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Abstract

We prove that the diagonalizable algebras of PA and ZF are not

isomorphic.






A diagonalizable algebra of an r.e. theory T 1is a pair

(a o =D where HT is the gquotient of the Boolean algebra

T' T) T

of sentences of T modulo the ideal of theorems of T. ﬂT is usu-
ally called the Lindenbaum sentence algebra of T. O is a unary
operator on ﬂT which takes a sentence ¥ to the statement asser-
ting that ¥ 1s provable in T. Thus T is assumed to contain
enough arithmetic to express syntactical notions such as "... is
a T-proof of ...". More specifically, the sentence O is taken
to be the provability predicate of T (which shall be identified
with DT) after its only free variable has been replaced by the

godelnumber of 7. The provability predicate is assumed to have

the following form:
dx Prf (x,y)

where Prfa(x,y), the proof predicate of T, is the formula exp-
ressing in the natural way that x codes a Hilbert-style proof of
(the formula coded by) y from the extralogical axioms specified
by «. The formula o(-) with exactly one free variable occurs in
the proof predicate as a subformula and is assumed to be Zl o)
that the proof and provability predicates also are Zl formulas.

To the theory T this a has to bear the following relation:
¥y € S iff a(y) 1s true

for all sentences ¥ where S is a set of sentences which axioma-
tizes T. Of course neither the set of theorems of T nor S deter-
mines o« uniquely.

The diagonalizable algebras of theories were introduced by
Magari [2] and have since then been studied in close connection

with provability logics (see Smorynski [7]).



How large is the collection of isomorphism types that dia-
gonalizable algebras of various theories can offer? Among these
algebras one finds such (cf. Smorynski [6]) that o5y =T imp-

lies 9y = 1T for each 7 € DT (this holds for 21 sound theories

T, that is, for those theories that prove no false Zl senten-

ces), and such algebras that there exists a 7 € DT satisfying
oLy =T but ¥ = T (Z1 ill theories). Moreover, in the latter
case for any m € w the equality oL = 7T can hold for all
n > m, or it can hold for no n € w at all. (L and T are the

zero and the unit of a Boolean or of a diagonalizable algebra.)
This appears to the author to be precisely all that is presently
known of distinctions between the diagonalizable algebras of
different theories.

The present paper is devoted to the question whether the
diagonalizable algebras of PA and ZF are isomorphic. We assume

that the provability predicate of PA is natural enough so that

ZF]——VJEZ1 ( o — 0)

“pa
The reader is also supposed to believe that ZF is 21 sound. In

this setting we have

Theorem. The diagonalizable algedras DPA and DZF are not

isomorphic.

In connection with this theorem we would like to mention
two related facts. First, Pour-El & Kripke [3] show the Linden-

baum sentence algebras HPA and HZ to be recursively isomorphic.

F

Second, the algebras DPA and DZF are recursively embeddable in

one another (cf. Shavrukov [4]).




The Theorem settles (a particular case of) a tiny question
in Smorynski [6]. The method we use to prove the Theorem is si-

miliar to (and derives from) a trick employed in Shavrukov [4].

Proof. To carry out the proof we shall have to introduce a
number of auxiliary notions and formulate a number of lemmas as
we go along. The lemmas we use are very well-known and/or very
easy to believe and do hardly shed much light on the proof of
the Theorem and therefore their proofs are only given in the
Appendix.

Since our proof 1is going to deal with rates of growth of
functions we need to fix a class of functions of neglectibly
slow growth elements of which are to be used as small change. As
such we choose the class of (Kalmar) elementary functions. So

for a set V ¢ w and functions f and g we define

f <y 9 iff there exists an elementary function g s.t.

f sy 9 ° g that is, f(n) <y 9 e g(n) for each n €V

We write f ~y g to mean both f <, g and g £, f. 1In

|4 v
case V = w we just write < and »~ instead of <y and ~, respec-
tively.
The partial functions f and g are equal, f = g, 1if their

domains coincide and for each element n of their domain one
has f(n) = g(n). The expression f = 9 means that
V N dom f =V N dom g and f(n) = g(n) for each element n of
the latter set.

In fact we shall only deal with recursive partial functi-
ons. These are computed by the usual Turing machines. A Turing

machine will be identified with its godelnumber and N will



stand for the function f computed by the ith Turing machine. In
an alternative manner of speaking, i1 is a ¢-index for (compu-
ting) f. The expression wi(n) will not only stand for the output
(if any) of the Turing machine (of godelnumber) i on the input n
but also for the computation executed by that Turing machine on
this input. Thus we write wi(n)l or wi(n)T according to whether

this computation con- or diverges, and the expression
the number of steps in the computation @i(n)

also makes sense. We shall employ a (Blum) complexity measure ¢
(cf. Blum [1]) associated with the ¢-indexing which is slightly

different from the usual ones, namely
@i(n) = i + n + the number of steps in the computation wi(n)

our favourite feature of this complexity measure is that for
each m € w there only exists a finite number of pairs (i,n)
for which there is a chance of @i(n) < m.

Next we define the class of (elementarily) cumulative par-

tial recursive functions by putting

f is elementarily cumulative iff

there exist a ¢p-index f for f s.t. ¢ f

£ “dom f

(Note that we then also have @ f.) The intuition is that

f “domf
the rate of growth of f correctly reflects the complexity of

computing it.

Lemma 1. Each Kalmar elementary function is majorized by

an elementarily cumulative elementary function.

Expressions concerning N and Qi (or even partial recursi-




ve functions if it is clear which particular ¢-index is meant)
will also occur in formalized contexts. We convene that the un-
derlying formalization is reasonable, so that some simple facts
about Turing machines and the complexity measure are provable in
formal theories in question, and economic, that is that the
Kleene T-predicate is expressed by an elementary formula so that
the relation @i(n) < m 1s also expressed by an elementary for-
mula, the relation wi(n) = m 1is an elementary formula preceded
by an existential quantifier etc.

Elementarity is also assumed of godelnumbering of syntax
and of the proof predicates of formal theories under considera-

tion, that is, the relation Tkﬁ—w defined by

TFE‘W iff T proves y by a proof of godelnumber < n

is elementary in n and ¥ and is expressed by an elementary for-

mula which by abuse of terminology will also be refer-

DT,ny’
red to as the proof predicate of T. In the presence of the Zl
collection schema, for any provability predicate o, we can,
using a trick due to Craig which possibly involves a minor rear-
ranging of the set of axioms of T, find an elementary proof pre-

dicate o s.t.
T,n

T Vy (oL <> dn og 7)

T,n
Note that the natural proof predicates of PA and ZF are elemen-
tary because these theories are axiomatized by a finite number
of axioms and axiom schemas.

Next to every 21 sound theory T containing IAO+exp we as-
sociate an indexing 5T of 0-1-valued partial recursive functions

by sentences of T in the following manner



. n
Define the sequence of sentences { #T }new

+
#1,; = Eln lJ. A OnT

(¢ is short for 7ot and the upper indices of o and ¢ denote ite-

ration) and put

T . n
Sv(n) 0 if Th#, — 7
=1 if T}—#?,—)-ry

divergent if T + #g does not decide ¥

From the viewpoint of T itself it is not clear that the value of
Sg(n) is determined uniquely. Therefore if one wants to deal
with 63 in T one has to add that the value Sz(n) is determined
according to the shortest proof of either of the two sentences
in question.

AT is a complexity measure associated with ST which is de-

fined as follows:

T _ o n n
Av(n) = the minimal d s.t. Tlz#, — v or Tly #p — 7

The crucial fact connecting ST and AT with ¢ and ¢ is

Lemma 2. Let T be an r.e. 21 sound theory containing
IAO+exp. To each ¢-index k for a O-1-valued partial recursive
function there corresponds a sentence y of T s.t.

T T

87 Py and A7 <dom Py @k

conversely, to each sentence y of T there corresponds a ¢-index
k for a O-l1-valued partial recursive function s.t.

T T
P, = 8 and o, < A
K 7 K dom 83 v




We are now ready to start. Our strategy is to assume the
existence of an isomorphism e: DPA — DZF and use it to derive
an absurdity.

Let X be a nonrecursive r.e. set.

Lemma 3. There exists a partial recursive O-l-valued func-
tion h and a ¢-index h for it s.t. dom h = X and whenever i is

a p-index for h one has

By Lemma 3 pick a partial recursive O-1l-valued function h
and a p-index h for it s.t. dom h = X and whenever i is a ¢-

index for h there holds

Qh <X Qi

Next let a be a sentence of PA corresponding to h by Lemma 2
s.t.

PA PA
o h and Aa <X @h

8

Let A4 be a sentence of ZF s.t. 4 = e(a). Since e is an isomor-

phism, and as such has to send #gA to #ZF, we have that
ZF _ (PA _
SA = 5a = h

and hence for some p-index i for the function h

PA ZF
Aa <X Qh <X Qi <X AA

by Lemma 2 and the choice of h. We have now that

PA ZF
By Sx P ° By

for some elementary function p which we can by Lemma 1 assume



cumulative and which will bear this name p throughout the sequ-
el.
Consider a total recursive function d s.t. for each natural

number n the value d(n) is s.t. whenever
PAL 0pp%, V Opa%,
for a pair of sentences o, and T there holds
PAlgmy @ °F  PAlgmy 9.
The function d is a provably recursive function of ZF for

ZFVYo€eX (oppo — 0)

“pa

and so
ZF|——VG1 VUZ [DPA(DPAU1 v DPAGz) —. Bpa0 VB0
FV¥x Jy Val V02 [DPA,X(DPA01 V Bpa0,) = “pa,y% Vo 9pa, %,

(the last step uses 21 collection).

By a result of Parikh (cf. Shavrukov [4]) the function d
can be chosen to eventually majorize every provably recursive
function of PA. Now let g =d o d o d and note that for each
pair g, r of elementary functions g eventually majorizes the
function q o d o r.

At this point we need more lemmas.
Lemmaz. 4. The function d is cumulative.

Lemma 5. For each r.e. Zl sound theory containing IAO+exp

and each sentence ¥ of T the function Ag is cumulative.




Lemma 6. If a and b are cumulative partial recursive func-

tions then a o b 1s also cumulative.

The next lemma is a specialization of the Compression Theo-

rem (cf. Blum [1]) and an improvement on Lemma 3.

Lemma 7. Let a be a cumulative function with dom a = X.
Then there exists a partial recursive O-l-valued function k and
a p-index k for it s.t. dom k = X and whenever 1 is a ¢-index
for a O-l-valued (partial) recursive function satisfying

¢; Fx k there holds

)

a~y o <x %

Since by Lemmas 4 - 6 the function g o p o AiF

is cumula-
tive, Lemma 7 provides a 0O-l-valued partial recursive function f
and a ¢-index f for it s.t. dom f = X and

ZF
g ep by vy %%y
whenever i is a ¢-index for a O0-1-valued (partial) recursive
function extending f. Let s be an elementary function s.t.

ZF

@gSogopoAA

X

Let B(x) be the following formula of ZF:
ZF ZF
SA (x)] — [Qf(x) < S o g o p o AA (x) — f(x) = 0]
and define the formula B to be

Vx [#X

F B(x)

We want to show that



ZF _
SB =x f

Indeed if n € X then SiF(n)l and B(n) provably reduces to
ZF
Qf(n) < 8 o g o p o AA (n) — f(n) =0
and then, since the antecedent of this formula is true and hence
provable, to

f(n) = 0

From this derives

7F B(x)] . [#QF — B(n)]]

J

ZFF—#QF — | Vx [#X

— |B > B(n)]

— |B ¢« f(n) = O]
whence SgF(n) =x f(n). Moreover by formalizing the above argu-
ment we have
2P Vx (o, (35 — 2) v o, (45— 2) —. 82 (x0)]
ZF*"ZF ZF*"ZF |

ZF
—>. S o g o p o AA (X)l]

—. DZFB(X) Vv DZFwB(X)]
—. DZF(#EF — B) V
v ogp gy — “B)]
and in particular for each n € w
ZFF—DZF(#QF 5 a) v DZF(#EF 5 na) —.
—. o, (7. — B) V o, (5 — 7B)

Let B = e_l(B). e ! should also be an isomorphism and so

10




whence by Lemma 2 and the choice of f

PA
@f <X AB

Also one has by the same isomorphism that

PAl-o — «a) vV o — o) —.

n n
PA(#PA PA(#PA

n n
—. DPA(#PA — B) V DPA(#PA — 1)
for all n € w. Since PA is r.e. there exists a total recursive

function j s.t. for each n € w

_PAFFTHT-DPA(#gA — a) Vv DPA(#gA — na) —.

n n
—. DPA(#PA — B) V DPA(#PA — 1f3)
The totality of j implies that the set

Y={neX’j(n)sA§A(n)}

is infinite for otherwise dom AgA = X would be recursive. For

the same reason the set { AgA(n) ’ ney } is unbounded.
Now we concentrate our attention on Y. For n € X we cle-

arly have

PA by DPA(#gA — ) V DPA(#’;A — na)

. . PA .
for some partial recursive 1 <X Aa because constructing a

PA-proof of Opa? from that of ¥ is quite an elementary task.

Hence for all n € X and some partial recursive m s.t.
m <, max (j, 1) <, A

X Y "«

there holds

PA DPA(#gA — B) Vv DPA(#?’A — B)

whence by the choice of the function d we have

11



n n
PAlgcmay fea — B o PRlgemmy fea 7 7F

that is,
PA PA
< o < o o
AB X d m <, d t Aa
. PA .
for some elementary function t for m <Y Aa and d is monoto-

nous. Next recall that

PA ZF PA
g o A <X g o p o AA <X Qf <X AB

(the first inequality holds because g is monotonous and
PA ZF

Aa sy b AA ). Putting things together we get
PA PA
goAa <Ydot OA(x
By the unboundedness of { AgA(n) I ney } we infer that there
exists an elementary function u s.t. u o d o t exceeds g for

infinitely many arguments which contradicts the choice of g.

Thus from out of existence of an isomorphism e: D —> DZ

PA F

we derived a contradiction and therefore proved the abscence of

such e. n

The theories PA and ZF occupy a special place in the
study of diagonalizable algebras and provability logics in that
they constitute a conventional example of a pair of theories of
which the second is much stronger than the first one (cf. Smo-
rynski [7]). In the Theorem of the present paper this pair can
be replaced by a wide class of others. For convenience we now
bring together the conditions on the two theories under which
this replacement is possible.

First, we either have to assume that both employed proof

predicates are elementary, or that both theories T and S contain

12




enough 21 collection to provably equivalently replace their gi-
ven proof predicates by elementary versions.

In fact our proof of the Theorem goes through for any pair
of 21 sound r.e. theories T and S containing IAO+exp s.t. S
proves a "smoothened" version of uniform Zl reflection for the

chosen elementary proof predicate of T:
Sk VYx Jy Voo(-)er DT,XHW oo(w) — dz<y ao(z)

which follows from the usual uniform 21 reflection schema
VGEZl (o0 — 0)

if S proves the appropriate instance of Zl collection.

13



Appendix

Proof of Lemma 1. It is well-known that each elementary

function can be majorized by one of the functions { Ax.zﬁ }new

and that each of these functions is cumulative. =

Proof of Lemma 2. Constructing the ¢-index k from a sen-
tence y is easy. The required Turing machine looks through the
T-proofs and outputs 0 or 1 on input n once a proof of #g —
or of #3 — 1Y is found, respectively. The task is clearly
elementary in the godelnumber of the shortest proof of this
kind, that is, in A;(n). Of course, it is important that the
proof predicates we use are elementary as well as the godelmum-
bering of the syntax of T.

We turn to the converse construction. Thus we are given a
Turing machine (of godelmumber) k which can only output 0 or 1
(this latter fact need not be provable in T). We have to produce

a sentence y and an elementary function g s.t. for all n € w
n .
T}—#T — 7 iff ¢ (n) =0

. n
e Mg my fr 7

and
T|——#n — 1y iff wk(n) =0

. n
iff Tl—q—olfk(T)#T—)ﬁ?T

In order to construct such 7 we shall essentially reproduce the
proof of the Uniform Dual Semi-Representability Theorem of Smo-

rynski [5] (slightly weakened).

14




By self-reference define G(x) to be the formula

dy

[ék(x) <Y A p(x) = 0] v DT’y[#§ — 1G(X)]] A

A VZ<y h

[@k(x) <z A (x) = 1] v DTIZ[#g — G(X)]

Note that for no n € w can the theory T refute #g because T is

21 sound. First we show that

AT < @, (n)

G(n) (M =
for no n € w either. For if this did hold for some n then we

would have

TkgiTHT—#g — G(n) and hence T non}5£757—#¥ — 1G(n)
or

T}iETHT—#g — G (n) and hence T non}iETHT—#g — G(n)

These two possibilities after being formalized imply on inspec-

tion of the definition of G(n)

TH-G(n) or T|G(n)
respectively whence in either case T}—w#g quod non. So
T . . .
AG(n) < @k(n) holds for no n € w and in particular if wk(n)T

then T + #g does not decide G(n). If ¢k(n)l then we have

T

G(n) and this easily implies

2, (n) < A
T} G(n) if wk(n) = 0, and TF-G(n) if wk(n) =1

Finally put ¥ to be
Vx #; — G(x)

Since

15



T Vx Yy [#f_{, A H e X = y]

we have
T 40 — [vX (15— e . 45 — G(n)”
—> [7 «—> G(n)]

and therefore

T}—#g — 7 if ¢ (n) =0,
T}-#g — Y if @k(n) =1 and

n . .
T + #T does not decide 7 if wk(n)T

. T _
which amounts to 87 = Py
For n € dom " the T-proofs of #g — ¥ and of #g — 1Y
are elementary in those of G(n) and of - G(n) respectively and
the latter essentially amount to verifying D[n, @k(n)] for

D(x,Yy) an elementary formula which only takes elementarily

long. Hence

T
AW <gom 0y @k q.

Proof of Lemma 4. The computation of d(n) consists of con-
structing all the T-proofs with godelnumbers

< d(n) and a sim-

ple analysis of their structure. This task is clearly elementary

in d(n). n
Proof of Lemma 5. See the proof of Lemma 4 reading A;(n)
instead of d(n). -
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Proof of Lemma 6. The cumulativity of a and b means that
there exist ¢p-indices a and b for computing these functions and

elementary functions d, and dy s.t.

) q. o a and o b

a “dom a Ja CI)b “dom b b
Clearly the following can be assumed of dy:
- qy is monotonous;

- qb(n) > n and

g, (ntm) > gy (n) + g (m)
We want to prove the existence of a ¢-index c¢ for computing

c =a o b and of a Kalmar elementary function q. s.t.

0] o a o b

c *dom a-b 9c

Take the Turing machines (with godelnumbers) a and b and
rename the states of a so that each one of them be distinct from
every state of b and then identify the starting state of a with
the halting state of b. Let c be (the godelnumber of) the resul-

ting Turing machine. One has

@C(n) = ¢ + n + the number of steps in the computation wb(n) +

+ the number of steps in the computation wa[b(n)]
Now set
g (m) = c + q  ° g (m)

We only have to calculate:

17



g, ° a o b(n)

Proof of Lemma 7.

index a for computing a s.t.

deal with @a

v

c + gy @a[b(n)]

c + dyla + b(n) +

>c + a + dy ° b(n) +

+ the number of steps in

> Cc + @b(n) +

+ the number of steps in

c + b+ n+

+ the number of steps

+ the number of steps in

>c +n +

+ the number of steps

+ the number of steps in

¢ (n)

X

instead of a.

c + qb o qa o a o b(n)

a~, ¢
a

>

the number of steps in the computation wa[b(n)]]

the computation wa[b(n)]

the computation ¢a[b(n)]

in the computation wb(n)

the computation wa[b(n)]

in the computation @b(n)
the computation wa[b(n)]

e.d.

q.

\%

\%

\

+

Since a is cumulative there exists a ¢-

and in the sequel we can

We describe an algorithm for computing the requixed functi-

on k Step by Step starting with Step 0. At Step m the value of k

is defined precisely for those

Step m.

Let

n € X

18

that satisfy

¢_(n)

m.




Dm = { n e X l @a(n) < m } and Nm = { neX \ @a(n) = m }

our present task is to define k on the elements of Nm' We assume
the value of k to have already been defined on elements of Dm
and note that the cardinality of Dm and of Nm does not exceed m.

If Nm is empty then we just go to Step m+l. Otherwise put

Wm = { h e w \ there exists an n € Nm s.t. Qh(n) <m-= @a(n),

and @h(n) = k(n) for each n € Dm s.t. @h(n) < @a(n) }

Again, note that Wm can contain at most m elements. If Wm is

empty then let the value of k on every element of Nm be 0. Else

let w_ = min W and define
m m

k(n) =1 - Py (n) for those n € Nm that satisfy @w (n) < m
m m
k(n) = 0 for the remaining n € N

Finally go to Step m+l.

Let k ¢-index the Turing machine corresponding to the above

algorithm. We easily have that ¢ Qa because k(n) is defi-

k x
ned at Step @a(n) (for this reason we also have @a <X @k) and
clearly each Step m is elementary in m because to carry it out k

executes at most m first steps of at most m first Turing machi-

nes on at most m inputs along with some simple bookkeeping. Thus

Consider the set

19



zZ = { h e w l @h(n) = k(n) for all n € X s.t. @h(n) < @a(n),
and @h(n) < Qa(n) for infinitely many n € X }

We are going to show that Z is empty. Suppose hO is its minimal
element. Then for each h < hO there 1is an n € X s.t.
@h(n) « k(n) and @h(n) < @a(n), or there exists a j € w
s.t. the value of k is defined during the first j Steps on all
n € X satisfying @h(n) < Qa(n). Now let J € w be so large

that for each h < ho

(1) there exists an n € X s.t. wh(n) = k(n) and
@h(n) < @a(n) < J, or
(ii) the value of k is defined during the first J Steps on

all ne X s.t. @h(n) < @a(n)

Since we assumed that @h (n) < @a(n) for infinitely many
0

n € X there should be an no € X s.t.

J < Qho(no) < @a(no)

Let us now compute k(no). This value is defined at Step @a(no).
We claim that WQa(n ) = min W® (n ) = ho' It is straightfor-
0 a‘o
ward to see that hO € W@ (n ) since n, € N<I> (n ) and
a‘o a‘o
@h (no) < @a(no). Let h < ho' If (i) holds for h then we have
0]

that k was defined to differ from 2N at an earlier Step because

J < @a(no). If (ii) is the case for h then @a(no) < @h(no)
(or even @h(nO)T). In either case h ¢« Wéa(no). Thus
hO = Wy (n ) and therefore k(no) = 1 - 2% (no) since
a‘o 0
Qh (no) < @a(no). But this contradicts the assumption h0 € 7.
0]

20




The contradiction proves Z to be empty.
Next imagine a ¢p-index i s.t. 05 =x k. Since 1 ¢ Z the

relation @i(n) < @a(n) can only hold for finitely many n € X

SO

which completes the proof of Lemma 7. u
Proof of Lemma 3. This Lemma follows from Lemma 7 once we

know that cumulative functions whose domain is X exist. By Lem-

mas 2 and 5, they do. n
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