Institute for Language, Logic and Information

GOING STABLE IN GRAPH MODELS

Inge Bethke

ITLI Prepublication Series for Mathematical Logic and Foundations ML-91-08

University of Amsterdam

```
The ITLI Prepublication Series
   1986
                                                                                          The Institute of Language, Logic and Information
   86-01
                                                                                          A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus
   86-02 Peter van Emde Boas
                                                                                          Categorial Grammar and Lambua Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I
Forward looking Operators
   86-03 Johan van Benthem
  86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh

86-06 Johan van Benthem

1987

87-01 Jeroen Groenendijk, Martin

Stokhore
                                                                                          Logical Syntax

Forward looking Olokhof

Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
   87-02 Renate Bartsch
                                                                                          Unique Normal Forms for Lambda Calculus with Surjective Pairing
   87-03 Jan Willem Klop, Roel de Vrijer
                                                                                          Polyadic quantifiers
  87-04 Johan van Benthem
87-05 Victor Sánchez Valencia
                                                                                          Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
   87-06 Eleonore Oversteegen
                                                                                          Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
   87-07 Johan van Benthem
   87-08 Renate Bartsch
                                                                                         Type Change in Semantics: The Scope of Quantification and Coordination
   87-09 Herman Hendriks
  1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                          Expressiveness and Completeness of an Interval Tense Logic
   LP-88-02 Yde Venema
                                                                                          Year Report 1987
   LP-88-03
                                                                                          Going partial in Montague Grammar
Logical Constants across Varying Types
  LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
                                                                                          Semantic Parallels in Natural Language and Computation Tenses, Aspects, and their Scopes in Discourse
  LP-88-06 Johan van Benthem
  LP-88-07 Renate Bartsch
                                                                                          Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
  LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe
                                                                                          A Blissymbolics Translation Program
  ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: Lifschitz' Realizabiility
ML-88-02 M.D.G. Swaen

The Arithmetical Fragment of Martin Löfe Tone
                                                                                The Arithmetical Fragment of Martin Löfs Type Theories with weak Σ-elimination
                                                                                         Provability Logics for Relative Interpretability
On the Early History of Intuitionistic Logic
  ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troclstra
ML-88-05 A.S. Troclstra
                                                                                          Remarks on Intuitionism and the Philosophy of Mathematics
  CT-88-01 Ming Li, Paul M.B. Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees

Maintaining Multiple Representations of Dynamic Data Structures

CT-88-04 Diek de Joseph Lee Hondrice
                                                                                         Maintaining Multiple Representations of
Dynamic Data Structures
Computations in Fragments of Intuitionistic Propositional Logic
  CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
                                                                                          Machine Models and Simulations (revised version)
   CT-88-05 Peter van Emde Boas
                                                                A Data Structure for the Union-find Problem having good Single-Operation Complexity
 CT-88-07 Johan van Benthem

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy

CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas

Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy

CT-88-01 Marc Jumelet Other prepublications:

On Solovay's Completeness Theorem
  1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
                                                                                         Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
  LP-89-02 Jeroen Groenendijk, Martin Stokhof
                                                                         Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang

ML-89-01 Dick de Jongh, Albert Visser

ML-89-03 Dick de Jongh, Franco Montagna
ML-89-05 Rineke Verbrugge

ML-89-06 Michiel van Lambalgen

ML-89-07 Dick of Manual Lambalgen

MI-89-07 Dick of Manual Lambalgen

MI-89-07 Dick of Manual Lambalgen

MI-89-06 Michiel van Lambalgen

MI-89-07 Dick of Manual Lambalgen

MI-89-08 Michiel van Lambalgen
  LP-89-03 Yde Venema
 ML-89-06 Michiel van Lambalgen
ML-89-07 Dirk Roorda
                                                                            Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone Investigations into Classical Linear Logic
  ML-89-08 Dirk Roorda
                                                        Provable Fixed points in I\Delta_0+\Omega_1
Computation and Complexity Theory: Dynamic Deferred Data Structures
Machine Models and Simulations
  ML-89-09 Alessandra Carbone
  CT-89-01 Michiel H.M. Smid
 CT-89-02 Peter van Emde Boas Machine Models and Simula
CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas
                                                                                                                                            On Space Efficient Simulations
                                                                                        A Comparison of Reductions on Nondeterministic Space
 CT-89-04 Harry Buhrman, Leen Torcnvliet
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
Leen Torenvliet, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr.
CT-89-07 Ming Li, Paul M.B. Vitanyi
                                                                                        A Parallel Functional Implementation of Range Queries
                                                                                        Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity for the Universal Distribution (Prel. Version)
                                                                                        Honest Reductions, Completeness and
Nondeterministic Complexity Classes
avliet On Adaptive Resource Bounded Computations
 CT-89-08 Harry Buhrman, Steven Homer
Leen Torenvliet
 CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet
                                                                                        The Rule Language RL/1
 CT-89-10 Sieger van Denneheuvel
 CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing
                       Peter van Emde Boas
Other Prepublications:
                                                                                                            An Orey Sentence for Predicative Arithmetic
 X-89-01 Marianne Kalsbeck
                                                                                       New Foundations: a Survey of Quine's Set Theory
Index of the Heyting Nachlass
X-89-01 Marianne Kalsocek
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
X-89-04 Jeroen Groenendijk, Martin Stokhof
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
1990 SEE INSIDE BACK COVER
                                                                                        Dynamic Montague Grammar, a first sketch
                                                                                       The Modal Theory of Inequality
Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
```


Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

GOING STABLE IN GRAPH MODELS

Inge Bethke
Department of Mathematics and Computer Science
University of Amsterdam

Going Stable in Graph Models

Inge Bethke

Faculteit Wiskunde en Informatica, Universiteit van Amsterdam Plantage Muidergracht 24, 1018 TV Amsterdam

Abstract

In this paper, a procedure is given for depleting graph models in a way such that the representable functions are exactly the stable ones.

1 Introduction

There is a class of models for the untyped λ -calculus whose members can be described in a very elegant and easy way, the class of so-called *graph models*.

All that is needed for the construction of such a graph model, is an infinite set A together with an embedding $(.,.):A^{<\infty}\times A\to A$ of the Cartesian product of the collection of finite subsets of A and A into A. One then obtains a total application operation \bullet on $\mathcal{P}(A)$ by defining for $X,Y\in\mathcal{P}(A)$

$$X \bullet Y = \{a : \exists Z \subseteq Y \ (Z, a) \in X\}.$$

The most prominent graph models are the P_{ω} -models due to Plotkin [1972] and Scott [1969], and the D_A -models due Engeler [1981]:

A P_{ω} -model is based on an embedding $(.,.): \omega^{<\infty} \times \omega \to \omega$ which is obtained from an injective coding $p: \omega \times \omega \to \omega$ and a bijection $e: \omega^{<\infty} \to \omega$ by defining

$$(Z,n)=p(e(Z),n).$$

 D_A -models are obtained from underlying sets G(A) which have the property that $G(A)^{<\omega} \times G(A) \subseteq G(A)$: simply take any nonempty set A, and let G(A) be the least set containing A and all ordered pairs (Z,b) consisting of a finite set $Z \subseteq G(A)$ and an element $b \in G(A)$, assuming that elements of A are distinguishable from ordered pairs.

Any graph model is a model for the untyped λ -calculus, since $(\mathcal{P}(A), \subseteq)$ is a reflexive cpo through the Scott-continuous mappings $F: \mathcal{P}(A) \to [\mathcal{P}(A) \to \mathcal{P}(A)]$ and $G: [\mathcal{P}(A) \to \mathcal{P}(A)] \to \mathcal{P}(A)$ given by

$$F(X)(Y) = X \bullet Y \text{ and } G(f) = \{(Z, a) : a \in f(Z)\}.$$

It follows that the functions representable in $\mathcal{P}(A)$ are exactly the Scott-continuous ones. For more details about graph models, the reader is referred to Barendregt [1984] and Schellinx [1991].

Recently, in connection with the semantics of classical linear logic, attention has turned to so-called *coherence spaces*. Coherence spaces are just a very special class of Scott domains which, however, come along with so-called *stable* morphisms, i.e. morphisms that are Scott-continuous and preserve in addition meets of pairs bounded above or, in category-theoretic terms, pullbacks.

As graph models are so easily conceived, the question then arises whether, given an infinite set A and an embedding $(.,.):A^{<\omega}\times A\to A$, one can deplete $\mathcal{P}(A)$ in a way such that the representable functions are exactly the stable ones. In this paper we shall show that this is indeed the case.

The paper is organized as follows: In section 2, we collect some well-known notions and facts concerning coherence spaces. In section 3, we render precise the notion of a stable graph model and show that, although the universe may be heavily depleted, one still ends up with a model for the untyped λ -calculus. Section 4 is addressing the question of existence of stable graph models for arbitrary embeddings. Here, the key notion is the notion of a meager set. We describe a construction procedure for stable graph models from meager sets.

2 Coherence Spaces

To fix our terminology and notation, we shall collect in this section a few well-known notions and facts concerning coherence spaces and briefly review the theory of λ -structures obtained from them. Our exposition is based in part on Girard [1986] and Girard, Taylor and Lafont [1989].

Definition 2.1 A coherence space is a set (of sets) A which satisfies:

- i) Down-closure: if $X \in \mathcal{A}$ and $X' \subseteq X$, then $X' \in \mathcal{A}$,
- ii) Binary completeness: if $A' \subseteq A$ and if for all $X, X' \in A'$ ($X \cup X' \in A$), then $\{A' \in A : \Box \}$

In particular, we have the *undefined object*, $\emptyset \in \mathcal{A}$. One may therefore consider \mathcal{A} as a cpo (partially ordered by inclusion), and as such it is *algebraic*, i.e. any set is the directed union of its finite subsets. So coherence spaces are a very special sort of cpos. However, they are better regarded as undirected graphs.

Elements of the set $\bigcup \mathcal{A}$ are called *atoms*. This set will also be denoted by $|\mathcal{A}|$. The *compatibility relation* between atoms is defined by

$$a \cap a'$$
 iff $\{a, a'\} \in A$.

This constitutes a reflexive symmetric relation on $|\mathcal{A}|$, so $(|\mathcal{A}|, \bigcirc)$ is a graph, called the web of \mathcal{A} .

The construction of the web of a coherence space is a bijection between coherence spaces and (reflexive symmetric) graphs. From the web one can recover the coherence space by

$$X \in \mathcal{A} \longleftrightarrow X \subseteq |\mathcal{A}| \land \forall a, a' \in X \ a \subset a'.$$

So a coherence space A is the set of all coherent subsets of |A|.

Whereas in Scott-style domain theory the functions between domains are exactly those which preserve directed joins, this is no longer the case here.

Definition 2.2 Given two coherence space \mathcal{A} and \mathcal{B} , a function f from \mathcal{A} to \mathcal{B} is stable if

- i) if $X \subseteq X' \in \mathcal{A}$, then $f(X) \subseteq f(X')$ (monotonicity)
- ii) if \mathcal{A}' is a directed subset of \mathcal{A} , then $f(\bigcup \mathcal{A}') = \bigcup f(\mathcal{A}')$ (directed union)
- iii) if $X, X', X \cup X' \in \mathcal{A}$, then $f(X \cap X') = f(X) \cap f(X')$ (stability). \square

Whereas the first two conditions are entirely familiar from the topological setting, the third - the stability property itself - does not have any obvious topological significance. However, if the ordered sets \mathcal{A} and \mathcal{B} are considered as categories, then i) states that f is a functor, ii) that it preserves directed joins and iii) that it also preserves pullbacks.

As such, the collection of stable functions from \mathcal{A} to \mathcal{B} is not presented as a coherence space. However, it can be considered as belonging to this very special class of spaces. Here the crucial observation is that for a given stable function, a fixed argument and a finite portion of its value, there is a finite least part of that argument which suffices to give that value portion. Or loosely speaking, if one has some information on the output, one knows which part of the input was used to get it.

Lemma 2.3 (Normalisation Lemma) If f is a stable function from \mathcal{A} to \mathcal{B} , $X \in \mathcal{A}$ and $b \in f(X)$, then there is a finite $Z \subseteq X$ such that

$$b \in f(Z) \land \forall Y \subset X (b \in f(Y) \longrightarrow Z \subseteq Y).$$

PROOF. See e.g. Girard [1986]. \square

Since a stable function f from \mathcal{A} to \mathcal{B} is determined by its values on least finite sets, f has a unique graph representation, called *trace*. This gives a bijection \mathcal{T} between the set of stable functions and the coherence space of traces with an obvious inverse \mathcal{F} which maps traces onto stable functions.

Theorem 2.4 (Representation Theorem) Let \mathcal{A} and \mathcal{B} be coherence spaces and \mathcal{A}_{fin} be the set of finite sets in \mathcal{A} .

- i) Define a compatibility relation on $\mathcal{A}_{fin} \times |\mathcal{B}|$ by $< Z, b > \bigcirc < Z', b' > \text{iff}$
 - 1. $Z \cup Z' \in \mathcal{A} \longrightarrow b \subset b'$,
 - 2. $Z \cup Z' \in \mathcal{A} \land b = b' \longrightarrow Z = Z'$.

Moreover, let $[A \rightarrow_s B]$ be the set defined by

$$X \in [\mathcal{A} \to_s \mathcal{B}] \longleftrightarrow X \subseteq \mathcal{A}_{fin} \times |\mathcal{B}| \wedge \forall x, x' \in X \ x \cap x'.$$

Then $[A \rightarrow_s B]$ is a coherence space.

- ii) Let f be a stable function from \mathcal{A} to \mathcal{B} . Define the trace of f, $\mathcal{T}(f)$, by $\mathcal{T}(f) = \{ \langle Z, b \rangle \in \mathcal{A}_{fin} \times |\mathcal{B}| : b \in f(Z) \land \forall Z' \subseteq Z (b \in f(Z') \longrightarrow Z' = Z) \}.$ Then $\mathcal{T}(f) \in [\mathcal{A} \to_s \mathcal{B}].$
- iii) Let $X \in [\mathcal{A} \to_s \mathcal{B}]$. For $Y \in \mathcal{A}$, define $\mathcal{F}(X)(Y)$ by $\mathcal{F}(X)(Y) = \{b \in |\mathcal{B}| : \exists Z \subseteq Y < Z, b > \in X\}.$

Then $\mathcal{F}(X)$ is a stable function from \mathcal{A} to \mathcal{B} .

iv) \mathcal{T} and \mathcal{F} are mutually inverse constructions, i.e. for all stable functions f from \mathcal{A} to \mathcal{B} and all $X \in [\mathcal{A} \to_s \mathcal{B}]$ one has $f = \mathcal{F}(\mathcal{T}(f))$ and $X = \mathcal{T}(\mathcal{F}(X))$.

PROOF. See e.g. Girard [1986].

Coherence spaces can be used to give a semantics to the untyped λ -calculus. Here one can proceed in the same way as in the case of reflexive complete lattices or reflexive complete partial orders, that is

Definition 2.5 Let A be a coherence space.

i) \mathcal{A} is reflexive if $[\mathcal{A} \to_s \mathcal{A}]$ is a retract of \mathcal{A} , i.e. there are stable functions

$$F: \mathcal{A} \to [\mathcal{A} \to_{s} \mathcal{A}]$$
$$G: [\mathcal{A} \to_{s} \mathcal{A}] \to \mathcal{A}$$

such that $F \circ G = id_{[A \to_{\bullet} A]}$.

- ii) Let A be reflexive via the maps F and G.
 - 1. For $X, Y \in \mathcal{A}$, define

$$X * Y = \{a \in |\mathcal{A}| : \exists Z \subset Y < Z, a > \in F(X)\}.$$

2. Let ρ be a valuation in \mathcal{A} . Define the interpretation $[\![\,]\!]_{\rho}:\Lambda\to\mathcal{A}$ by induction as follows

$$\label{eq:continuous_problem} \begin{split} \llbracket x \rrbracket_{\rho} &= \rho(x) \\ \llbracket MN \rrbracket_{\rho} &= \llbracket M \rrbracket_{\rho} * \llbracket N \rrbracket_{\rho} \\ \llbracket \lambda x.M \rrbracket_{\varrho} &= G(\mathcal{T}(\lambda X \in \mathcal{A}.\llbracket M \rrbracket_{\varrho(x:=X)})). \ \Box \end{split}$$

Checking that $[\![\,]\!]_{\rho}$ is well-defined is a boring but straightforward exercise. For this and the following theorem we refer the reader to e.g. Girard [1986].

Theorem 2.6 Let \mathcal{A} be a reflexive coherence space via F, G and let $\mathcal{M} = (\mathcal{A}, *, [\![]\!])$. Then

- i) \mathcal{M} is a λ -model.
- ii) \mathcal{M} is extensional iff $G \circ F = id_{\mathcal{A}}$. \square

In the next section we shall show that stable graph models arise as reflexive coherence spaces.

3 Stable Graph Models

Let us first make precise what we mean by a stable graph model.

Definition 3.1 Let A be an infinite set and $(.,.): A^{<\omega} \times A \to A$ be an embedding of the Cartesian product of the collection of finite subsets of A and A into A. For $X,Y \in \mathcal{P}(A)$, define

$$X \bullet Y = \{ a \in A : \exists Z \subseteq Y \ (Z, a) \in X \}.$$

Then $A \subseteq \mathcal{P}(A)$ is a stable graph model if

- (i) A is a coherence space,
- (ii) A is closed under application, i.e.

$$\forall X, Y \in \mathcal{A} \ X \bullet Y \in \mathcal{A},$$

(iii) for all $X, X', Y, Y' \in \mathcal{A}$, if $X \cup X', Y \cup Y' \in \mathcal{A}$, then

$$(X \cap X') \bullet (Y \cap Y') = X \bullet Y \cap X' \bullet Y',$$

(iv) every stable function from A to A is representable in A, i.e. if f is a stable function from A to A, then

$$\exists X \in \mathcal{A} \, \forall Y \in \mathcal{A} \ X \bullet Y = f(Y). \ \Box$$

Note that this definition allows for stable graph models \mathcal{A} the atom set $|\mathcal{A}|$ of which may be properly included in the carrier set A: clearly $|\mathcal{A}| \subseteq A$, the reverse inclusion, however, does not follow from the above definition. What does follow from the definition is that, contrary to ordinary graph models, $\mathcal{A} \neq \mathcal{P}(A)$ (see below).

Any stable graph model may in a natural way be regarded as a reflexive coherence space such that both the canonical application operations, * and \bullet , coincide. It follows that any stable graph model is in fact a λ -model.

Lemma 3.2 Let A be a stable graph model.

- (i) For $(Z,a),(Z',a) \in |\mathcal{A}|$, if $(Z,a) \subset (Z',a')$, then
 - 1. $Z \cup Z' \in \mathcal{A} \longrightarrow a \subset a'$,
 - 2. $Z \cup Z' \in \mathcal{A} \land a = a' \longrightarrow Z = Z'$.
- (ii) For $X \in \mathcal{A}$, $\{\langle Z, a \rangle : (Z, a) \in X\} \cap (\mathcal{A}_{fin} \times |\mathcal{A}|) \in [\mathcal{A} \to_s \mathcal{A}]$.
- (iii) For $X \in [A \to_s A]$, $\{(Z, a) : \langle Z, a \rangle \in X\} \in A$.
- (iv) $\{(Z,a) : \langle Z,a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|\} \subseteq |\mathcal{A}|$
- (v) $A \neq \mathcal{P}(A)$

PROOF. (i) Let (Z,a),(Z',a') be compatible and suppose that $Z \cup Z' \in \mathcal{A}$. 1. Then $\{(Z,a),(Z',a')\} \in \mathcal{A}$ and $\{(Z,a),(Z',a')\} \bullet (Z \cup Z') = \{a,a'\} \in \mathcal{A}$. Hence $a \subseteq a'$.

2. Suppose that a = a'. From 3.1.(iii) it follows that

$$\{a\} = \{(Z,a)\} \bullet (Z \cup Z') \cap \{(Z',a)\} \bullet (Z \cup Z') = (\{(Z,a)\} \cap \{(Z',a)\}) \bullet (Z \cup Z').$$

Thus $\{(Z,a)\} \cap \{(Z',a)\} \neq \emptyset$; hence (Z,a) = (Z',a); therefore Z = Z', since (.,.) is injective.

(ii) Clearly, $\{\langle Z, a \rangle : (Z, a) \in X\} \cap (\mathcal{A}_{fin} \times |\mathcal{A}|) \subseteq \mathcal{A}_{fin} \times |\mathcal{A}|$, and from (i) it follows that this set is coherent.

(iii) Let $X \in [\mathcal{A} \to_s \mathcal{A}]$. Then $X = \mathcal{T}(f)$, for some stable f. Pick $X_f \in \mathcal{A}$ representing f. We shall show that $\{(Z,a) : \langle Z,a \rangle \in X\} \subseteq X_f$. Let $(Z,a) \in \{(Z,a) : \langle Z,a \rangle \in X\}$. Then, by 2.4(ii)

$$(\dagger) \quad a \in f(Z)$$

and

$$(\ddagger) \quad \forall Z' \subseteq Z \ (a \in f(Z') \longrightarrow Z' = Z).$$

From (†) it follows that $a \in X_f \bullet Z$. Thus $(Z', a) \in X_f$, for some $Z' \subseteq Z$. But then $a \in X_f \bullet Z' = f(Z')$. So Z = Z' by (‡).

(iv) Let $\langle Z, a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|$. Then $\{\langle Z, a \rangle\} \in [\mathcal{A} \to_s \mathcal{A}]$. Thus $\{(Z, a)\} \in \mathcal{A}$, by (iii).

(v) Suppose the $\mathcal{A} = \mathcal{P}(A)$. Pick $a \in A$ and put $Z = \{(\emptyset, a), (\{a\}, a)\}$. Then $Z \in \mathcal{A}$. Hence $\{\langle \emptyset, a \rangle, \langle \{a\}, a \rangle\} \in [\mathcal{A} \to_s \mathcal{A}]$ by (ii). But $\{\langle \emptyset, a \rangle, \langle \{a\}, a \rangle\}$ is incoherent by 2.4(i)2. \square

Theorem 3.3 Let \mathcal{A} be a stable graph model and ρ be a valuation in \mathcal{A} . Define the interpretation $[\![]\!]_{\rho}: \Lambda \to \mathcal{A}$ by induction as follows.

$$\label{eq:matter_solution} \begin{split} \llbracket x \rrbracket_{\rho} &= \rho(x) \\ \llbracket MN \rrbracket_{\rho} &= \llbracket M \rrbracket_{\rho} \bullet \llbracket N \rrbracket_{\rho} \\ \llbracket \lambda x.M \rrbracket_{\rho} &= \{ (Z,a) \, : < Z,a > \in \mathcal{T} (\lambda X \in \mathcal{A}.\llbracket M \rrbracket_{\rho(x:=X)}) \}. \end{split}$$

Then $\mathcal{M} = (\mathcal{A}, \bullet, \llbracket \ \rrbracket)$ is a λ -model and the functions representable in \mathcal{M} are exactly the stable ones. Moreover,

$$\mathcal{M}$$
 is extensional iff $|\mathcal{A}| = \{(Z, a) : \langle Z, a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|\}.$

PROOF. For $X \in \mathcal{A}$ and $Y \in [\mathcal{A} \rightarrow_s \mathcal{A}]$, define

$$F(X) = \{ \langle Z, a \rangle \colon (Z, a) \in X \} \cap (\mathcal{A}_{fin} \times |\mathcal{A}|)$$
$$G(Y) = \{ (Z, a) : \langle Z, a \rangle \in Y \}.$$

From the preceding lemma it follows that $F: \mathcal{A} \to [\mathcal{A} \to_s \mathcal{A}]$ and $G: [\mathcal{A} \to_s \mathcal{A}] \to \mathcal{A}$. Clearly, F and G are both stable and $F \circ G = id_{[\mathcal{A} \to_s \mathcal{A}]}$. Hence \mathcal{A} is reflexive via F and G. Moreover, observe that for $X, Y \in \mathcal{A}$ one has that

$$X \bullet Y = \{ a \in |\mathcal{A}| : \exists Z \subseteq Y ((Z, a) \in X \land \langle Z, a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|) \},$$

since A is downwards closed and closed under ullet. Thus

$$X \bullet Y = \{a \in |\mathcal{A}| : \exists Z \subseteq Y < Z, a > \in F(X)\} = X * Y.$$

It therefore follows from theorem 2.6 that $\mathcal M$ is a λ -model.

Clearly, \bullet is monotone and continuous in its second argument, and meets, by 3.1.(iii), the stability condition. This means that every representable function is stable. The converse is given by 3.1(iv). So the functions representable in $\mathcal M$ are exactly the stable ones.

Finally, observe that

$$\mathcal{M}$$
 is extensional $\longrightarrow G \circ F = id_{\mathcal{A}}$, by theorem 2.6(ii)
 $\longrightarrow |\mathcal{A}| \subseteq \{(Z,a) : \langle Z,a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|\}$
 $\longrightarrow |\mathcal{A}| = \{(Z,a) : \langle Z,a \rangle \in \mathcal{A}_{fin} \times |\mathcal{A}|\}$, by 3.2(iv)
 $\longrightarrow G \circ F = id_{\mathcal{A}}$
 $\longrightarrow \mathcal{M}$ is extensional, by theorem 2.6(ii). \square

Corollary 3.4 Let A be an extensional stable graph model. Then $|A| \neq A$.

PROOF. Let \mathcal{A} be extensional and suppose that $|\mathcal{A}| = A$. Pick $a \in A$ and put $Z = \{(\emptyset, a), (\{a\}, a)\}$. Then $(Z, a) \in A$, hence $(Z, a) \in |\mathcal{A}|$, and therefore, by theorem 3.3, $Z \in \mathcal{A}_{fin}$. Thus $Z, \{(\emptyset, a)\} \in \mathcal{A}, Z \bullet X = \{(\emptyset, a)\} \bullet X$, for all $X \in \mathcal{A}$, but $Z \neq \{(\emptyset, a)\}$. So \mathcal{A} is not extensional. Contradiction. \square

In the next section we shall address the question whether, given an embedding $(.,.):A^{<\omega}\times A\to A$, there always exists a stable graph model $A\subseteq \mathcal{P}(A)$.

4 Existence of Stable Graph Models

In this section we shall propose a procedure to produce nontrivial stable graph models for arbitrary nonsurjective and rather 'well-behaved' surjective embeddings.

Let us start with fixing an embedding $(.,.): A^{<\omega} \times A \to A$.

Definition 4.1

(i) Let $A' \subseteq A$. A' is $meager^1$ if

$$\forall (Z,a) \in A'(Z = \emptyset \ \land \ a \in A').$$

(ii) Let $A' \subseteq A$ be meager. Define $A_n \subseteq A$ recursively by

$$A_0 = A'$$

$$\Gamma_0(X) \longleftrightarrow X \subset A_0$$

$$A_{n+1} = A_n \cup \{(Z, a) \in A : \Gamma_n(Z) \land \Gamma_n(\{a\})\}$$

$$\Gamma_{n+1}(X) \longleftrightarrow X \subseteq A_{n+1} \land$$

1.
$$\forall Y (\Gamma_n(Y) \longrightarrow \Gamma_n(X \bullet Y))$$

2.
$$\forall (Z,a), (Z',a) \in X(\Gamma_n(Z \cup Z') \longrightarrow Z = Z')$$

(iii) Let $A' \subseteq A$ be meager. Define $\mathcal{A}_{A'} \subseteq \mathcal{P}(A)$ by

$$X \in \mathcal{A}_{A'} \longleftrightarrow \forall Z \in \mathcal{P}(X) \cap A^{<\omega} \exists n \ \Gamma_n(Z) \ \Box$$

We shall prove that $A_{A'}$ is indeed a stable graph model. First observe that

Lemma 4.2 For $n \in \omega$,

(i)
$$\forall X \forall X' (\Gamma_n(X) \land X' \subseteq X \longrightarrow \Gamma_n(X'))$$

(ii)
$$\forall X (\forall a, a' \in X \ \Gamma_n(\{a, a'\}) \longrightarrow \Gamma_n(X))$$

¹It should be noted that the notion of a meager set is not taken from set theory, but follows Barendregt and Longo [1980].

PROOF. By induction on n.

- (i) The base case is trivial. For the induction step let $X' \subseteq X$ be such that $\Gamma_{n+1}(X)$. To prove $\Gamma_{n+1}(X')$, let Y be such that $\Gamma_n(Y)$. Then $\Gamma_n(X \bullet Y)$, and as $X' \bullet Y \subseteq X \bullet Y$, it follows from the induction hypothesis that $\Gamma_n(X' \bullet Y)$. The second condition is trivial.
- (ii) The base case is trivial. For the induction step let X be such that $\Gamma_{n+1}(\{a,a'\})$, for all $a,a' \in X$. To prove $\Gamma_{n+1}(X)$, let Y be such that $\Gamma_n(Y)$ and let $b,b' \in X \bullet Y$. Then $\Gamma_{n+1}(\{(Z,b),(Z',b')\})$, for some $(Z,b),(Z',b') \in X$ such that $Z,Z' \subseteq Y$. Thus $\Gamma_n(\{(Z,b),(Z',b')\} \bullet Y)$, i.e. $\Gamma_n(\{b,b'\})$. It follows from the induction hypothesis that $\Gamma_n(X \bullet Y)$. The second condition is immediate.

Lemma 4.3 For $n \in \omega$,

- (i) $\forall Z \forall a ((Z, a) \in A_{n+1} \longrightarrow \Gamma_n(Z) \land \Gamma_n(\{a\}))$
- (ii) $\forall m \forall X (\Gamma_n(X) \longrightarrow \Gamma_{n+m}(X))$
- (iii) $\forall m \forall X \forall X' (\Gamma_n(X) \land \Gamma_n(X') \land \Gamma_{n+m}(X \cup X') \longrightarrow \Gamma_n(X \cup X'))$

PROOF. By simultaneous induction on n.

For n = 0, the truth of (iii) is immediate.

(i)₀ This is trivial for $(Z, a) \in A_1 \setminus A_0$. And if $(Z, a) \in A_0$, then $Z = \emptyset \subseteq A_0$ and $a \in A_0$, since A_0 is meager.

For (ii)₀ we have to show that $\Gamma_m(X)$ holds for all m and $X \subseteq A_0$. Clearly, $\Gamma_0(X)$ if $X \subseteq A_0$. To prove $\Gamma_{m+1}(X)$, let Y be such that $\Gamma_m(Y)$. Then, as $X \subseteq A_0$ and A_0 is meager, it follows that $X \bullet Y \subseteq A_0$. Hence by the induction hypothesis $\Gamma_m(X \bullet Y)$. The second condition follows from the fact that $Z = \emptyset$, for all $(Z,a) \in X$.

For the induction step assume that $(i)_n$ - $(iii)_n$ hold.

(i)_{n+1} Let $(Z, a) \in A_{n+2}$. If $(Z, a) \in A_{n+2} \setminus A_{n+1}$, then $\Gamma_{n+1}(Z)$ and $\Gamma_{n+1}(\{a\})$. If $(Z, a) \in A_{n+1}$, then $\Gamma_n(Z)$ and $\Gamma_n(\{a\})$, by (i)_n. Therefore $\Gamma_{n+1}(Z)$ and $\Gamma_{n+1}(\{a\})$, by (ii)_n.

We prove (ii)_{n+1} by induction on m. For m=0, this is immediate. For the induction step let X be such that $\Gamma_{n+1}(X)$. Then $X\subseteq A_{n+1}\subseteq A_{n+1+m+1}$. Now let Y be such that $\Gamma_{n+1+m}(Y)$. Put $Y'=\bigcup\{Z:\exists a((Z,a)\in X\land Z\subseteq Y)\}$. Then $X\bullet Y=X\bullet Y'$.

Claim. $\forall a, a' \in Y'$ $\Gamma_n(\{a, a'\})$: Let $a, a' \in Y'$. Then $a \in Z, a' \in Z'$, for some $(Z, b), (Z', b') \in X$. Since $X \subseteq A_{n+1}$, it follows from (i)_n that $\Gamma_n(Z)$ and $\Gamma_n(Z')$. Moreover, $Z \cup Z' \subseteq Y$, and hence by 4.2(i) $\Gamma_{n+1+m}(Z \cup Z')$. Whence $\Gamma_n(Z \cup Z')$ by (iii)_n; therefore $\Gamma_n(\{a, a'\})$, again by 4.2(i).

It now follows from the claim and 4.2(ii) that $\Gamma_n(Y')$. Whence $\Gamma_n(X \bullet Y')$, and so $\Gamma_n(X \bullet Y)$. Therefore $\Gamma_{n+m+1}(X \bullet Y)$ by (ii)_n.

For the second condition let $(Z,a),(Z',a) \in X$ and assume that $\Gamma_{n+1+m}(Z \cup Z')$. Then $\Gamma_n(Z \cup Z')$ by (i)_n and (iii)_n. Thus Z = Z'.

(iii)_{n+1} Let X, X' be such that $\Gamma_{n+1}(X)$, $\Gamma_{n+1}(X')$ and $\Gamma_{n+1+m}(X \cup X')$. To

prove $\Gamma_{n+1}(X \cup X')$, let Y be such that $\Gamma_n(Y)$. Then $\Gamma_n(X \bullet Y)$, $\Gamma_n(X' \bullet Y)$. Put $Y' = \bigcup \{Z : \exists a ((Z, a) \in X \cup X' \land Z \subseteq Y)\}$. Then $Y' \subseteq Y$ and therefore $\Gamma_n(Y')$ by 4.2(i). Thus $\Gamma_{n+m}(Y')$ by (ii)_n. Whence $\Gamma_{n+m}((X \cup X') \bullet Y')$. Now observe that

$$(X \cup X') \bullet Y' = (X \cup X') \bullet Y = X \bullet Y \cup X' \bullet Y.$$

Hence $\Gamma_n(X \bullet Y \cup X' \bullet Y)$ by the induction hypothesis, i.e. $\Gamma_n((X \cup X') \bullet Y)$. For the second condition let $(Z,a), (Z',a') \in X \cup X'$ be such that $\Gamma_n(Z \cup Z')$. Then $\Gamma_{n+m}(Z \cup Z')$ by (ii)_n. Therefore Z = Z'. \square

We are now in the position to prove

Theorem 4.4 Let $A' \subseteq A$ be meager. Then $A_{A'}$ is a stable graph model. Moreover, $A_{A'}$ is extensional provided (.,.) is surjective.

PROOF. In order to prove that $A_{A'}$ is a stable graph model, we shall check the conditions 3.1(i)-(iv), i.e.

 $\mathcal{A}_{A'}$ is a coherence space: Clearly, $\mathcal{A}_{A'}$ is downwards closed. For binary completeness let $\mathcal{A}' \subseteq \mathcal{A}_{A'}$ be such that $X \cup X' \in \mathcal{A}_{A'}$, for all $X, X' \in \mathcal{A}'$. To prove that $\bigcup \mathcal{A}' \in \mathcal{A}_{A'}$, let $Z \subseteq \bigcup \mathcal{A}'$ be finite. Now let $a, a' \in Z$. Then $a \in X$, $a' \in X'$, for some $X, X' \in \mathcal{A}'$. Thus $\{a, a'\} \subseteq X \cup X' \in \mathcal{A}_{A'}$. Hence $\Gamma_n(\{a, a'\})$, for some n. Combining 4.3(ii) and the finiteness of Z yields the existence of some m such that for all $a, a' \in Z$ $\Gamma_m(\{a, a'\})$. Therefore $\Gamma_m(Z)$ by 4.2(i). $\mathcal{A}_{A'}$ is closed under \bullet : Let $X, Y \in \mathcal{A}_{A'}$ and $Z \subseteq X \bullet Y$. Pick finite $Z' \subseteq X$ and $Z'' \subseteq Y$ such that $Z = Z' \bullet Z''$. Then $\Gamma_n(Z')$, $\Gamma_m(Z'')$, for some n, m. Let $k = \max\{n, m\}$. Then $\Gamma_{k+1}(Z')$, $\Gamma_k(Z'')$ by 4.3(ii). Therefore $\Gamma_k(Z' \bullet Z'')$, i.e. $\Gamma_k(Z)$.

For all $X, X', Y, Y' \in A$, if $X \cup X', Y \cup Y' \in A$, then $(X \cap X') \bullet (Y \cap Y') = X \bullet Y \cap X' \bullet Y'$: Since \bullet is monotone in both its arguments, it follows that

$$(X \cap X') \bullet (Y \cap Y') \subseteq X \bullet Y \cap X' \bullet Y',$$

for all $X, X', Y, Y' \in \mathcal{A}_{A'}$. For the reverse assume that $X \cup X', Y \cup Y' \in \mathcal{A}_{A'}$ and let $a \in X \bullet Y \cap X' \bullet Y'$. Then there are $(Z, a) \in X, (Z', a) \in X'$ such that $Z \subseteq Y, Z' \subseteq Y'$. Let n, m be such that $\Gamma_n(\{(Z, a), (Z', a)\}), \Gamma_m(Z \cup Z')$ and put $k = \max\{n, m\}$. Then $\Gamma_{k+1}(\{(Z, a), (Z', a)\})$ and $\Gamma_k(Z \cup Z')$ by 4.3(ii). Therefore Z = Z'. Hence $(Z, a) \in X \cap X', Z \subseteq Y \cap Y'$; therefore $a \in (X \cap X') \bullet (Y \cap Y')$.

Every stable function from $A_{A'}$ to $A_{A'}$ is representable in $A_{A'}$: First observe that by 4.3(ii), if $\langle Z, a \rangle \in (A_{A'})_{fin} \times |A_{A'}|$, then there is an n such that $(Z,a) \in A_n$. Now let f be a stable function from $A_{A'}$ to $A_{A'}$ and put $X = \{(Z,a) :$

 $\{Z, a > \in \mathcal{T}(f)\}$. Let $Z \subseteq X$ be finite. Then $Z \subseteq A_{n+1}$, for some n. To prove $\Gamma_{n+1}(Z)$, let Y be such that $\Gamma_n(Y)$ and $a, a' \in Z \bullet Y$. Then there are $Z', Z'' \subseteq Y$ such that $(Z', a), (Z'', a') \in Z$. By 4.2(i) $Z' \cup Z'' \in \mathcal{A}_{A'}$, and

 $\langle Z', a \rangle, \langle Z'', a' \rangle \in \mathcal{T}(f)$. Hence $\{a, a'\} \in \mathcal{A}_{A'}$, since $\mathcal{T}(f)$ is coherent. So $\Gamma_{n+m}(\{a, a'\})$, for some m. But as $Z \subseteq A_{n+1}$, it follows from 4.3(i) that $\Gamma_n(\{a\})$, $\Gamma_n(\{a'\})$. Therefore $\Gamma_n(\{a, a'\})$. Whence $\Gamma_n(Z \bullet Y)$ by 4.2(ii). The second condition follows almost directly from the fact that $\mathcal{T}(f)$ is coherent. So $X \in \mathcal{A}_{A'}$. Clearly, X represents f.

Finally suppose that (.,.) is surjective. Then $|\mathcal{A}_{A'}| \subseteq \{(Z,a) : < Z,a > \in \mathcal{A}_{A'_{fin}} \times |\mathcal{A}_{A'}|\}$, and, since $\mathcal{A}_{A'}$ is a stable graph model, the reverse inclusion follows from 3.2(iv). Hence $\mathcal{A}_{A'}$ is extensional by theorem 3.3. \square

Every embedding comes along with a meager set, namely \emptyset . However, $\mathcal{A}_{\emptyset} = \{\emptyset\}$, the trivial stable graph model. In order to obtain nontrivial stable graph models, one has to look for nonempty meager sets.

Corollary 4.5 If (.,.) is nonsurjective, then (.,.) has a nontrivial stable graph model.

PROOF. Let $A' = \{a : \neg \exists Z, a' \ (Z, a') = a\}$. Then $A' \neq \emptyset$. And, since $\Gamma_0(A')$ holds, we can conclude that $A' \in \mathcal{A}_{A'}$. Therefore $\mathcal{A}_{A'} \neq \{\emptyset\}$. \square

We shall end this section with an example of a nontrivial extensional stable graph model.

Example 4.6 This example lives in P_{ω} with the following standard coding: For $n, m \in \omega$, define

$$p(n,m) = \frac{1}{2}(n+m)(n+m+1).$$

For $Z \in \omega^{<\infty}$, define

$$e(Z) = n \longleftrightarrow Z = \{k_0, ..., k_{m-1}\} \text{ with } k_0 < k_1 ... < k_{m-1} \wedge n = \sum_{i < m} 2^{k_i}.$$

Now define $(.,.):\omega^{<\infty}\times\omega\to\omega$ by

$$(Z,n) = p(e(Z),n).$$

Then (.,.) is a bijection with $(\emptyset,0)=0$. Hence $\{0\}$ is meager. \square

References

- [] H.P. Barendregt, The Lambda Calculus. Its Syntax and Semantics, 2^{nd} edition, North-Holland, Amsterdam, 1984.
- H.P. Barendregt, G. Longo, Equality of λ-terms in the model T^ω, in: Hindley, J.R. and Seldin, J.P. (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, Academic Press, New York, 1980, pp. 303-339.

- [] J-Y. Girard, The system F of variable types, fifteen years later, Theoretical Computer Science, vol. 45 (1986), pp. 159-192.
- [] J-Y. Girard, P. Taylor, Y. Lafont, **Proofs and Types**, Cambridge University Press, Cambridge, 1989.
- [] E. Engeler, Algebras and combinators, Algebra Universalis, Vol. 13 (1981), pp. 389-392.
- [] G. Plotkin, A set-theoretical definition of application, Memo MIP-R-95, School of AI, Edinburgh, 1972, 32 pp.
- [] H. Schellinx, Isomorphisms and Nonisomorphisms of Graph Models, JSL, vol. 56 (1991), pp. 227-249.
- [] D. S. Scott, Models for the λ -calculus, Manuscript, 1969, 53 pp.

The ITLI Prepublication Series

```
1990 Logic, Semantics and Philosophy of Language
A Generalized Quantifier Logic for Naked Infinitives
  LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
                                                                                                                                                                                                               Dynamic Montague Grammar
                                                                                                                                                                                                                Concept Formation and Concept Composition
  LP-90-04 Aarne Ranta
LP-90-05 Patrick Blackburn
                                                                                                                                                                                                                Intuitionistic Categorial Grammar
                                                                                                                                                                                                              Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
Models for Discourse Markers
LP-90-05 Patrick Blackburn
LP-90-06 Gennaro Chierchia
LP-90-06 Gennaro Chierchia
LP-90-08 Herman Hendriks
LP-90-09 Paul Dekker
LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serge Lapierre
LP-90-13 Zhisheng Huang
LP-90-14 Jeroen Groenendijk, Martin Stokhof
LP-90-15 Maarten de Rijke
LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker
MI-90-01 Harold Schelling Mathematical Log.
                                                                                                                                                                                                                General Dynamics
                                                                                                                                                                                                                 A Functional Partial Semantics for Intensional Logic
                                                                                                                                                                                                               Logics for Belief Dependence
Two Theories of Dynamic Semantics
 LP-90-15 Maarten de Rijke
LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker
ML-90-01 Harold Schellinx
Mathematical Logic and Foundations
MC 00 23 January Communications
MC 00 25 Janu
                                                                                                                                                                                                                A Semantical Proof of De Jongh's Theorem
  ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
                                                                                                                                                                                                                Relational Games
                                                                                                                                       Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
cio Pianigiani
Solution of a Problem of David Guaspari
    ML-90-05 Domenico Zambella
 ML-90-05 Domenico Zamociia
ML-90-06 Jaap van Oosten
ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellinx
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 Paul C. Gilmore
   ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 Paul C. Gilmore
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-07 Kees Doets

Solution of a Problem of David Guaspari
Randomness in Set Theory
The Consistency of an Extended NaDSet
Computation and Complexity Theory
Associative Storage Modification Machines
Computation and Complexity Theory
Associative Stora
  CT-90-06 Michiel Smid, Peter van Enide CT-90-07 Kees Doets
CT-90-07 Kees Doets
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer
CT-90-09 Roel de Vrijer
CT-90-01 A.S. Troelstra
Conditional, a case study in conditional rewriting
Conditional, a case study in conditional rewriting
Conditional, a case study in conditional rewriting
Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
Conditional Remarks on Interpretability Logic
Control Complexity of Arithmetical Interpretations of Modal Formulae
                                                                                                                                                                                                                                                                                                                                                                                                                    Physiological Modelling using RL
  Other Prepublications
X-90-01 A.S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04
X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
                                                                                                                                                                               On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical Theories
On Rosser's Provability Predicate
van Emde Boas An Overview of the Rule Language RL/1
Provable Fixed points in IΔ<sub>0</sub>+Ω<sub>1</sub>, revised version
Bi-Unary Interpretability Logic
Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
Undecidable Problems in Correspondence Theory
Lectures on Linear Logic
    X-90-08 L.D. Beklemishev Provabi
X-90-09 V.Yu. Shavrukov On Ros
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
   X-90-10 Sieger van Dennehei
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev
X-90-14 L.A. Chagrova
X-90-15 A.S. Troelstra
1991 Logic,
                                                                                                                                                                                                                  Lectures on Linear Logic
     1991

Logic, Semantics and Philosophy of Langauge

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
  LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman
LP-91-03 Willem Groeneveld
ML-91-01 Yde Venema
Mathematical Logic and Foundations
ML-91-02 Alessandro Berarducci, Rineke Verbrugge
ML-91-03 Domenico Zambella
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelstra
ML-91-06 Inge Bethke
ML-91-07 Yde Venema
ML-91-08 Inge Bethke
ML-91-08 Inge Bethke
Going Stable in Graph Models
   MIL-91-0/8 Inge Bethke

ML-91-08 Inge Bethke

Going Stable in Graph Models
CT-91-01 Ming Li, Paul M.B. Vitányi

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi

CT-91-03 Ming Li, Paul M.B. Vitányi

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-06 Edith Spaan

CT-91-07 Karen L. Kwast

CT-91-08 Kees Doets

Modal Derivation Rules
Going Stable in Graph Models
Computation and Complexity Theory

Kolmogorov Complexity Arguments in Combinatoric
Computation and Complexity Under the Universal Distribution Equals Worst Case Complexity

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-06 Edith Spaan

CT-91-08 Kees Doets

Levationis Laus
                                                                                                                                                                                                                                                                                                                                                                               Kolmogorov Complexity Arguments in Combinatorics
  CT-91-08 Kees Doets
CT-91-09 Ming Li, Paul M.B. Vitányi
CT-91-10 John Tromp, Paul Vitányi
A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
Other Prepublications X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev
On the Undecidability of the Disjunction Property of Intermediate Propositional Logics
X-91-03 V. Yu. Shavrukov
Subalgebras of Diagonizable Algebras of Theories containing Arithmetic
Partial Conservativity and Modal Logics
Temporal Logic
     CT-91-08 Kees Doets
                                                                                                                                                                                                                Levationis Laus
                                                                                                                                                                                                                Annual Report 1990
                                                                                                                                                                                                               Lectures on Linear Logic, Errata and Supplement
Logic of Tolerance
     X-91-07 A.S. Troelstra
    X-91-08 Giorgie Dzhaparidze
X-91-09 L.D. Beklemishev
                                                                                                                                                                                                               On Bimodal Provability Logics for \Pi_1-axiomatized Extensions of Arithmetical Theories Independence, Randomness and the Axiom of Choice Canonical Formulas for K4. Part I: Basic Results
    X-91-10 Michiel van Lambalgen
X-91-11 Michael Zakharyaschev
X-91-12 Herman Hendriks
                                                                                                                                                             Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat
The Multaplicative Fragment of Linear Logic is NP-Complete
```

X-91-13 Max I. Kanovich

