

In the last section of this paper we give another example and there we show
how we can use such a definition to get rid of the D-operator altogether.

The D-operator was introduced independently by various authors, cf. [13, 20, 9].
A nice feature of this new operator, and the main reason for its introduction,
is the fact that it greatly increases the expressive power of the language. For
example, irreflezivity is easily seen to be characterized by the formula Op — Dp.
Maarten de Rijke proved many results on the expressiveness and completeness
of modal and tense logics having a D-operator, cf. [17]. We only need the
following:

Definition 3.2.
Let S be a similarity type containing D. For A an S-logic, AD denotes the logic

A extended with the following axioms:
(D1) p— DDp
(D2) DDp— (pV Dp)
(D3) V(po,.--,pn-1) = \ Ep
ADY is the logic AD extended with the irreflexivity rule for D:

(IRp) If - Op — ¢ and p does not occur in ¢, then - ¢.

Instead of K(py (the minimal D-logic), we write Kp, instead of KpD: KD.
=]

Theorem 3.3.
For any similarity type S, KsD and KsD* are both strongly sound and com-
plete with respect to the class of standard S-frames.

Proof.
Cf. [17]. @

As a corollary of this completeness theorem some nice semantic properties of
the operators are also provable:

13



Lemma 3.4.
(1)
KDW - E(OpA ¢) NE(OpA—¢) — L

(ii) If V is an S-operator, then
KsDMDF (V(...,0pA¢,..)AV(...,OpA—¢,...)) = L
(iii) If V is an S-operator, then

KsDDF AV(..,0pA¢i,...) = V(...,0pA N\ ¢is...)

Proof.

By showing that the above schemes of formulas are semantically valid in stan-
dard S-frames, and then usmg the completeness theorem for K D). For (ii)
and (iii) one also needs axiom (D3). 2

Combining the notions of Sahlqvist (tense) formulas and the D-operator, we
seem to have two options. Because of the general result on Sahlqvist correspon-
dence, we know that every S(t) formula o has a local correspondent o* (zo) in
the language Ls where Rp is the symbol for the accessibility relation of D.
However, we are almost exclusively interested in the way this equivalence works
out for the standard S-frames; this means that we will only consider interpre-
tations where Rp is the inequality relation. It is then very natural to let this
preference be reflected in the syntax, by a slight abuse of notation:

Definition 3.5.

Let S be a similarity type and o a Sahlqvist formula. If S does not contain
the D-operator, o*(zo) denotes the ordinary first order Sahlqvist equivalent of
o given in Definition 2.13. If § does contain D, o® (zo) denotes this ordinary
first order equivalent, o®(zo) is o® (zo) with every occurrence of Rp replaced

by #. |

As an example, the Sahlqvist correspondent of Op — Dp is not Va;(Rzoz; —
Rpzoz1), but Vzi(Rzozy — o # 1), (or even better: - Rzgzo.) Note that
with this notation we have equivalence of o and o° for the standard frames:

Theorem 3.6.
Let o be a Sahlqvist formula, w a world in a standard frame F. Then

FwlEo < F [ o°(w).
Proof.

Straightforward by Theorem 2.14 and the definitions of o* and standard frames.
o2

However, by restricting our attention to standard frames we loose the automatic

14



completeness of Sahlqvist’s theorem: where we do have, for a set of Sahlqvist
axioms X,

KsD(X) is strongly sound and complete w.r.t. Ks,
we are not (yet) sure whether
KsD™(X) is strongly sound and complete w.r.t. K;.

In the next section we will prove the above statement, for Sahlqvist tense axioms.

4. The main proof.

This subsection contains the main idea of the proof on the Sahlqvist theorem in
a context with modal derivation rules. To keep notation as simple as possible,
we consider a tense similarity type S having besides the difference operator
D only one pair {F, P} of tense operators. We let O range over the monadic
modal operators, O is the dual of ¢, and ©”is the converse of ¢, i.e. F'= P,
P = F and D= D. Note that for this similarity type there is no distinction
between ordinary Sahlqvist formulas and Sahlgvist tense formulas. We intend
to prove the following theorem, keeping some generalizations and corollaries for
later subsections.

Theorem 1: SD-theorem.
Let o be a Sahlqvist form in S. Then K*D* (o) is strongly sound and complete
with respect to K.

Recall that K*D™* (o) has the following axioms:

(CT) all classical tautologies
(DB) <(pVg)— (OpV <q)
(IV) ¢—HFp
(D1) p— DDp
(D2) DDp— (pV Dp)
(D3) <Op—pVDp
(6) o
Its derivation rules are
(MP) Modus Ponens
(UG)  Universal Generalization
(SUB) Substitution

and the irreflexivity rule for D:

(IRp) F Op — ¢ = I ¢, provided p does not occur in ¢.

15



Note that the above theorem is not an automatic corollary of the ordinary
Sahlqvist theorem, because of the special interpretation for the accessibility
relation of D that we have in mind, namely the inequality relation, and the fact
that the axiom system has the unorthodox derivation rule (IRp). The difference
with the ordinary Sahlqvist case shows itself in the fact that the logic K*D* (o))
is not canonical:

Consider the set

{¢ — D¢ | ¢ a formula }

This set is consistent, so it must be contained in a maximal consistent set A
which is a world in the canonical frame. Clearly however, A is Rp-reflexive,
so inequality is not the canonical D-accessibility relation. In other words: the
canonical frame is not standard.

So it turns out that the canonical model is bad because it contains Rp-reflexive
worlds. A naive approach to this problem is to simply throw them out of the
canonical universe. This is not sufficient however: consider the set

{po AD-po} U{FT}U{G(¢ — D¢) | $ a formula }

It is consistent, so it has a MC extension A € We°. A itself is not Rp-reflexive,
but all of its Rp-successors are. So A, having at least one Rp-successor, is an
unwelcome inhabitant of the canonical frame too.

Now instead of successively throwing bad MCSs out of the canonical frame,
we feel it is better to follow a more constructive path, defining a canonical-like
model consisting only of good MCSs. To give this notion of a ‘good’ MCS, we
need some auxiliary definitions. The first one is meant to provide us with a
unique representation

o AO1(P1 A ... Onc1(Pn-1 A Ondn)),

for every formula ¢.

Definition 4.2: Diamond Forms.
For notational elegance we add the dummy diamond © to the set of monadic
operators. This operator has the following interpretation:

Muwlkod < Muwké

Formula paths and their lengths are defined by induction:
(0) If ¢ s aformula, (@) is a formula path of length 0.
(1) For a formula ¢, & € {F,P,D,0} and t a formula path of length n,
((¢,9),t) is a formula path of length n + 1.
For t a formula path, the formula ®u(t) is defined as
) ®u((#) = ¢
W) 2u((($,0),8) =¥ A OBu(t)

16



Notions like ‘consistency’ apply to formula paths as if they were formulas.
For ¢ a formula, its path representation Pr(¢) is the following formula path:
(at) Pr(p) (p)
) Pr) Hb() o), Pr(x)) ifx=ox,o € {F,P,D
b b T 1 = K G 9’
(A) Pr(pAx) = { g(i,@g,PTg))Q ot})ferwiszf ’ )
(©) Pr(oy) = ((T,0),Pr(y))
The diamond form N(¢) of a formula ¢ is a representation of ¢ as @u(Pr(¢)),
viz.

¢0 A 01(¢1 A O'n—-l(¢'n—l A On';lsn))

Let ¢t be a formula path, { a formula and m a natural number. By a nested
induction to m and t we define WP((,m,t) as the following formula path:

W2((,0,(4)) = ((A¢)
Wp((’0’<(¢’ O)’t) = (((CA"/”O),t)
WP(¢,m +1,(4)) = (4)
Wr((,m+1,((%,0),t) = ((%,9),Wr((,m, t))

For ¢ and ¢ formulas and m a natural number, we set
W(¢,m, ¢) = @u(W?((,m, Pr(4)))
B
The intuitive meaning of W({, m, ¢) is the following: let ¢ have a diamond form
Po AC1(P1 A ... Onc1(Pn1 A Ondhn))
then W (¢, m, ¢) is ¢ with ¢ added as a witness at level m, viz.
o AO1(P1 A .. Om(CAPm A Cmp1(fmpr A e Onc1(dn1 ACndn)...)) .. ),
if m < n. Otherwise W(¢,m,¢) = ¢.

Definition 4.3: Distinguishing theories.

A set of formulas ¥ is distinguishing, or a d-theory if

(i) it is maximal consistent and

(ii) for every ¢ in ¥ and natural number m, there is a propositional p with
W(Op,m,¢) in 2. ez}

Note that as d-theories are MCSs, the canonical accessibility relations R%, R%
and RS, for F, P and D have the ordinary meaning:

R{XAiffforallg € A, Ope X

We want to take the d-theories as the possible worlds in our version of the
canonical model. A minimal constraint which a canonical-ish model must meet
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is that every consistent set of formulas is somehow to be found as (part of) a
possible world. In our setting this means that every consistent set must have a
distinguishing extension.

First we need a lemma of a rather technical nature:

Lemma 4.4.
FW(Op,m,¢) =n=>F¢—n

provided p does not occur in ¢ or 7.

Proof.

By induction to m.

If m = 0, W(Op,m, ¢) is equivalent to Op A ¢, so - W(Op,m,¢) — 7 implies
F Op — (¢ — n), whence by an application of (IRp) we obtain I ¢ — 7.

If m = k + 1, distinguish two cases:

If ¢ is an atom or a negation, then W(Op,m, ¢) = @, so the claim is immediate.
In the other case we have Pr(¢) = {(¢, <), Pr(x)) for some 1, x (where ¢ €
{F,P,D,®}),s0 W(Op,k+1,¢) = ¢ AOW(Op,k,x). The claim is now proved
as follows:

F (Y AOW(Op,k,x)) — 1 (assumption)
= F(=(¢ A-n) AOW(Op,k, X)) (propositional logic)
= F-(O(¢ A-n) AW(Op,k,x)) (tense logic)
= +W(Op,k,x)— O — 1) (modal logic)
= Fx—-0FW-—n) (induction hypothesis)
= F=(O(WA-)AX) (modal logic)
=> k=@ A-n)AOK) (tense logic)
= F@HAOX)—17 (propositional logic)

BLemma 4.4

The following proposition is our version of Gabbay’s generalized irreflexivity
lemma (cf. [5]):

Lemma 4.5.
Let ¥ be a consistent set in which the variable p does not occur, and ¢ € X.
Then ¥ U {W(Op, m, $)} is consistent for all m.

Proof.
Suppose otherwise, then

= W(Op’m1 ¢) —
for some m € w and ¥ € ¥. By Lemma 4.4 this would imply
oy

contradicting the consistency of X.
fBLemma 4.5
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Lemma 4.6: Extension Lemma.
If ¥ is a consistent set, then there is a distinguishing ¥’ containing X.

Proof.

Let Q be the set of propositional variables in ¥, assume that po,p1,... are
mutually distinct propositional variables not in Q, and set, for 0 < ¢ < w,
Qe=QU{pi|i< ()

For a set A of formulas in Q,, let PV (A) be the set of propositional variables
appearing in (formulas of) A. A theory A is called an approzimation if A is
consistent, ¥ C A and PV(A) = Q, for some n < w. In this case pp; is called
the new variable for A and denoted by pa.

Now let A be an approximation, ¢ a formula and m € w. The pair (¢,m)
is called a shortcoming for A if ¢ € A while no witness W(Op, m, ¢) is in A.
Assume that we have a wellordering W of ®(M) x w. If A has shortcomings,
let (¢a,ma) be the first (in W) of A’s shortcomings. Now set

At = A if A has no shortcomings
T | Au{W(Opa,ma,pa)} otherwise

We claim that if A is an approximation, then so is A™:
AT is consistent by lemma 4.5; the other conditions are straightforward.
We now define the following sequence of theories ¥, ¥1,...:

Yo = X

5 _ Yon U{¢n} if Bant1 U {@n} is consistent
I+l T Son U{¢n} otherwise

5 _ (Z2n41)"  if Y2541 has shortcomings
2 T Yont1 otherwise

and set X' = J, <, Tn.
It is then straightforward to prove the following:
(0) (®n)n<w is an increasing sequence.
(1) Every X, is an approximation.
(2) For every Q.-formula ¢, either ¢ or ~¢ is in X'.
(3) For every Q,-formula ¢ and m € w, there is a witness W(Op,m, ¢)
in X',
This gives all the desired properties of ¥'. BLemma 4.6

The fact that any consistent set is contained in a d-theory, means that in a
certain sense there are enough distinguishing sets. Note however, that we needed
to extend the language to prove lemma 4.6. This could mean that problems
might arise if we want to show that every d-theory I' containing a formula ¢¢
has a distinguishing ©-successor A with ¢ € A. For, in context of ordinary
maximal consistent sets, this proposition is proved by showing that the set

{su{y|oyeT}
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has a maximal consistent extension. We might do the same here, but then we
have to show that this set has a distinguishing extension in the same proposition
letters. We choose a different proof, using the fact that because the language
has the O-operator, the distinguishing I' contains a complete description of A:

Lemma 4.7.

If T is a d-theory and ©¢ € T, then there is a d-theory A with ¢ € A and
STA.
S

Proof.

AsO¢isin T, sois O(#AOp) for some atom p. Let A be the set {1 | O(OpAY) €
T'}. A is consistent, for assume otherwise, then there are 91,...,%, in A with
every O(OpA ;) in T and

F(Aw)— L
By lemma 3.4 we have

F A(o(opA ¥:)) = ©(Op A /\«p,-)

So O(Op A A\; ¥i) and hence ¢ L is in T, contradicting its consistency.

As OOp €T, for every 9 either O(Op A1) or O(Op A=) is in T, so clearly A
is maximal. The fact that RST'A is immediate by definition of A.

To prove that A is distinguishing, let ¢ € A, and m € w. We have to show that
for some g, W(Ogq,m, %) is in A:

By definition of A, TAO(OpA ) € . AsT is distinguishing, there is a ¢ with

W(Og,m+2, T AO(OpAY))
in T'. But a simple evaluation shows this formula to be equal to
TAO(OpAW(Og,m,¥))

whence W(Ogq,m,9) € A.
BLemma 4.7

It will turn out that these two lemmas are sufficient to establish that there are
enough d-theories. There is still one difference with the ordinary case which we
need to discuss: suppose we would take the set of all distinguishing sets to form
the universe of our canonical model. Then there would be too many worlds, for
consider two D-theories A, A’ with p A D-p € A, pA Dp € A’. If both were
to be in our ‘canonical’ model, the underlying frame would be non-standard,
for A’ is not an Rp-successor of A, while clearly A # A’. This inspires the
following definition:
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Definition 4.8.

Two distinguishing theories I' and A are connected, notation: T' ~p A, if either
I' = A or RSTA. A set of d-theories is called connected if all pairs of its
members are.

Lemma 4.9.
~p is an equivalence relation.

Proof.

Reflexivity of ~p is immediate.

For symmetry, let T' ~p A. If ' = A, we are finished. If not, we have RGT'A.
Now RS, is a symmetric relation (this is an immediate consequence of having
the Sahlqvist axiom (D1) in the logic). So we have R, AT, implying A ~p I,
For transitivity of ~p, it suffices to show that R}, is pseudo-transitive:

VaVyVz((zRy AyRz) — (z = z V ¢Rz))

But this is immediate by the fact that pseudo-transitivity is the Sahlqvist cor-
respondent of axiom (D3), and the completeness part of Sahlqvist’s theorem.
BLemma 4.9.

Definition 4.10: d-canonical structures.

A d(istinguishing)-canonical frame is of the form F'¢ = (W¢, R%, R$, R},) where
W is a connected set of distinguishing theories, and the R%’s are the R®’s re-
stricted to W4,

Define also d-canonical models M¢ = (Fd, V%) and d-canonical general frames
G4 = (Fd, A"), where V4 is V¢ restricted to W¢ and A is given by X € Adiff
X = V4(¢) for some ¢. @

In the sequel we will have a particular d-canonical model, frame, etc. in mind,
viz. the one consisting of all worlds connected to a fixed d-theory . Therefor,
we will frequently speak about the d-canonical model, frame, etc.

We need several nice properties of the d-canonical model. The easiest to es-
tablish are the truth lemma, via the fact that the d-canonical frame is a tense
frame and standard:

Lemma 4.11.

Let F¢ be a d-canonical frame, then

(i) R and R% are each others converse.
(ii) RS is the inequality relation.

Proof.

(i) is immediate by the fact that F'¢ is a substructure of the canonical frame.
For (ii), the connectedness of F¢ implies that I' # A = RET'A. The fact that
every d-theory contains a witness p A D—p ensures that no element of we is
RY -reflexive, so R% is contained in the inequality relation. BHLemma 4.11.
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Lemma 4.12: Truth lemma.
M?E ¢ [w]iff ¢ € w

Proof.

By a formula induction, of which we only give the induction step for the modal

operators:

Let ¢ be of the form <.

First, suppose M ¢ w |= ¢. We show that this implies the existence of a v with

Réwv and M%v | ¢: for O € {F, P} this is immediate by lemma 4.7, for

¢ = D we also need lemma 4.11(ii), namely the fact that v is an R%-successor

of w if v # w. By the induction hypothesis then, we get: there is a v with R wo

and 9 € v. So by definition of R we get O € w.

For the other direction, suppose ¢9 € w. By Lemma 4.7 there is a v with R wo

and ¥ € v. By the induction hypothesis M% v }= 9. Again, for ¢ € {F, P}

this immediately implies M¢,w |= O, for & = D we need lemma 4.11(ii) once

more (now we use Rp C #.) In both cases we find the desired M?,w |= ¢.
BHLemma 4.12.

So it is left to prove that the underlying d-canonical frame is in K, or, equiv-
alently, to show that F¢,V |= o for all valuations V. This is immediate by the
following lemma and theorem 2.8.

Lemma 4.13.
d-canonical general frames are discrete.

Proof.
Let w be a d-theory or world in a d-canonical general frame G¢ = (F'¢, A9). Let
p be the propositional variable such that Op € w, then by the truth lemma w
is the only d-theory of G% with Op € w. So {w} = V¢(Op) € A%

BLemma 4.13

Proof of theorem 4.1.
Soundness is immediate.
For completeness, suppose ¥ I ¢, then £ U {—¢} is consistent, so by lemma 4.6
there is a d-theory ¥’ with ¥ U {-¢} C ¥'.
Let M? = (F?,V9) be the d-canonical model with X' € W¢. By lemma 4.13
and theorem 2.8, F¢ |= o and by the truth lemma, M¢ | ¢ for all ¢y € SU{~¢}.
So we obtained I |+ ¢.

HTheorem 4.1
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5. Why it is not trivial.

Let us now consider a monadic similarity type S which is not omnidirectional.
It suffices to take the case where we have only one diamond F besides D. We
would like to extend the results of the previous section to this case, but there
seem to be two problems:

The first of these was already noted by Gabbay [5] and is also discussed in
Gargov and Goranko [8].

The point is the following. In the previous section we showed that it is not
sufficient to prove completeness by purging the canonical frame of Rp-reflexive
points: their predecessors also needed to be kicked out, and the predecessors
of those, ad infinitum. In our ‘constructive’ approach this problem arises in
the following way: it is not sufficient to show that Op A ¢ is consistent if ¢
is so, we must also prove that ¢o A O1(¢1 A Op) is all right if ¢o A C14 is,
etc. In the tense-logical situation, we can do this by changing our ‘perspective’
on the formula, namely by moving the ¢;-position to the top level: we look
at ¢1 A O1'go (which is consistent iff ¢o A G141 is so), then we insert Op,
obtaining (Op A ¢1) A O1°¢e. Returning to the old ‘perspective’ we see that
indeed ¢g A O1(#1 A Op) is consistent if ¢o A O14; is consistent. It will be clear
that tense operators are indespensable instuments for this surgery.

We will now prove that it really goes wrong in the uni-directional case:

Definition 5.1.
Let p be the formula G(p — Dp), p' the formula p A FT. ®

Note that p is a Sahlqvist formula, its equivalent p" is VzVy(Rzy — Rpyy). So
p says: all R-successors are Rp-reflexive.

Now, recall that KpD*(p') is the axiom system with the following axioms:

(CT) all classical tautologies

(DB) ©(pVg) — (OpV Oq)

(D1) p— DDp

(D2) DDp— (pV Dp)

(D3) Oop—pVDp

() #
Its derivation rules are MP, UG, SUB and IRp. If we had an analogon of
theorem 4.1 for this logic, Kz D% (p’) should be inconsistent, for we have

Proposition 5.2.

F
Kp,—
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Proof.

It suffices to show that p’ has only non-standard frames.

Assume F = (W, R,Rp) | p', w aworld of F. By F,w |= OT w has a successor
v, by F |= p*(w), v is Rp-reflexive. But then F is not standard. |

But, KpD*(p') is not inconsistent, as we can easily show by considering non-
standard frames again:

Proposition 5.3.
KpD* (o) L

Proof.
We will define a consistent set A with KzD%(p’) C A. Consider the following
non-standard frame F = (W, R, Rp):

w = {w,v}
R = {(wv)}
Rp = {(w’v)’(vvw)’(v’”)}

and set A = {¢ | F,w | ¢}. Clearly then L ¢ A. To prove our claim that
KrD*(p') C A, we first show that A contains the axioms of KrD*(p'). This
is fairly trivial: for instance, p’ is in A as

F = Vy(Rey — Rpyy)[w]

Concerning the rules, the only thing worth treating is that A is closed under
(IRp): but this is immediate by the fact that w itself is Rp-irreflexive.
BProposition 5.3

This problem is not difficult to mend: a close inspection of the completeness
proof in the previous section reveals that the essential property that we need
and which omnidirectional similarity types automatically give us, is the deep
insertion property

FW(Op,m,¢) on = k-0
for all m € w and p not occurring in ¢ or g

(DIP)

The idea is now to extend the definition of the irreflexivity rule so as to obtain
a logic in which the extension lemma holds again:

Definition 20.
Define the following set of derivation rules:

F -1W(0p, 'rn,‘l/l) = F -nﬁ
for all m € w and p not occurring in ¥

(IRp)

Lemma 5.5. (Deep Insertion Lemma)
Let A be a logic having (IR})). Then A has (DIP).
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Proof.
By the following chain of consequences (where we assume that p does not occur

in ¢ or in 7):

FW(Op,m,¢) =1 (assumption)

= F(-nAW(Op,m,4)) (PL)

= F-W(Op,m+1,-nA¢) (evaluation of W)

= F-o(mAd) (IRp)

= F¢—on (PL)
BHLemma 5.5

So for a similarity type where not all diamonds have converses, it is necessary
to have the rule (IR}) instead of (IRp). This was already noted by Gabbay [5]
and by Gargov and Goranko [8], from which we derived the above example. It
is not yet clear whether this extension is also sufficient to prove the analogon of
the SD-theorem, at least if we want to consider axiom systems with arbitrary
Sahlqvist axioms. For, there is another difference between the tense logical case
and the unimodal one.

This second problem seems to be more serious; assume that, analogous again to
the previous section, we have constructed a d-canonical model M ¢ for a MCS
¥. We want to prove F¢ |= o, where o is the Sahlqvist axiom added to the logic
KgD%. In the tense logical case, we could do this, by using a special kind of
valuations which we called rudimentary. We showed that for such a valuation

FLV o

This path however can only be taken if we have the converse diamond of F in the
language (cf. the proof of Lemma 2.1); in the unidirectional case rudimentary
valuations need not be admissible. It even turns out that not every d-canonical
frame validates o. We consider an example:

Definition 5.6.
Let 7 be the formula 0 = FGp — GFp. 22|

Clearly then 7 is a Sahlqvist formula; its first order equivalent is the Church-
Rosser formula

7*(z) = VyVz(Rzy A Rzz — 3t(Ryt A Rzt))

We will give a distinguishing theory A with F¢ j& y(A) for the d-canonical
frame of A.

Definition 5.7.
Consider the following non-standard frame F = (U, R, Rp):
The set of possible worlds is given as W = {u,v,w} U {vn, Wn,zn | n € w}.
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The accessibility relation R holds as follows: Ruv, Ruw,Rvv, and Rwwy, all n,
Rv,zo and Rw,zo, all n, and Rz,Tni1, all n, viz.

Zo T3 E79

Finally, we define a model M on F. Let the propositional variables of the

language be named p, g, 7, po,p1,P2;---
The valuation V is defined by

Vip)={u}  V(g)={v} V(r) = {w}
V(p3n) = {vn} V(P3n+1) = {wn} V(p3nt2) ={za}

Lemma 5.8.
M = o for all substitutions o.

Proof.
It is our aim to show that for all formulas ¢ and t € U:

M,t|= FG$ — GF¢

For ¢ # u this is immediate by F | v°(t).
Fort=u,let Vz = {n € w| M,vn |= ¢} and Wy = {n € w | M,w, |= ¢}.
By a straightforward induction to ¢ we can show:

Vs and Wy are either both finite or both cofinite.

Now assume M, u |= FG¢; without loss of generality we suppose that M,v |=
G¢. So Vy contains all vy, but then Vg and Wy are both infinite. This implies
M,w |= Fé. As we have M,v |= F¢ too, we obtain M,u = GF¢.

BLemma 5.8

Definition 5.9.
Let for t € W, A; be the set {¢ | M,t = ¢}. x|
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Lemma 5.10.
For every t in W, A, is distinguishing.

Proof.
By induction to m we will prove:

For all t € W, ¢ € Ay, there is a p such that W(Op, m, ¢) € A.

For m = 0, let t € U. By definition of the valuation V, there is a propositional
variable p; such that V(p) = {t}. So M,t |= Opy, giving W(Op;,0,¢) € A;.
Form=k+1,lett € W and ¢ € A;. The only interesting case is where ¢ has
the form ¢ A Ox.

If M,t = 9 A Oy, there is a t' with Rott' and M,t' |= x. By the induction
hypothesis, there is a p with M,t' | W(Op, k, x). But this means

Y AOW(Op,k+1,x) = W(Op,k,¢) € As.
BLemma 5.10

Lemma 5.11.
Let F? be the d-canonical frame of A,. Then F¢ }£ v°(A,).

Proof.
It is straightforward to verify that in M 2 A, and A, are Rp-successors of A,.
Let ¥ be a maximal consistent Rp-successor of both A, and A,,. We can prove
that such a ¥ cannot be distinguishing by showing that for each propositional
variable s

Gs—s€eX

For, if s € {p,q,7} U {pan+1,P3n+2 | » € w}, we have G(Gs — s) in Ay, so by

the truth lemma M% A, | G(Gs — s), immediately giving the above claim.

For s € {p3n | n € w} we can prove something similar, now using A.
BLemma 5.11

Note that in the situation above, we have an example of a Sahlqvist formula
which is not persistent with respect to the class of discrete frames: let G = (F, A)
be the general frame with F' as defined in 5.7 and X € A if either X or its com-
plement finite. Then G is discrete, G |= v, while F' | 7.

Sahlqvist tense formulas however are still persistent for discrete general frames.
Note that for a uni-directional similarity type, atoms are the only strongly pos-
itive formulas, so the set of St-formulas is rather small. Still, for this restricted
set we do have a completeness theorem:

Definition 5.12.
Let S be an arbitrary similarity type of constants and diamonds. KsD* is the
basic S-logic extended with the set of rules (IR}). 2
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Theorem 5.13
Let S be an arbitrary similarity type of constants and diamonds, and ¥ a set
of Sahlgvist tense formulas. Then

KsD*(X) is strongly sound and complete for KZ.

Proof.
An copy of the proof in section 4, using lemma 5.5 instead of 4.6. 2|

Other soothing results will appear in the extended version of this paper and
in [28]. We conjecture that for any individual set of Sahlqvist axioms, the
completeness like in Theorem 5.13 can be shown to hold, but we are doubtful
whether there is a uniform proof (analogous to that of Theorem 4.2) taking care
of all Sahlqvist axiomatizations at once.

6. The SN¢-theorem.

We are now ready to prove a completeness theorem for a tense logic having
other non-¢ rules besides (IRp).

Definition 6.1.

Let S be a tense similarity type containing the D-operator, ¥ a set of St-formulas
and E a set of arbitrary formulas. K;D*(Z, —E) is the logic K5D" extended
with the axioms X and the non-£ rules for all £ € E. 2]

Recall that the above definition implies that KD (X, —E) has the following
axioms:

(CT) all classical tautologies
(DB) ©(pVg) — (opV Oq)
(Iv) ¢—0O%p

(D1) p— DDp

(D2) DDp— (pV Dp)

(D3) ¢p—pV Dp

(x) =

Its rules are:
(MP): (UG), (SUB)a (IRD) and {NﬁR | 6 € E}'

Recall too that the class Ké’_g) was defined as the class of standard S-frames
with
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FEo foralloin ¥
Fuwé foralwin F,{in E

Note that if all £’s have local first order equivalents ¢fon the frame level (for
example, if they are Sahlqvist formulas), then Ké’_g) is elementary, defined by

. FEVeo®(z) forallceX
FinKg,-z) < { F | Vz-¢f(z) forall ¢ €E

So, the theory below takes care of many classes of frames, for example the
asymmetric or intransitive frames (cf. the characterizations given in the intro-
duction).

Theorem 6.2 (SN¢-Theorem).
Let S,¥ and E be as in definition 6.1. Then

K%D*(%,—E) is strongly sound and complete for Ké‘.,—a)

The proof of theorem 6.2 is in fact a straightforward adaptation of the proof
in section 4. There we started with a MCS A and inserted in A, for every
m € w and formula ¢ € A, formulas W(Op,m, ¢), in order to witness the
Rp-irreflexivity of all worlds connected to A. Here we will also add formulas
namely of the form W(-¢(p1,...,Pn), ™, @), this time in order to ensure that
the canonical-like general frame we end with is not only standard (with respect
to Rp), but also in K_z. So we set

Definition 6.3.
A set A of S-formulas is witnessing if it satisfies
(i) A is maximal consistent.
(ii) A is distinguishing.
(iii) for all natural numbers m, formulas ¢ € A and £ € E, there are
propositional variables p1,...,pn wWith W(=£(p1,...,Pa), m,9) € A.

Lemma 6.4.
Every maximal consistent set A has a witnessing extension A’.

Proof.
An straightforward analogon of Lemma 4.6. 2]

Definition 6.5.

A w(itnessing)-canonical frame is of the form F* = (W"¥, RY)ves where WY is
a ~p-connected set of witnessing theories and Ry is the canonical accessibility
relation of V, restricted to W¥. Witnessing models and witnessing general
frames are also defined in the obvious way. For a w-theory A, the w-canonical
frame (model, etc.) of A is the w-canonical frame with A € W*. If we want

to make the set = explicit, we use the term w-canonical structure witnessing

against E. 2]
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Lemma 6.6: Truth Lemma.
Let M™ be a w-canonical model, A a world of M™. Then

MY AE¢ < ¢€A.

Proof.
In the same manner as in section 4, we prove that for every w-theory A and for
every diamond < we have

O¢ € A <> thereis a w-theory A’ with (A,A’) € RY and ¢ € A’

As we can also show that F'¥ is standard in the sense that for every © the
accessibility relations of & and <O~ are each other’s converse, and R7, is the
inequality relation, the truth lemma follows by a straightforward formula in-
duction. BLemma 6.6

Lemma 6.7.
Let G* = (F, A¥) be a w-canonical general frame witnessing against =.

Then F¥ is in K¥5.

Proof.
Let A be a world of F. As A is a w-theory of the logic, there are propositional
variables § with —¢(5) € A. By the truth lemma then, for all £

MY, u = =¢(5)

So F¥,A }£ &, for all £ € E. The proof that F'* is standard runs just like in
section 4.
=)

Proof of theorem 6.2.

Soundness is already proved in the introduction to this paper. For completeness,
let A be a K5D* (X, —E)- consistent set of formulas. By the extension lemma,
A is contained in a w-theory A’. Let M be the w-canonical model of A’. By

the truth lemma,

M A" = ¢ forall ¢ € A,
By lemma 6.7, F'* is in Kfs. It is in Ky by the facts that G* is discrete (every
w-theory is distinguishing!) and that G* |= X. So we have found A a model

based on a frame in the intended class Kz; _5)-
fBTheorem 6.2

Just as in the previous section, we can prove a poorer version of Theorem 6.2 for
arbitrary (not tense) similarity types, but we leave this for the extended version
of this paper, and for [28].
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7. Conclusions and Questions.

7.1 General Conclusions.

For a wide multi-modal setting, we have generalized versions of Gabbay’s Ir-
reflexivity Rule and in the same way as the irreflexivity rule characterizes the
irreflexive frames, the non-£ rule is sound precisely on the class K_; of frames
F with for all worlds F,w }£ £. In general, this class K_¢ will not be definable
in the modal language itself.

The main result of this paper, the SN¢-theorem 6.2, is a meta-theorem on com-
pleteness stating that for a certain, well-defined set St of formulas,

any extension of the minimal modal logic
with a set ¥ of axioms from this set St
and a set ‘—Z5’ of non-¢ rules,

is strongly sound and complete

forthe class of frames Kz _z) ‘characterized’ by ¥ and E.

We would like to stress the fact that classes of the form Kz _z) naturally occur,
and that the main advantage of the SR{-theorem is that the work of axiomatiz-
ing such classes becomes easier, as one can split up the proof, in the following
parts:

(1) finding the proper characterization.

(2) applying the SR{-theorem, immediately obtaining
a strongly sound and complete derivation system.

(3) trying to simplify this system.

An example of this procedure is given below.

We would like to mention the fact that, although we confined ourselves in the
sections 4-6 to similarity types having only constants and monadic modal op-
erators, the statement above also holds for languages with operators of higher
adity. To prove this claim we have to develop the tense logic of polyadic modal
operators. These matters will be dealt with in the extended(!) version of this
paper and in [28], of which it is a chapter. In the above-mentioned versions of
this paper we will also discuss the implications of the SN¢-theorem for Boolean
Algebras with (Additive) Operators.

7.2. Conservativity.

An interesting point which has not been discussed yet concerns the question
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whether non-¢ rules add new theorems to a logic.

Some scattered results are known:

In the introduction we saw an example where a rule is conservative: the logic
KL already axiomatizes the class of irreflexive linear orderings, so adding (IR)
does not produce any new theorem.

On the other hand, adding (IR) to K*L(Gp — p) makes this logic inconsistent,
so here (IR) is not conservative. In [32], Zanardo showed that the irreflexivity
rule used in [4] to axiomatize a branching-time temporal logic, can be replaced
by infinitely many axioms. An similar case is found in cylindric modal logic and
the modal logic of relation algebras (cf. [25, 26]), where adding a non-£ rule to a
finite set of axioms creates a finite derivation system for a logic which is known
not to be finitely axiomatizable when only the orthodox derivation rules (MP),
(UG) and (SUB) are allowed. A striking difference between a uni-directional
similarity type and its tense counterpart concerns the modal logic of the two-
dimensional ‘domino relation’, where an axiomatization of the uni-directional
modal logic needs both infinitely many axioms and a non-¢ rule (cf. [14]), while
the tense logic allows a finite and orthodox axiomatization (cf. [29]).

The general question

Are there natural (syntactic/recursively enumerable) criteria decid-
ing when a non-¢ rule is conservative over a derivation system?

lies (almost) completely open. We have one minor result: recall that a formula
is closed if it does not contain propositional variables (only constants), and that
a logic A has the interpolation property if A F ¢ — 9 implies the existence of
an interpolant x in the common language of ¢ and 9, such that A - ¢ — x and
AFx — .

Proposition 7.2.1

Let A be a logic and ¢ a formula meeting the following constraints:
(i) A has the interpolation property.
(i) for every closed formula v, either A v or A F —.
(i) A(—¢) is consistent.

Then NR is conservative over A.

Proof.

If A is inconsistent, then so is A(—¢), so assume A is consistent, and that is has
(i) and (ii). Denote derivability in A by . To show that N(R is conservative
over A, we must prove

F-¢(p) - ¢ = F ¢, if nop; occursin ¢
So suppose - =£(5) — ¢. Let v be the interpolant of —£(5) and ¢. Clearly v is

a closed formula, so either -y or F —7.
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In the first case we have ¢ by vy — ¢.
Otherwise, by F —£(5) — v we obtain  £(§). So in this case, A(—¢) is incon-
sistent.

HProposition 7.2.1

7.3. An example.

Suppose we want to axiomatize a simple two-dimensional tense logic.

The set of diamond we have in mind is § = {¢,9,0,0}. An intended two-
dimensional frame F is a cartesian product of two irreflexive linear temporal
orders (T, <f) and (T1,<}), i.e. F = (To x T1, <o, <1) where

(zo,21) <o (¥0,¥1) if 21 =y and xo <o Yo
(zo,21) <1 (o,y1) if Zo=wyoand z <3y

The semantics of the diamonds is the obvious one, e.g.
F,V,(z,21) | © ¢ iff there is a @} € Ty with z; <} z} and F,V, (20, 21) |5 ¢

To axiomatize the set of formulas valid on these two-dimensional frames, we
first consider the class K? of tense S-frames here given as F' = (W, Ro, R1). Let
LI1? be the class of such frames that are isomorphic to disjoint unions of two-
dimensional frames.

It is straightforward to show that F is in LI? iff

Each R; is transitive, linear and irreflexive

R;i|R; = R;|R; and R;|R; = R;|R;, for {i,j} = {0,1}.

where R;|R; denotes the composition of R; and R;.

Let St be the extension of S with the difference operator D. An immediate
consequence of the SD-theorem 4.1 is now that the following logic A" is strongly
sound and complete with respect to LI%:

AT has the following axioms:

(CT) all classical tautologies

(DB) ©(pVg)— (CpV <q) (¢ esh)
(CV) <oOp—p (©€9)
(D) D1AD2AD3

(TR) ©Op— Op (0 €s)
(L) Op—O(OpVpVOD) (0 €s)
(IR) ©p—Dp (©€S)
(CP) 010217 — 0201}') (01,02 € S)

and its rules are:

(MP), (UG), (SUB) and (IRp).
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Now we show how to get rid of the D-operator again; the easiest way is to show
first that the D-operator is definable on the class of two-dimensional frames: set

D'p=0¢pVOdVOPIVOPIVOOPVOOPIVOOPV OO
For a two-dimensional frame F' we then have
F|=D¢<—>D'¢

We proceed by defining a translation © from S*-formulas to S-formulas by
setting
(pi)°

(D¢)°

and letting © respect V and —.
Finally we define the axiom system A by giving

axioms: (CT), (DB), (CV), (TR), (LI) and (CP).
rules: (MP), (UG), (SUB) and (IRp).

pPi
D'¢

and the only thing left to prove is, for all S-formulas ¢:
ATF ¢ <= AF§°
But this is rather trivial, using induction to the length of derivations.

We want to stress the point that the advantage of applying the SRD-theorem
here lies in the fact that as soon as we have found a nice characterization of
the intended class of frames, completeness is immediate, and that to prove that
this characterization is correct, we can use first order logic, which makes life
considerably easier.
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