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Inge Bethke
Faculteit Wiskunde en Informatica, Universiteit van Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

Abstract

In this paper, a procedure is given for depleting graph models in a way
such that the representable functions are exactly the stable ones.

1 Introduction

There is a class of models for the untyped A-calculus whose members can be
described in a very elegant and easy way, the class of so-called graph models.

All that is needed for the construction of such a graph model, is an infinite
set A together with an embedding (.,.) : A<* x A — A of the Cartesian product
of the collection of finite subsets of A and A into A. One then obtains a total
application operation  on P(A) by defining for X,Y € P(A)

XeY={a:3ZCY (Z,a) € X}.

The most prominent graph models are the P,-models due to Plotkin [1972] and
Scott [1969], and the D 4-models due Engeler [1981]:

A P,-model is based on an embedding (.,.) : w<* X w — w which is obtained
from an injective coding p : w X w — w and a bijection e : w<* — w by defining

(Z,n) = p(e(Z),n).

D s-models are obtained from underlying sets G(A) which have the property
that G(A)<“ x G(A) C G(A): simply take any nonempty set A, and let G(4)
be the least set containing A and all ordered pairs (Z,b) consisting of a finite
set Z C G(A) and an element b € G(A), assuming that elements of A are
distinguishable from ordered pairs.

Any graph model is a model for the untyped A-calculus, since (P(A),C)is
a reflexive cpo through the Scott-continuous mappings F : P(4) — [P(4) —
P(A)] and G : [P(A) — P(A)] — P(A) given by

F(X)(Y) = X oY and G(f) = {(Z,a) : a € £(2)}.



It follows that the functions representable in P(A) are exactly the Scott-conti-
nuous ones. For more details about graph models, the reader is referred to
Barendregt [1984] and Schellinx [1991].

Recently, in connection with the semantics of classical linear logic, attention
has turned to so-called coherence spaces. Coherence spaces are just a very
special class of Scott domains which, however, come along with so-called stable
morphisms, i.e. morphisms that are Scott-continuous and preserve in addition
meets of pairs bounded above or, in category-theoretic terms, pullbacks.

As graph models are so easily conceived, the question then arises whether,
given an infinite set A and an embedding (.,.) : A<“ x A — A, one can deplete
P(A) in a way such that the representable functions are exactly the stable ones.
In this paper we shall show that this is indeed the case.

The paper is organized as follows: In section 2, we collect some well-known
notions and facts concerning coherence spaces. In section 3, we render precise
the notion of a stable graph model and show that, although the universe may
be heavily depleted, one still ends up with a model for the untyped X-calculus.
Section 4 is addressing the question of existence of stable graph models for
arbitrary embeddings. Here, the key notion is the notion of a meager set. We
describe a construction procedure for stable graph models from meager sets.

2 Coherence Spaces

To fix our terminology and notation, we shall collect in this section a few well-
known notions and facts concerning coherence spaces and briefly review the
theory of A-structures obtained from them. Our exposition is based in part on
Girard [1986] and Girard, Taylor and Lafont [1989].

Definition 2.1 A coherence space is a set (of sets) A which satisfies:
i) Down-closure: if X € Aand X' C X, then X' € 4,

ii) Binary completeness: if A' C A and if for all X, X' € A'(XUX' € A),
then | JA' € A. O

In particular, we have the undefined object, § € A. One may therefore consider
A as a cpo (partially ordered by inclusion), and as such it is algebraic, i.e. any
set is the directed union of its finite subsets. So coherence spaces are a very
special sort of cpos. However, they are better regarded as undirected graphs.

Elements of the set | J A are called atoms. This set will also be denoted by
|A|. The compatibdility relation between atoms is defined by

aZd iff {a,d'} € A

This constitutes a reflexive symmetric relation on |A|, so (|A], Z ) is a graph,
called the web of A.



The construction of the web of a coherence space is a bijection between coherence
spaces and (reflexive symmetric) graphs. From the web one can recover the
coherence space by

XeA— XC|A A Va,d € Xald

So a coherence space A is the set of all coherent subsets of |.A|.
Whereas in Scott-style domain theory the functions between domains are
exactly those which preserve directed joins, this is no longer the case here.

Definition 2.2 Given two coherence space A and B, a function f from A to B
is stable if

i) if X C X' € A, then f(X) C f(X') (monotonicity)
ii) if A’ is a directed subset of A, then f(|JA’) = |J f(A’) (directed union)
fii) if X, X', X UX' € A then f(X N X") = £(X) N f(X") (stability). O

Whereas the first two conditions are entirely familiar from the topological set-
ting, the third - the stability property itself - does not have any obvious topo-
logical significance. However, if the ordered sets \A and B are considered as
categories, then i) states that f is a functor, ii) that it preserves directed joins
and iii) that it also preserves pullbacks.

As such, the collection of stable functions from A to B is not presented as a
coherence space. However, it can be considered as belonging to this very special
class of spaces. Here the crucial observation is that for a given stable function,
a fixed argument and a finite portion of its value, there is a finite least part of
that argument which suffices to give that value portion. Or loosely speaking,
if one has some information on the output, one knows which part of the input
was used to get it.

Lemma 2.3 (Normalisation Lemma) If f is a stable function from A to B,
X € Aand b € f(X), then there is a finite Z C X such that

be f(Z) A VY CX(be f(Y)— ZCY).
PROOF. See e.g. Girard [1986]. O

Since a stable function f from A to B is determined by its values on least
finite sets, f has a unique graph representation, called trace. This gives a
bijection 7 between the set of stable functions and the coherence space of traces
with an obvious inverse F which maps traces onto stable functions.

Theorem 2.4 (Representation Theorem) Let A and B be coherence spaces and
Agin be the set of finite sets in A.



i) Define a compatibility relation on Afn X |B| by
<Z,b>C< 2V > iff

1. ZUZ'e A— bV,
2. ZUZ'e A ANb=b —Z=2".

Moreover, let [A —, B] be the set defined by
Xec[A—=,Ble— X CApinx|B| A Vz,2' e Xz 4.
Then [A —, B] is a coherence space.

ii) Let f be a stable function from A to B. Define the trace of f, T(f), by
T(f) ={< Z,b>€ Asinx|B| : b€ f(Z)AVZ' C Z(be f(Z') — Z' = Z)}.
Then 7(f) € [A —, B].

iti) Let X € [A —, B]. For Y € A, define F(X)(Y) by

FX)Y)={be|B|:3ZCY < Zb>e X}.
Then F(X) is a stable function from A to B.

iv) 7 and F are mutually inverse constructions, i.e. for all stable functions
f from A to B and all X € [A —, B] one has f = F(7T(f)) and X =
T(F(X)).

PROOF. See e.g. Girard [1986]. O

Coherence spaces can be used to give a semantics to the untyped A-calculus.
Here one can proceed in the same way as in the case of reflexive complete lattices
or reflexive complete partial orders, that is

Definition 2.5 Let A be a coherence space.
i) Ais reflezive if [A —, A] is a retract of A, i.e. there are stable functions
F:A-[A—, A
G:[A—, Al - A
such that Fo G = id[A_%A].
ii) Let A be reflexive via the maps F and G.
1. For X,Y € A, define

X+Y={a€c|Al: IZCY < Za>eF(X)}



2. Let p be a valuation in A. Define the interpretation [ ], : A — A by
induction as follows
[=], = o(=)

[MN], = [M],«[N],
De.M], = G(T(AX € A[M],(p=x)))- O

Checking that [ ], is well-defined is a boring but straightforward exercise. For
this and the following theorem we refer the reader to e.g. Girard [1986].

Theorem 2.8 Let A be a reflexive coherence space via F, G and let M =
(A,*,[ 1)- Then

i) M is a A-model.
ii) M is extensional iff Go F =id4. O

In the next section we shall show that stable graph models arise as reflexive
coherence spaces.

3 Stable Graph Models

Let us first make precise what we mean by a stable graph model.

Definition 3.1 Let A be an infinite set and (.,.) : A<“ x A — A be an embed-
ding of the Cartesian product of the collection of finite subsets of A and A into
A. For X,Y € P(A), define

XeY={a€A:3ZCY (Z,a) € X}.
Then A C P(A) is a stable graph model if
(i) Ais a coherence space,
(i1) A is closed under application, i.e.

VX, Ye A XeY €A,
(ifi) for all X,X",Y,Y’ € A, if XUX',Y UY" € A, then
(XnX)e(¥YNY')=XeYNX oY/,

(iv) every stable function from A to A is representable in A, i.e. if f is a stable
function from A to A, then

IXe AVY €A XeY =f(Y). O



Note that this definition allows for stable graph models A the atom set |.A| of
which may be properly included in the carrier set A: clearly |A| C A, the reverse
inclusion, however, does not follow from the above definition. What does follow
from the definition is that, contrary to ordinary graph models, A # P(A) (see
below).

Any stable graph model may in a natural way be regarded as a reflexive
coherence space such that both the canonical application operations, * and e,
coincide. It follows that any stable graph model is in fact a A-model.

Lemma 3.2 Let A be a stable graph model.
(i) For (Z,a),(Z',a) € | A}, if (Z,a) Z (Z',a'), then

1. ZUZ'e A—ald,
2. ZUZ'€e ANa=d —Z2=27".
(ii) For X € A4, {< Z,a >: (Z,a) € X} N (Agin x |A]) € [A =, A].
(iii) For X € [A —, A], {(Z,a) :< Z,a > X} € A
(iv) {(Z,a) :< Z,a >€ Afin x | A} C |A|
(v) A#P(4)
PROOF. (i) Let (Z,a),(Z’,a') be compatible and suppose that ZU Z' € A.
1. Then {(Z,a),(Z',a")} € A and {(Z,a),(Z',a")} ¢ (ZU Z') = {a,d'} € A.

Hence a Za'.
2. Suppose that @ = a’. From 3.1.(iii) it follows that

{a} ={(Z,0)}¢(Z20Z")n{(Z',0)}¢ (20 Z") = ({(2,0)} N {(Z',0)}) ¢ (2L 7).

Thus {(Z,a)} N {(Z’,a)} # §; hence (Z,a) = (Z’,a); therefore Z = Z', since
(.,.) is injective.

(ii) Clearly, {< Z,a >: (Z,a) € X} N (Afin x |A]) C Agin X |A], and from (i)
it follows that this set is coherent.

(iii) Let X € [A —, A]l. Then X = 7(f), for some stable f. Pick Xy € A
representing f. We shall show that {(Z,a) : < Z,a >€ X} C Xj;.

Let (Z,a) € {(Z,a) :< Z,a >€ X}. Then, by 2.4(ii)

(t) a€f(2)
and
(#) VZ'CZ(a€f(Z')— Z'=2).

From (1) it follows that a € Xy e Z. Thus (Z',a) € Xy, for some Z' C Z. But
then a € X; 8 Z' = f(Z). So Z = Z' by (}).

(iv) Let < Z,a >€ Afin % |A|l. Then {< Z,a >} € [A —, A] Thus {(Z,a)} €
A, by (ii1).



(v) Suppose the A = P(A). Pick a € A and put Z = {(0,a),({a},a)}. Then
Z € A. Hence {< 0,a >,< {a},a >} € [A —, A] by (ii). But {< 0,a >,<
{a},a >} is incoherent by 2.4(i)2. O

Theorem 3.3 Let A be a stable graph model and p be a valuation in A. Define
the interpretation [ ], : A — A by induction as follows.

[=], = o(2)
[MN], = [M], «[N],
De.M], ={(Z,a) :< Z,a >€ T(AX € A[M] (4:=x))}-
Then M = (A,e,[]) is a A-model and the functions representable in M are
exactly the stable ones. Moreover,
M is extensional iff |A| = {(Z,a) : < Z,a >€ Afin x |Al}.
PROOF. For X € Aand Y € [A —, A], define
F(X)={< Z,a>: (Z,a) € X} N (Asin x |A4])

G(Y)={(Z,a) :< Z,a>€Y}.

From the preceding lemma it follows that F : A — [A —, A] and G : [A —,
A] = A. Clearly, F and G are both stable and F o G = id4_,,.4). Hence Ais
reflexive via F' and G. Moreover, observe that for X,Y € A one has that

XeY={ac|A:3ZCY((Z,a) € X A < Z,a>€ Agin x |A])},
since A is downwards closed and closed under o. Thus
XeY={a€|A]:3ZCY <Z,a>eF(X)}=Xx*Y.

It therefore follows from theorem 2.6 that M is a A-model.

Clearly, o is monotone and continuous in its second argument, and meets, by
3.1.(iiii), the stability condition. This means that every representable function
is stable. The converse is given by 3.1(iv). So the functions representable in M
are exactly the stable ones.

Finally, observe that

M is extensional — G o F = id 4, by theorem 2.6(ii)
— |A] €{(Z,a) :< Z,a >€ Afin X |Al}
—s A ={(Z,a) : < Z,a >€ Agin x | A}, by 3.2(iv)
— GoF =idy
— M is extensional, by theorem 2.6(ii). O

Corollary 3.4 Let A be an extensional stable graph model. Then |A| # A.




PROOF. Let A be extensional and suppose that |A| = A. Pick a € A and put
Z = {(8,a),({a},a)}. Then (Z,a) € A, hence (Z,a) € |A|, and therefore, by
theorem 3.3, Z € Afin. Thus Z,{(0,a)} € A, Z ¢ X = {(0,a)} ¢ X, for all
X € A but Z # {(0,a)}. So A is not extensional. Contradiction. O

In the next section we shall address the question whether, given an embedding
(.,.): A<“ x A — A, there always exists a stable graph model A C P(4).

4 Existence of Stable Graph Models

In this section we shall propose a procedure to produce nontrivial stable graph
models for arbitrary nonsurjective and rather ‘well-behaved’ surjective embed-
dings.

Let us start with fixing an embedding (.,.) : A<“ x A — A.

Definition 4.1
(i) Let A’ C A. A’ is meager® if

V(Z,a)e A'(Z=0 A a€ A").
(ii) Let A’ C A be meager. Define A, C A recursively by
Ag=A
[o(X) «— X C A4
Api1 =AU {(Z,a) € A : Ta(Z) A Ta({a})}
Tnp1(X) = X CAnp1 A

1. VY(Tu(Y) — Tp(X o Y))
2. Y(Z,a),(Z",0) € X(Tn(ZUZ) — Z=2")

(iii) Let A’ C A be meager. Define Ay C P(A) by
XecAy —VZeP(X)NA“InT,(Z) O
We shall prove that Ay is indeed a stable graph model. First observe that
Lemma 4.2 For n € w,
(i) VXVX'(To(X) A X' CX — Tn(X'))
(i) VX(Va,a' € X Tn({a,a'}) — Ta(X))

11t should be noted that the notion of a meager set is not taken from set theory, but follows
Barendregt and Longo [1980].




PROOF. By induction on n.

(i) The base case is trivial. For the induction step let X' C X be such that
I'41(X). To prove I'ny1(X'), let Y be such that I'y(Y). Then I'»(X oY), and
as X' eY C X eV, it follows from the induction hypothesis that I', (X’ ¢ Y).
The second condition is trivial.

(ii) The base case is trivial. For the induction step let X be such that T'n11({a,a’}),
for all a,a’ € X. To prove I';11(X), let Y be such that I'y(Y) and let
b,b' € X oY. Then I'11({(Z,0),(Z',b')}), for some (Z,b),(Z',b") € X such
that Z,Z' CY. Thus I'({(Z,b),(Z",b')} oY), i.e. Tp({b,0'}). It follows from
the induction hypothesis that I';,(X @ Y). The second condition is immediate.
a

Lemma 4.3 For n € w,
(i) ¥2Ya((Z,0) € Ans1 — Tn(Z) A Ta({a}))
(ii) VmVX(Trp(X) — Thym(X))
(iii) VmYXVX'(Tn(X) A Th(X') A Trpm(X UX') — To(XUX'))

PROOF. By simultaneous induction on .

For n = 0, the truth of (iii) is immediate.

(i)o This is trivial for (Z,a) € A;\Ao. Andif (Z,a) € Ay, then Z =0 C Ag and
a € Ag, since Ap is meager.

For (ii)o we have to show that I';(X) holds for all m and X C Ay. Clearly,
To(X) if X C Ao. To prove I'my1(X), let Y be such that I'y(Y). Then, as
X C Ap and Ay is meager, it follows that X ¢ Y C Aq. Hence by the induction
hypothesis I';»(X o Y). The second condition follows from the fact that Z = 0,
for all (Z,a) € X.

For the induction step assume that (i),-(iii)» hold.

(i)n+1 Let (Z, a) € An+2. If (Z, a) € An+2\An+1, then Pn+1(Z) and 1",,.,.1({0,}).
If (Z,a) € Apt1, then T'n(Z) and T'n({a}), by (i)n. Therefore I'ny1(Z) and
Ti1({a}), by (i

We prove (ii)n+1 by induction on m. For m = 0, this is immediate. For the
induction step let X be such that I'py1(X). Then X C Any1 € Ant14m+1. Now
let Y be such that Tpy14m(Y). Put Y = J{Z : Fa((Z,0) e X A ZCY)}.
Then X oY = X oY'.

Claim. Va,a' € Y' T'n({a,a'}): Let a,a’ € Y'. Thena € Z,d' € Z', for
some (Z,b),(Z",b') € X. Since X C Apnyy, it follows from (i), that I',(Z) and
T'n(Z'). Moreover, Z U Z' CY, and hence by 4.2(i) Tnt14m(Z U Z'). Whence
T'n(Z U Z') by (iii)n; therefore I'n({a,a’}), again by 4.2(i).

It now follows from the claim and 4.2(ii) that I'»(Y”). Whence I'n,(X oY”), and
so (X Y). Therefore I'nimy1(X oY) by (i) .
For the second condition let (Z,a), (Z’,a) € X and assume that Lpny14m(ZUZ’).
Then T',,(Z U Z') by (i)n and (iii)n. Thus Z = Z'.
(iii)n+1 Let X, X' be such that Fn+1 (X), Fn+1 (XI) and Fn+1+m(X 0] X'). To



prove T'py1(X U X'), let Y be such that I'n(Y). Then I'p(X @ Y), Ta(X'eY).
Put Y =U{Z : 3a((Z,a) e XUX' A ZCY)}. ThenY' CY and therefore
T, (Y") by 4.2(). Thus T'nym(Y’) by (ii)n. Whence Trtm((XUX')eY'). Now
observe that

(XUX')eY' =(XUX)eY=XeYUX oY.

Hence I',(X ¢ Y U X' oY) by the induction hypothesis, i.e. Tn((X U X') 0 Y).
For the second condition let (Z,a),(Z',a’) € X U X' be such that T'»(Z U Z’).
Then Tpim(Z U Z') by (ii)n. Therefore Z = Z'. O

We are now in the position to prove

Theorem 4.4 Let A’ C A be meager. Then Ay is a stable graph model.
Moreover, A4 is extensional provided (.,.) is surjective.

PROOF. In order to prove that A4 is a stable graph model, we shall check the
conditions 3.1(i)-(iv), i.e.

Agi is a coherence space: Clearly, A4/ is downwards closed. For binary com-
pleteness let A’ C Ay be such that X U X’ € Ay, for all X, X' € A'. To
prove that |J A’ € Aar, let Z C |J A’ be finite. Now let a,a’ € Z. Then a € X,
a' € X', for some X, X' € A'. Thus {a,a'} C XUX' € Ay. Hence'n({a,a'}),
for some n. Combining 4.3(ii) and the finiteness of Z yields the existence of
some m such that for all a,a’ € Z T'u({a,a'}). Therefore I'y(Z) by 4.2(i).

Agar is closed under o: Let X,Y € Ay and Z C X o Y. Pick finite Z' C X
and Z" CY such that Z = Z'  Z". Then I'x(Z'), T'm(Z"), for some n,m. Let
k =max{n,m}. Then T's+1(Z'), Tx(Z") by 4.3(ii). Therefore I'x(Z’ e Z"), i.e.
T'w(2). ,

For adl X,X',Y,Y' € A, if XUX',YUY' € A, then (XNX')e (Y NY') =
X oY NX'eY': Since o is monotone in both its arguments, it follows that

(XNnX)e(YNY')CXeYNX oY,

for all X, X",Y,Y' € Ays. For the reverse assume that X UX', Y UY' € Ay
and let @ € X ¢ Y N X' oY’. Then there are (Z,a) € X,(Z',a) € X' such
that Z C Y, Z' CY'. Let n,m be such that I',({(Z,a),(Z",a)}), Tm(Z U Z')
and put k =max{n,m}. Then T'x11({(Z,a), (Z',a)}) and T'x(Z U Z') by 4.3(ii).
Therefore Z = Z'. Hence (Z,a) € XNX',Z CY NY’; thereforea € (XNX')e
(YynYy').

Every stable function from Aa: to Aar is representable in Agr: First observe
that by 4.3(ii), if < Z,a >€ (Aa)fin X |Aas|, then there is an n such that
(Z,a) € A,. Now let f be a stable function from A4 to Aa and put X =
{(Z,a) :

< Z,a >€ T(f)}. Let Z C X be finite. Then Z C Any1, for some n. To
prove I'n11(Z), let Y be such that I'y(Y) and a,a’ € ZeY. Then there are
Z'.2" C Y such that (Z',a),(2",d’) € Z. By 4.2(i)) Z'U Z" € Ay, and
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< Z'.a >, < 2" d >€ T(f). Hence {a,a'} € Ay, since T(f) is coherent.
So I'nym({a,a'}), for some m. But as Z C Apy1, it follows from 4.3(i) that
T'n({a}), Tn({a'}). Therefore I'n({a,a'}). Whence I'n(Z oY) by 4.2(ii). The
second condition follows almost directly from the fact that 7°(f) is coherent. So
X € Ay Clearly, X represents f.

Finally suppose that (.,.) is surjective. Then |Aa/| C {(Z,a) :< Z,a >€
AA}.-n x |Aa|}, and, since A4 is a stable graph model, the reverse inclusion
follows from 3.2(iv). Hence A4 is extensional by theorem 3.3. O

Every embedding comes along with a meager set, namely @. However, Ay =
{0}, the trivial stable graph model. In order to obtain nontrivial stable graph
models, one has to look for nonempty meager sets.

Corollary 4.5 If (.,.) is nonsurjective, then (.,.) has a nontrivial stable graph
model.

PROOF. Let A’ = {a : =3Z,a’ (Z,a') = a}. Then A’ # 0. And, since I'p(A4’)
holds, we can conclude that A’ € A4/, Therefore Ay # {0}. O

We shall end this section with an example of a nontrivial extensional stable
graph model.

Example 4.6 This example lives in P,, with the following standard coding:
For n,m € w, define

p(n,m) = %(n+m)(n+m+ 1).
For Z € w<*, define
e(Z)=n — Z = {ko, -y km—1} With ko < k1... < km-1 A n = Bicm2".
Now define (.,.) : w<® X w — w by
(Z,m) = p(e(2), 7).
Then (.,.) is a bijection with (#,0) = 0. Hence {0} is meager. O
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