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Sahlqvist’s Theorem for Boolean Algebras with Operators

Maarten de Rijke* & Yde Venema

Department of Mathematics and Computer Science
University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

1 Introduction

The aim of this note is to explain how a well-known result from Modal Logic, Sahlqvist’s
Theorem, can be applied in the theory of Boolean Algebras with Operators to obtain
a large class of identities, called Sahlguist identities, that are preserved under canonical
embedding algebras. These identities can be specified as follows. Let o = {f; : 1 € I'}
be a set of (normal) additive operations. Let an untied term over o be a term that is
either (i) negative (i.e., in which every variable occurs in the scope of an odd number
of complementation signs — only), or (ii) of the form g1(g2...(gn(z))...), where the g;s
are duals of unary elements of o (i.e., g; is defined by g;(z) = —fi(—z) for some unary
operator in ¢), or (iii) obtained from terms of type (i) or (ii) by applying +, - and elements
of o only. Then, an equality is called a Sahlguist equality if it is of the form s = 1, where
s is obtained from complemented untied terms —u by applying duals of elements of o to
terms that have no variables in common, and - only.

Examples of Sahlqvist identities are abundunt in algebraic logic—in fact, all axioms for
both relation and cylindric algebras can be brought in a Sahlqvist form. For instance,
Johan van Benthem observed that the axiom z”;—(z;y) < —y in relation algebra has a
Sahlqvist equivalent —[(z”; —(z;¥)) - y)] = 1.

To prove that such Sahlqvist equalities are indeed preserved under canonical embedding
algebras we will not have to prove any really new results, but we will merely have to order
some known results in an appropriate way.

As this note is aimed primarily at algebraists, we assume that the reader is familiar with
basic algebraic notions and facts; for algebraic details not explained in this note we refer
the reader to [2]. We will be somewhat more explicit concerning the modal logical results
and definitions we will need; most of them will be presented in §2. After that, in §3, we
describe the modal counterparts of the above Sahlgvist equalities, and partially prove a
Sahlqvist Theorem, which says that Sahlqvist formulas are both canonical and first order.
From this the preservation of Sahlqvist equalities under canonical embedding algebras is
easily derived. Finally, §4, which is essentially a part of the second author’s dissertation [9],
contains a detailed demonstration of the usefulness of the Sahlqvist Theorem. It shows that
by the Sahlqvist Theorem the equivalence of two equations may be proved or disproved
by reasoning on modal frames (or atom structures) rather then by manipulating these

*This author was supported by the Netherlands Organization for Scientific Research (NWO).



equations themselves; as an example illustrating this method Henkin’s equation in cylindric
algebras is proved to be equivalent to an equality of a simpler form.

The reader is advised to skip §2 upon a first reading, and only to return to it later on
to look up a definition.

We would like to thank Johan van Benthem for stressing the importance of Sahlqvist’s
Theorem, and Andréka Hajnal, Istvdn Németi and Ildiké Sain for encouraging us to write
this note.

2 Preliminaries

A Boolean algebra with operators (BAO) is an algebra B of type { +,-,—,0,1 }U{ f; : i € I'}
such that (B, +,-,—,0,1) is a Boolean algebra, and the operators { f; : ¢ € I} are (finitely)
additive (join preserving) in every argument; a BAO is called normal if for every f;,
fi(£) = 0 whenever one of the terms z; = 0.

Let us quickly move on to the Stone Representations of BAO’s, the so-called general
frames. First, a modal similarity type is a pair S = (O, p), where O = {Vv;: 1 € I} is a
set of modal operators, and p is a rank function for O. As variables ranging over modal
operators we use V,Vq,...; for monadic modal operators we use ¢,<1,.... For v; € §
its dual operator <; is defined as <;(¢1,...,By4) = Vi(791,. .., P,)); the dual of a
monadic operator ©; is denoted 0;. A modal language is a pair M = (S,Q), where S
is a modal similarity type, and Q is a set whose elements are called proposition letters.
From the modal and Boolean constants, and the proposition letters, the modal formulas
are built up in the obvious way, using -, A, and the operators in S. When no confusion
arises we write M (S) or even M rather than M (S, Q).

A general frame § of similarity type S is a tuple (W,{R; : ¢ € I },W) where W # 0,
R; C WPOFL and W C Sb(W) contains §, and is closed under -, —, and the operators
{ fr, : i € I}, where fg, : Sb(W)?() — Sb(W) is defined by

(1) fr/(Y,... ,Yp(i)) = {xg:Jz;.. T (i) (Ri(zo,z1,. .. ,:cp(,-)) A /\ (z; € Yz))}l
: ©1<5<p(3)

For future use we also define gg, : Sb(W)?() — Sb(W), by putting gg,(Y1,... 1 Yoi)) =
—fr,(—Y1,...,—Y,). A Kripke frame or atom structure of similarity type S is a tuple
(W,{R;:i€1}),with W and { R; : 7 € I'} as before. A general frame § defines a Kripke
frame §4 via the forgetful functor (‘)4 : (W,{R; : i € I}, W) = (W,{R; :i € 1}). A
Kripke frame § defines the general frame §# via (:)# : (W,{R;:i € I})—» (W,{R;: i €
I},8b(W)).

Given a general frame § = (W,{R; : ¢ € I},W) its complez algebra is the BAO
Ft = W,U,N,0,W,—,{fr, : i € I}), where fg, : Sh(W)P(H) — Sb(W) is defined as
in (1).

Given a BAO 98 with operators {f; : ¢ € I}, the general frame B, is 'the tuple
(Xz,{ Ry, : 1 € I},W), where Xy is the set of ultrafilters on B, Ry, C Xg(')-i'l is de-

1 Algebraists may be accustomed to seeing the argument places reversed in the definition of the function
fr.(Y1,. ., Yoi)) as {@o : 3z ... 2p0) (Ri(x0, 1,- -+, Zp(3)) A Alsjsp(’.)(z; € Y:))} in (1). Being modal
logicians we like to think that the modal notation is the more elegant one.



fined by
Ry.(ag,a1,...,0,4) iff Vj(l <j<p(i) — z; € a;) implies fi(x1,.. ., Z,s) € ao,

and W C Sb(Xg)is {#:z € B} for £ = {a € X : © € a }. The canonical structure €sB
of B is the structure (B)x. By definition the complex algebra of the canonical structure
of B is called the canonical embedding algebra of B: ¢mB = (¢sB)*.2 By a canonical
variety we mean one that is closed under canonical embedding algebras.

A valuation on a general frame J is a function V taking proposition letters to elements
of W; a valuation on a Kripke frame § is a valuation on §*. In algebraic terms: a valuation
is an assignment to the variables of elements of the ‘subcomplex’ algebra W. Truth of a
modal formula in a model (F,V) is then defined as follows: (§,V),wo = p iff wo € V(p);
3,V),w0 | ¢ iff (3,V),wo & ¢ (8 V),wo = ¢ A% iff both (5,V),u0 = ¢ and
(3, V),'UJo ’= ¥; and (37 V)’wo |= vi(¢17 ) ¢p(i)) iff Jwy, ... » Wp(4) (-Ri('w0>w1, cee 1wp(i)) A
Ar<icny®V),wj b 87)). We write (3,V) | ¢ for: for all w € W, (3,V),0 & ¢
%, w |= ¢ is short for: for all valuations V on §, (§,V),w |= ¢; and § |= ¢ is short for: for
alwe W, §wkE 4.

A modal formula ¢ in n proposition letters induces an n-ary polynomial hy(z1,...,%s)
which may be defined as follows:

by, (1, .-, Tn)
h-¢(®1,.-.,Zn)
hgng(z1,. .., Tn)

Ry (1 rsoiy) (B -+ Tn)

Zj

—hg(z1,...,%0)

h¢($1’ K )xn) : h¢(w1’ coe )w'n)

F3: (g (@1s- > )y - gy (B, -, 0))-

And conversely, each polynomial in a similarity type of BAO’s is of the form A, for some
modal formula ¢ in a modal language of the appropriate type. This identification of
formulas and terms is made explicit in the following proposition.

Proposition 2.1 Let S be a modal similarity type. Let § be a general frame of type S.
Let ¢ be a formula in M(S). ThenF = ¢ iff ()T Ehy=1.

A (normal) modal logic in a language M (S) is a subset A of the set of formulas in M (S)
that contains as axioms all propositional tautologies (PL), as well as

Vi(P1,- -+ s Pim1, Py Pit1s - - -1 Pp(i)) V ViDL - - 5 Pi=1, s Pji41y - - -1 Pp(s)) <

DB
( ) V‘i(Pla“-:pj—lap\/p,:pj+1)'°'7pp(i))3

and that is closed under the following derivation rules:

(MP) if¢,¢p > €Athenyp €A
(UG) if ¢ € A then =Vi(1,.--,0i-1,79, Bj+1,- -, Pp(i)) € A
(SUB) if ¢ € A then all substitution instances of ¢ are in A.

For a logic A a canonical general frame for A is defined by Fa(a) = (Aa(a))+, where
24 (c) is the free algebra (on a generators) of the variety Va, where 2 € V iff 2 Eh,=1,
for all ¢ € A. For a class of general or Kripke frames K, let Th(K) = {¢ : for all § € K,
3 ¢} We call alogic A sound with respect to a class of general or Kripke frames K if
A C Th(K), and complete with respect to K if Th(K) C A. A logic A is called canonical if
(3a(@))4 | A, for every canonical general frame 3 (c).

2In [3] the canonical embedding algebra of B is called the Stone eztension of B; these, in turn, form a
special case of the arbitrary extensions dealt with in [5], of a kind called perfect extension.
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Lo(S) is the first order language of type S; it has relation symbols R; (i € I) of arity
p(i) + 1. L1(S) is Lo(S) extended with unary predicate symbols P; corresponding to the
proposition letters of our modal language. L(S) is the language of monadic second order
logic with relation symbols R; (i € I) of arity p(i) +1, and variables Pjs ranging over sets.
A modal formula ¢ locally corresponds to an formula a(z) if for all Kripke frames § of the
appropriate type, §,w | ¢ iff § = a[w]. A modal formula ¢ corresponds to a sentence a
if for all Kripke frames § of the appropriate type, § |= ¢ iff § |= o. When interpreted on
frames modal formulas correspond to L2(S)-formulas (cf. [1]).

3 A Sahlquist theorem

To describe the modal counterparts of the earlier Sahlqvist equalities we need the following
definition.

Definition 3.1 Let S be a modal similarity type. Positive and negative occurrences of
a proposition letter p are defined as usual by: (i) p occurs positively in p, (ii) a positive
(negative) occurrence of p in ¢ is a negative (positive) occurrence of p in —¢ and in ¢ — 9,
and a positive (negative) one in ¢V, dAY, Vi(@1,..., D, -+, Bp(i))s (P15 -1 0505 Bo(i))
(Vi € S). A formula ¢ in M(S) is positive (negative) if every proposition letter occurs
only positively (negatively) in ¢. ¢ is monotone in the proposition letter p if for every
model (§,V) and every valuation V' on § with V(p) C V'(p) and otherwise the same as

v, (3, V)7w |= ¢ implies (3’ Vl)aw |= p.

Note that in a positive formula negations of modal or Boolean constants are allowed.
Also, if ¢ is positive then ¢ is monotone in all proposition letters.

Definition 3.2 Fix a modal similarity type S. A formula ¢ in M(S) is a Sahlquist an-
tecedent if it is built up from formulas that are either negative or of the form 00;, .. . O, p,
using only V, A and V;, where ©;,,...,9;,,V; € S.

Define the set of Sahlquist formulas in M(S) as being the smallest set X such that if
¢ is a Sahlqvist antecedent, and ¥ is a positive formula, then ¢ — ¢ € X; if 01,02 € X
then 01 A 02 € X; and if 01,...,0,; € X have no proposition letters in common, then
<li(0'1, e ,Up(i)) € X.

For a modal similarity type S that contains only unary operators several definitions exist
of what it is for a formula in M (S) to be a Sahlqvist formula; however, all are equivalent
to (or are covered by) the restriction of 3.2 to such similarity types.

We believe that the generalization to arbitrary similarity types is in fact ours. One
may wonder whether this is the obvious generalization from the ‘unary case’, e.g., why are
boxes (i.e., duals of unary normal, additive operations) allowed in Sahlqvist antecedents,
while for n > 2 duals of n-ary operations in S are not? The reason why we are interested
in Sahlqvist formulas is that they may be shown to be complete and to define certain first
order properties of the underlying relations in (generalized) frames. A look at the kind of
formulas forbidden in Sahlqvist antecedents in the unary case in order to guarantee these
properties, shows that they typically include combinations of the form O0(...V...), or, in
first order terms, V(...V...). But these are precisely the combinations that pop up when
we have n-ary boxes (n > 2) around! (In fact, if v is a binary modal operator, and < is
its dual, then (p<p) <p — (pVp)Vp may already be shown to be non-elementary.)



Before provmg an important property of Sahlqvist formulas we recall that for a binary
relation R, R = {(y,z) : Rzy}. To each modal formula ¢ we associate a set operator
F? as follows. Let Pi,...,P; be sets and let P abbreviate P,...,P,. FPi = P; (1<
j < k), while F$(P) = (F¢(P))° and F¢A¢(P) F¥P)NFY (P) Friléus ’¢»<:>)(P)
fr:(F4(B),..., F0 (P)), while F&@19u)(B) = gp, (F9(P),..., F4(P)). We as-
sume that the set operator corresponding to Boolean or modal constants is provided by
the context in which these constants occur.

Theorem 3.3 Let S be a modal similarity type. Let x be a Sahlgquist formula in M(S).
Then x corresponds to an Lo(S)-sentence a,, effectively obtainable from x.

Proof. This is more or less similar to the proof of [7, Theorem 8] (cf. also [1, Theorem
9.10]). Assume that x has the form ¢ — 7.

Let p1,. .., Pk be the proposition letters occurring in x. Having § = (W,{R;:1€I})E
X means ha.vmg § | VPVz (¢ € FX (P)). By assumption the latter formula has the form

@) VPvz (z € F4(P) -z € F¥(P)),

where ¢ is a Sahlqvist antecedent, and 9 is a positive formula. Next, using such equiva-
lences as

3) v.--((¢AmeF¢1V¢z(ﬁ))—>w)H A v-.-((q»/\mem(ﬁ))-»w),
j=1,2

(@ Az e Fi(r-3) () - ¥) o

) Ve VY1 Y0 ((‘I’ A Rizy ...y, N \(y; € F4 (P))) - ‘I’),
j
and
(5) Voo (@A € FY(P)) - ¥) oV (8 (TVae F™(P))),
(2) can be rewritten as a conjunction of formulas of the form
. E m; v h .
6)  VAVRVGE((@A N\ N\ € 9ray, - 9m, (B)) = V(25 € F¥(P)),
j=11=1 j=1

where ® is a quantifier free Lo-formula ordering its variables in a certain way, and where all
the '«,b,s are monotone. If a predicate variable P occurs only in the consequent V] 1(z €

F¥i (P)) in (6), then, by the monotonicity of the ¥;s, it can be replaced by L, and the
quantifier binding P may be deleted. Thus we may assume that every predicate letter
occurs in the consequent of (6) only if it occurs in the antecedent of (6).

By an easy argument we have that /\El(ylj € 9R,, - IRy, (P;)) if and only if we have

9} fﬁlla‘ e fé"lj ({wi; }) C P;. Thus by universal instantiation (6) implies the first order

formula

(7) Va;‘v’g‘z(@ - \/ z; € F¥i U iy, - T, Hyn }),-u,Uk Fiy, --°fjé,nlk({ylk})))-
=1

j=1

But, conversely, by the monotonicity of the functions F¥%i (7) implies (6), and we are done.
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To prove the general case one may argue inductively. If the Sahlqvist formulas x1,x2
have been shown to correspond to oy, ag, respectively, then x1 Ax2 corresponds to a1 Aaz;
and if X1,...,Xe(;) are Sahlqvist formulas that have no proposition letters in common,
and that have been shown to correspond to Vz as,. .., V& o), then <(x1,- - -, Xp()) cor-
responds to Vo (Rizy1 ... Yp) — a1(y1) V... Vay (yp(,))) =

Two remarks are in order. First, in the above result we may in fact replace ‘corresponds’
by ‘locally corresponds’. But given the algebraic application we have in mind the global
version is more natural. Second, although the algorithm in the above general proof may
seem somewhat intractable or even obscure, in particular examples it is quite manageable,
as is witnessed in §4.

Theorem 3.4 Let S be a modal similarity type. For j € J, let x; be Sahlgquist formulas
in M(S). Let A be the modal logic aziomatized by {x; : j € J}. Then A is canonical.
Hence x is complete with respect to the class of Kripke frames defined by {o; :j € J }.

Proof. The case where S contains only unary modal operators is [7, Theorem 19]. To
prove the general case one may use the same arguments together with the canonical frame
construction for modal logics of arbitrary similarity type as found in [9, Chapter 2]. (An
alternative proof of the unary case may be found in [8].) -

We leave it to the reader to check that every Sahlqv1st formula induces a Sahlqvist
identity, and conversely.

Theorem 3.5 Let T be a set of Sahlquist equalities. Let Vs, be the variety defined by .
Then Vs, ts canonical.

Proof. Let $ be the set of modal translations of the elements of £. So & is a set of
Sahlqvist formulas. Now, to prove the theorem, let B € Vx. Let As(|B|) be the free
T-algebra on |B| generators. Then 2x(|B|) - B, and hence €mAx(|B|) - €mB, by [2,
Corollary 3.2.5(6)]. So we are done once we have shown that €m2x(|B|) € Vs.

B As(|B|) As(|B)+

EmB em2s(|1Bl)  (@s(B)+)#

Figure 1.

Since 25 (|B|) = I, #s(|B])+ = 5. So by 3.4 ¢s%5(|B|) = @s(|B|)+)# k= =. But then
em2%z(|B]) = (As(1B])+)s)t E T, ie. €mAz(|B]) €Vs. A

Remark 3.6 In[5] Jénsson and Tarski also describe a class of equalities that are preserved
under canonical embedding algebras. The class they define contains all equalities h; = ha,
where both ky and ks are symbols for functions that are either additive, or obtained from
additive ones by using composition only. Obviously, all Jénsson and Tarski equalities may
be seen as (a conjunction of two) Sahlqvist equalities; but conversely, not every Sahlqvist
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equality is a Jénsson and Tarski equality. (As an example, OOp — OCOp is a Sahlqvist
formula, and hence its algebraic counterpart is a Sahlqvist equality; it is not a Jonsson and
Tarski equality, however.) Hence, the class of Sahlqvist equalities forms a strict superset
of the class of Jénsson and Tarski equalities.

It should be noted that unlike our result the Jonsson and Tarski result applies also to
non-normal (but additive) BAO’s. In a paper by Henkin [3], one can also find a description
of a class of equalities whose validity is preserved under canonical embedding algebras;
however, the BAO’s considered there need not even be additive.

4 An example: simplifying Henkin’s equation

As an application of theorems 3.3 and 3.5 we show that, in order to prove that two Sahlqvist
equations are equivalent over a canonical variety V, it suffices to show the equivalence (in
AtV) of their first order translations. This means that reasoning can be done in the
Kripke frames, which is usually much easier than manipulating algebraic equations.

Proposition 4.1 LetV be a canonical variety, and 11 and 72 two Sahlquist equations with
first order correspondents a1 and az. Then

AtVEag e az <= VEN <.

Proof. From left to right: let 2 be an algebra in V with 2 |= ;. By the fact that 7; is a
Sahlqvist equation, 7; holds in ém®2 = (¢s2A)*. This gives €5 |= «;, so by assumption
€52 = aj. But then again €m2 |= 7, so 7; holds in A < Em2A.

From right to left: let § be a frame in AtV with § = ;. Then ™ En = §H E=9; =

3|=aj. -

We assume familiarity with the notion of a cylindric algebra (cf. [6], [4]), but we modify
some notation and definitions. Without loss of generality we may confine ourselves to
the two-dimensional case. The algebraic language L3 has a constant do; and two unary
operators ¢y and c;, which we write as O¢ and O, respectively, if we want to stress the
modal aspects of the subject. A cylindric-type frame is a quadruple § = (W, ~g,~1,D)
with ~; a binary accessibility relation (for ¢;) on W, and D the subset of W where do;
holds. In the following table we list the modal versions of the axioms governing the variety
of cylindric algebras, together with their first order equivalents (i € {0,1}):

(Cli) p— <Op (N1;) Vez~izx
(C2;) p—00ip (N2;) Vey(z~y—y~iz)
(C3;) ©ip— O:i0ip (N3;) Vayz((z ~iyAy~iz) o ~iz)
(C4;) ©i0jp — OO (N4;) Vzyz((w~iyAy~jz)—

Ju(z ~julun~yz))
(C5;) ©udor (N5;) Vzdy(z ~; y A Dy)

(C6;) ©Ci(dor Ap) = Di(dor —p)  (N6;) Veyz((z~iyAz~izA
’ DyADz) »y=2z).

We define C1 = Clg A Cly, etc. A cylindric algebra is an algebra 2 = (4, +, —, co, 1, do1)
such that (4,4, —) is a Boolean Algebra, co and c; are normal and additive, and C1,. . .,C6
are valid in 2. The variety of cylindric algebras is denoted by CA.



A cylindric frame is a cylindric type frame § such that Ny,..., N6 are valid in §. So
a frame § = (W, ~g,~1, D) is cylindric iff ~o and ~; are equivalence relations (N1, N2
and N3 for respectively reflexivity, symmetry and transitivity), every ~;-equivalence class
contains precisely one ‘diagonal’ element in D (N5 for existence, N6 for unicity), and ~¢
and ~; permute (N4). Below these facts may be used without notice.

The following proposition is immediate by the Sahlqvist form of C1,...,Cs, and theo-
rems 3.3 and 3.4.

Proposition 4.2 (i) ¥ is a cylindric frame iff T is a cylindric algebra.

(ii) CA is a canonical variety.

Besides the axioms C1,...,C6 governing the variety of cylindric algebras, additional
equations play an important role, especially Henkin’s equation
(m) co(z-—y-ci(z-y)) < er(—dor - coz).

For example, it can be shown that adding 7 to C1,...,C6, one obtains a complete equa-
tional axiom system for the set of equations valid in the variety of representable cylindric
algebras. (This is only true in the two-dimensional case; in the higher dimensional case
the réle of 7, though important, is not decisive.) One might wonder why the authors of 4]
decided against giving 7 the status of a CA-axiom. One of the reasons may have been that
7 is less transparent than the other seven. In the remainder of this section we will show
that 7 has a simpler equivalent (over the variety CA), and that the equivalence is very
easy to prove using the Sahlqvist form of the equations.

So let us define the intended simplification of Henkin’s equation:
(n') doy - co(—z - c1z) < c1(do1 - co)-

Clearly both 7 and 7' are Sahlqvist equations. Let us compute their first order equivalents.
Definition 4.3 Let a, o/ be the formulas

(@) VuVoVw ((u ~v N wAYFw) = Jz(-DzAu~izA(z~ vV T~ w)))
(o) VuVoVw ((Du Aur~gve~wAv#w) — Jz(-DxAu~yz w))

The following pictures explain the meaning of a and o for cylindric frames:

0
we ws 2 (¢ D)
0
L# . *z (¢ D) 1,# 1
1 D
0
v. 0 .u v. / .u e D
Figure 2: o Figure 3: o/



Proposition 4.4 Let § be a frame of the appropriate type. Then § = o <= FH 1
andFEd <= F 1.

Proof. For n, we will spell out the algorithm of theorem 3.3 to find its first order corre-
spondent. First consider its modal variant

(x) Go(p A =g A O1(p A g)) — O1(—do1 A Oop).

Let ¢ and 1 be respectively the antecedent Oo(p A 7g A O1(p A ¢)) and the consequent
O1(~do1 A Gop) of this formula. Clearly x is a Sahlqvist formula, as ¢ is a Sahlqvist
antecedent and v is positive.

Now let § = (W, ~g,~1,D) be a Kripke frame for the language, then § |= x iff

®) § |- VaVPYQ(z € FX(P, Q).
Now the formula z € FX(P,Q) is by definition equivalent to
(9) z € F*(P,Q) » = € F¥(P,Q).

Step by step we will rewrite (9), abbreviating u € P by Pu. Starting with the antecedent
of (9), we obtain

Jyi(z ~o y1 Ay1 € FPAIN1PA)(P Q) — = € F¥(P,Q),

or better
Vy1 ((w ~o Y1 A g1 € FPANINPAN)(P Q) — = € F¥(P, Q)),

yielding the effect of (4). Then we get
Vy1 (@ ~o 91 A Pys A ~Qu1 Ays € P (P,Q)) - = € F¥(P,Q)),
d (5) gives
Vy1((z ~o 1 A Pys Ay € F®)(P,Q)) — (= € F¥(P,Q) V Qu1)).-
Using (4), we obtain
(10) \7'!,11\7'3/2((5c ~0 y1 A Pyi Ay1 ~1 92 A Py AQuz) — (2 € FY(P,Q) V le))’
So we have § |= x iff the following foi‘mula. holds in §:
VfL‘VPVQVwaz((w ~o Y1 A1 ~1 Y2 A Py A Pya A Qyz) — (z € F¥(P,Q)V le))-

Comparing this formula with (6), we observe that for both y; and yz the sequence
IR, - - - IRy, of (6) is empty, so the universal instantiation mentioned just above (7

simply means replacing Pu by u € {y1,y2} (or better, by (v =y1 Vu = y2)), and Qu by

(v =1y2).
So (10) is equivalent to the following instance of (7), viz.

VszVyz((w ~o Y1 A Y1 ~1 Y2) — .(f'v' € F¥({y1,92}» {yz}) V(y= yz))),
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which really means

VzVy1Vye ((:c ~o Y1 A Y1 ~1 Y2) =
(yl =y V 321(12 ~1 21 ANDz A 322(21 ~o 22 N\ (22 =y1 V2= yZ)))))

Transporting (y1 = y2) back to the antecedent, and after some straightforward formula
manipulation, we finally obtain

Vwal‘V’yz((x ~o YLAYL ~1 Y2 Ay # y2) — Fzi(x ~1 21 ADzi A (21 ~o 1V 21 ~o yz))),
which is what we were after. -
Proposition 4.5 Let 2 be a cylindric algebra. ThenA=n < A1

Proof. By the previous two propositions it is sufficient to show that for a cylindric frame

5, 3Fa < §EJ.

(<) Assume that § = o/. To prove that § |= «, let u,v and w be worlds in § with
u ~pv ~1 w and v # w. We have to find an z with ¢ ¢ D, u ~; « such that « is in the
0-equivalence class with v or with w. Distinguish the following cases:

Case 1: u € D.
Then § |= o immediately gives us the desired , with z ~o w.

Case 2: u ¢ D.
Then u itself is the desired z, as u ~¢ v and u ~; w.

(=) For the other direction, we assume that § |= «, we consider arbitrary u,v and w in §
with u € D, u ~g v ~1 w and v # w, and set ourselves the task to find an = with z ¢ D
and u ~1 & ~g w, viz. Figure 3.

Since § = o, thereis a y € D with u ~; y and y ~¢ v or y ~o w. Distinguish

Case 1: y ~p w.
This means we are finished immediately: take z = y.

Case 2: y ~o v.
Since § |= N4, thereis a z in § with u ~1 2z ~o w, as in Figure 4:

0

w’ .z w.
1 0
1,?9 ’y 1,# oy
0 % 0 1%
0
ve / *u ve 0 / oy =2z
Figure 4. : Figure 5.
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Distinguish

Case 2.1: z ¢ D.
Again we are finished: take z = 2.

Case 2.2: z € D.

This implies z = u because § = N6, so we have the situation depicted in Figure 5. We
now have w ~g 2 = 4 ~g v ~p Y, S0 y ~g w after all, and we are back in case 1: take
z=y. -
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