Institute for Language, Logic and Information

A NOTE ON THE DIAGONIZABLE ALGEBRAS OF PA AND ZF

V.Yu. Shavrukov

ITLI Prepublication Series for Mathematical Logic and Foundations ML-91-09

University of Amsterdam

```
The ITLI Prepublication Series
   1986
                                                                                             The Institute of Language, Logic and Information
  86-01
                                                                                             A Semantical Model for Integration and Modularization of Rules
  86-02 Peter van Emde Boas
                                                                                             Categorial Grammar and Lambda Calculus
  86-04 Reinhard Muskens
86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem
1987 87-01 Jeroen Groenendijk, Martin
87-02 Renate Bartsch

Categorial Grammar and Lamoda Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I Well-founded Time,
Forward looking Operators
Stokhof Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
  86-03 Johan van Benthem
  87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
                                                                                             Unique Normal Forms for Lambda Calculus with Surjective Pairing
  87-05 Jan which Kipp, Roel of 87-04 Johan van Benthem 87-05 Víctor Sánchez Valencia 87-06 Eleonore Oversteegen 87-07 Johan van Benthem 87-08 Panera Bantal
                                                                                            Polyadic quantifiers
                                                                                            Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
                                                                                            Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
  87-08 Renate Bartsch
                                                                                            Type Change in Semantics: The Scope of Quantification and Coordination
  87-09 Herman Hendriks
  1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                            Expressiveness and Completeness of an Interval Tense Logic
  LP-88-02 Yde Venema
                                                                                             Year Report 1987
  LP-88-03
                                                                                            Going partial in Montague Grammar
Logical Constants across Varying Types
Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse
 LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
LP-88-06 Johan van Benthem
  LP-88-07 Renate Bartsch
LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe
                                                                                            Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
                                                                                            A Blissymbolics Translation Program
 ML-88-01 Jaap van Oosten

ML-88-02 M.D.G. Swaen

ML-88-03 Dick de Jongh, Frank Veltman

ML-88-04 A.S. T. Provability Logics for Relative Interpretation

A Blissymbolics Translation Program

Mathematical Logic and Foundations: Lifschitz' Realizability

The Arithmetical Fragment of Martin Löß Type

Provability Logics for Relative Interpretation
                                                                                  The Arithmetical Fragment of Martin Löfs Type Theories with weak Σ-elimination Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic

Parache of Living and the Tailor.
  ML-88-04 A.S. Troelstra ML-88-05 A.S. Troelstra
                                                                                            Remarks on Intuitionism and the Philosophy of Mathematics
  CT-88-01 Ming Li, Paul M.B. Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity CT-88-02 Michiel H.M. Smid

General Lower Bounds for the Partitioning of Range Trees
 CT-88-02 Michiel H.M. Smid
CT-88-03 Michiel H.M. Smid
CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas

CT-88-05 Peter van Emde Boas

A Data Structures

Machine Models and Simulations (revised Machine Models and Simulations)
                                                                                            Computations in Fragments of Intuitionistic Propositional Logic
                                                                 Machine Models and Simulations (revised version)
A Data Structure for the Union-find Problem having good Single-Operation Complexity
 CT-88-06 Michiel H.M. Smid

A Data Structure for the Union-find Problem having good Single-Op-
CT-88-07 Johan van Benthem

Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
 CT-88-09 Theo M.V. Janssen

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy CT-88-11 Marc Jumelet Other prepublications:

On Solovay's Completeness Theorem
  1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
                                                                                           Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
 LP-89-02 Jeroen Groenendijk, Martin Stokhof
                                                                           Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
 LP-89-03 Yde Venema
                                                                                           Language in Action
Modal Logic as a Theory of Information
 LP-89-04 Johan van Benthem
LP-89-05 Johan van Benthem
                                                                                           Intensional Lambek Calculi: Theory and Application
The Adequacy Problem for Sequential Propositional Logic
 LP-89-06 Andreja Prijatelj
LP-89-07 Heinrich Wansing
LP-89-08 Víctor Sánchez Valencia
 LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang
ML-89-01 Dick de Jongh, Albert Visser
ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh Formal Republic Systems
ML-89-03 Dick de Jongh Formal Republic Systems
Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is consequently
                                                                                           Extending the Lambda Calculus with Surjective Pairing is conservative Rosser Orderings and Free Variables
 ML-89-03 Dick de Jongh, Franco Montagna
 ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ML-89-05 Rineke Verbrugge E-comple
                                                                                                              On the Proof of Solovay's Theorem
                                                                                           Σ-completeness and Bounded Arithmetic
                                                                                           The Axiomatization of Randomness
 ML-89-06 Michiel van Lambalgen
                                                                             Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
 ML-89-07 Dirk Roorda
                                                          Investigations into Classical Linear Logic Provable Fixed points in I\Delta_0 + \Omega_1

Computation and Complexity Theory: Dynamic Deferred Data Structures
 ML-89-08 Dirk Roorda
 ML-89-09 Alessandra Carbone
 CT-89-01 Michiel H.M. Smid
                                                                                          Machine Models and Simulations
 CT-89-02 Peter van Emde Boas
 CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas
                                                                                                                                               On Space Efficient Simulations
                                                                                          A Comparison of Reductions on Nondeterministic Space
A Parallel Functional Implementation of Range Queries
 CT-89-04 Harry Buhrma. Leen Torenvliet
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
Leen Torenvliet, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr.
                                                                                          Finding Isomorphisms between Finite Fields
                                                                                          A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
CT-89-07 Ming Li, Paul M.B. Vitanyi
CT-89-08 Harry Buhrman, Steven Homer
Leen Torcnvliet
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet
CT-89-10 Sieger van Denneheuvel

The Rule Language RL/1
CT-89-10 Sieger van Denneheuvel
CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas
X-89-01 Marianne Kalsbeek
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
X-89-04 Jeroen Groenendijk, Martin Stokhof
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
SEE INSIDE BACK COVER

The Rule Language RL/1

Towards Functional Classification of Recursive Query Processing
An Orey Sentence for Predicative Arithmetic
New Foundations: a Survey of Quine's Set Theory
Index of the Heyting Nachlass
Dynamic Montague Grammar, a first sketch
The Modal Theory of Inequality
Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-p
CT-89-10 Sieger van Denneheuvel
                                                                                          The Modal Theory of Inequality
Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
```


Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

A NOTE ON THE DIAGONIZABLE ALGEBRAS OF PA AND ZF

V.Yu. Shavrukov

Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications for Mathematical Logic and Foundations ISSN 0924-2090

Abstract

We prove that the diagonalizable algebras of PA and ZF are not isomorphic.

A diagonalizable algebra of an r.e. theory T is a pair $(\mathfrak{A}_{T}, \ \square_{T}) = \mathfrak{D}_{T}$ where \mathfrak{A}_{T} is the quotient of the Boolean algebra of sentences of T modulo the ideal of theorems of T. \mathfrak{A}_{T} is usually called the *Lindenbaum sentence algebra of* T. \mathfrak{D}_{T} is a unary operator on \mathfrak{A}_{T} which takes a sentence γ to the statement asserting that γ is provable in T. Thus T is assumed to contain enough arithmetic to express syntactical notions such as "... is a T-proof of ...". More specifically, the sentence \mathfrak{D}_{T} is taken to be the *provability predicate* of T (which shall be identified with \mathfrak{D}_{T}) after its only free variable has been replaced by the gödelnumber of γ . The provability predicate is assumed to have the following form:

$$\exists x \ Prf_{\alpha}(x,y)$$

where $\operatorname{Prf}_{\alpha}(x,y)$, the proof predicate of T, is the formula expressing in the natural way that x codes a Hilbert-style proof of (the formula coded by) y from the extralogical axioms specified by α . The formula $\alpha(\cdot)$ with exactly one free variable occurs in the proof predicate as a subformula and is assumed to be Σ_1 so that the proof and provability predicates also are Σ_1 formulas. To the theory T this α has to bear the following relation:

$$\gamma \in S$$
 iff $\alpha(\gamma)$ is true

for all sentences γ where S is a set of sentences which axiomatizes T. Of course neither the set of theorems of T nor S determines α uniquely.

The diagonalizable algebras of theories were introduced by Magari [2] and have since then been studied in close connection with provability logics (see Smoryński [7]).

How large is the collection of isomorphism types that diagonalizable algebras of various theories can offer? Among these algebras one finds such (cf. Smoryński [6]) that $\Box_T \gamma = \tau$ implies $\gamma = \tau$ for each $\gamma \in \mathfrak{I}_T$ (this holds for Σ_1 sound theories T, that is, for those theories that prove no false Σ_1 sentences), and such algebras that there exists a $\gamma \in \mathfrak{I}_T$ satisfying $\Box_T \gamma = \tau$ but $\gamma \neq \tau$ (Σ_1 ill theories). Moreover, in the latter case for any $m \in \omega$ the equality $\Box^n \Gamma = \tau$ can hold for all n > m, or it can hold for no $n \in \omega$ at all. (1 and τ are the zero and the unit of a Boolean or of a diagonalizable algebra.) This appears to the author to be precisely all that is presently known of distinctions between the diagonalizable algebras of different theories.

The present paper is devoted to the question whether the diagonalizable algebras of PA and ZF are isomorphic. We assume that the provability predicate of PA is natural enough so that

$$ZF \vdash \forall \sigma \in \Sigma_1 \ (\square_{PA} \sigma \longrightarrow \sigma)$$

The reader is also supposed to believe that ZF is $\boldsymbol{\Sigma}_1$ sound. In this setting we have

Theorem. The diagonalizable algedras \mathfrak{I}_{PA} and \mathfrak{I}_{ZF} are not isomorphic.

In connection with this theorem we would like to mention two related facts. First, Pour-El & Kripke [3] show the Lindenbaum sentence algebras \mathfrak{A}_{PA} and \mathfrak{A}_{ZF} to be recursively isomorphic. Second, the algebras \mathfrak{D}_{PA} and \mathfrak{D}_{ZF} are recursively embeddable in one another (cf. Shavrukov [4]).

The Theorem settles (a particular case of) a tiny question in Smoryński [6]. The method we use to prove the Theorem is similiar to (and derives from) a trick employed in Shavrukov [4].

Proof. To carry out the proof we shall have to introduce a number of auxiliary notions and formulate a number of lemmas as we go along. The lemmas we use are very well-known and/or very easy to believe and do hardly shed much light on the proof of the Theorem and therefore their proofs are only given in the Appendix.

Since our proof is going to deal with rates of growth of functions we need to fix a class of functions of neglectibly slow growth elements of which are to be used as small change. As such we choose the class of (Kalmar) elementary functions. So for a set $V \subseteq \omega$ and functions f and g we define

 $f \leqslant_{V} g$ iff there exists an elementary function q s.t.

 $f \leq_V q \circ g$, that is, $f(n) \leq_V q \circ g(n)$ for each $n \in V$

We write $f \approx_V g$ to mean both $f \leqslant_V g$ and $g \leqslant_V f$. In case $V = \omega$ we just write \leqslant and \approx instead of \leqslant_V and \approx_V respectively.

The partial functions f and g are equal, $f \equiv g$, if their domains coincide and for each element n of their domain one has f(n) = g(n). The expression $f \equiv_V g$ means that $V \cap \text{dom } f = V \cap \text{dom } g$ and f(n) = g(n) for each element n of the latter set.

In fact we shall only deal with recursive partial functions. These are computed by the usual Turing machines. A Turing machine will be identified with its gödelnumber and φ_i will

stand for the function f computed by the ith Turing machine. In an alternative manner of speaking, i is a φ -index for (computing) f. The expression $\varphi_{\mathbf{i}}(n)$ will not only stand for the output (if any) of the Turing machine (of gödelnumber) i on the input n but also for the computation executed by that Turing machine on this input. Thus we write $\varphi_{\mathbf{i}}(n) \downarrow$ or $\varphi_{\mathbf{i}}(n) \uparrow$ according to whether this computation con- or diverges, and the expression

the number of steps in the computation $\varphi_1(n)$ also makes sense. We shall employ a (Blum) complexity measure Φ (cf. Blum [1]) associated with the φ -indexing which is slightly different from the usual ones, namely

 $\Phi_{\dot{1}}(n)=i+n+the$ number of steps in the computation $\varphi_{\dot{1}}(n)$ Our favourite feature of this complexity measure is that for each $m\in\omega$ there only exists a finite number of pairs (i,n) for which there is a chance of $\Phi_{\dot{1}}(n)\leq m$.

Next we define the class of (elementarily) cumulative partial recursive functions by putting

f is elementarily cumulative iff

there exist a φ -index f for f s.t. $\Phi_f \leqslant_{\operatorname{dom} f} f$ (Note that we then also have $\Phi_f \approx_{\operatorname{dom} f} f$.) The intuition is that the rate of growth of f correctly reflects the complexity of computing it.

Lemma 1. Each Kalmar elementary function is majorized by an elementarily cumulative elementary function.

Expressions concerning $\, \phi_{\, \dot{1}} \,$ and $\, \Phi_{\, \dot{1}} \,$ (or even partial recursi-

ve functions if it is clear which particular φ -index is meant) will also occur in formalized contexts. We convene that the underlying formalization is reasonable, so that some simple facts about Turing machines and the complexity measure are provable in formal theories in question, and economic, that is that the Kleene T-predicate is expressed by an elementary formula so that the relation $\Phi_{\bf i}(n) \leq m$ is also expressed by an elementary formula, the relation $\varphi_{\bf i}(n) = m$ is an elementary formula preceded by an existential quantifier etc.

Elementarity is also assumed of gödelnumbering of syntax and of the proof predicates of formal theories under consideration, that is, the relation $T \mid_{\overline{n}} \gamma$ defined by

 $T \mid_{\overline{n}} \gamma$ iff T proves γ by a proof of godelnumber $\leq n$ is elementary in n and γ and is expressed by an elementary formula $\Box_{T,n}\gamma$, which by abuse of terminology will also be referred to as the proof predicate of T. In the presence of the Σ_1 collection schema, for any provability predicate \Box_T we can, using a trick due to Craig which possibly involves a minor rearranging of the set of axioms of T, find an elementary proof predicate $\Box_{T,n}$ s.t.

$$\mathbf{T} \vdash \forall \gamma \ (\Box_{\mathbf{T}} \gamma \iff \exists n \ \Box_{\mathbf{T}, n} \gamma)$$

Note that the *natural* proof predicates of PA and ZF are elementary because these theories are axiomatized by a finite number of axioms and axiom schemas.

Next to every Σ_1 sound theory T containing $I\Delta_0^+ = \exp$ we associate an indexing δ^T of 0-1-valued partial recursive functions by sentences of T in the following manner:

Define the sequence of sentences $\left\{\begin{array}{l} \#^n_{\mathbb{T}} \end{array}\right\}_{n\in\omega}$ $\#^n_{\mathbb{T}} = \square^{n+1} \bot \wedge \diamond^n \top$

(\diamond is short for \neg \Box \neg and the upper indices of \Box and \diamond denote iteration) and put

$$\begin{array}{lll} \delta^T_\gamma(n) &=& 0 & \text{if} & T \vdash \#^n_T \longrightarrow \gamma \\ \\ &=& 1 & \text{if} & T \vdash \#^n_T \longrightarrow \neg \gamma \\ \\ & \text{divergent} & \text{if} & T + \#^n_T & \text{does not decide } \gamma \end{array}$$

From the viewpoint of T itself it is not clear that the value of $\delta_{\gamma}^{T}(n)$ is determined uniquely. Therefore if one wants to deal with δ_{γ}^{T} in T one has to add that the value $\delta_{\gamma}^{T}(n)$ is determined according to the shortest proof of either of the two sentences in question.

 $\Delta^{\rm T}$ is a complexity measure associated with $\delta^{\rm T}$ which is defined as follows:

$$\Delta_{\gamma}^{T}(n) \; = \; \text{the minimal d s.t.} \quad T \, \big|_{\overrightarrow{d}} \, \, \#_{T}^{n} \; \longrightarrow \; \gamma \quad \text{or} \quad T \, \big|_{\overrightarrow{d}} \, \, \#_{T}^{n} \; \longrightarrow \; \gamma \gamma$$
 The crucial fact connecting δ^{T} and Δ^{T} with φ and Φ is

Lemma 2. Let T be an r.e. Σ_1 sound theory containing $I\Delta_0^{}+\exp.$ To each ϕ -index k for a 0-1-valued partial recursive function there corresponds a sentence γ of T s.t.

$$\delta_{\gamma}^{T} \equiv \varphi_{k}$$
 and $\Delta_{\gamma}^{T} \leq_{\text{dom } \varphi_{k}} \Phi_{k}$

Conversely, to each sentence γ of T there corresponds a $\phi\text{-index}$ k for a 0-1-valued partial recursive function s.t.

$$\varphi_k = \delta_{\gamma}^T$$
 and $\Phi_k \leq \delta_{\gamma}^T$ Δ_{γ}^T

We are now ready to start. Our strategy is to assume the existence of an isomorphism $e\colon {\mathfrak D}_{PA} \to {\mathfrak D}_{ZF}$ and use it to derive an absurdity.

Let X be a nonrecursive r.e. set.

Lemma 3. There exists a partial recursive 0-1-valued function h and a φ -index h for it s.t. dom h = X and whenever i is a φ -index for h one has

$$\Phi_h \leqslant_X \Phi_i$$

By Lemma 3 pick a partial recursive 0-1-valued function h and a φ -index h for it s.t. dom h = X and whenever i is a φ -index for h there holds

$$\Phi_{h} \leq_{X} \Phi_{i}$$

Next let α be a sentence of PA corresponding to h by Lemma 2 s.t.

$$\delta_{\alpha}^{PA} \equiv h \quad \text{and} \quad \Delta_{\alpha}^{PA} \leq_{X} \Phi_{h}$$

Let A be a sentence of ZF s.t. $A=e(\alpha)$. Since e is an isomorphism, and as such has to send $\#_{PA}^n$ to $\#_{ZF}^n$, we have that

$$\delta_A^{\rm ZF} \equiv \delta_\alpha^{\rm PA} \equiv h$$

and hence for some φ -index i for the function h

$$\Delta_{\alpha}^{\text{PA}} \leq_{X} \Phi_{\text{h}} \leq_{X} \Phi_{\text{i}} \leq_{X} \Delta_{A}^{\text{ZF}}$$

by Lemma 2 and the choice of h. We have now that

$$\Delta_{\alpha}^{PA} \leq_{X} p \circ \Delta_{A}^{ZF}$$

for some elementary function p which we can by Lemma 1 assume

cumulative and which will bear this name p throughout the sequel.

Consider a total recursive function d s.t. for each natural number n the value d(n) is s.t. whenever

$$PA \mid_{\overline{n}} \Box_{PA} \sigma_1 \lor \Box_{PA} \sigma_2$$

for a pair of sentences σ_1 and σ_2 , there holds

$$PA \mid_{d(n)} \sigma_1$$
 or $PA \mid_{d(n)} \sigma_2$

The function d is a provably recursive function of ZF for

$$ZF \vdash \forall \sigma \in \Sigma_1 \ (\square_{PA} \sigma \longrightarrow \sigma)$$

and so

$$\begin{aligned} & \text{ZF} \vdash \forall \sigma_1 \ \forall \sigma_2 \ \left[\Box_{\text{PA}} (\Box_{\text{PA}} \sigma_1 \ \lor \ \Box_{\text{PA}} \sigma_2) \ \longrightarrow \cdot \ \Box_{\text{PA}} \sigma_1 \ \lor \ \Box_{\text{PA}} \sigma_2 \right] \\ & \vdash \forall x \ \exists y \ \forall \sigma_1 \ \forall \sigma_2 \ \left[\Box_{\text{PA}, x} (\Box_{\text{PA}} \sigma_1 \ \lor \ \Box_{\text{PA}} \sigma_2) \ \longrightarrow \cdot \ \Box_{\text{PA}, y} \sigma_1 \ \lor \ \Box_{\text{PA}, y} \sigma_2 \right] \end{aligned}$$

(the last step uses Σ_1 collection).

By a result of Parikh (cf. Shavrukov [4]) the function d can be chosen to eventually majorize every provably recursive function of PA. Now let $g = d \circ d \circ d$ and note that for each pair q, r of elementary functions g eventually majorizes the function $q \circ d \circ r$.

At this point we need more lemmas.

Lemma 4. The function d is cumulative.

Lemma 5. For each r.e. Σ_1 sound theory containing $I\Delta_0^+ \exp$ and each sentence γ of T the function Δ_γ^T is cumulative.

Lemma 6. If a and b are cumulative partial recursive functions then a \circ b is also cumulative.

The next lemma is a specialization of the Compression Theorem (cf. Blum [1]) and an improvement on Lemma 3.

Lemma 7. Let a be a cumulative function with dom a = X. Then there exists a partial recursive 0-1-valued function k and a φ -index k for it s.t. dom k = X and whenever i is a φ -index for a 0-1-valued (partial) recursive function satisfying $\varphi_i \equiv_X k$ there holds

$$a \approx_X \Phi_k \leqslant_X \Phi_i$$

Since by Lemmas 4 - 6 the function $g\circ p\circ \Delta_A^{\rm ZF}$ is cumulative, Lemma 7 provides a 0-1-valued partial recursive function f and a φ -index f for it s.t. dom f = X and

$$g \circ p \circ \Delta_A^{\mathrm{ZF}} \approx_X \Phi_{\mathbf{f}} \leqslant_X \Phi_{\mathbf{i}}$$

whenever i is a φ -index for a 0-1-valued (partial) recursive function extending f. Let s be an elementary function s.t.

$$\Phi_{\mathbf{f}} \leq_{\mathbf{X}} s \circ g \circ p \circ \Delta_{\mathbf{A}}^{\mathbf{ZF}}$$

Let B(x) be the following formula of ZF:

$$\delta_A^{\rm ZF}(x) \downarrow \ \longrightarrow \ \left[\Phi_{\bf f}(x) \le s \circ g \circ p \circ \Delta_A^{\rm ZF}(x) \ \longrightarrow \ f(x) \ = \ 0 \right]$$

and define the formula B to be

$$\forall x \ \left[\#_{\mathrm{ZF}}^{X} \longrightarrow B(X) \right]$$

We want to show that

$$\delta_B^{\mathrm{ZF}} \equiv_X f$$

Indeed if $n\in X$ then $\delta_A^{\mathrm{ZF}}(n)\!\downarrow$ and B(n) provably reduces to $\Phi_{\mathbf{f}}(n)\ \le\ s\ \circ\ g\ \circ\ p\ \circ\ \Delta_A^{\mathrm{ZF}}(n)\ \longrightarrow\ f(n)\ =\ 0$

and then, since the antecedent of this formula is true and hence provable, to

$$f(n) = 0$$

From this derives

$$ZF \vdash \#_{ZF}^{n} \longrightarrow \left[\forall x \left[\#_{ZF}^{x} \longrightarrow B(x) \right] \longleftrightarrow \left[\#_{ZF}^{n} \longrightarrow B(n) \right] \right]$$

$$\longrightarrow \left[B \longleftrightarrow B(n) \right]$$

$$\longrightarrow \left[B \longleftrightarrow f(n) = 0 \right]$$

whence $\delta_B^{\mathrm{ZF}}(n) \equiv_X^{} f(n)$. Moreover by formalizing the above argument we have

$$ZF \vdash \forall x \ \left[\Box_{ZF}(\#_{ZF}^{X} \longrightarrow A) \ \lor \ \Box_{ZF}(\#_{ZF}^{X} \longrightarrow \neg A) \ \longrightarrow \ \delta_{A}^{ZF}(x) \downarrow \right]$$

$$\longrightarrow \ s \circ g \circ p \circ \Delta_{A}^{ZF}(x) \downarrow \Big]$$

$$\longrightarrow \ \Box_{ZF}B(x) \ \lor \ \Box_{ZF}\neg B(x) \Big]$$

$$\longrightarrow \ \Box_{ZF}(\#_{ZF}^{X} \longrightarrow B) \ \lor$$

$$\lor \ \Box_{ZF}(\#_{ZF}^{X} \longrightarrow \neg B) \Big]$$

and in particular for each $n \in \omega$

$$\begin{split} \mathsf{ZF} & \vdash \Box_{\mathsf{ZF}}(\#_{\mathsf{ZF}}^n \,\longrightarrow\, A) \ \lor \ \Box_{\mathsf{ZF}}(\#_{\mathsf{ZF}}^n \,\longrightarrow\, \neg\, A) \ \longrightarrow \cdot \\ & \longrightarrow \cdot \ \Box_{\mathsf{ZF}}(\#_{\mathsf{ZF}}^n \,\longrightarrow\, B) \ \lor \ \Box_{\mathsf{ZF}}(\#_{\mathsf{ZF}}^n \,\longrightarrow\, \neg\, B) \end{split}$$

Let $\beta = e^{-1}(B) \cdot e^{-1}$ should also be an isomorphism and so

$$\delta_{\beta}^{PA} \equiv \delta_{B}^{ZF} \equiv_{X} f$$

whence by Lemma 2 and the choice of f

$$\Phi_{\mathbf{f}} \leq_{\mathbf{X}} \Delta_{\mathbf{\beta}}^{\mathbf{PA}}$$

Also one has by the same isomorphism that

$$PA \vdash \Box_{PA}(\#_{PA}^{n} \longrightarrow \alpha) \lor \Box_{PA}(\#_{PA}^{n} \longrightarrow \neg \alpha) \longrightarrow \cdot$$

$$\longrightarrow \cdot \Box_{PA}(\#_{PA}^{n} \longrightarrow \beta) \lor \Box_{PA}(\#_{PA}^{n} \longrightarrow \neg \beta)$$

for all $n \in \omega$. Since PA is r.e. there exists a total recursive function j s.t. for each $n \in \omega$

$$PA |_{j(n)} \square_{PA} (\#_{PA}^n \longrightarrow \alpha) \vee \square_{PA} (\#_{PA}^n \longrightarrow \neg \alpha) \longrightarrow \cdot$$

$$\longrightarrow \cdot \square_{PA} (\#_{PA}^n \longrightarrow \beta) \vee \square_{PA} (\#_{PA}^n \longrightarrow \neg \beta)$$

The totality of j implies that the set

$$Y = \left\{ n \in X \mid j(n) \leq \Delta_{\alpha}^{PA}(n) \right\}$$

is infinite for otherwise dom $\Delta_{\alpha}^{\mathrm{PA}} = X$ would be recursive. For the same reason the set $\left\{ \begin{array}{c|c} \Delta_{\alpha}^{\mathrm{PA}}(n) & n \in Y \end{array} \right\}$ is unbounded.

Now we concentrate our attention on Y. For $n \in X$ we clearly have

$$PA \mid_{\overline{I(n)}} \square_{PA} (\#_{PA}^n \longrightarrow \alpha) \lor \square_{PA} (\#_{PA}^n \longrightarrow \neg \alpha)$$

for some partial recursive $1 \leq_X \Delta_\alpha^{\mathrm{PA}}$ because constructing a PA-proof of $\square_{\mathrm{PA}} \gamma$ from that of γ is quite an elementary task. Hence for all $n \in X$ and some partial recursive m s.t.

$$m \leqslant_X \max(j, 1) \leqslant_Y \Delta_{\alpha}^{PA}$$

there holds

$$PA \mid_{\overline{m(n)}} \Box_{PA} (\#_{PA}^n \longrightarrow \beta) \lor \Box_{PA} (\#_{PA}^n \longrightarrow \neg \beta)$$

whence by the choice of the function d we have

$$PA \mid_{\overline{d \circ m(n)}} \#_{PA}^n \longrightarrow \beta$$
 or $PA \mid_{\overline{d \circ m(n)}} \#_{PA}^n \longrightarrow \neg \beta$

that is,

$$\Delta_{\beta}^{PA} \leqslant_{X} d \circ m \leqslant_{Y} d \circ t \circ \Delta_{\alpha}^{PA}$$

for some elementary function t for $m\leqslant_Y \Delta_{\alpha}^{\mathrm{PA}}$ and d is monotonous. Next recall that

$$g \circ \Delta_{\alpha}^{PA} \leqslant_{X} g \circ p \circ \Delta_{A}^{ZF} \leqslant_{X} \Phi_{f} \leqslant_{X} \Delta_{\beta}^{PA}$$

(the first inequality holds because g is monotonous and $\Delta_{\alpha}^{\mathrm{PA}} \leq_{X} p \circ \Delta_{A}^{\mathrm{ZF}}$). Putting things together we get

$$g \circ \Delta_{\alpha}^{PA} \leq_{Y} d \circ t \circ \Delta_{\alpha}^{PA}$$

By the unboundedness of $\left\{ \begin{array}{c|c} \Delta_{\alpha}^{\mathrm{PA}}(n) & n \in Y \end{array} \right\}$ we infer that there exists an elementary function u s.t. $u \circ d \circ t$ exceeds g for infinitely many arguments which contradicts the choice of g.

Thus from out of existence of an isomorphism $e\colon\,^{\mathfrak{D}}_{PA}\to\,^{\mathfrak{D}}_{ZF}$ we derived a contradiction and therefore proved the abscence of such e.

The theories PA and ZF occupy a special place in the study of diagonalizable algebras and provability logics in that they constitute a conventional example of a pair of theories of which the second is much stronger than the first one (cf. Smoryński [7]). In the Theorem of the present paper this pair can be replaced by a wide class of others. For convenience we now bring together the conditions on the two theories under which this replacement is possible.

First, we either have to assume that both employed proof predicates are elementary, or that both theories T and S contain

enough Σ_1 collection to provably equivalently replace their given proof predicates by elementary versions.

In fact our proof of the Theorem goes through for any pair of Σ_1 sound r.e. theories T and S containing $I\Delta_0^+ + \exp_0^-$ s.t. S proves a "smoothened" version of uniform Σ_1^- reflection for the chosen elementary proof predicate of T:

$$\mathbf{S} \vdash \forall \mathbf{x} \ \exists \mathbf{y} \ \forall \sigma_{0} \ (\cdot \,) \in \Delta_{0} \ \left[\Box_{\mathbf{T}, \mathbf{x}} \exists \mathbf{w} \ \sigma_{0} \ (\mathbf{w}) \ \longrightarrow \ \exists \mathbf{z} \leq \mathbf{y} \ \sigma_{0} \ (\mathbf{z}) \right]$$

which follows from the usual uniform Σ_1 reflection schema

$$\forall \sigma \in \Sigma_1 \ (\square_{\mathbf{T}} \sigma \longrightarrow \sigma)$$

if S proves the appropriate instance of Σ_1 collection.

Appendix

Proof of Lemma 1. It is well-known that each elementary function can be majorized by one of the functions $\left\{ \begin{array}{l} \lambda x.2_n^X \\ n\in\omega \end{array} \right\}$ and that each of these functions is cumulative.

Proof of Lemma 2. Constructing the φ -index k from a sentence γ is easy. The required Turing machine looks through the T-proofs and outputs 0 or 1 on input n once a proof of $\#^n_T \to \gamma$ or of $\#^n_T \to \gamma$ is found, respectively. The task is clearly elementary in the gödelnumber of the shortest proof of this kind, that is, in $\Delta^T_{\gamma}(n)$. Of course, it is important that the proof predicates we use are elementary as well as the gödelmumbering of the syntax of T.

We turn to the converse construction. Thus we are given a Turing machine (of godelmumber) k which can only output 0 or 1 (this latter fact need not be provable in T). We have to produce a sentence γ and an elementary function q s.t. for all $n \in \omega$

and

$$\begin{split} \mathbf{T} & \models \mathbf{\#}^n_{\mathbf{T}} & \longrightarrow \mathbf{T} \gamma & \text{iff} & \varphi_{\mathbf{k}}(n) = \mathbf{0} \\ & \text{iff} & \mathbf{T} & \models_{\overline{q} \circ \overline{\Phi}_{\mathbf{k}}(n)} \mathbf{\#}^n_{\mathbf{T}} & \longrightarrow \mathbf{T} \gamma \end{split}$$

In order to construct such γ we shall essentially reproduce the proof of the Uniform Dual Semi-Representability Theorem of Smoryński [5] (slightly weakened).

By self-reference define G(x) to be the formula

$$\exists y \left[\left[\left[\Phi_{\mathbf{k}}(x) < y \wedge \varphi_{\mathbf{k}}(x) = 0 \right] \vee \Box_{\mathbf{T}, y} \left[\#_{\mathbf{T}}^{X} \longrightarrow \neg G(x) \right] \right] \wedge \left[\left[\Phi_{\mathbf{k}}(x) < z \wedge \varphi_{\mathbf{k}}(x) = 1 \right] \vee \Box_{\mathbf{T}, z} \left[\#_{\mathbf{T}}^{X} \longrightarrow G(x) \right] \right] \right]$$

Note that for no $n\in\omega$ can the theory T refute $\#^n_T$ because T is Σ_1 sound. First we show that

$$\Delta_{G(n)}^{\mathrm{T}}(n) \leq \Phi_{\mathrm{k}}(n)$$

for no $n \in \omega$ either. For if this did hold for some n then we would have

$$\mathrm{T}\big|_{\overline{\Phi_{k}}(n)} \ \#^{n}_{\mathrm{T}} \, \longrightarrow \, \mathit{G}(n) \qquad \text{and hence} \qquad \mathrm{T} \ \mathrm{non}\big|_{\overline{\Phi_{k}}(n)} \ \#^{n}_{\mathrm{T}} \, \longrightarrow \, \mathrm{G}(n)$$

or

$$\mathrm{T}\big|_{\overline{\Phi_{k}(n)}} \, \#^{n}_{\mathrm{T}} \, \to \, \mathsf{F}(n) \qquad \text{and hence} \qquad \mathrm{T} \, \mathsf{non}\big|_{\overline{\Phi_{k}(n)}} \, \#^{n}_{\mathrm{T}} \, \to \, \mathsf{G}(n)$$

These two possibilities after being formalized imply on inspection of the definition of G(n)

$$T \vdash \neg G(n)$$
 or $T \vdash G(n)$

respectively whence in either case $T \vdash \neg \#_T^n$ quod non. So $\Delta_{G(n)}^T \leq \Phi_k(n)$ holds for no $n \in \omega$ and in particular if $\varphi_k(n) \uparrow$ then $T + \#_T^n$ does not decide G(n). If $\varphi_k(n) \downarrow$ then we have $\Phi_k(n) < \Delta_{G(n)}^T$ and this easily implies

$$T \vdash G(n)$$
 if $\varphi_k(n) = 0$, and $T \vdash \neg G(n)$ if $\varphi_k(n) = 1$

Finally put γ to be

$$\forall x \ \left[\#_{\mathbf{T}}^{\mathbf{X}} \longrightarrow G(x) \right]$$

Since

$$T \vdash \forall x \ \forall y \ \left[\#_{T}^{x} \land \#_{T}^{y} \longrightarrow x = y \right]$$

we have

$$T \vdash \#^n_T \longrightarrow \left[\forall x \; \left[\#^x_T \longrightarrow G(x) \right] \; \longleftrightarrow \; \left[\#^n_T \longrightarrow G(n) \right] \right]$$
$$\longrightarrow \left[\gamma \; \longleftrightarrow \; G(n) \right]$$

and therefore

$$\begin{split} & \text{T} \vdash \#^n_{\text{T}} \longrightarrow \gamma & \text{if} & \phi_k(n) = 0\,, \\ & \text{T} \vdash \#^n_{\text{T}} \longrightarrow \neg \gamma & \text{if} & \phi_k(n) = 1 & \text{and} \\ & \text{T} + \#^n_{\text{T}} & \text{does not decide } \gamma & \text{if} & \phi_k(n) \, \uparrow \end{split}$$

which amounts to $\delta_{\gamma}^{T} = \varphi_{k}$.

For $n\in \text{dom } \varphi_k$ the T-proofs of $\#^n_T\to \gamma$ and of $\#^n_T\to \gamma$ are elementary in those of G(n) and of $\lnot G(n)$ respectively and the latter essentially amount to verifying $D\Big(n,\ \Phi_K(n)\Big)$ for D(x,y) an elementary formula which only takes elementarily long. Hence

$$\Delta_{\gamma}^{\mathrm{T}} \leqslant_{\mathrm{dom}} \varphi_{k}^{\Phi}$$
 q.e.d. \blacksquare

Proof of Lemma 4. The computation of d(n) consists of constructing all the T-proofs with gödelnumbers $\leq d(n)$ and a simple analysis of their structure. This task is clearly elementary in d(n).

Proof of Lemma 5. See the proof of Lemma 4 reading $\Delta_{\gamma}^{\mathrm{T}}(n)$ instead of d(n).

Proof of Lemma 6. The cumulativity of a and b means that there exist φ -indices a and b for computing these functions and elementary functions q_a and q_b s.t.

$$\Phi_{\mathsf{a}} \leq_{\mathsf{dom } a} q_{\mathsf{a}} \circ a \quad \mathsf{and} \quad \Phi_{\mathsf{b}} \leq_{\mathsf{dom } b} q_{\mathsf{b}} \circ b$$

Clearly the following can be assumed of $q_{\rm h}$:

- q_b is monotonous;
- $-q_{\mathbf{b}}(n) \geq n$ and
- $-q_b(n+m) \ge q_b(n) + q_b(m)$

We want to prove the existence of a φ -index c for computing $c=a\circ b$ and of a Kalmar elementary function q_c s.t.

$$\Phi_{\mathbf{C}} \leq_{\mathrm{dom } a \circ b} q_{\mathbf{C}} \circ a \circ b$$

Take the Turing machines (with gödelnumbers) a and b and rename the states of a so that each one of them be distinct from every state of b and then identify the starting state of a with the halting state of b. Let c be (the gödelnumber of) the resulting Turing machine. One has

 $\Phi_{\mathbf{C}}(n) = \mathbf{c} + n + \text{the number of steps in the computation } \varphi_{\mathbf{b}}(n) +$

+ the number of steps in the computation $\varphi_{a}[b(n)]$

Now set

$$q_{c}(m) = c + q_{b} \circ q_{a}(m)$$

We only have to calculate:

$$\begin{array}{c} q_{C} \, \circ \, a \, \circ \, b(n) \, = \, c \, + \, q_{b} \, \circ \, q_{a} \, \circ \, a \, \circ \, b(n) \, \geq \\ & \geq \, c \, + \, q_{b} \, \circ \, \Phi_{a} \Big[b(n) \Big] \, = \\ & = \, c \, + \, q_{b} \Big[a \, + \, b(n) \, + \\ & + \, \text{the number of steps in the computation} \, \varphi_{a} \Big[b(n) \Big] \, \geq \\ & \geq \, c \, + \, a \, + \, q_{b} \, \circ \, b(n) \, + \\ & + \, \text{the number of steps in the computation} \, \varphi_{a} \Big[b(n) \Big] \, \geq \\ & \geq \, c \, + \, \Phi_{b}(n) \, + \\ & + \, \text{the number of steps in the computation} \, \varphi_{a} \Big[b(n) \Big] \, = \\ & = \, c \, + \, b \, + \, n \, + \\ & + \, \text{the number of steps in the computation} \, \varphi_{a} \Big[b(n) \Big] \, \geq \\ & \geq \, c \, + \, n \, + \\ & + \, \text{the number of steps in the computation} \, \varphi_{a} \Big[b(n) \Big] \, = \\ & = \, \Phi_{c}(n) \end{array}$$

Proof of Lemma 7. Since a is cumulative there exists a φ -index a for computing a s.t. $a\approx_X^{}\Phi_a$ and in the sequel we can deal with Φ_a instead of a.

We describe an algorithm for computing the required function k Step by Step starting with Step 0. At Step m the value of k is defined precisely for those $n \in X$ that satisfy $\Phi_a(n) = m$.

Step m.

Let

$$D_{m} = \left\{ n \in X \mid \Phi_{a}(n) < m \right\} \quad \text{and} \quad N_{m} = \left\{ n \in X \mid \Phi_{a}(n) = m \right\}$$

Our present task is to define k on the elements of N_m . We assume the value of k to have already been defined on elements of D_m and note that the cardinality of D_m and of N_m does not exceed m. If N_m is empty then we just go to Step m+1. Otherwise put

$$\mathbf{W}_m = \left\{ \begin{array}{ll} \mathbf{h} \in \omega & \text{there exists an} \quad n \in \mathbf{N}_m \quad \text{s.t.} \quad \Phi_{\mathbf{h}}(n) \leq m = \Phi_{\mathbf{a}}(n) \,, \\ \\ \text{and} \quad \varphi_{\mathbf{h}}(n) = k(n) \quad \text{for each} \quad n \in \mathbf{D}_m \quad \text{s.t.} \quad \Phi_{\mathbf{h}}(n) \leq \Phi_{\mathbf{a}}(n) \, \right\}$$

Again, note that \mathbf{W}_m can contain at most m elements. If \mathbf{W}_m is empty then let the value of k on every element of N_m be 0. Else let $\mathbf{W}_m = \min \mathbf{W}_m$ and define

$$k(n) = 1 - \varphi_{\overline{W}_m}(n) \quad \text{for those} \quad n \in N_m \quad \text{that satisfy} \quad \Phi_{\overline{W}_m}(n) \leq m$$

$$k(n) = 0 \quad \text{for the remaining} \quad n \in N_m$$
 Finally go to Step m+1.

Let k φ -index the Turing machine corresponding to the above algorithm. We easily have that $\Phi_k \leqslant_X \Phi_a$ because k(n) is defined at Step $\Phi_a(n)$ (for this reason we also have $\Phi_a \leqslant_X \Phi_k$) and clearly each Step m is elementary in m because to carry it out k executes at most k first steps of at most k first Turing machines on at most k inputs along with some simple bookkeeping. Thus

$$\Phi_{\mathbf{k}} \approx_{\mathbf{X}} \Phi_{\mathbf{a}} \approx_{\mathbf{X}} \mathbf{a}$$

Consider the set

 $\mathbf{Z} \; = \; \left\{ \; \; \mathbf{h} \; \in \; \omega \; \; \middle| \; \; \varphi_{\mathbf{h}}(n) \; = \; \mathbf{k}(n) \quad \text{for all} \quad n \; \in \; \mathbf{X} \quad \text{s.t.} \quad \Phi_{\mathbf{h}}(n) \; \leq \; \Phi_{\mathbf{a}}(n) \; , \right.$ and $\Phi_{\mathbf{h}}(n) \; \leq \; \Phi_{\mathbf{a}}(n) \quad \text{for infinitely many} \quad n \; \in \; \mathbf{X} \; \left. \right\}$

We are going to show that Z is empty. Suppose h_0 is its minimal element. Then for each $h < h_0$ there is an $n \in X$ s.t. $\varphi_h(n) \neq k(n)$ and $\Phi_h(n) \leq \Phi_a(n)$, or there exists a $j \in \omega$ s.t. the value of k is defined during the first j Steps on all $n \in X$ satisfying $\Phi_h(n) \leq \Phi_a(n)$. Now let $J \in \omega$ be so large that for each $h < h_0$

- (i) there exists an $n\in X$ s.t. $\varphi_{h}(n)\neq k(n)$ and $\Phi_{h}(n)\leq \Phi_{a}(n)\leq J$, or
- (ii) the value of k is defined during the first J Steps on all $n\in X$ s.t. $\Phi_{\mathbf{h}}(n)\leq \Phi_{\mathbf{a}}(n)$

Since we assumed that $\Phi_{\mathbf{h}_0}(n) \leq \Phi_{\mathbf{a}}(n)$ for infinitely many $n \in X$ there should be an $n \in X$ s.t.

$$J < \Phi_{h_0}(n_0) \leq \Phi_{a}(n_0)$$

Let us now compute $k(n_0)$. This value is defined at Step $\Phi_{\bf a}(n_0)$. We claim that ${\bf w}_{\Phi_{\bf a}(n_0)}=\min {\bf w}_{\Phi_{\bf a}(n_0)}={\bf h}_0$. It is straightforward to see that ${\bf h}_0\in {\bf W}_{\Phi_{\bf a}(n_0)}$ since $n_0\in {\bf N}_{\Phi_{\bf a}(n_0)}$ and $\Phi_{\bf h}_0(n_0)\leq \Phi_{\bf a}(n_0)$. Let ${\bf h}<{\bf h}_0$. If (i) holds for ${\bf h}$ then we have that k was defined to differ from $\varphi_{\bf h}$ at an earlier Step because $J<\Phi_{\bf a}(n_0)$. If (ii) is the case for ${\bf h}$ then $\Phi_{\bf a}(n_0)<\Phi_{\bf h}(n_0)$ (or even $\Phi_{\bf h}(n_0)\uparrow$). In either case ${\bf h}\not\in {\bf W}_{\Phi_{\bf a}(n_0)}$. Thus ${\bf h}_0={\bf W}_{\Phi_{\bf a}(n_0)}$ and therefore $k(n_0)=1$ - $\varphi_{\bf h}_0(n_0)$ since $\Phi_{\bf h}_0(n_0)\leq \Phi_{\bf a}(n_0)$. But this contradicts the assumption ${\bf h}_0\in {\bf Z}$.

The contradiction proves Z to be empty.

Next imagine a φ -index i s.t. $\varphi_i \equiv_X k$. Since i $\not\in$ Z the relation $\Phi_i(n) \leq \Phi_a(n)$ can only hold for finitely many $n \in X$ so

$$\Phi_{\mathbf{k}} \approx_{\mathbf{X}} \Phi_{\mathbf{a}} \leqslant_{\mathbf{X}} \Phi_{\mathbf{i}}$$

which completes the proof of Lemma 7.

Proof of Lemma 3. This Lemma follows from Lemma 7 once we know that cumulative functions whose domain is X exist. By Lemmas 2 and 5, they do.

References

- [1] M.Blum, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14 (1967) 322-336.
- [2] R.Magari, The diagonalizable algebras (the algebraization of the theories which express Theor.: II), Boll. Un. Mat. Ital. (4), 12 (1975) suppl.fasc. 3, 117-125.
- [3] M.B.Pour-El and S.Kripke, Deduction-preserving "recursive isomorphisms" between theories, Fund. Math. 61 (1967) 141-163.
- [4] V.Yu.Shavrukov, Subalgebras of diagonalizable algebras of theories containing arithmetic, ITLI Prepublication Series X-91-03, Institute for Language Logic and Information, University of Amsterdam 1991.
- [5] C.Smoryński, Calculating self-referential statements, Fund.
 Math. 109 (1980) 189-210.
- [6] C.Smoryński, Fixed point algebras, Bull. (N.S.) Amer. Math. Soc. 6 (1982) 317-356.
- [7] C.Smoryński, Self-Reference and Modal Logic (Springer-Verlag, New York, 1985).

```
1990 Logic, Semantics and Philosophy of Language Prepublication Series
                                                                                                                                                                                                                       A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Elevible Montague Grammar
            LP-90-01 Jaap van der Does
             LP-90-02 Jeroen Groenendijk, Martin Stokhof
             LP-90-03 Renate Bartsch
          LP-90-03 Renate Batter
LP-90-04 Aarne Ranta
LP-90-05 Patrick Blackburn
LP-90-06 Gennaro Chierchia
LP-90-07 Gennaro Chierchia
LP-90-08 Herman Hendriks
                                                                                                                                                                                                                        Flexible Montague Grammar
The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
Models for Discourse Markers
             LP-90-09 Paul Dekker
Logics for Belief Dependence
Two Theories of Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
Isomorphisms and Non-Isomorphisms of Graph
A Semantical Proof of De Jongh's Theorem
Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
A Note on the Interpretability Logic of Finitely Axiomatized Theorem
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 John Tromp, Peter van Fend CT-90-02 Sieger van Tottler (T-90-02 Sieger van Tottler)

Logics for Belief Dependence
Two Theories of Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation
             LP-90-10 Theo M.V. Janssen
                                                                                                                                                                                                                                                                                                            Isomorphisms and Non-Isomorphisms of Graph Models
                                                                                                                                             Sequences with Simple Initial Segments

Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman

A Note on the Interpretability Logic of Finitely Axiomatized Theories

Some Syntactical Observations on Linear Logic
         CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets

Grafest Fixed Points of Loric Programs
       CT-90-07 Kees Doets
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer
X-90-01 A.S. Troelstra
CT-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev

Dynamic Data Structures on Multiple Storage Media, a Tutorial
Greatest Fixed Points of Logic Programs
Physiological Modelling using RL
CT-90-09 Roel de Vrijer
Unique Normal Forms for Combinatory Logic with Parallel Conditional, a case study in conditional rewriting
Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
Some Chapters on Interpretability Logic
X-90-04
                                                                                                                                                                                                                      Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
           X-90-04
          X-90-05 Valentin Shehtman
                                                                                                                                                                                                                      Derived Sets in Euclidean Spaces and Modal Logic
                                                                                                                                                                                                                    Derived Sets in Euclidean Spaces and Modal Logic Using the Universal Modality: Gains and Questions The Lindenbaum Fixed Point Algebra is Undecidable Provability Logics for Natural Turing Progressions of Arithmetical Theories On Rosser's Provability Predicate de Boas An Overview of the Rule Language RL/1 Provable Fixed points in I\Delta_0 + \Omega_1, revised version Bi Linary Interpretability Logic
         X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
       X-90-07 V.Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V.Yu. Shavrukov
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev
X-90-14 L.A. Chagrova
X-90-15 A.S. Troelstra
Dzhaparidze's I
Logic, Semantics

Danie Amerika Semantics

Lectures

Logic, Semantics

Logic Semantics

Lectures

Logic Semantics
                                                                                                                                                                                     Bi-Unary Interpretability Logic

Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
                                                                                                                                                                                                                      Undecidable Problems in Correspondence Theory
     X-90-15 A.S. Troelstra

Logic, Semantics and Philosophy of Langauge

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic

LP-91-02 Frank Veltman

LP-91-03 Willem Groeneveld

LP-91-04 Makoto Kanazawa

ML-91-04 Makoto Kanazawa

ML-91-01 Yde Venema Mathematical Logic and Foundations

ML-91-03 Domenico Zambella

ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra

ML-91-06 Inge Bethke

ML-91-07 Yde Venema

ML-91-07 Yde Venema

ML-91-08 Inge Bethke

ML-91-09 V.Yu. Shavrukov

CT-91-01 Ming Li, Paul M.B. Vitányi

Computation and Complexity Theory

Kolmogorov Complexity Argu
                                                                                                                                                                                                                    Lectures on Linear Logic
                                                                                                                                                                                                                      On the Proofs of Arithmetical Completeness for Interpretability Logic
Annte Type Structures within Combinatory Algebras
Modal Derivation Rules
ML-91-08 Inge Bethke
ML-91-09 V.Yu. Shavrukov
CT-91-01 Ming Li, Paul M.B. Vitányi
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi
CT-91-03 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-07 Karen L. Kwast
CT-91-08 Kees Doets
CT-91-08 Kees Doets
CT-91-10 John Tromp, Paul M.B. Vitányi
CT-91-11 Lane A. Hemachandra, Edith Spaan
X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Properties

A Note on the Diagonizable Algebras of PA and ZF
Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
Complexity Under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity Complexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Worst Case Complexity
Cromplexity under the Universal Distribution Equals Wors
     X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications
X-91-02 Alexander Chagrov, Michael Zakharyaschev
On the Undecidability of the Disjunction Property of Intermediate Propositional Logics
X-91-03 V. Yu. Shavrukov
X-91-04 K.N. Ignatiev
X-91-05 Johan van Benthem
Subalgebras of Diagonizable Algebras of Theories containing Arithmetic
Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem
X-91-06
X-91-07 A S. Trackers
                                                                                                                                                                                                                  Temporal Logic
Annual Report 1990
Lectures on Linear Logic, Errata and Supplement
     X-91-07 A.S. Troelstra
X-91-08 Giorgie Dzhaparidze
X-91-09 L.D. Beklemishev
X-91-10 Michiel van Lambalgen
X-91-11 Michael Zakharyaschev
                                                                                                                                                                                                                  Logic of Tolerance
                                                                                                                                                                                                                  On Bimodal Provability Logics for \Pi_1-axiomatized Extensions of Arithmetical Theories
                                                                                                                                                                                  Independence, Randomness and the Axiom of Choice
Canonical Formulas for K4. Part I: Basic Results

Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat
The Multiplicative Fragment of Linear Logic is NP-Complete
The Horn Fragment of Linear Logic is NP-Complete
       X-91-12 Herman Hendriks
```

X-91-13 Max I. Kanovich X-91-14 Max I. Kanovich

