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Abstract

The paper explores the analogy between reducibility statements of
Weihrauch’s theory of representations and theorems of comstructive math-
ematics which can be reformulated as inclusions between sets. Kleene’s
function-realizability is the key to understanding of the analogy, and suggests
an alternative way of looking at the theory of reducibilities.

1 Introduction

In a series of interesting papers Kreitz and Weihrauch ([KW1, KW2, KW3, W1,
W2, WK]) have developed a theory of representations (henceforth “TR” for short),
lifting notions of “effectiveness” on Baire space IB to other structures, of cardinal-
ity not greater than IB, via the notion of “representation” which is analogous to
Ershov’s notion of numeration for countable structures. TR has been proposed as
an alternative to the various forms of constructive mathematics and has been ap-
plied in complexity theory (see e.g.[M]). Just as classical recursive mathematics,
TR introduces constructivity considerations in a classical setting.

Looking at examples of representations and the reducibility relations between
them, one is struck by an obvious informal parallel or analogy between these results
and certain well-known facts from constructive mathematics (“CM” for short) in
the style of Bishop, Brouwer and Markov. (For general background on CM, and

*Paper presented at the conference Computer Science Logic 91, october 1991, Berne, Switzer-
land. I am indebted to K.Weihrauch for discussions and helpful comments on an earlier version of
this paper.



references, see [TD]|.) In this paper we discuss and explain to some extent this
parallelism, and show by means of some examples how results from constructive
mathematics may be converted into results on the reducibility of representations,
and conversely, how many reducibility results in the theory of representations might
actually have been obtained by “translating” a theorem of constructive mathematics.

Although we set in this paper some steps on the road towards a more explicit
formulation of the analogies, we are far from having demonstrated “equivalence”
between TR and some form of CM. In order to make the idea of “equivalence”
precise, one would first have to agree on an appropriate and natural formalism for
CM and on a suitable formal setting for TR. Even under the assumption that such
an agreement can be reached, I do not think it likely that full equivalence results.
However, even the exploration of partial and limited analogies between TR and CM
can be worthwhile, e.g. because known results from CM may show us what to expect
and look for in the case of TR.

In the papers by Kreitz and Weihrauch we encounter many different represen-
tations for (classically) the same set of objects. This is reminiscent of early work
in intuitionistic mathematics and Markov’s constructive mathematics, where many
different constructive analogues of the same classical notions are studied. There
later developments showed that only very few of the many alternatives were well-
behaved mathematically. (Bishop’s constructive mathematics seems to have skipped
this “proliferation-of-notions” stage.)

Similarly, it is to be expected that on further systematic development of TR,
only a few of the many possible represententations for the same set will turn out to
have good properties. Here too analogies might be exploited to advantage.

NoOTATION. Let a, 3,7, possibly sub-or superscripted, be used for elements of IB.
We assume that our standard coding of finite sequences of IN is onto IN. ji,jo are
the inverses to a surjective pairing ( , ) : IN? — IN; pairing and its inverses are
lifted to B by (o, 8) := An.(an, Bn) etc. We write Gn for the (code of) the sequence
(B0,81,...,8(n — 1)), B0 = () (empty sequence). We write 7 as short for (n). *
denotes concatenation of codes.

a(f) =z = a(B(min,[a(Bz) >0]) =z +1,
o=y = V(a(éxB)=12)

®,:B — IN and ¥, : B — IB are partial continuous functionals given by

®,(8) =n:=a(B) =n,
Vo(B)=7:=alf=17.
Let (I,), be a standard enumeration of intervals with dyadic rational endpoints,

such that Ijjm) := (vp(j) —27™,vp(j) + 27™) and vp is a standard enumeration of
the dyadic rationals k2" k € Z,n € IN. Let (r,), be a standard enumeration of Q



2 The theory of representations: definitions and
examples

DEFINITION. A representation of a set M is a partial surjective mapping ¢ : B —
M. We use 6,8',68" for arbitrary representations.

If 6,8 are two representations of M, we say that § is reducible to §' iff there is a
partial continuous I' : IB — IB such that

Va € dom(6)(6(a) = 8'(Ter))

If T is recursive, we say that é is computably reducible to §' (c-reducible). We write
6 <&, 6 <. 8 for reducibility and c-reducibility respectively.

6 and &' are equivalent (c-equivalent) iff § < §' and § < ¢ (6 <. & and &' <. 9).
Notation: § = &' (6 =. &').

Examples of representations

(A) @ — ®,, a — ¥, are representations of certain classes [IB — IN], B — IB| of
partial continuous functions.

(B) Let En(a) := {n : 3m(am = n + 1)}, then En is a representation of P(IN), the
powerset of IN, by enumerations; En®(a) := {n : Vm(am # n + 1)}.

(C) Let Cf(a) := {n : an = 0}, then Cfis a representation of P(IN) by characteristic
functions. ,

(D) We define a representation p. of R as follows.

a € dom(p.) :=3Im € INVn € En(a)(r, < m)
p<(a) :=Lub.{r, : n € En(a)}

(E) Similarly for p., with (least) upper bound replaced by (greatest) lower bound.
(F) Let Q, = {k2™: k € Z}, n € IN, and put

a € dom(pr) = Vn(Tan € Qu A [Tan — Tamrn)] < 27D,

rr(a) = lim(74n )n-

(G) A complete, separable metric space M is a triple (M,d, (pn)n), Where d is a
distance function on the set M, and (p,), is dense in M. M is in fact completely
determined by the distance function on (p,)n, that is to say M is determined by a
function a defined on (coded) triples of natural numbers, such that

VE(|d(pi, p5) — Tatigi] < 27)
A representation éx¢ (Cf. [KW2, 4.12]) may be given for the points of M by

dom(énc) = {8 : Ym(d(pg(m+1), Ppm) < 27 ™} )
= {B : Ym, k(Ta(am+1),8mp) < 27" +27%)}
éne(B) = lim(psa)n



Less well-behaved is the representation ég, where the Cauchy modulus is left implicit:

dom(6c) := {B : (Ppn)a is a Cauchy sequence}
6c(B) := im(pgn)n-

(H) A slightly different representation §,( has as domain all of B: let (py(k,mn))n be
a standard enumeration (possibly with repetitions) of {p; : d(pi, pm) < 27}, and let

Spm(PB) = lim(psn)n

where 60 = 30, 6(n+1) = y(n,dén,B(n+1)). (Special case: g with (p,), a standard
enumeration of Q.)

(I) The (listable) opén sets of R may be represented by w with
dom(w) := B, w(a) := | J{I, : » € En(a)}.

This suggests a complementary representation of closed sets as §g(@) := R \ w(a).
" It is not difficult to show that

(1) Cf < En, —-En < Cf,

(2) PR j P<y PR j P> TP< j PR, P> j PR, 6]R = PR-

It is also easy to see that given two representations 6, §' of a set, we can define a
greatest lower bound 6 M ¢’ by

a € dom(6 M ¢') := jio € dom(6) A joa € dom(¢') A 8(jir) = 8'(jac),
(6118")(a) == 6(j1ex) (= ' (j2c))-

Then
(3) EnMEn® =Cf, p.Mps = pr

Remarks on CM versus TR. Results such as (1) and (2) invite comparison between
CM and TR. In the classical setting of TR differences between representations 6, ¢’
of the same set X correspond to differences in the amount of information acessible
(obtainable) from the representing functions (i.e. the amount of information encoded
in the representing functions) concerning the elements of the set. In CM, where all
objects are supposed to be given to us (are defined) by the presentation of certain
bits of information, the 6,8’ correspond to different sets. Thus, in TR, Cf and En
reflect different information concerning elements of P(IN); in CM these correspond
to decidable and enumerable sets respectively.

Similarly pgr, p<, p> correspond in CM to respectively the reals (in the sense
of one of the standard definitions), “limits” of monotone increasing sequences in Q
with upper bound, and “limits” of monotone decreasing sequences in @ with lower

bound (see [TD]).



The analogue of (1) in CM is : decidable implies enumerable, but not conversely;
the analogue of (2) is (approximately): every real is approximated by a bounded
monotone increasing sequence in Q with upper bound, and by a bounded monotone
decreasing sequence in Q with lower bound, but not conversely.

Results such as (3) also have their counterpart in CM: En M En® = Cf expresses
that a set which is enumerable with enumerable complement is decidable (with an
appeal to Markov’s principle Vz(A V =A) A =—~3zA — JzA), and p< M ps = pr
corresponds to the fact that if we have monotone increasing (r,), C @, monotone
decreasing ($,)n C Q, Yam(r, < sn), VkIn(s, —rn < 2¢), then lim(r,), = lim(s,)n
is a real.

As to the representations dnc, Oc, it is not hard to see that for the reals dnc X dc,
but —é¢ = énc, while dnc = ér. —6c =X Odnc expresses that the Cauchy modulus of
a fundamental sequence of basis points cannot be computed continuously from the
sequence itself; this reflects the distinction between F-numbers and FR-numbers in
Markov’s constructive mathematics (see [Sh]).

3 From CM to TR

The obvious parallels between certain facts from CM on the one hand, and certain
reducibilities in TR on the other hand, raises the question whether we can per-
haps systematically translate (certain classes of) statements of CM into reducibility
statements of TR.

What the examples of analogies suggest, is the following. Let us assume that we
have settled on a common formal language for (parts of) CM and TR, containing
at least variables ranging over IN and IB.

On the side of CM, we deal with sets X', the elements of which are regarded
as given by information encodable by elements of IB. That is to say, X may be
thought of as a pair (X,6 : X—»X*) with X C IB, §(«) the element described by «,
6 surjective; this is nothing but a representation of X*. Modulo an isomorphism, we
can always take ¢ to be a map assigning to « its equivalence class a.,, i.e. a ~ 3 <
da = 6(3. (Examples: Cf can be presented as (IB, ~p), where a ~o § := Vn(an =
0 < Bn =0), and pg is (dom(pg), ~1) where a~18 := Vn(|rer — rax| < 27FF1)

Let Y = (Y,8 : Y-Y*). X C )Y is expressible in codes as Va € X38 €
Y (6a = §'3). Within a classical setting, a more constructive reading of this can be
enforced by requiring the existence of a continuous I' such that Va € X (6a = §'(T'a))
(i.e. § X ¢. So é§ = & appears as the TR-analogue of the constructive reading of
Va € X308 € Y(ba = §'0).

It is a wellknown fact from the metamathematics of constructive systems, that
there is a wide class of sets X and constructive formal systems S such that S - Va €
X3B € YA(e,B) = S+ ITVa € X A(a,T'a) (T continuous) holds (more on this in
the next section).

Thus, as a rule, a constructive proof of an inclusion will automatically generate



a (constructively proved) reducibility statement Of course, in the setting of TR
reducibility statements may also be proved by classical means. Many mathematical
theorems can be reworded as inclusions (for an example, see section 5).

4 Realizability

We shall restrict attention to statements of CM and TR formalizable in the language
of elementary analysis EL, with variables for natural numbers (z,y, z,n,m) and
variables ranging over B (a, 3,7). For a precise description see e.g. [TD, page 144].

Although the results below do have generalizations, there are several reasons for
this restriction. First of all, we want to avoid undue complications. We are in this
section not aiming at maximal generality, but are satisfied with an illustration of the
basic ideas; secondly, if we want to formulate analogues in TR, for statements in CM,
it is pretty obvious what to do with IN,IB,IR etc., since the elements of these sets
are obviously encodable by elements of IB. But for the interpretation of P(IN) (and
higher powersets) in the context of TR, we must choose (what from the viewpoint
of CM is) a subclass encodable by a subset of IB — such as the decidable or the
enumerable sets. There is a certain arbitrariness in this choice, and it seems better
to regard En, Cf as the TR-analogues of enumerable and decidable sets respectively,
and not as analogues of P(IN).

DEFINITION. The class of almost negative formulas is the least class containing
formulas t = s, 3z(t = s), Ja(t = s) and closed under A,—, Vz, Vo, . O

N.B. = A may actually be rendered as A — 1 = 0, AV B is definable as 3z((z =
0— A)A(z #0— B)).

Almost negative formulas do not contain “essential” existential quantifiers. That
is to say, Jz(¢ = s) is innocent in the sense that if true, the = can be found as
min,[t = s|; Ja(t = s| is reduced to the preceding case since it is equivalent to
Jz(tla/z * Az.0] = s[a/z * Az.0]) (all terms of EL are continuous in their function
parameters and {z*Az.0 : z € IN} ranges over a dense subset of IB). In the presence
of Markov’s principle Vz(A V - A) A =—=3zA — Iz A, almost negative formulas are
equivalent to negative ones not containing any existential quantifier or disjunction.

For notions of constructive mathematics definable in EL we can easily give
a recipe for finding a corresponding representation with almost negative domain,
namely Kleene’s function realizability, formalized in detail in [K].

Function realizability associates to each formula A an almost negative formula
with an extra function variable a (o not free in A), written ar A (“a realizes A”).

If the elements of a set X are presented as a subset of IB' x IN* definable by
a formula A(ﬁ, Z) in EL, with an appropriate equivalence relation ~, the obvious



choice of representation is 4 with

dom(8s) = {(ef, %) : ar A(f, 7)}
6A(aaﬂ7:i:) = (/6,5)/'\'

We recall the definition of ar A, presented by induction on the complexity of A:

DEFINITION. (A V B treated as defined)

ar(t=s) =t=s :
ar(AAB) :=(jiar A) A (joar B)
ar(A — B):=VB(Br A — a|@r B)

arVpA :=VpB(a|fr A)
arVz A  :=VG(a|fr Alz/B0]
aripA = (joa) r A[B/j10]
ardz A  =(j20a)r Alz/(j1)0]

(Alternative clauses for Vz,3z leading to an equivalent notion are: arVe A :=
Ve(Ay.a(z,y)r A), arIz A = Ay.a(y + 1)r A[z/a0]). O

It is easy to see that ar A is logically equivalent to an almost negative formula.
For almost negative formulas B realizability is equivalent to truth: B « Ja(ar B).
But in general Ja(ar A) is not provably equivalent to A.

If we apply this recipe to the concept underlying p., i.e. “least-upper-bounds”
of enumerable sets of rationals with an upper bound, we have a’s encoding such sets
and satisfying

A(a) :=3In € ZLVm € En(a)(r, < n).

VYm € En(a)(r,n < n) is almost negative, and the representation suggested by the
recipe is not p. but the modified p% in which the existential quantifier has been
made explicit:

dom(p%) := {a:Vm € En(Ay.a(y +1))(rm < a0)}
P := lLub.{r, : m € En(a)}.

It is easy to see that pL =< p., but not p. <X pf. In many other examples the
predicates defining the domain of a representation § are in fact almost negative and
can be straightforwardly read as deriving from a definition of a corresponding notion
in CM. For an interesting example, see also éj,. in the next section.

In the case of sets in CM with a complicated definition, replacing A(3) by
Ja(ar A(B)) as the notion considered (which is what our proposal for a “privileged”
representation amounts to) may actually involve a changein the notion studied, since
in general A < Ja(ar A) is not provable.

On the other hand, the logical schema A < Ja(ar A) is equivalent to a gener-
alized continuity schema:

GC Va[Aa — 38 B(a, 8)] — IYWVa[Aa — B(a,v|a]

7



where A is almost negative, and the soundness theorem for function realizability
establishes the consistency of GC relative to many constructive systems, in particular
relative to EL + BI + M (containing FAN, ACy;, CONT,).

So, looking at examples of concrete representations as found in the papers by
Kreitz and Weihrauch, we see that in many cases the domains are definable by
almost negative formulas, and hence the representations may be regarded as being
derived from a CM-notion by our recipe.

But what about representations with a domain not defined by an almost negative
formula, can we also think of these as derived from a suitable CM-notion? The
principal difficulties we meet in the examples are of two types: (a) the definition of
dom(6) contains set-quantifiers, and (b) the definition of dom(6) contains (essential)
quantifiers da or Jz.

As long as we are working in the context of EL, the first difficulty can only be
circumvented by finding an equivalent definition in the language of EL.

In the second case, where a definition of dom(é) in EL contains quantifiers
Jda or dn, there is a quite general solution: we may replace these quantifiers by
—=da, =—dn, or equivalently by —Va—, ~Vn—. In the classical setting of TR this is
actually the same representation, but now the definition is (almost) negative. (Under
this transformation, §¢ corresponds to the quasi-numbers of constructive recursive
mathematics, and p. to monotone increasing sequences which are not unbounded.)

An example of the elimination of a set quantifier is the following. In [KW3, page
29] the following representation &/, of a class of closed subsets of IR is considered:

a € dom(¢6};) :=3X CIR(X closed AEn(a)={k:I;NX #0}),

::l(a) = nm Un{I(n,m) : (n, m) € En(a)}
We can replace the quantifier 3X C IR by an extra condition on the enumeration
expressing that whenever a finite set I,,,, ..., I,, covers an I, with m € En(a) then

at least one n; € En(a). One can then prove that §/;(a) as defined above is indeed
closed, and that a indeed enumerates all I; with nonempty intersection with 6.
In passing from an inclusion statement Va € dom(§)35 € dom(8')(6(a) = 6'(8)) in
CM to 6 = &' the statement is strengthened by requiring continuous dependence of
B from «; but this is usually an automatic consequence of a constructive proof of
the conclusion, by the following

THEOREM. For suitable formal theories S in the language of EL, the following
derived rule holds:

S+ Va[Ada — 3BB(a, )] = S F IyVa|A(a) — v|a | AB(a,v|a)]

(So v codes a partial continuous function in [B — IB]). Moreover, if Va3BA(a, 3)
is closed, then v may be taken to be recursive. For S we can take EL, with some of

the following schemata added:
(1) bar induction BI;



(2) the fan theorem FAN, a consequence of BI:
Va < fIzA(az) — Iz2Va < Iz < zA(ax)
(3) Markov’s principle (cf. end of section 2)
(4) the countable axiom of choice ACq;: VzIaA(z, ) — 3BVrA(z, My.B(z,y));
(5) the continuity principle CONT;: Yo3BA(e,B) — IyVaA(a,v|a), or some
weaker version.
PROOF. By g-realizability for functions; see [T, 3.3, 3.7.9]. O
The theorem may be applied as follows. Suppose that we can express in EL, for
representations 4, 8’, § with an almost negative domain,

Va € dom(6)3B(8(c) = 6'(B))

and this is provable in a suitable system S (e.g. EL + FAN + MP + ACy;), which is
a subsystem of classical analysis, then by the theorem

S F 3yVa € dom(8)(y]a | Aé(a) = 8 (v|a)).

That is to say, in cases where 6, ¢’ have been chosen to correspond to the constructive
definitions of sets X,Y’, the constructive proof of Yz € X3y € Y(z = y) automati-
cally yields the stronger § < &' (established constructively as well as classically).

For an extension to stronger systems, see e.g. [Fr], where an extension of q-
realizability to intuitionistic second-order arithmetic is given. For further general-
izations to higher-order logic, see e.g. [vO]. ‘

5 An example

How translation of CM-statements, and the use of the metatheorem works out in
practice, we can see from the following more or less representative example. In [Bi,
page 177] we find the following

THEOREM. Let X be an inhabited closed located set in a complete separable metric
space M = (M, d, {p,)n), T € M such that Vy € X(d(y,z) > 0), then d(X,z) > 0.
O
PROOF. For a constructive proof, see [Bi]. A classical proof is even easier.

We give a reformulation in TR. We first define a representation of inhabited
closed located sets.

DEFINITION.
a € dom(8,.) :=3IX C M(3z(z € X)AX located A
| VB € dom(8p)(d(X, 60 (B)) = bmr(c | B)))
loc(@) = {6m(B) : bm(a | B) =0}. O

So A\B.(a|B) describes the continuous distance function d(X ,0m(B)) (6a as defined
in section 2, (H)).



DEFINITION. For pairs (X, z), X a closed located set of M, z € M, d(X,z) > 0, we
choose a representation p* as follows. If a = (B, *xv), and X = 8i0c(8), z = dm(7)
and d(X,z) > 27", then a € dom(p*), and p*(B,7 * 7) = (610c(B), a4 (7))-

For pairs (X, z), X closed located, inhabited, € M such that Yy € X(d(y, z) >
0), we define p** as follows. If a = (8, 0',8"), b10c(B8) = X, ém(B') = x, and 3" such
that

m(7) € X = B (1)L A d(8ama(7), 6m(B")) > 277",

then a € dom(p**), and clearly
p**(ﬁ,ﬂ’,,ﬁ") = (5106(:3)76./\4(:3,))’

It is not difficult to strengthen the proof of the theorem to a constructive proof
of the equivalence p* = p**. (Even if this reformulation of the theorem looks a bit
complicated at first sight, it is nevertheless a straightforward spelling out of the
required explicit information.)

If we want to obtain p* = p** via an appeal to the derived rule in the preceding
section, we must put in some extra work.

Reformulation of the representation 6,

Let X be inhabited, located in a complete, separable metric space M, and let
f(z) = d(X,z). the X = {z : f(z) = 0}. Our definition: of 8, given above is not
satisfactory, inasmuch its definition is not in the language of EL. We can correct
this as follows. It is not difficult to see that X itself is a complete, separable metric
space, and that we can construct explicitly a sequence (g,), of points in X, dense
in X. The distance function Az.d(X,z) must satisfy

Vz,y € M(d(X,y) =0 — d(z,y) > d(z, X)),
Vz, kAy(d(X,y) = 0 Ad(z,y) < d(z, X) + 27F).

Now an arbitrary continuous f : M — IR represents the distance function of
Xy = {z: f(z) = 0}, ie. d(Xy,z)= f(z), if the following conditions are satisfied:

{Vway(f(y) =0—d(z,y) 2 f(z)), Vr(f(g) = 0)

(*) Vz, kIn(d(z, q.) < f(z) +27F)

If f is represented by a 7 such that ér(y|a) = f(6m(e)), and d by a 7' such
that 6r(7|(a,B)) = d(dm(e),b6m(B)), and the sequence (gn)n by a 7" such that
@n = 6m(Ay.y"(n,y)), it is not hard to verify that (%) can be expressed by an almost
negative formula.

We can take (x) as the condition (on 7 and 74”) determining the domain of an
appropriate representation of the located, closed, inhabited sets. Now the theorem
on the derived rule applies. The “balance of work” in the case of a constructive
proof is more or less neutral: compared with a direct constructive proof of p* = p**,
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we had to put in a bit extra work in order to formulate things in EL, while we saved
a little by an appeal to the derived rule. In this particular case we can give a much
shorter proof by reasoning classically: from the classically proven Yyd(8oc(a),y) >
0 — Jk d(Sjc(@), z) > 27% we can find the k continuously in c.

REMARK. In adopting a coding as an appropriate rendering of a concept of con-
structive mathematics, one often uses a lemma: if f is a continuous map from M
to M', M and M’ complete separable metric spaces, then (classically, or if we as-
sume intuitionistic continuity axioms) there is a continuous I' : IB — IB such that
F(6m(@)) = 6av(Ta) (proof left to the reader). '

6 Compactness of bounded closed subsets

As a second illustrative example we show how conversely a reducibility result from
[KW] might also have been obtained from a proof of CM with application of the
derived rule.

DEFINITION. &4 represents closed sets as countable intersections of complements of
basis intervals: ’

ba =R\ Ix:k € En(a)} =R\ |J{Ik : k¥ € En(a)}.
For the corresponding notion of bounded sets we define éy,¢:

i % a € dom(bpa) := da(a) C [-n,n] (n € IN),
Spa (7 * @) := éq(c) whenever i x a € dom(bpq). O
dom(épq) is easily seen to be definable by an almost negative formula (e.g. 7t % a €

dom(pg) « Vr € Q(r < —nVn <r — Im(am > 0OAT € Iym-1))). We want to
compare O With dyhp, a representation of the compact subsets of IR.

DEFINITION. Put
Co :={I;:j € En(a)},
Coapn ={I; : 3i € Dp(ai =5+ 1)}
where (D,), is some standard enumeration of finite sets, e.g. D, = {mo < ... <
Mp_1} & N =3,;,2™.
A function B € IB witnesses the compactness of X C IR (is a witness for com-
pactness of X) iff

Va[(X C UC,) « (a € dom(®g))] and
Va[(X C UCa) - X C UCa,ﬂ(a)]-

The weak Heine-Borel representation is then given by

a € dom(84p) := 3X C IR(a witnesses compactness of X)
5whb(a) = n{U Cﬂ,a(ﬂ) : a(ﬂ)l AB € ]B}

11



THEOREM. b = Owhb-

PRrOOF. We show constructively Va € dom(6pa)3y € dom(bwhb)(bei(c) = Gwnb(7))-
Let Aixa € dom(dpe ), then dpa(fixa) = [—n,n]\U{I; : j € En(a)} = [-n,n]\U Ca.
Assuming the compactness of [—n,n| (which is a consequence of FAN) we have

Spa(fx @) C |JCp & Im([—n,n] C | Comm U Com)
and

[—n,n] C U Ca,n U U Cﬂ,m = (5},(;1(’?1, * a) C U Cg,m.

Since [-n,n] C UCun U UCs,n is decidable in n,m,a, 3, we can compute m for
any (3 covering Spq(7 * ). O

This proof is constructive (assuming FAN), so, with an appeal to our derived
rule M may be found continuously from 3, by ®, say. Then 7 is a witness for the
compactness of dpq(7 * @), and may be found (again appealing to the derived rule)
continuously from a.

REMARK. If we compare the proof with the similar argument in [KW], we see that
we have saved little work by an appeal to the derived rule, since the continuity of
the dependencies is not difficult to see. But the proof shows at least that this result
fits into our “metamathematical schema”.

More interesting is a proof of the converse, dwn, = 6ba. The proof in [KW3|
looks (nearly) constructive, but does not bring the statement under our schema,
since (a) constructively we also need to show that () defines a closed set (in
CM a witness of compactness does not uniquely determine the set being witnessed:
[1,2] U [2,3] and [1, 3] have the same witnesses of compactness, but [1,2] U [2, 3] is
not closed), and (b) the domain of 8,4, has not been defined in EL. So we have to
prove a

LEMMA. a € dom(éynp) is expressible by an almost negative predicate.
Proor.

(1) Vv[(Q{U Cpap) : a(B)1} CUCy) — a(v)l]

expresses that o witnesses compactness of Ng{U Cp,a(p) : @(B)l}. We can rewrite
(1) as
2 VY (IB(aB)L = br(Y) €U Cpap) — 6rEY) €U Cy) = a(n)l]

and this is easily verified to be equivalent to an almost negative statement.
In order to meet objection (a) above, we need a
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LeEMMA. In EL + MP we can prove that whenever

® YIOHU Gt : a(B)L} < U Cy) = a(n)l]

then §np(a) = X, is closed.

PROOF. Let z ¢ X, X, C [—n,n]. (We may assume this without loss of generality,
since Chn.n certainly covers, so a(An.n)], and UCin.n,a(in.n) Provides us with a
bound.) Consider the following subset of (I,), consisting of intervals of the forms

{(r,r)y:r<—n—1A7 <z}, {(r,r):z<rAn+1< 7'}

This set covers X, for if 2’ € X,, x # z, then by Markov’s principle z'f z, i.e.
' <z orz <z, hence ' € (—n — 1,7) for some r < z or 2’ € (r',n + 1) for some
7" > z. Since X, is compact, there is a finite collection

{(Tll’ 7’1), L) (7';)7 Tp)} u {(317 3’1)’ (R (sq’ 3;)}
withr, < —n-1,m<z,z2<s;,n+1< s;- covering X,. Now each z’ € X, has a
distance to z of at least inf{z — sup{ry,...,7,},inf{sq,...,s,} —z} > 0. Therefore,
if z is in the closure of X, also =~z € X,. If z € X, then

VB(a(B)l — Fj(z € I; € Cpa(p)),
hence if -~z € X,, then

VB(a(B)l = ~—Fj(z € I; € Cpa(p)))-

By Markov’s principle, we can drop -—,soz € X. O
By means of the preceding two lemma’s, the proof in [KW | is now easily adapted
to obtain

PROPOSITION. dom(éwn,) C dom(8pa) is constructively provable. O

This brings the reducibility éxn, =< 6 under our general schema. But note that
in this case the balance of work is even negative: in order to make the proof of the
proposition constructive we needed to put in extra work.

7 Concluding remarks

(1) Our discussion covers most, but not all specific representations and reducibilities
discussed in the work of Weihrauch and Kreitz. Thus in [W2] representations for sets
of continuous maps between separable metric spaces in which a pointset X appears
as a parameter (the domain of definition of the function). To bring this under the
schema, we need to extend the results of section 4 to EL extended with a (purely
schematic) set variable. We have checked that this is possible, but we are not really
satisfied with our treatment.

The formulation of an TR-analogue to a CM-inclusion or -equality statement may
become awkward if the CM-statement is expressed in a language with set variables.
As an example, consider the following simple theorem taken from [BB, page 37
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THEOREM. For inhabited sets X C IR with an upper bound, X has an Lu.b. iff (¥)
Vz,yc Rz <y—y>XVideX(z<a)), wherey > X :=Vz € X(y>z). O

This theorem may be recast as §;,x = 8, x where 6, x and 43 x are representations
depending on a parameter X. A code in dom(é;,x) should specify an zo € X, an
upper bound for X, and a decision function applicable to pairs z,y with ¢ < y for
(%), plus a function yielding the ' € X if the second alternative in (x) holds. 61x
assigns to this code simply L.u.b.(X). A code for 83 x should specify an element of
X, an upper bound z; of X, and a sequence (¥n)» C X such that y, +27" > z;.

As the example shows, the fact that P(IR) is not encodable by IB may be cir-
cumvented by parametric representations. We suspect that this can be done quite
generally (cf. the representations of the continuous partial functions between metric
spaces mentioned above), but this aspect calls for further investigation.

(2) For reducibilities between representations expressible in EL, function realizabil-
ity provides a key to understanding the analogies between CM and TR. However, in
general there is no saving of labour in deriving reducibilities from CM-results. But
the CM-results suggest reducibilities, and the discussion shows that attention to the
logical form of the definitions of domains of representations may help to explain
why certain representations are better behaved than others — a type of explanation
different in spirit from the topological criteria in [KW?2], hence adding a little bit of
insight.

(3) We believe that comparison between CM and TR may be useful in selecting the
mathematically best-behaved representations.
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