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Abstract

In PA,orevenin IAg + EXP, we can define the concept of feasible interpretability.
Informally stated, U feasibly interprets V' iff:
for some interpretation, U proves the interpretations of all axioms of V' by

proofs with G6del numbers of length polynomial in the length of the Godel
numbers of those axioms.

Here both U and V are Z%-axiomatized theories.

Many interpretations encountered in everyday mathematics (e.g. the interpretation
of Peano arithmetic into ZF) are feasible. However, by fixed point constructions
we can find theories that are interpretable in PA in the usual sense but not by a
feasible interpretation. By making polynomial analogs of the usual proofs, we show
that the bimodal interpretability logic ILM is sound for feasible interpretability over
the base theory PA. Here, A > B is translated as PA + A* >y PA + B*, where
* is the translation. Moreover, we can prove in PA a polynomial version of Orey’s
theorem for feasible interpretability. This paves the way for a polynomial adaptation
of Berarducci’s proof of arithmetical completeness of ILM with respect to PA. Thus,
we show that TLM is arithmetically sound and complete with respect to feasible
interpretability over PA.

1 Introduction

In this paper, we investigate a new concept of interpretability — we call it feasible inter-
pretability — in which the complexity of the interpretation is bounded in a certain way.
The concept was invented by Albert Visser, who called it effective interpretability in his
paper [Vi].

In order to define this concept, we first review the usual definition of interpretability.

Let U,V be two Ell’-axiomatized theories, where V is axiomatized by the Elf-formula
ay. An interpretation K of V into U is given as usual by a formula 6(z) of Ly defining
the universe, and a function from the relation and function symbols of Ly to formulas of
Ly, respecting the original arities. In the sequel we take the image of = to be =, though
this is not essential for the results. We can extend K in the usual way to map all formulas



@ of Ly into formulas ¢¥ of Ly; in fact we can, in an intensionally correct way, All’-deﬁne
in IAg + Q; a function K corresponding to this mapping. For ease of reading, we will
write aX even if a is a Gédel number. Thus U > V can be defined in 1A + ; as follows:

Ao+ FU >V o 3K(“Kis an interpretation” A Va(av(a) — IpPrfy(p,aX))).

Similarly, we would like to define a concept of feasible interpretability, given half-
formally as

U >V < IK3P(“Kis an interpretation and Pis a polynomial” A
Va(av(a) — 3p(“|p| < P(la])” A Prfy(p,a¥)))) (1)

If we want to formalize this concept, we need an evaluation function for coded poly-
nomials and we need to be able to prove that the ezp of this function is total. We remind
the reader that ezp(the values of polynomials in |z|) corresponds to the values of #-terms
in z, where z#y = ezp(|z| - |y|) as defined in Buss[86]. Thus, since there is an evaluation
function for formalized terms containing # that is provably total in IAg + EX P, we see
that the formalization of feasible interpretability can be carried out in IAg+ EXP. We
will not carry out the details, and for ease of reading we will keep using the half-formal
definition( 1).

However, it is clear that the formula U 1>; V is . As we know that, for reasonable
theories U extending PA, {A|U >U+A} is a I13-complete predicate, it would be interesting
to find out whether {4 |U > U + A} is Z3-complete. We haven’t yet found the answer
to this question.

In [Vi], Visser gave proof sketches to show that ILM is arithmetically sound with
respect to feasible interpretability over PA. Moreover, he gave an Orey-Héjek like char-
acterization for feasible interpretability over PA*, where PA* is defined as follows:

C is an axiom of PA* iff C is the conjunction of the first n axioms of PA for
some n.

He then surmised that, using this characterization, Berarducci’s arguments from [Be 90]
could be adapted to show that ILM is the modal interpretability logic for feasible inter-
pretability over PA*.

In this paper, we show that ILM is indeed arithmetically sound and complete with
respect to feasible interpretability over P4 itself.

The rest of the paper is organized as follows. In section 2, we show that some well-
known interpretations from the contexts of set theory and bounded arithmetic are feasible.
For the subsequent sections, the horizon is narrowed down to Peano Arithmetic. Thus
- we prove in section 3 and section 5 that LM is exactly the modal interpretability logic
for feasible interpretability over PA. Section 4, meanwhile, gives two counterexamples to
show that, for reasonable theories U extending PA, feasible interpretability over U is a
definitely stricter concept than normal interpretability.

2 Feasible interpretations in various settings

For an intuitive introduction to feasible interpretability, it is useful to define feasible in-
terpretability also for settings other than arithmetic. The informal definition is as follows.



U >V if and only if there is an interpretation K of V into U which is feasible,
Le. for which there is a polynomial P such that for all axioms ¢ of V', there is
a proof of length < P(|g|) in U of p¥

Here |p| denotes the length of ¢. In this section, we look at some well-known inter-
pretations from different settings and show that they are feasible. As a first remark, it
is clear that every interpretation of a finitely axiomatized theory into some other theory
is feasible: a constant polynomial, namely the maximum of the lengths of the proofs of
the interpreted axioms, suffices. We first prove an easy lemma which can be used to show
that many well-known interpretations are feasible.

Remark 2.1 Of course the definitions of |p| and of the lengths of proofs depend on the
setting. For example, it is not always convenient to define || as “the length of the binary
expression for the Godel number of ¢”.

However, we have to keep in mind that a few conditions on the definition of the lengths
of formulas and proofs are necessary to make lemma 2.2 applicable.

The length of formulas should be defined in such a way that the following conditions
hold:

L =] > [y] +1,

2. [pox| 2 [¢l+IxI+1foro€ {AV,—, o},
3. |Qzy| > |¢p| + 1 for Q € {V,3}, and

4. for all formulas ¢, || > 2.

The last of these conditions is not necessary, but it just simplifies the computations by
allowing us to work with polynomials P(n) of the form n? only.

Moreover, we suppose that the proof system and the corresponding length of a proof
is defined in such a way that applications of A-rules and Modus Ponens do not make the
proofs explode to an inordinate length; e.g. we suppose that we do not use a tableau
system or a sequent calculus without the cut rule. A sufficient condition is the following.

There is a constant ¢ such that the following conditions hold:

1. if we have a proof of of length I4 of the formula A, and a proof of length l4_.p of
A — B, then there is a proof of length < l4 + 14,5+ |B|¢ of the formula B; and

2. if we have a proof of length I4 of A, a proof of length g of B and a proof of length
larp—c of AN B — C, then we have a proof of length < 4 + Ig + l4nB—c + |C|®
of the formula C.

Lemma 2.2 Let L be a language and U a theory satisfying the conditions in Remark 2.1.
Let F be a function from L into Ly such that

there is a polynomial P such that for all ¢ € L, |F(p)| < P(|p]).

Moreover, suppose that U proves the following by proofs of length < P(|y|), resp.
< P(|=]), resp. < P(|yox|), resp. < P(|Qz|):

1. F(p) for all atomic p € L;



9. F($) — F(~) for all € L;
8. F() NF(x) = F(pox) for all p,x € L and o € {A,V,—,};

4. F(¢) = F(Qzv) for allyp € L and Q € {V,3}.

Then there is a polynomial R such that for all ¢ € L, U & ¢ by a proof of length
< R(|el)-

Proof. Take a constant d > 2 such that
1. for all n > 2, P(n) < n? and

2. for all p € L, |F(¢)|° < |p|%, where c is as in Remark 2.1 in the condition on the
length of proofs.

Define the polynomial R(n) := n?¢. We will prove by induction on the construction of
¢ that for all p € L, U I F(y) by a proof of length < R(|¢|).

Basic step By the assumption we know that for atomic formulas ¢, U + F(¢) by a proof
of length < P(|p|). But by definition of d, P(|¢|) < |¢|¢ < |¢[?2.

—-step Suppose as induction hypothesis that U I F(3) by a proof of length < |4|?¢. By
assumption, U - F(p) — F(—¢) by a proof of length < P(|-%|) < |-%|¢ (where the
last inequality holds because of clause 1 of the definition of d). Therefore by the first
clause in the condition on the length of proofs in Remark 2.1, we have U + F(—))
by a proof of length < |9[*? + |=¢|¢ + |F(-9)|° < [$]* + [p|* + |-p|* (where
the last inequality holds by clause 2 of the definition of d). Since we assume that
|~ > [9]+1, we have [$[*?+ || +|-9|? < |-5|¢ by an easy computation using
the binomial theorem and the fact that d > 2. The quantifier steps are analogous to
the —-step, so we leave them to the reader.

Connective step Let o € {A,V,—, <}. Suppose as induction hypothesis that U - F (1))
by a proof of length < |¢|?¢, and U + F(x) by a proof of length < |x|?¢. By
assumption, U - F(¢) AF(x) — F(¢ox) by a proof of length < P(|ypox]|) < |[wox|%.
The second clause in the condition on the length of proofs in Remark 2.1 now implies
that U = F(¢ o x) by a proof of length < [9|2¢ + |x|2¢ + | o x|? + |[F( 0 x)|° <
1912 + |x|%% + | 0 x|? + |4 o x|? (where the last inequality holds by clause 2 in the
definition of d).

Since we assume that |1 o x| > ||+ |x| + 1, we can again use the binomial theorem
to show that |24 + [x[22 + |4 o x|% + [ 0 x|¢ < |9 o x|?¢, as desired.

QED

Remark 2.3 When we want to prove that some interpretation K of V into U is feasible,
we can often use Lemma 2.2. Suppose all axioms of V have the form ®(1), where ® is a
formula scheme. The feature we need in order to apply Lemma 2.2 is the fact that both
|®(+)| and |4 | are polynomial in |4|.



As a first example, in which we do not yet need lemma 2.2, we will show that the usual
interpretation of IAg + 2; into IAg by a cut is feasible.

Theorem 2.4 IAg >y IAg+ Q4 by a cut.

Proof. Proof. Let J be a cut constructed by Solovay’s methods such that IA proves that
J is a cut closed under +,- , and w;. Define 7 to be the formula ¢ with all quantifiers
restricted to J. It is well-known that J is an interpretation of IAq + Q; into IAp; so to
show that it is a feasible interpretation, it suffices to find a polynomial P such that for all
Af-formulas ¢, the following holds by proofs of length < P(|7¢7)):

IAg F [p(0) AVa(p(z) — ¢(Sz)) — Yap ()]’

First, it is easy to see that there is a polynomial P; such that for all AY-formulas ¢,
IAo k- J(a) — (¢(a) < ¢(a)’) and IAq F Yz — (Vzp)? by proofs of length < Pi(|7¢7|).
Second, there is a polynomial P, such that for all AY-formulas ¢, the following holds by
proofs of length < P5(|"¢7|):

IAg FVa [p(0) AVz <a (p(z) — ¢(Sz)) — Yz <a p(z)]

In fact one uses only the induction axiom for Vz <a ¢(z), the fact that VaVz(Sz < a —
z < a), and some predicate logic. Combining P; with P, we then find a polynomial Pj
such that for all A%-formulas ¢, the following holds by proofs of length < P3(|"¢7|):

IAq + (Va[p(0) AV <a(p(e) — ¢(Sz)) — Yz <a p(a)])’

Now it is easy to find a polynomial P from P; such that for all AY-formulas ¢, the
following holds by proofs of length < P(|7¢7|):

180 F [p(0) AVz(p(z) = ©(Sz)) — Yop(e)]

We use only the fact that Va(a < a) and some predicate logic. Thus, J is a feasible
interpretation of IAg + Q; into IAg. QED

Next, we will prove that the usual interpretation of ZF + V = L into ZF is feasi-
ble. Because ZF consists of a finite list of axioms plus the schemata of separation and
replacement, we can restrict our attention to feasibly proving these schemata relativized
to the universe L of constructible sets. We will first prove that the schema of separation
relativized to L follows feasibly from the reflection theorem for L, and then give a feasible
proof of the reflection theorem itself. We will try to follow the elegant proof in terms
of closed unbounded collections, which unfortunately becomes much less elegant when
forced into the straightjacket of the calculation of lengths. We will not stray far from the
straightforward presentation given in [Ku 80], where all details about the constructible
universe that we omit here can be found. The length |¢| of a formula ¢ of ZF is defined
as the number of appearances of symbols in ¢; without loss of generality, we can take the
length of all variables to be 1. Likewise, we define the length of a proof in ZF to be the
total number of symbols appearing in the proof. In the following lemmas, quantifiers in
greek letters range over the ordinals, while those in roman letters range over all sets.

The next lemma corresponds to lemma IV.2.5 of [Ku 80].



Lemma 2.5 ZF proves the following by proofs of length polynomial in lel:

Vz,5€L {z€z|¢¥(z,z,0)}eL — ’
Vz,5€L3yeLz €y oz € 2 A pl(z,2,7))

Proof. Straightforward; we do not even need the fact that L is transitive. Note that
by absoluteness of atomic formulas for L, V, the succedent is feasibly equivalent to the
comprehension schema for ¢, relativized to L. QED

The following lemma corresponds to a part of lemma VI.2.1 of [Ku 80].
Lemma 2.6 ZF proves the following by proofs of length polynomial in lo]:

Va36Vz,z,5€Lg [pY(z,z,7) & Lo (z,2,7)] —
Vz,7€L {z€z|p"(z,2,7)} € L

Proof. It is easy to see that the usual proof in ZF is feasible: suppose
1. Yo 3BVz,z,5€ Lg [pY(, 2,7) — L6 (z, z,7)] and
2. z,v€eL

From 2 it follows that there is an « such that 2,7 € L,. Now let 8 > « be such that
Vz € Lg [pY(z,2,7) « ole (z,2,7)]. Then, using the fact that L is transitive and that
z € z is absolute for Lg, L, we find that

{"EEZ I (pL(:c,z,ﬁ)} = {xELﬂ l (:l: €zA So(w>z’5))Lﬁ} € Def(Lﬂ) = Lﬁ+1a
so {z€z|¢¥(z,2,7)} € L. QED

From lemma 2.5 and lemma 2.6, we conclude that in order to feasibly prove the com-
prehension schema, we only need polynomial length proofs of

Va8 Vz,z,7€Lg [goL(:c,z,ﬁ) o ol (z, z,7)].
For a proof of this reflection theorem, we need a few more definitions.
Definition 2.7 A collection C of ordinals is
o unbounded iff Va 38> a (B € C);
e closed iff Va (a #0ANa CC — sup a € C);

o closed unbounded (c.u.b.)] iff C is both closed and unbounded.
Lemma 2.8 ZF +~ “If C and D are c.u.b., then CND is c.u.b. as well”

Proof. An easy application of lemma II.6.8 of [Ku 80]. QED

Definition 2.9 A collection C of ordinals is closed unbounded for ¢ iff



1. C is closed unbounded, and

2. C consists of ordinals « such that L, reflects ¢, i.e.
Vo (a € C = VT € Lq [pT(3) & pLa(7)))

Suppose ¢ is a formula and D is a first-order definable collection of ordinals. Using
definition 2.7, we are able to construct new first-order formulas CU Bp, CUBp,, and
REF, with the following intended meanings:

1. CUBp := “D is closed unbounded”
2. CUBp,, :="“D is closed unbounded for ”

3. REF,:= “ there is some collection of ordinals that is closed unbounded for ¢”
The next lemma roughly corresponds to theorem IV.7.5 of [Ku 80].

Lemma 2.10 (Reflection theorem) ZF proves the followi'ng by proofs of length poly-
nomaal in |p|:

Va 3B Vz,z,7€Lg [goL(z,z,ﬁ) o pls (z,2,7)]

Proof. First we note that ZF proves (a < f — L, C Lg), “if 7 is a limit ordinal, then
Ly = Uacy La” and L = Uyepop La-

We will prove the reflection theorem by induction on the construction of @. A straight-
forward application of lemma 2.2 implies that for the reflection theorem to have a proof
of length polynomial in |¢|, it is sufficient to find a polynomial bounding the lengths of
the induction steps. Thus, we need to find a polynomial P such that by proofs of length
< P(|p]), resp. < P(|=9]), resp. < P(|yox), resp. < P(|Qz1|), ZF proves the following:

1. for atomic ¢:
Va3p>aVz,z €L [pl(z,z) o Lo (z,2)] A CUBoR,,

2. the —-step:
Va3B>a Ve Lg [y (T) « ¥ (v)] A REF, -
Va 38> a Vo€ Lg [+ (7) « —yLs (7)) A REF.,

3. the connective step, where o € {A,V,—, o} :
Va3B>a V¥ eLg [$L(T) & L8 (3)] A REFyA
Va 38> aVweLg [xV(@) « x4 (@)] A REF, -
Va 38> aVoeLg [$L o xU(5,w) « Lo o xL8(3,w)] A REF.,

4. the quantifier step, where Q € {3,V} :

Va 38>aVz,5€Lg [pL(2,7) & ¢L8(2,7)] A REF, -
Va3B>aVoely [Qz € LyL(z,7) « Qz € Lg Y8 (2,7)] AREF,,,



Finding polynomials bounding the lengths of the proofs of 1, 2 and 3 is very easy: we
can use the feasibly provable fact that atomic formulas are absolute for any L,,L, some
propositional reasoning independent on the specific 3, x, and an application of lemma 2.8
for step 3. We will show how the proofs of the 3-case in step 4 can be bounded by a
polynomial; a bound for the V-step then follows by some uses of the bounds for the —-step
and the J-step.

Define

D :={B|Vo€Lg [3z € Ly (2,7) - IzeLs 4L (2,7)]}.
It is easy to see that ZF proves the following by proofs of length polynomial in |3z4|:

Va 36> aVz,5€Lg [$¥(2,7) & L8 (2,5)] ACUBc,, , ACUBp —
Va3>aVoeLg [3z€L¢L(2,7) « Iz2€Ls ¥¥(2,7)] A CUBc,p, 3.9

In fact, we only use lemma 2.8 and the fact that V3 (Lg C L). Thus we need to find
a polynomial P such that ZF  CUBp by a proof of length < P(|3z%|). Immediately
from the definition, it is clear that ZF F “D is closed” by a proof of length polynomial in
|3z9|. Thus, it suffices to show by a proof of length polynomial in |3z%| that ZF proves
that D is unbounded, that is:

Va38>aVoeLg [3ze Ly (2,5) - 3zeLg vl (z,7)),
ie.
Va3B>aVoeLs 3z€Lg [Fze Lyl (2,7) - L (2,7)).

We will reason in ZF, taking care that all steps are applications of general Z F-theorems
that do not depend on the specific formula . Take any ordinal a. We know using only
predicate logic that

V€L, 3z€L [3zeL 9L (2,7) — ¥ (2,9));
therefore,
VB €Lq Jlog (a5 = [ [{B>a | Fz€Lg [32 € Lyl (2,9) — vL(z,9)]}).

by the unrelativized replacement and union axioms, there is a 1 such that 3; = sup{os|7 €
L,}. Continuing in this way, we can define by recursion a sequence Bp for p € w, where
for all p € w,

¥oeLg, Iz€Lg,,, [Fz€L ¢¥(2,7) — yL(2,9)] ©)

Define 8 := sup{f, | p € w}. Because a = By < 81 < B2 < ..., we infer that 8 is a limit
ordinal > a. Now using( 2) and the fact that Lg = |J, 4 L,, we find that

V5€Lg 3z€Lg [Fze L 9L (2,7) — vl(z,7)],
as desired. QED



Lemma 2.11 For all ¢, ZF feasibly proves the comprehension schema for ¢, relativized
to Li; i.e. by proofs of length polynomial in l¢|, ZF proves the following:

Vz,5€L3yeLVacL[z €y & z € z A p¥(z, 2,7)]

Proof. Combine lemmas 2.5, 2.6 and 2.10. QED

Lemma 2.12 For all ¢, ZF feasibly proves the replacement schema for ¢, relativized to
L; i.e. by proofs of length polynomial in |p|, ZF proves the following:

Va,7€L [VzeaIlyeLpl(z,y,v) —
Je€LVy€eL (y € c & Iz€a pl(z,y,7))]

Proof. We already have feasible proofs of the relativized comprehension schema for
the formula y € bA 3z €a ¢(x,y,7). So we can (feasibly) prove that it suffices to show the
following by proofs of length polynomial in |¢|:

ZF +Va,7€L [Ve€ayeL ¢¥(z,y,5) — FbeL (Vaca Iyeb o¥(z,y,7))]

The last proof works, as in lemma 2.10, by general theorems of ZF that do not depend
on the specific ¢. Work in ZF and suppose a,7 € L and Yz ca IlyeL ¥ (z,y,7). Now

Ve€a 3B, (B; = (e |y €La ¥ (2,y,9)});

then by replacement and the union axiom we find 8 such that 8 = U{B: | = € a}, and we
let b be Lg. Then

Vz€a EIyEbch(a:,y,ii).
QED

Contrary to our expectations, the usual interpretation of ZF +V # L into ZF (M) (by
forcing with generic extensions), although much more complex, is still feasible. We checked
this following the lines of the proof in [Ku 80]. Our proof relies so heavily on the many
details of Kunen’s proof, that it would be incomprehensible to readers not conversant with
that book. Therefore, we do not give it here.

In the literature there are also proofs of ZF > ZF+V # L and ZF+AC > ZF+AC+
—CH which entirely avoid the use of the transitive countable collection M. A sketch of
such a proof can be found in [Co 66, Section IV.11], and a completely different full proof
in [VH 72, Ch. V, VI]. It appears that these proofs can also be analyzed to show that the
interpretations in question are feasible.

Other well-known interpretations, such as the one of PA into ZF, are also feasible,
as the reader may check for her/himself. All in all it seems that the only examples of
theories U and V such that U > V but not U > 7 V are contrived theories obtained by
fixed-point constructions like the ones in section 4. It would be nice to find a more natural
counterexample.

It would also be interesting to investigate severely restricted kinds of interpretability
which do distinguish between interpretations used in everyday mathematics. For exam-
ple, one could restrict the complexity of formulas allowed to occur in the proofs of the
interpreted axioms.



Sam Buss suggested the following restricted definition of feasible interpretability to us:

U DfmV & JKIM(“Kis an interpretation and Mis a deterministic

polynomial time Turing Machine” AVa(ay(a) — Prf;(M(a),aX))). (3)

This definition is more in line with the conventional use of the word “feasible” in the

context of polynomial time computability. The clause Prfy(M(a),a®) in ( 3) is a P-like

formula, while the clause 3p(“|p| < P(la|)” A Prfy(p,a¥)) in the definition of feasible

interpretability used in this paper is an N P-like formula. However, all interpretations

considered in this section can also be shown to be feasible in Buss’s sense: we only need
an easy analogue of lemma 2.2.

3 Soundness of ILM for feasible interpretability over PA

In this section, we restrict our attention to feasible interpretability over PA. We show
that the modal interpretability logic ILM is PA-sound even if the intended meaning of
A > Bis “PA + A feasibly interprets PA + B”.

Definition 3.1 The modal interpretability logic ILM contains, besides all formulas hav-
ing the form of a propositional tautology, the usual axioms for the provability logic L and
the rules modus ponens and necessitation, the following axioms:

J1 O(A— B) - (A > B)
J2 (A B)A(BD>C)— (ADB>C)
J3(A>C)A(B>C)— (AVB >C)
J4 (A > B)— (CA— ©B)

J5 CApD A

M (A > B)— (AAOC >BAOC)

Definition 3.2 A feasibility interpretationis a map * which aésigns to every propositional
variable p a sentence p* of the language of PA, and which is extended to all modal formulas

as follows:
1. (A>B)*=PA+ A* >y PA+ B*
2. (OA)* = Provp4(4*)
3. * commutes with the propositional connectives.

Here [>f abbreviates the formalization of feasible interpretability

We will prove that ILM is arithmetically sound for feasible interpretability, i.e. that
for all modal formulas A, if ILM + A, then for all feasibility interpretions *, PA F A*.
Thus, we have to check that the axioms J1 to J5 are valid in PA when A > B is read as
PA+ A >y PA+ B. Whenever possible, we will prove generalizations of these axioms to
theories U,V O PA. Also we prove a generalization of the property M, where an infinite
set of £)-sentences can be added on both sides instead of one O-sentence only.
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Lemma 3.3 PA proves all feasibility translations of J1 to J§.

Proof. The proofs for J1 through J4 can be found almost verbatim in [Vi]. We reason
in PA.

J1 Suppose for some theory V and some p that Prfy(p,"A7). Then by the identity
interpretation and the polynomial bound P(n) = n+3-[p|, V b fV+A Soin
particular, if Op4 (4 — B), then PA+A > fPA+A+B, and surely PA+A >;PA+B.

J2 Suppose

e U >y V by interpretation K; and polynomial Py, and
e V >y W by the interpretation K> and polynomial P,.

As in the usual case, U > W by the interpretation K3 o K;. We need to show that
there is a polynomial bound for the proofs of the translated axioms. So let b code
an axiom of W, and p a proof in V of %2 with |p| < Py(|b])-

If we take the K- translations of all formulas appearing in the proof coded by p,
and add some intermediate steps, we can construct a U -proof of (b%2)K:1 from K;-
translations of axioms of V as assumptions; this proof will be of length < k - |p|,
where k is a constant depending on the translation K- 1 - Now we only have to add
proofs of the translated V-axioms; the axioms themselves have codes of length < |p|,
so their K;-translations have proofs with codes of length < Py(|p|) < Pi(P(Jb])).

All in all, even in the worst case where the U-proof of (¥%2)%1 consists wholly of
assumptions, there is a g with [q| < k- Py(|b|) - P1(P»(|b])) such that Prf; (g, (b%2)K1),
In particular, if PA+A >¢PA+B and PA+B >fPA+C, then PA+ A > PA+C.

J3 Suppose

e U+ A >V by interpretation K; and polynomial Py, and
¢ U+ B sV by interpretation K, and polynomial Ps.

As in the usual case, we have U+ AV B >V by the disjunctive interpretation M which
equals K in case A holds and equals K, in case =4 holds. To find a polynomial
bound, we observe that for all C, - 4 — (CM « CK1) and F -4 — (CM  CKr)
by proofs of length < P(|C|), where the polynomial P depends on K; and K,.
Now suppose that ¢ codes an axiom of V, that p; codes a U + A-proof of cK1 with
[p1] < Pi(|c|), and that ps codes a U + B-proof of cX> with [p2| < P2(|c|). But then
there is a constant k such that

e we can find p; such that Prfy(p1,"A —7cM) with Ip1| < P(le]) + Pi(|c]) + k- lef;
and

e we can find p, such that Prfy (py, —~AAB —7cM) with |p,y| < P(|c]) + Pa(c]) +
k- ||

Combining pll and p'z and their respective polynomial bounds, we find p and P’
such that Prfy(p,"AV B —7cM) with [p| < P'(|¢|). In particular, we have: if
PA+AD>sPA+Cand PA+B >y PA+C, then PA+ AV B >y PA+C.

11



J4 Because (PA+ A >y PA+4 B) = (PA+ A > PA + B), we have by the soundness of
J4 for normal interpretability immediately (PA+ A >; PA+ B) — (CA — OB).

J5 In an easier variation of lemma 5.11, we use a claim proved in [Vi 89], which is stated
in this paper as lemma 5.10. Suppose 8 is a X-formula axiomatizing a subset U of
a X}-language L. We will prove that Q+0sT DyUie. Q+OpT >y U.

By lemma 5.10, we have
PAF Ogy con(p)Con(B) — IKVa € Sent(L)Polpron+Con(ﬁ),'a' (TOga —a%).

Of course we also know that PA 0¢ 4+ con(s) Con(B), so
PA3KVa € Sent(L) Polprovg , con(s)a) ("Oga —aX).

On the other hand, we have by provable 211’-completeness
PAFVa(B(a) — Polprovg | con(g),ja ("Opa”)-

Combining the last two results, we have
PAF 3KVa(B(a) — Polprovg ; con(g),jaf (a¥),

so PAF (Q+ ©gT) > U. In particular, we have for any sentence A:
PAF (Q+Opyd) by PA+ A,

so especially
PAF PA+OpyA >y PA+ A

QED

We want to prove that Montagna’s property M holds for feasible interpretability over
PA in its general version, where we can add an infinite set of £9-sentences on both sides.
In order to ensure that the usual arguments can indeed be polynomialized, we do not
formulate the proof in the usual model-theoretic way, and we give many details that are
not given in most proofs of Montagna’s property for normal interpretability over PA. The
example we give in theorem 4.1 of a set S of formulas such that PA+ PA > PA + S but
w e PA >y PA+ S also relies heavily on these details.

Suppose U D PA,V D PA. Now suppose U > #V by the interpretation K (preserving
—) with domain é, and polynomial P. We Want to find a polynomial @ such that for every
T9-sentence o there is a U + o-proof p of 0¥ with ["p7] < Q(|"¢7|). First, we need some
definitions and lemmas. Fix U,V, K, P as given above.

Definition 3.4 Define pism(s) for “s is a partial isomorphism” and the function G(j,y)
as follows:

pism(s) = seq(s) A (s)o = 0K AVi < Ih(s) — 1(s)iy1 = SK(s);
Gljy) = 3s(pism(s) Ath(s) = j + 1A (s); = 1)

12



Lemma 3.5 U  Vj3!s(pism(s) Alh(s) = j + 1) and thus U F ViAlyG(4,y). Therefore,
there is a function g corresponding to G.

Proof. By induction. QED

Lemma 3.6 U proves that g is injective, and U - Vivy(G(4,y) — 6(y)).

Proof. By induction. QED

Lemma 3.7 U proves that g preserves 0, S, +, ., and <.

Proof. We will give some of the preservation proofs. It follows immediately from the
definition of pism(s) that U - g(0) = 0K and U + Vz(g(Sz) = S (g(x))).

We now prove by induction that g preserves +; the other proofs are analogous. We
have U |- g(2+0) = g(z) = g(z) +50% = g(c)+% (0) and U F g(z+y) = g(z) +X g(y) —
9(z + Sy) = g(S(z +v)) = $¥(g(z + y)) = SK(g(z) +X g(y)) = g(z) +¥ SK(g(y)) =
9(z) +X g(Sy), So by induction (with x as parameter) U I YzVy(g(z +y) = 9(z) +¥ g(v)).
QED

Lemma 3.8 The range of g is ‘closed downwards’, i.e. U F VaVu(b(u) Au <K g(z) —
Jy < =z(u=g(y))). '

Proof. Before we start the proof proper, we note a useful fact. V includes PA and K is
an interpretation of V into U. Thus, as

1. PAFVzVu(u<z+1—>u<zVu=z)and
2. Utk Vz(g(z) +¥ 15 = g(z + 1)), we also have
3. UFVaVu((u)Au <K gz +1) »u <K g(z) Vu = g(z)).

Now we can start with the proof by induction on z of U F VaVu(6(u) Au <K g(z) =y <
z(u = g(y)))-

x =0 We have U F =Ju(6(u) A u <X g(0)), so U F Vu(6(u) A u <X 9(0) —» 3y < 0(u =
9(v)))-

Induction step Work in U and suppose Vu(6(u) A u <X g(z) — Iy < z(u = ¢(y)))
(induction hypothesis). Moreover, suppose §(u) A u <X g(z + 1). Then, by 3,
u <X g(z) Vu = g(z). So by the induction hypothesis 3y < z(u = g(y)) V u = g(z),
Le. Jy<z+1(u=g(y)).

QED

Remark 3.9 Let I(z) be the formula Jy(z = g(y)). Note that U does not prove that I is
closed under successor, so I does not define a cut; but by the previous lemma we do have

Uk VaeVu(8(u) A I(z) Au <K 2 — I(u)).
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Lemma 3.10 For all formulas ¢ € AY, U proves the following by proofs of length poly-
nomial in |"p(aq,...,a,)7:

p(ai,. .. an) & (%) (g(a1),. .., g(an)).

Proof. By induction on the construction of ¢. We will see below that the proofs for the
atomic formulae 3 are obviously of length linear in ["¢7|, and that all induction steps
follow a given proof scheme in which the particular formulas at hand can be plugged in.
So, because every ¢ has at most |"¢7| subformulas, there is a polynomial R such that
for all ¢, the U- proof of ¢(a1,...,as) < (¢¥)(g(ay),...,g(ar)) is of length < R(|"¢7|).
We will do the atomic step and the Vz < t-step of the proof, and leave the others to the
reader.

Atomic step By lemma 3.7, we have for all terms ¢ by proofs of length polynomial in
|77

Ut g(t(as,...,an)) = (t%)(g(ar),- .-, g(an)).

So suppose ¢ is the formula t;(ay,...,an) = t2(ay,...,a,) where ay,...,a, include
all variables appearing in t; and ¢,. Then, because U proves that g is an injective
function,
Ut tl(aly <5 Qn ) = t2(a17"'7a'n.)
Hg(tl(al) an)) = g(tZ(al"",an))
< () (9(a1), -, 9(an)) = (t5)(g(a1),...,9(an))

((tl = tz)K)(g(al))“')g(an))

Vx < t-step Suppose that ¢(ay,...,a,) = Vz < t(ai,...,an)¥(z,a1,...,a,), and that
Uk i(z,ay,...,a,) « ($¥)(g(z),g(a1),...,g(an)) (induction hypothesis). We will
use the fact that, because of lemmas 3.6, 3.7 and 3.8,

UtkVu,ay,...,a, (Fz[z <t(ag,...,a,) Au= g(z)]
o 6(u) Au <K tK(g(ar),. .., g(an))).

Thus, we have the following equivalences:
Ulr o(ai,...,an)
= Ve < t(al, ce. aan)¢(m7a17 cee )a'n)
o Ve < t(ah cee ’an)(djl{)(g(x)ag(al), oo ,g(a’n)) (by ind. hyp)
o Vu(8(u) Au <K t5(g(ar), ..., g(an)) = % (u,9(a1), .., g(an)))
o (Vz <t )% (g(ar),...,g9(an)) (by def. of K)
o ((P)K(g(al)a v ag(an))

QED

Now we can finish the proof of the uniform version of Montagna’s property M for
feasible interpretability.
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Theorem 3.11 Suppose
o U satisfies full induction,
o V eztends PA and
e U ;s V by interpretation K (preserving =) and polynomial P.

Then there is a polynomial Q such that for every $9-sentence o there is a U + o-proof p
of o¥ with |"p7| < Q(|7a 7).
Thus, U+ S By V + S where S is a finite or infinite set of £9-sentences.

Proof. Suppose o € S is the £9-sentence Iz (z), where ¢ € A?. By lemma 3.10, there is
a polynomial R such that we can prove the following by a proof of length < R(|"¢7|):

Ut 3zp(z) — JzpK(g(z))

— Jy(8(y) A ¥ (y))
- (Frp()E,

Now we have U + S ¢ V + S by the interpretation K and polynomial Q := P + R.
QED

All results of this section also hold if we add the function symbol ezp to the language
of U and V, which we need in theorem 4.1. Let g be as defined in lemma 3.5. We
will only give the result which needs some adaptation. The following preservation lemma
corresponds to lemma 3.7:

Lemma 3.12 Suppose exp € Ly. Then U proves that g preserves 0,8, +,-,<, and ezp.

Proof. We already have a preservation proof for - by lemma 3.7. Preservation of ezp
then follows in the same way as preservation of + was proved from preservation of S in

lemma 3.7. QED

4 Interpretability does not imply feasible interpretability

Theorem 4.1 There is a set S of AY(ezp)-sentences such that w = PA > PA+ S, but
wl PA by PA+S.

Proof. Define by Godel’s diagonalization theorem (or rather by the free variable version
as formulated by Montague) a AJ(ezp)-formula ¢(y) such that

PAF ¢(y) « Ve < ezp(y) ~Prf(z, "¢ (y)7).

It is easy to see that if we diagonalize directly, there is a polynomial O such that for each
n, [n| < |"¢(n)?] < O(|n|). Moreover, if p(n) were false, then by definition we would
have a proof of the AY(ezp)-sentence ¢(7); so () must be true. But then, since ¢(n) is
AY(ezp), we have the following:

1. PA proves p(n), though
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2. because p(n) is true, PA does not prove p(n) by any proof whose Gédel number is
of length < n.

Define S := {¢(12) | n € w}. Then, by the identity interpretation, w = PA > PA+ S.
Actually, as in [JM 88, section 6], we even have PA I VyProu("p(3)7), so PA+ PA >
PA+S.

Now suppose, in order to derive a contradiction, that w = PA > f PA+ S by inter-
pretation K and polynomial P. Thus, for all n,

PAF ¢(n)%by a proof of length < P(|"p(n)7)).

We also know by lemma 3.10 (with U = V = PA) that there is a polynomial R such that
for every n,

PAF ¢(R) < ¢(n)Eby a proof of length < R(|"¢(n)7]).
Now can construct from R and P a polynomial @ such that for all n,

PAF ¢(n)by a proof of length < Q(|ro(n)7)).
However, there will be n such that n > Q(O(|n|)) > Q(|"¢(1)7|), and we have a contra-
diction with 2. QED

A salient feature of the counterexample above is the trivial identity interpretation
by which PA interprets PA + S. To prove that interpretability does not imply feasible
interpretability, it is not essential that the set of formulas added to PA be infinite like
S above. We will show a counterexample where one sentence can be normally but not
feasibly interpreted over PA. Of course in this case the normal interpretation cannot be
the identity. The counterexample also shows that in general we cannot feasibly merge
two compatible feasible interpretations; i.e. it is not true that if U > iV, U by B and
U V+B,thenU >y V + B (take U =V = PA, B = A(n) or B = E* as below).

Theorem 4.2 There is a sentence A(n) such that w = PA > PA+ A(n), but w
PA by PA+ A(n).

Proof. Let P(x) be some II3-complete formula, say P(z) = VyS(z,y), with § € 39, Define
the formulas R and A by diagonalization such that

PAF R(:c,y) « S(Z,y) = DPAR(w,y)
and
PAF A(z) & Opy-A(z) X y-R(z,y),

where O* is as defined in section 6.
Carrying out the proof of theorem 6.3 of the appendix section 6 in True Arithmetic,
and taking the theory U mentioned there to be PA, we find the following result: if PA is

consistent (as we believe it to be), then

w = Ve(PA > PA+ A(z) < P(z)).
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Now suppose, to derive a contradiction, that
w | Vz[(PA > PA+ A(z)) « (PA >y PA+ A(2))].
Then
w | Vz[(PA > PA+ A(x)) & P(z)].

However, it is easy to see that PA >y PA + A(z) is a X3-predicate, contradicting the
I13-completeness of P. Therefore, there is an n € w such that

e wkE=PAD>PA+ A(n) but
o wl PA > PA+ A(n).

By this method we do not immediately find the value of a particular n that works, however.

A. Visser pointed out that we can make a specific counterexample in a more direct
way using the Lindstrém method. Because {e | e is the Godel number of a sentence E
such that ~(PA >y PA+ E)} € I3, we can construct a formula A as in the appendix for
which the following holds: for all sentences E,

wkE(PAD>sPA+E)— PAD>PA+A(TEY).
Now let E* be the sentence constructed by the fixed point theorem such that
PAF E* o A(TE™).
Then
wl (PAp>fPA+E*) > PAD>PA+E*
Therefore,
wEPAD>PA+E" andw . PA >y PA+ E*.
QED

5 ILM is the interpretability logic of feasible interpretabil-
ity over PA

In this section, we will show that Berarducci’s proof of the arithmetic completeness of
ILM with respect to interpretability over PA can be adapted to prove that ILM is also
arithmetically complete with respect to feasible interpretability over PA.

We have already proved in chapter 3 that for all modal formulas in the language of

ILM we have:
if ILM F ¢, then for all feasibility interpretations *, PA - o*.

Therefore, we will only need to show the converse:

if ILM 1/ ¢, then there is a feasibility interpretation * such that PA I/ o*.
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We suppose that the reader has a copy of [Be 90] at hand in order to follow the original
proofs. For the lemmas 5.5 up to 5.7, knowledge of [Py 86], [Pu 87] or [Ve 89] will be
helpful to the reader. As in [Pu 87], we take the logical complexity of a formula to be
its quantifier depth. We can then adapt the results obtained in [Pu 87] to find for every
standard n a formula Saty, a satisfaction predicate for formulas of logical complexity < n,
such that Sat, is of length linear in n. Subsequently, we can find proofs of length quadratic

here but refer the reader to the papers by Pudlgk and Verbrugge.
First, we define some of the concepts that we use in the subsequent lemmas.

Definition 5.1 Formally, we define the following concepts:

* Sent(a) for “a is the Gédel number of a sentence”;

Fmla(a) for “a is the Gédel number of a formula”;
® Fmla,(a) for “aq is the Gédel number of a formula of logical complexity < n”;

Cl(a) for “the Godel number of the universal closure of the formula with Gédel
number a”; note that (7 denotes a function;

Indaz, (b) for “b is the Gédel number of an induction axiom of logical complexity
<n”, ie.

Indaz, (b) = Fmla, (b) A Jy[Fmla(y) A
b= Sub(y, v, "07)" AV, ("y™—Sub(y, 017, 7801 7)) = Vg vy,

We need to discriminate between a few different kinds of restricted provability, as
defined below. In this section, provability means provability in PA, unless we explicitly
state otherwise.

Definition 5.2 We formally define the following:

® BPrf,(z,y) for “z codes a proof of the formula coded by y, where only formulas of
logical complexity < n appear in the proof”;

® P-Polprov, (z) for “z codes a formula that is provable by a proof of length < P(n)”
where P is a polynomial;

® Polprov, (z) for “there is a polynomial P such that” Vn3p(|p| < P(n) A Prfip, z);
* Polprovy, . (z) for “there is a polynomial P such that "Yn3p(lp| < P(n) A Prfy (p, z)

® Prov,(z) for “z codes a formula that is provable by a proof which only uses those
axioms of PA with Godel number < n”; abbreviation Une for Prov, (" ®);

® Provy,(z) for “z codes a formula that is provable by a proof which only uses those
axioms of W with Gédel number < n”; abbreviation Ow,ne for Prowy,,, (Tp7).
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In the context of satisfaction predicates Sat,(z,w), we need a few more concepts.
Definition 5.3 We formally define the following:

¢ Evalseg(w, ) for “w encodes an evaluation sequence for the formula or term with
Godel number z; i.e. the length of the sequence w exceeds any 7 for which a variable
v; occurs in the formula or term coded by z”;

e s*(i,z,w) for “the sequence which is identical to w, except that z appears in the
i-th place”; note that s* denotes a function;

o True,(z) for Vw(Evalseg(w,z) — Sat,(x,w));

Remark 5.4 When we prove formalized results, we read True, as a Gédel number just
as Sat,. So in that case the appropriate definition is as follows:

True,(z) for "Vw(Evalseg(w,z) —7Sat, (z,w)")7.
Lemma 5.5 (feasible subformula property) There is a polynomial P such that
PAF VkVa(Fmla(a) — P-Polprov, ;1o [Prov(a) — 3¢(BPrfy (4 (g,a))])

Proof. In [Ta 75], Takeuti gives a proof of the free cut-elimination theorem for PA,
where PA is formulated as a Gentzen system. Free cut-elimination works in such a way
that all principal formulas of induction inferences in the new free cut-free proof are substi-
tution instances of principal formulas of induction inferences in the old proof. From this
result Takeuti derives a proof of the corresponding subformula property for PA.

The proof of the subformula property can be adapted to the natural deduction formu-
lation of PA, and can subsequently be formalized in PA. Thus, we can substitute any k
bounding the Goédel numbers of axioms used, and any Gédel number a of a formula into
the proof of the subformula property. Therefore, there is a polynomial P such that PA
proves the following by proofs of length < P(|k| + |a|):

PAF Provy(a) — Jq(BPrfy11q/(g,a)).

Now this statement can again be formalized, so that we find
PA - VkVa(Fmla(a) — P-Polprovy 1 |oj[Provk(a) — 3¢(BPrfi 44 (g, a))]),

as desired. QED

Lemma 5.6 There is a polynomial P such that

PA & VkVa(Fmia(a) — P-Polprovy 4 [3¢(BPrfix4(a)(9,a) — Trueptiq(a)])
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Proof. First, we work informally by induction on the construction of g. We work in
PA, and we take any k and an a such that a is the Gédel number of a formula. We
have to prove by polynomial length proofs (where the polynomial is fixed from outside)
that True)1|q| Preserves the axioms and rules as applied to formulas of logical complexity
< [kl + |al-

As an example, we show how this works for the induction schema. We take v; as the
induction variable in all our instances of the induction axioms. So suppose b codes an
induction axiom of logical complexity < |k| + |a|, e.g. b= (Sub(y, "v17,70") AV (YT —
"Sub(y,"v17,"Sv17)") — VYu;ly). We have to prove the following by a proof of length
polynomial in n := [k| + |a|:

Truen (Sub(y, "v17,707) AV (Ty™—"Sub(y, v, 7, FSv17)") — Yo, Ty). (4)

By a proof of length quadratic in n of the Tarski properties for Sat, and a proof of
length quadratic in 7 of a call by name / call by value lemma for Sat, (cf. the proofs of
lemmas 3.12 and 3.16 in [Ve 89],( 4) is equivalent to the following:

Vw[Sat,(y,s*(1,0,w)) A Vz(Sat,(y, s*(1,z, w)) — Sat, (y,s*(1, Sz, w))) —
Va(Saty (y, s* (1, z,w))]. (5)

The formulas ( 5) are themselves instances of induction of length linear in n, so they
are provable by proofs of length linear in n. A polynomial of the form P(n) = K -n8
should now suffice to carry out the proofs of ( 4).

Again, we can formalize the argument to derive the following:

PA & VEkVYa(Fmla(a) — P-Polprovy) 4o/ [Vb(Indaz)p) (g (b) — Truek| 41 ())])-

Similarly, we can show by polynomially short proofs that the other axioms of logical
complexity < |k| + |a| are true, and that the rules preserve truth. We leave these proofs
and their formalizations to the reader. QED

Lemma 5.7 There is a polynomial P such that
PA\-VkVa(Fmla(a) — P-Polproyy ;o) ( Truejk| 4|4 (a)™—"Cl(a))
Proof. By a formalized Tarski’s snowing lemma; cf. lemma 3.10 of [Ve 89]. QED
The following theorem corresponds to the reflection theorem 1.6 in [Be 90].
Theorem 5.8 (feasible reflection theorem) There is a polynomial P such that
PA - VkVa(Sent(a) — P-Polprovy ;|4 ("Provi(a) —7a))
Proof. Combine lemmas 5.5, 5.6 and 5.7. QED

In the following lemmas and theorems, 3K abbreviates 3K (“K codes an interpretation”

ALl
The next lemma was proved by Albert Visser [Vi 89, Chapter 6, Claim 3] in the course

of a formalized Henkin construction in IAq + Q;.
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Lemma 5.9 Suppose 3 aziomatizes some subset of a El{ -language L. Then there is an r
such that

IAg + 4 + Oy Con(B) — 3K Va € Sent(L)Ip < wi(a)Prfy(p, Oga —7aX).
Proof. See [Vi 89]. QED

Because of the correspondence between the values of w;-terms in a and ezp(the values
of polynomials in |a|), lemma 5.9 implies the following lemma:

Lemma 5.10 Suppose 3 aziomatizes some subset of a E’{-language L. Then there is a
polynomial P such that

IAg+ Q; F Oy Con(B) — AKVa € Sent(L) P-Polprovy |, ("Oga —7a).

The following theorem corresponds to Orey’s theorem; see for example [Be 90, Theorem
2.9]

Theorem 5.11 (feasible Orey’s theorem) Suppose that U D PA and W is azioma-
tized by o, where a is a 21{ -formula. Then

PA &V Polprovy ) ("Ca,T7) = U B>y W.
Proof. Work in PA and suppose
Va Polprovy, |, ("o, T7).

In U, we will do a Henkin construction for the Feferman proof predicate for W. First
define:

Bx) :=a(z) A Cazt1T.
As in Feferman’s original proof, we can prove that
Oy Con(B).

(For, reason in U and suppose Prfg(z, L), then for the axiom of 8 coded by
the biggest Godel number y to appear in  we have a(y) A 7Oqy41 T, thus
—f(y): a contradiction.)

On the other hand, by provable El{-completeness for a(a) and by the assumption
Va Polprovy |, ("Ca, T7), we have:

Va(a(a) — Polprovy |4/ ("a(a) A Cae+1T7)).
So, by definition of 3, we have the following:

Va(a(a) — Polprovy |, ("8(a)). (6)
But, using Oy Con(B) we can apply lemma 5.10 to first derive

3KVa € Sent(L) Polprovy,,("Oga —a%),
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and thus

JKVa € Sent(L) Polprovy,, ("(a) —7g%). (7
Finally we can combine 6 and 7 to get the desired conclusion

3KVa(a(a) — Polprovy,, (a®)),
ie. U by W. QED

Now we can start the proof of the arithmetical completeness of ILM with respect to
feasible interpretations (cf. definition 3.2) over PA.

Theorem 5.12 If ILM i/ B, then there is a feasibility interpretation * such that PA I/
B*.

The proof will in most places be identical to the one in [Be 90]. First we will sketch
the outline of the proof, then we will prove the propositions that we need in the feasible
case but differ essentially from those used in [Be 90].

Proof sketch. Suppose ILM I/ B, and take, by modal completeness of ILM with
respect to simplified models, a provably primitive recursive ILM -Kripke model V =<
V,R,S,b,IF>, with b =1 and 1 I B. Extend V with a new root 0 with 0Rz for all z € V,
as in definition 5.1 of [Be 90]. Adapting definition 5.2 of [Be 90], we define a feasibility
interpretation * such that for all propositional variables p,

pri=“zeVU{0}:L=zAzlp”,

where L is defined as the limit of the Solovay function F, which is in turn defined in
definition 5.7 of [Be 90]. We want to prove the following:

whenever 1 I A ,then PAIf A*, (8)

Then we will be done, as we have chosen V such that 1 I¥ B. To prove ( 8), we need
to prove in PA a few properties of F' and its limit L. Subsequently we need to prove
by induction on the construction of the formula that for all formulas A, the feasibility
interpretation * is faithful on A, i.e.

PAFVzeV(zlF ANL=2z — A*) and
PAFVzeV(zIFmAANL=2z— —4%).

It is clear from the definition of F' that * is faithful on atomic formulas. Moreover, the
induction steps for the propositional connectives and O immediately follow from the proofs
in [Be 90]. Even the “negative” induction step for [> has a straightforward proof:

Work in PA and supposez € V, z I =(A >B), and L = z; then by part 2 in the
proof of lemma 5.6 of [Be 90] and by the induction hypothesis, =(4* >B*). But
then surely —(A* ¢ B*), thus, as * is a feasibility interpretation, =(4 > B)*.
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For the “positive” direction, we need two extra lemmas. First we will prove in PA
that F' satisfies a feasible adaptation of Berarducci’s property S , which we then use to
finish the induction step for .

For z € V, let rank(z,n), the rank of  at stage n, be defined as in definition 5.7
of [Be 90]. The following proposition is an analogue of proposition 5.14 in [Be 90].

Proposition 5.13 (F has feasible property S) PA proves the following:

PAF VzeVU{O}[L=z —
Polprov, ("Vy,z € VU {0}(L =y AzRz AySz — Ol = 2)7)]

Proof. We will prove the proposition by combining a few facts that are easy to check.
For brevity’s sake, we will leave out “c V U {0}” after quantifiers Vz,Vy,Vz. Likewise,
capital P, with or without subscript, refers to formalized polynomials.

Fact 1 PAF Polproyy ("Vy(L =y — 0L = y)7)

Proof. Immediately from the reflection theorem 5.8. The formula I = y has a fixed
length, so the polynomial found in the proof of the reflection theorem in this case
depends only on |k|. QED

Fact 2 PAt Polproyy ("Vy(L =y — Vn(k < rank(y,n)))”)

Proof. Immediately from fact 1 and the definition of rank. The appearance of k as
an efficient numeral keeps the length of the proof polynomial in |k|. (This is also the
case in the other facts below) QED

Fact 3 PAt Polproyy, ("Vz(O,L # z — 3ImVn > m(rank(z,n) < k)
Proof. Immediately from the definition of rank. QED

Fact 4 PA & Polproyy, ("VyVz(L = yAOLL # z — In(F(n) = yAn codes yA rank(z,n) <
k A rank(z,n) < rank(y,n)))))

Proof. From the definition of limit and fact 3: just take n big enough. We can
take care that n codes y because we have an infinitely repetitive primitive recursive
coding of the elements of V' U {0}. Finally, to prove rank(z,n) < rank(y,n), we use
fact 2. QED

Fact 5 PAFVz(L=z — Polprovy, ("35(J > EAF() =z)7)
Proof. Immediate from the definition of the limit L of F. QED

Fact 6 We have the following:
PAVF Ve(L=z— Polprovy, ("VyVz(L =y A0 L =z AzRz AySz —
In3j(F(n) = y An codes y A rank(z,n) < rank(y,n) A rank(z,n) < k < j
AF(j) = « A F(rank(z,n))SzRz A F(rank(z,n))Rz))7))
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Proof. For the part up to F(j) = z, we combine facts 5 and 4. For the last two
conjuncts, we use the monotonicity of F' and the property corresponding to M of
Veltman ILM —frames. QED

Fact 7 We have the following:
PAFVz(L=z — Polprovy, ("VyVz(L=yAO,L=2AzRzAySz —
In(F(n)=yAF(n+1)=2))7)
Proof. Immediate from fact 6 and the definition of the function F, clause 2. QED

Now we can wrap up the proof: we see that In(F(n) = yAF(n+1) = z) is inconsistent
with L = y, so in fact we have what we were looking for:

PAFVa[L =z — Polprov, ("VyVz(L = y AzRz AySz — OpL = 2)7)]
QED

The following proposition corresponds to part 1 of Lemma 5.6 of [Be 90].

Proposition 5.14 (positive induction step for ) Let* be the feasibility interpreta-
tion defined in the proof sketch of theorem 5.12. Suppose as induction hypothesis that

PAFYy(L=y — (yIr A & A%)) and
PAFRVY2(L=2z— (zIF B~ BY)).
Then
PAFVz(L=zAzlFAD>B— (A D> B)").
Proof. Let b be such that
PARVy(L=y— (yIF A A%)) and
PAFVz(L=2z— (zIFr B & BY)),
both by proofs that use axioms of Godel number up to b. Moreover suppose c is such that

PAFVY2(zIF B— Oz I B));

for this, any ¢ > the Gddel number of the biggest axiom of Robinson’s arithmetic Q will
do. Define d := maz(b,c). By theorem 5.11, the feasible version of Orey’s theorem, it is
sufficient to prove the following:

PAFRVz(L=z Azl A > B — Vk>d Polproyy (TA* — ©;,B*").

Again, we will state a list of easily provable facts from which the result immediately follows.
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Fact 1 PA+Ve(L=2zAzlt AD>B—-0OA* > 3Jy(L=yAzRyAylF AAz - A > B)])

Proof. L =z — O3y(L = y A zRy) by property (~R), J(A* AL =y — y IF A) by
the induction hypothesis, and O(z I+ A > B) by provable X{-completeness. QED

Fact 2 PAFVe(L=xzAzl- A>B — 0OA4* - 3yI2(L =yAzRyAylF AAz I
A D> BAzRzAySz Az I+ B)))

Proof. From fact 1 and the definition of z IF A > B. QED

Fact 3 PAt VzVk > d Polprovy (2 - B — O;z I+ B)

Proof. From the assumption, and the fact that k appears only as efficient numeral.
QED

Fact 4 PAFVYe(L=zAzFAD>DB—->Vk>d Polproyy, ("A* — Jy3z(L =y AzRy A
TRz AySzAO,L=2A0;z I B)7))
Proof. From fact 2 for A* — 3y32(L = yAzRyAzRzAySz Az I+ B); fact 3 for

a proof of length polynomial in &k of z IF B — 0z IF B), and proposition 5.13 for a
proof of length polynomial in |k| of L =y AzRy ARz AySz — OiL =z QED

Fact 5 PAFVe(L=zAzl-rAD>DB —>Vk>d Polproy, ("A* — 3204 (L = zAz I B)7))

Proof. If k is big enough (and k£ > d will do), then by an easily formalized property of
modus ponens, we have the following by proofs of length polynomial in |k| : PA F
Vz([Og(z IF B — L # 2) Az I+ B] —» OkL # z), and thus PA F Vz(OrL =
zAOgz I B — O(L = zAz I+ B)). This argument can be formalized and combined
with fact 4 to derive fact 5. QED

Fact 6 PAFVe(L=azAzlrAD>B—-VYk>d Polproyy, ("A* — ©;B*7)

Proof. From fact 5 and the induction hypothesis; the fact that k > d is used at this
place. QED

From fact 5 and the feasible version of Orey’s theorem, we may indeed derive
PAFVz(zlrAD>BAL=z— (A D> B)"),

as desired.

QED

Proof sketch of theorem 5.12, continued. Concluding by induction that * is faith-
ful on all formulas A, we have proved that ILM |f B*. Therefore, ILM is arithmetically

complete with respect to feasible interpretability over PA.
QED. :
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6 Appendix

Solovay proved that the set {A | PA > PA+ A} is II3-complete [So]. This result inspired
Hajek to prove that, for every n, the set {4 | A is II° +1-consevative over PA} is also
3-complete [H4 79].

We have adapted the proof of theorem 6.3 from Visser’s unpublished rendition [Vi 90]
of an alternative proof by Lindstrém of Hajek’s general result.

Definition 6.1 Define Oy, B for “there is a proof of the formula B which only uses those
axioms of U with Godel number < z.”

Suppose U and V are theories extending PA, such that for all B PA + VzOy(Op.B —
B) (reflection for U), in particular PA VzOy Oy, T. Then by the Orey-Hajek theorem,
PAFU DV & Vz OyOv,. T . The rest of the proof is taken almost verbatim from [Vi 90].

Let P be any II-predicate, say P = VzS(z), with S € ¥9. Pick R by diagonalization
such that PAF R < S < OpyR. Let Q := OyR < S. (We suppress free variables when
convenient).

We first prove a lemma.

Lemma 6.2 PAFOyR e~ SvOyl.

Proof. Work inside PA and suppose Oy R. Then either R or Q holds. In case that R
holds we have S by definition. In case that Q holds we have OpQ by X9-completeness,
and hence by definition both Oy R and Oy —R, thus Oy L.

For the other direction, suppose S. Again we have either R or Q. From R we find
Oy R by Z9-completeness. From Q we immediately derive Oy R. Finally Oy L gives Oy R
as well. QED

Define A by diagonalization such that PA + 4 — Op—A < Jy-R(y). Note that by
lemma 6.2 we have PA+ Oy T — [VzOyR(z) — P] and PA F P — VzOy R(z).

Theorem 6.3 PAF OyT — (U b U+ A « P)

Proof. Work in PA and suppose Oy T.
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—-side Suppose U 1> U + A. Then by the Orey-Hijek theorem VeOy Oy A. We will
prove VzUyR(z). Pick any . We have Oy[Q(z) — —~R(z)]; therefore by definition
of A,
Oy[Q(z) — —AV Oy,—A]

and hence by reflection
Oy [Q(z) — —A].

But then there is a y such that
Ou,y[Q(x) — - 4],

so by XJ- completeness
Oy Oy, [Q(z) — —-4].

Also by £9-completeness, there is a z such that
Oy[Q(x) — Oy,.Q(z)].

Combining the previous two facts, we find a u such that
Oy[Q(z) — Oyu—4,]

and thus, by the assumption, Oy—Q(z). It follows that
Oy [0y R(z) — R(z)],

hence by Léb’s theorem Oy R(z). We may conclude VzOp R(z), thus, because we
have Oy T, we conclude P.

«—-side Suppose P. Then YzOy R(z) and thus VzOy (Yy < zR(y)). It follows by definition
of A that

VeOy (Op,—A — A).
On the other hand, we have
VzOy(Op -4 — —-A)
by reflection, hence VzOy (Op,A). But then by the Orey-Hajek theorem U >U + A.

QED
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