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D.P.SKVORTSOQOV, V.B.SHEHTMAN

MAXIMAL KRIPKE-TYPE SEMANTICS FOR MODAL AND
SUPERINTUITIONISTIC PREDICATE LOGICS*

The semantical approach to logical systems is used widely
nowadays. It can be helpful in answering questions about the
provability of certain formulas, consistency, decidability, the
interpolation property etc. Semantical methods in classical logic are
provided by classical model theory. But for non-classical predicate
logics, model theory has not yet been elaborated. One of the reasons
for this delay is in the variety of semantics for these logics making a
general concept of a model too ambiguous.

In the present paper we are concerned only with the semantics
for superintuitionistic logics (extensions of Heyting's predicate
calculus) and modal logics (extensions of S4 quantified). However
we hope that the main ideas can be applied to a larger class of logics
as well.

Certainly Kripke semantics 1is the most traditional in this area.
But incompleteness results prohibit making it universal. Unlike
propositional logic where some general theorems on Kripke-
completeness can be proved (cf. e.g. [2], [10]) , predicate logics
provide many simple examples of Kripke-incompleteness: [9], [5], [7],
[12]. In this case general completeness theorems are hardly possible
(however cf. [13]), and thus Kripke semantics has to be generalized.

As soon as a predicate Kripke frame consists of two parts: of a
"propositional” frame and a set of individuals, at least two possible
ways for generalizations appear.

If we replace propositional Kripke frames by algebras of the
corresponding type (i.e. by Heyting algebras, or by S4-algebras), we
come to algebraic semantics (a particular case of which is topological
semantics ).

Another way is to specify some relations between individuals and
to retain all truth-definitions in the Kripke-style. In this way, several
successive generalizations are known: Kripke sheaves, Kripke
bundles [12], functor semantics [5], [6]. In [12] (cf. also [16]) it is
stated that Kripke sheaf semantics is stronger than standard Kripke
semantics, and that Kripke bundles are stronger than Kripke sheaves.
Also it is true that functor semantics is stronger than Kripke bundle

* We would like to thank Dijk De Jongh for his help in improving English in
this paper.



semantics [15]. Moreover, functor semantics is strong enough to
provide some general completeness theorems [6].

The question arises, how long this sequence of generalizations
might be extended. In other words, does there exist a maximal
Kripke-type semantics? To examine this we need a precise definition
of "Kripke-type semantics". In the present paper we choose the most
general (in our opinion) semantical objects for which truth-
definitions are given exclusively in terms of binary relations; so-
called Kripke metaframes . The main characteristic feature of
Kripke metaframe semantics is treating n-tuples of individuals in an
abstract way, as "n-dimensional individuals”, with possible worlds
appearing as "O-dimensional individuals". However a truth definition
alone cannot provide a good semantics unless some natural
"soundness conditions" are satisfied.

It turns out that for Kripke metaframes, soundness can be
described purely in relational terms, without any appeal to non-
classical formulas (theorems 2.5.1 and 2.5.5). Thus we come to the
notions of a modal metaframe and an intuitionistic metaframe .
These ones generate the "maximal" semantics in question.

Taking the "maximality theorem" into account we can reduce the
routine job of proving soundness for amy other semantics of Kripke-
type - that is, for any semantics generated by some class of Kripke
metaframes (say, for Kripke bundles or functor semantics) - to the
verification of few simple conditions.

Another remarkable feature of modal or intuitionistic metaframe
semantics consists in completeness proofs via canonical models. In
propositional logic, canonical models are well-known. Their idea
(arising to Stone representation theorem) is in treating maximal (or
prime) filters of a Lindenbaum algebra as possible worlds. But it is
difficult to apply this construction to predicate logics within the
standard Kripke semantics.

Indeed, for a "canonical predicate Kripke frame" we need also
individuals, and a priori it is unclear, how to construct them from our
logic in an algebraic way. Of course, we can merely introduce some
individuals from outside, as new constants (akin to Henkin's
completeness proof) . But this method works only sometimes (e.g. for
quantified S4 or for Heyting predicate calculus); in some other cases
it is suitable only after a non-trivial modification ([8],[14]); and in
many cases it cannot work at all, just because completeness fails.

In canonical metaframes the difficulty is overcome by identifying
n-dimensional individuals with n-types. (Note that even in the
classical case, n-types are certainly non-equivalent to n-tuples of 1-
types; this also motivates our notion of a metaframe.) Then



1. Predicate logics and Kripke-type semantics.

1.1. Formulas and logics.

We fix countable sets of individual variables Vr = {vi, va, ...} and
of m-place predicate letters PLM={Fm Fm 1} m>0; Pm, Qm stand for
names of elements of PLm. (O-place predicate letters are also called
propositional letters . Atomic formulas without equality are
propositional letters or have the form PM(xi,...,Xy), with PR e PLm,
X1,...,Xm € Vr; atomic formulas with equality can also be of the form
(x=y) (x,y€ Vr, = is an additional 2-place predicate letter).

Intuitionistic formulas (with or without equality) are built from
atomic ones using L, —, A, V, 3, V; modal formulas are constructed
using L, D, <, 3. Other connectives and quantifiers ( 71, < for the
intuitionistic case, and A,V, 1, =, O, V for the modal case) are
derived as usual. AF, IF, MF denote respectively the sets of atomic,
intuitionistic, and modal formulas without equality; the
corresponding sets of formulas with equality are denoted by AF=,
IF=, MF=.

Free and bound occurrences of variables in formulas are
defined as usual; FV(A) denotes the set of all paramecters (free
variables) of a formula A. A formula A is closed if FV(A)=0.

For a list of variables x=(xX1,...,Xn), the notation FV(A)E x (resp.,
FV(A)=x) will be used instead of FV(A)E {x1,....xn} (resp.,
FV(A)={x1,...,xn} ). Similarly, the notation y€ x means: y€ {X1,....Xn}.
Pn(x) will be used as an abbreviation for PR(xy,...,Xxp) etc. 1h(x)
denotes the length of x .

Let A be a formula, x=(X1,...,Xn), Y=(¥1,...,yn) be lists of variables,
such that all x; are distinct. Then (y/x)A denotes the result of
simultaneous replacement of free occurrences of each xjin A by yi;
as usual, bound variables are renamed whenever clashes might
appear.

Let z1,..., Zn,... be the "alphabetic" list (i.e. a sublist of vi...., vp,... )
of all variables not occurring in A, z=(z1,...,zm), m=0. Then Alm]
denotes the result of replacing in A each atomic subformula of the
form Pk(x) by Pk+m(x , z); atomic subformulas of the form (x=y) are
not touched. It is clear that FV(AImN=FV(A)U {z1,...,zm} if A contains
at least one predicate letter, otherwise FV(AIm)=FV(A).

Recall that a substitution instance (C/PR(x))A of a formula A is
obtained by replacing every occurrence of Pi(y) in A by (y/x)C,
possibly renaming bound variables.

A superintuitionistic predicate logic without equality (s.p.l.) or
with equality (s.p.l.=) is a set of formulas L < IF(=) closed under the




rules of detachment (A,A— B/B), generalization (A/V xA)- for any
x € Vr, substitution (i.e. A€ L only if L contains all substitution
instances of A) and containing all axioms (and therefore all the
theorems) of the intuitionistic predicate calculus (without or with

equality, respectively). QH (=) denotes the least s.p.l (s.p.l.=), that is
intuitionistic predicate logic (resp., with equality).

Analogously, a modal predicate logic (m.p.l. or m.p.l.=) is a set of
formulas LS MF(=) closed under detachment (A,LADB/B),
generalization, substitution, and necessitation (A/OA), containing all
axioms of classical predicate calculus (without or with equality) and
axioms of modal system S4. The least m.p.l. (=) w.r.t. inclusion is
denoted by QS4(=). (L+X) denotes the least m.p.l.(=) containing an
m.p.l.(=) L and a set X& MF (=) . The same notation will be used also
for the intuitionistic case.

Propositional formulas (intuitionistic or modal) are predicate
formulas without occurrences of individual variables (it means that
they have no occurrences of quantifiers and n-place predicate letters
with n>0). A superintuitionistic propositional logic is a set of
intuitionistic propositional formulas closed under detachment and
substitution of propositional formulas for propositional letters and
containing all axioms of the intuitionistic propositional calculus; the
smallest of these logics is intuitionistic propositional logic (denoted
by H). Analogously, a modal propositional logic is a set of modal
propositional formulas closed under propositional substitutions,
detachment, and necessitation and containing all axioms of S4; the
smallest of these logics is S4. The notation (L+X) will be used in the
propositional case as well.

If L is a predicate logic (modal or superintuitionistic) then its
restriction to propositional formulas obviously is a propositional
logic; this is called the propositional fragment of L and denoted by
L.

’ IfL is a propositional logic (modal or superintuitionistic) then
(QS4+L) (resp., (QH+L)) is the least m.p.l. (resp., s.p.l.) containing L;
it is denoted also by QL. One can easily show that (QL)p=L.

Let also QL== QS4=+L (or QH=+L ).

If D is an arbitrary non-empty set we can extend our basic first
order language by adding elements of D as individual constants.
Formulas of this extended language are called D-formulas (modal or
intuitionistic). If A is a D-formula, x€ Vr, ae D then (a/x)A denotes the
result of replacing each free occurrence of x in A by a. We also use
the notation (a/x)A provided that a€ D?, x =(X,...,Xn) is a list of
distinct variables.



1.2. Standard Kripke semantics.

Let us recall the main definitions concerning Kripke semantics for
propositional and predicate logics [1], [3].

A propositional Kripke frame (or merely, a frame ) is a pair (F,<)
in which < € F x F is a pre-order (a reflexive and transitive relation)
on a non-empty set F. Sometimes a frame (F,<) will be also denoted
by F. The pre-order < induces an equivalence relation = on F:

u=v & usv & v<u;Ml

its equivalence classes are called clusters . By factorizing the frame F
through = we obtain a partially ordered (p.o.) set (F/=) which is
called the skeleton of F.

A p-morphism of a frame (F',<") onto a frame (F,<) is an onto map
h: F'— F such that

(1) Yu,veF' (us'v = h()<h(v));
(i) VueF'VYweF (h(u)sw = 3IveF'(us'v&h(v)=w)).

A pre-p-morphism of F' onto F is an onto map h: F'— F satisfying
(1) and

(ii") Vue FF'YweF (h(w)sw = IveF'(us'v&h(v)=w)).

It is clear that a pre-p-morphism gives rise to a p-morphism of
skeletons; every pre-p-morphism onto a p.o. frame F is a
p-morphism.

A (modal) valuation in a frame F is a function & assigning subsets
of F to propositional letters: &(PO)S F for any POe PLO. An intui-
tionistic valuation should also satisfy themonotonicity condition:

(1) Yu,veF (usv&ue &(PO)= ve &(P9)).

A modal valuation & in F gives rise to a forcing relation &u kE A
between ueF and a propositional modal formula A; it is defined by
the following conditions:

(a) &,u EPO & ue(PO)
b)Eukl;
(c) guk BOC < ZukEBV ukC

\l & =, <, serve as logical metasymbols; the formal symbols V, 3, V have a
double usage as metasymbols.



dzuk OB & 3Ivzu g,v F B.

We will also write u F A instead of &,u F A if & can be restored
from the context.

If & is intuitionistic, the forcing relation &,u F A between worlds
and intuitionistic formulas is defined by (a), (b) and

e)tukF BAC = tukFB& guk C;
) ¢ukEBVvC&s tukFBVEuE G
@&ukF B->C s Vvu(tvE B = &vE Q)

Then the following monotonicity condition is satisfied by any
formula A: '

M2)usv& EukF A= ZVvEA.

A propositional formula A is true w.r.t. the valuation & (notation:
tE A)iff YueF &,u F A. A modal (respectively, intuitionistic)
formula A is valid in F (notation: F F A) iff £ F A for any modal
(respectively, intuitionistic) valuation &. The set of all modal
(respectively, intuitionistic) formulas valid in F is denoted by MLp(F)
(resp., ILp(F)) and is called the modal (resp., intuitionistic ) logic of
the frame F; one can prove that it is indeed a propositional logic of
the corresponding type.

We may also observe that ILp(F)=ILp(F/=) and ILp(F')< ILp(F) if F
is a pre-p-morphic image of F'. Similarly, in the modal case
MLp(F')E MLp(F) if F is a p-morphic image of F. ,

A predicate Kripke frame is a triple F=(F,<,D) in which (F<) is a
propositional frame (of possible worlds ) and D=(D(u))ueF is a family
of non-empty sets, such that Du)E D(y) whenever us<v. Sometimes
the notation (F,<,D) will be also abbreviated to (F,D).

A (modal) valuation & in F associates with every predicate letter
Pm a family of sets (&u(PM))yeF such that &y(P™)E (Dy))™ ; to include
the case m=0, we will suppose that (D())9={u}. This & is called
intuitionistic if it satisfies the monotonicity condition

(13) usv = Ey(Pm)C &y (P™) (if m>0),
usv & ue &u(PO) = ve &y (PO),
for any u,ve F, Pme¢ PLm, POe PLO.

A modal valuation & gives rise to a forcing relation &,u F A
between ueF and a closed modal Dy)-formula A satisfying conditions

(b),(c),(d) and

(@) tu BP0 <= ueiy(PY),
(a") &,u EPM(a)e> ae &y (PM) (for any m>0, a€ (Dw)™);



(h) &,u Fa=b & a=b;
(k) &¢,u F IxA & for someae D) &,u kF (a/x)A.

An intuitionistic valuation & also gives rise to a forcing relation
¢g,u E A between ueF and a closed intuitionistic D)-formula A

satisfying (b), (e), (£, (g), (a), (@"), (h), (k) and
) &,u F VXA & for all v2u, ae D) &,v F (a/x)A

The forcing relation satisfies the monotonicity condition (u2) for
any closed intuitionistic D(y)-formula A.

A predicate formula A is true w.r.t. & (notation: & F A ) iff
gu k [V]A for any ue F ([V]A denotes the universal closure of A). In
fact if x =(x1,...,Xn) is a list of distinct variables containing FV(A) then

& E A iff for each ueF, ae (D))", &,u F (a/x)A .

This refers also to the case n=0; then (a/x)A=A.

Ais valid inF (notation: F F A) iff & E A for any valuation & (of
the corresponding type). The set of all formulas valid in F (modal or
intuitionistic, without or with equality) is called the (modal,
intuitionistic etc.) logic of the frame F and denoted by ML(=)(F)
(resp., IL(=)(F)).

A m.p.l.(=) L is Kripke-complete if L=je1 ML(=)(IFi) for some
family (Fj)ie1of predicate Kripke frames; an analogous definition is

given for the intuitionistic case.
QH, QS4 and some of their extensions are Kripke-complete, but
there are also very simple examples of Kripke-incomplete logics (e.g.

QH=, and QS4= ; cf. also [7], [12]). Therefore some generalizations of
standard Kripke semantics were proposed, and now we consider two
of them.

1.3 Kripke bundles and functor semantics.

A Kripke bundle [12] is a triple F=(F,D,Tr) in which T is a p-
morphism of a frame (D, <') onto a frame (F,<). Then D is split into
"individual domains" (or "fibres") Dq) =1-1(u) (ueF).

Functor semantics [5] deals with SEZ-valued functors. Namely
let C be a (small) category, F be its frame representation. It means
that F=Ob( is the set of C-objects, and u<v iff C(u,v)=@ (i.e. there
exist C-morphisms from u to v). A C-set (ora .S ET-valued functor
over () can be defined as a triple F=(F,D,E) in which D=(D())ucFis a



family of non-empty disjoint sets, E=(Ey )y e MorC is a family of
functions parametrized by C-morphisms, and Ey : D) = D)
whenever p € C(u,v). As usual, it is required that Ejoy: = Ey © Ey*

E1 u= lD(u) .
In both cases we introduce auxiliary relations in Dy = U g(D(u))®

* aspuyv be ae (Dw)? & be (Dw))* &usv&
(Vi ai<'b) & Vi#j (aj = aj = bj = bj) if F is a Kripke bundle;
e a<puy be ae(Du)® & be D)™ &In e C(u,v)Vi Ey(aj)=b;
if Fis a C-set;
* a<pbe I u,ve F(aspuyv b).

These definitions refer to the case n=0 as well. As before, we set:
(D))%={u}, Do=F; then a<ob<> 3 u,ve F (a=u & b=v&u<v).

A (modal) valuation in F is a function sending every m-place
predicate letter Pm to a set &(Pm)<S Dy,. Like in standard Kripke
semantics, we can consider also Zy(P™)=&(P™)N (D(y))™ for each ueF.
Then the forcing relation &,u F A between ue F and a closed D(u)-
formu-la A is defined by conditions (b),(c),(a"),(a"),(h),(k); and (d) is
replaced by

(@) &uk (@/x)OB < Ivab (a<puy b & &,v F (b/x)B).

(Here B is a modal formula, x=FV(B), lh(x)=n.)
In particular, for the case n=0 (i.e. if B is closed) we have:

tuk OB &< Jvui,v E B.

An intuitionistic valuation in F is a modal valuation satisfying the
monotonicity condition:

(14) a<pb & ac &(PY)= be &(Pn).

In this case the forcing relation between u and closed Dy)-
formulas is defined by the conditions (a'), (a"), (b), (h), (k), (e), ()
and

(g) guk (a/x)(B—>C)e forallb, v2u (aspuy b & &,v F (b/X)B
= &,yv F (b/x)C)
(here we suppose FV(B— C)=x, Ih(x)=n);
(1Y Zuk Yy (a/x)B & forallb, v2u, ce D) (@<puyv b =
g,vE (b,c/x,y)B)
(here we suppose that FV(B)=x,y or FV(B)=x , and that lh(x)=n).



The truth of a predicate formula w.r.t. a valuation &, and validity
in a Kripke bundle or in a (C-set are now defined as in standard
Kripke semantics. However the set of valid formulas ML~(=)(F) (or

IL~ (=)(F)) is not always substitution closed (and hence it is not
always a logic in the sense of Sec.1.1). E.g. (cf. [12]) for a Kripke
bundle Fo=(Fo,Do,T0) = ({u},{a1,a2},m0), with aj<'az , To(a1) = To(az)=u,
we have:

OPOPOe ML~ (Fg), (POV 1P0)e IL~(Fo),
but
OPL(x)DPl(x)g ML~ (Fp), (P1(x)V T1P1(x))¢ IL~(Fp).

Therefore the predicate logic ML(=)(F) (or IL(=)(F)) of a Kripke
bundle or a C-set F is defined as the set of formulas whose

substitution instances are always valid in F; it is rather easily proved
that

MLGE)(F) = {Ae MF(=) | Ym>0 FE Alml},
IL(=)(F) = {A¢IF() | Vm20 Fk Alml}
The previous examples reveal another difference between Kripke

bundles and predicate Kripke frames. Viz., for a predicate Kripke
frame F=(F,<,D) we have:

ML(F)p=MLp(F) and IL(F)p=ILp(F).
On the other hand, for Kripke bundle Fg we have:
& PO POe MLp(Fo)\ML(Fo)p, (POV PO) e ILp(Fo)\IL(Fo)p.

The standard Kripke semantics is a particular case of Kripke
bundle semantics. More precisely, a predicate Kripke frame F=(F,<,D)
corresponds to a Kripke bundle F'=(F,D',7), with
D'={(u,a) | ue F,a€ D(y)}, T(u,a)=a. (Thus D'(y) = {u}xD)).) It is easily
proved that ML(=)(F")=ML(=)(F) , IL(E)(F")=IL(=)(F).

Furthermore, Kripke bundle semantics is a particular case of
functor semantics. Namely, a Kripke bundle F=(F,D,T) corresponds to

a category C whose frame representation is F, such that
C(u,v)={f | f is a function from D) to D(v), a<'f(a) for any a€ Dw)},
and to a C-set

]F'=(Fa_D.9E)9 With D=(D(U))UE F, E=(EH )]..l EMOI'C ’ E}.l = 1-1 for any jJ- .
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In this case the corresponding relations <p in F and in F' coincide.
To show this, assume that a<py,yv b in F. Then the condition
aj = aj = bj = bj provides functionality of the relation {(aj,bj)l1<i<n};
- hence there exists a function p: D) = D) such that u(aj)=bj, and
thus a<'p (a) since a<pu,v b in F. Consequently a<pb in F'. The
converse implication is proved similarly.

Therefore, the forcing relations in F and in F' also coincide, and
ML F)=MLE)XF) , ILEE)=ILE)F).

One can observe that the definitions of forcing in Kripke bundles
and in C-sets look very similar to that in Kripke semantics, especially

if we use the notation &,a F A [x] instead of &,u F (a/x)A (u can be
dropped because it is determined by a). Then (d') can be rewritten
as

ZakF OB[x]& 3b (a<nb & &b F B [xD.

This observation motivates a further step from functor and
Kripke bundle semantics to the metaframe semantics described in
the next section.

2. Metaframes.

2.1. Preliminaries.

Let £ be the restriction of the category SET of sets and maps to
the set w. Thus objects in Z¢ are finite ordinals: 0=@, 1={0},...,
n+1={0,1,...,n},..., and Z¢(m,n) is the set of all maps from m to n.\2 For
the sake of convenience, we use an isomorphic version & of Zg¢
whose objects are: Ip=@, I1={1},..., In={1,...,n}, and whose morphisms
are set-theoretic maps. & (m,n) abbreviates & (Im,In), and £~ (m,n)
denotes the set of all injective maps from Im to In. Then

Z(mn)=0@ < n>0 Vv m=0,
2~ (mn)=0 & 0<m<n.

We have also: Z(0,n) = Z~(0,n) = {Ap}, Anbeing an empty map
from @ to Ip.

Every map G € £ (m,n) can be extended to a map ¢+eZ(m+1,n+1),
by setting 6+(m+1)=n+1; &% is called the minimal extension of G.

\2 Consequently, E() is equivalent to the category f[ MET of finite sets and
maps.



As usual, © denotes composition of maps. Some maps have special
notations. id(m,n)€ &~ (m,n) is such that id(m,n)=i for each i€ I (thus
id(n,n) is the identity map, id(0,n)=A ). Let also jp=id(n-1,n),
id(n)=id(n,n). Also let prp;i € &~ (1,n) be such that pryi(1)=i (and thus,
pra,1=id(1,n)).

Every n-tuple x = (X,...,Xn) of variables can be identified with a
map from I to Vr. If 6 € Z(m,n) we can construct a composition x° ¢
corresponding to the n-tuple Xs = (X¢ (1)-.-»Xs (m)) ; if m=0 and 6=Ap
then xs is empty. The notation a; will be used also for arbitrary
n-tuples (not necessarily from Vr?). The map of n-tuples sending a
to ag is called a 6-transformation . Usually we will make no
difference between ag and aog.

If ze Vr, xe Vr11 | let (x-z) be the result of deleting all occurrences
of z from x (thus, if X = (x1,...,Xn) consists of distinct variables then
lh(x-x;)=n-1, and x-z=x if z¢€ x). Let x+z=x-z,z be the result of putting z
behind x-z. Let n'= lh(x+z), 6x.z€ &~ (n'-1,n), so that
X-2=X00x-7z=(X+2)° jn' .

Thus if z=x; we have: n'=n, 6x;(j)=jif 1 <j<i, 0x()=j+l1 if 1 <)<
n-1. If z ¢ x we have: n'=n+1, and 6x.z=id(n).

2.2. Forcing in metaframes.

A predicate Kripke metaframe (or briefly, a metaframe ) is a

diagram morphism (cf. [4]) of the dual category 20 to the category of
frames and maps. Thus a metaframe can be defined as a pair

F = (D, ) in which D = (Dp, <p)ne ¢ is a sequence of frames,

M = (TTg)seMorE is a family of maps parametrized by &-morphisms,

and Ts: Dp— Dm whenever ¢ €Z(m,n). We say that ¥ is a metaframe
over a frame F if F=(Dg, <¢). Non-formally F can be treated as a frame
of "possible worlds"; Dy as an "n-dimensional” individual domain, <p
as an accessibility relation between "abstract n-tuples”, the T as
"abstract transformations of n-tuples". For this reason, T¢ (a) will
sometimes be denoted as (a-g) if 7 is clear from the context.

An "abstract projection” T A, gives rise to a splitting Dp =Uu ¢F Pn,u
in which Dpy =(T )" 1(u) (some of these Dpu can be empty). Dp y is
an "n-dimensional domain in the world u". We have equivalence
relations in Dp:a=pb & a<pb &b <pa ; let also
a<pb & a<pb & notb <y a

Every C-set F=(F,D,E) corresponds to a metaframe [ F], with
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Dy, <p defined in 1.3, and T s(a)=as for any a€ Dy ,6€&Z(m,n). So in
this case abstract n-tuples and transformations are real.

An F-formula (intuitionistic or modal, with or without equality)
of level n is a triple (a, x, A) in which A is a formula (of the
corresponding type), a€ Dp , x is a list of distinct variables of length
n, FV(A) € x . (Thus if n=0, A must be closed, a€ Do=F.) A (modal)
valuation in a metaframe ¥ is a function & sending every m-place
predicate letter P™ to a set &(P™)<S Dpyy; an intuitionistic valuation
should also satisfy the monotonicity condition :

(M) as<m b & ae &(P™) = be &(Pm).

The pair M = (F , &) is called a metaframe model . The truth of an
F-formula with equality (a, x, A) in M is denoted by M, a F A [x] or
by &,a F A [x] and defined inductively (we assume here that a€Dj ,
X = (X1,...,Xn), n'=lh(x+2z)):

« &, akF PU(xs ) [X] & Ts(a)e &(PM);
« &,ak 1 [x];
* &, akF X=Xj € Tpr,;(2)=Tpr, (a);

for modal formulas:

s 2,ak B2C)[x] & ¢,ak¥ Blxlorg,ak CIx];
e ¢,akF OB[x] & Jblaspb&g,bFk BI[x])
« &,ak 3zB [x] & 3JbeDy (T, (b)=Tg, (@) & &, b F B [x+z] );

for intuitionistic formulas:

s 2,aF BAO)[x] < ¢,aF B[xland g,ak CI[x];

+Z,ak BVO) [x] & &,akF Bilxlorg,ak Clx];

e Z2,akF BoCO)[x] & Vb(asnb&d, bk B[x]= &bk Clx]);

« &,ak 3zB [x] & FbeDy (Tj(b) <n-1 Moy ,(2) & &, b F B [x+2] );

« t,aF VzB [x] & VbeDy (Toy (@) Sp-1Tjp(b) = &, b F Blx+z]).

As in the functor or Kripke bundle semantics, F can be called
"forcing relation" between (a, x) and A.
As we have already mentioned, forcing in metaframes is

equivalent to forcing in C-sets in the following sense. If a metaframe
F [ F] corresponds to a C-set F then

.,aF A[x] (in F[F]) & & uF (@A (in F)

provided that ueF, xe Vrll , a€ (D@), Ais a modal (or intuitionistic)

12



formula, & is a modal (or intuitionistic) valuation in F, FV(A)<S x . This
can be shown by an easy inductive proof, and it is useful to have this
equivalence in mind for a better motivation of the previous
definition.

E.g. for the case A=3zB (modal) our definition corresponds to the

following two equivalences in (C-sets:

uk (a/x)3xiB<> Ibe Dy ((by,...,bn-1)=(a1,...,3i-1,2i+1,...,an) &
u '= (bl5'-°’bn/x19-°'9Xi-1’Xi+1’”°axn)B)7
uF (2/x)3zB< 3JbeDp41 ((b1,....bn)=2 & u F (b/x, z)B ) (f z¢ x).

(Indeed, if z=x; we have:
n'=n, Mg, (2)=a°0x-z = (a1,-.-,2i-1,3i+1,---,3n), Mjp(L)=bO]n;
if z ¢ x we have:
n'=n+1,Tg, ,(a)=acid(n)=a, Tj,(b)=bojn+1.)

For the intuitionistic case, analogous transcriptions can be made;
the only peculiarity (the use <p.j of instead of "=") appears in the
definition of forcing for I-formulas, but in fact this is not essentlal
for logics without equality (cf. remarks after 2.5.1 and 262)

We will often drop & in the notation ",a F A [x] ".-: :

Let x be a list of distinct variables of length n, _EV(A)S;_ The
formula A is called true under &t (or in M) w.ot. x (notation:
¢ EA[x])if &,a F A [x] for any ae Dy. A modal (intuitionistic)
formula A is valid in F (notation: F F A) iff & F A [x] for any
x2FV(A) and for any modal (intuitionistic) valuation & in F.

We set

MLGE)~ ( F)= {AeMFGE) | FE A}, ILG)~ (F) = {AeIF(=)I,‘}'I= A},
ML) ( F) = {Ae MF(®) | ¥n>0 7k Alnl} (Aln] wa,s defined in 1.1),
ILG) (F) = {AeIFE) | Vn=0 FE Alnly . ,

It is clear that ML(Z)( F) € ML)~ ( F) , and MLC 5)~( F)c
ML)~ ( F) = MLE)( F) € MLE)( F). The same is true for the
intuitionistic case.

2.3. Soundness.

The sets ML(=)~ (F), IL(=)~ ( F) are net necessarily predicate
logics in the sense of Sec.1.2. Moreover, there exist metaframes F
such that these sets are neither substitution closed nor extensions of

QS4 (or QH).
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A metaframe ¥ is called modally sound , without "=" or with "="

respectively (briefly, m-sound or m=-sound ) if it satisfies the
following requirements:

(I)m(=) (logical soundness) . ML(=)( F)is a m.p.l. (=).

ADm(=) (truth invariance). For any Ae MF(=) and for any modal
valuation & in ¥, the truth-value of &F A [x] does not depend on x
(provided that FV(A)Ex ).

(III)m(=) (variable renaming invariance). For any A€ ME(=) |

(Y1,.-,ym) such that FV(A)cSy , for any valuation & in ¥, and any a€ Dp:

A particular case of (III) is the following "invariance of forcing
g, akF A [x]w.rt the list x2FV(A) "

{rm(=). For any Ae MF(=) , 6 €2~ (m,n) (sic!) and any list of
distinct variables x = (X1,..,Xp) such that FV(A)<€ x4, for any valuation
& in ¥, and any a€ Dy:

g,ak Alx]l & & msla)F Alxel

n_mn

Intuitionistic soundness without "=" or with "=" (briefly,
i-soundness or i=-soundness ) is characterized by analogous
properties (Di(=), (IN)i(=), (II1)i(=) and also by

(IV)i(=)(monotonicity) For any AeIF(=) , any list of distinct
variables x = (X1,..,Xxp) containing FV(A), and any valuation & in ¥:
a<pb & &, aF A[x]= & bF A[x].

Condition (I) is necessary for constructing a semantics for modal
and superintuitionistic logics. Condition (II) allows us:to define the
truth of a formula under a valuation. The conditions (III) and (IV)
are closely related to (I); however we do not know if (III) (or (IV))
follows from the conjunction (I)&(II).

We will consider only m(=)-sound and i(¥)-sound metaframes. In
other words, we are interested only in metaframe semantics
deriving from some classes of sound metaframes (of the
corresponding type). Thus a maximal metaframe semantics (for each
of four types of predicate logics) is generated by all sound
metaframes.

Our goal now is to give a non-logical description of soundness.

14



2.4. Modal and intuitionistic metaframes.

A metaframe F = (D, Il) is called modal (briefly, m-metaframe )
if it satisfies the following conditions:
(0) mA(DD=F;
(1) Gez(m9n), a, h EDII’ @_Sn b = TTO‘(Q) Smnc(l_)),
(2) 6eZ(m,n), a€ Dy, c€Dm, Ts(a) <Smc = 3b €Dn(a<p b & Ts(b)=¢);
(3) ("lift property") if ce&(m,n), a€ Dy, b€ Dpm+1,
T (a2)=Tj,,(b)=d€ Dp, then there exists c€ Dp41 such that T+ (c)=b ,
Tine1(c)=a i.e. the following square commutes:
Tineie P2
J/Tro'-i- \LT[O'
'Iij+12 b — d

4) if 6eZ(m,n), 6'€& (k,m), then TTgog' = Mg ©T g ;
(5) Tid(n) = 1p, (the identity map).

Conditions (1) and (2) mean that T is a p-morphism of
(Dnp, <p) onto a generated subframe of (Dm, <m) . The conditions (1),

(4), (5) mean that ¥ is a cofunctor from Z to the category QO of

quasi-ordered sets and monotonic maps.
Let us observe also that (4) implies A, = TTA,, ©Ts for any

6 € &(m,n); and (4)&(0) implies T A (Dn)=F. In fact, if (4),(5) are
satisfied, (0) is equivalent to

0 Upso TA(Dn) =F,
and also to
(6) if €&~ (m,n) then T 5(Dp)=Dm .

A modal metaframe ¥ is called a modal metaframe with equality
(m= -metaframe) if it satisfies

(0=) for any a€ Dp+1, 2:Prn+l,n = 2 Prn+l,n+l = 2 'jn+l = a-jn+ -
In fact for any m-metaframe this condition is equivalent to
(0%) if a, be Dy, then (Via-prni=Db-prni)=> a=b.

Corresponding notions in the intuitionistic case are somewhat



more complicated; the main difference consists in replacing most of
"=" by "<p" or by "=p". Viz., F = (D, l) is an intuitionistic metaframe
(briefly, i-metaframe ) if it satisfies the following conditions:

(0", (1) as before;

(2') 6 € Z(m,n), a€ Dy, c€ Dy, Tola) Smc = Ib eDp(a<nb &
Ts(®)=mc);

(3") for any ce&(m,n), a€ Dy, bé Dmy1:
(i) '”jm;rl(ll)gmTr sla)= Ice Dn+1(Tfjn+1(Q) <pn 2 & b<m+1Te+(C)),
(i) Tela)SmTjps1(b)=> Jc € Dn+1(a<n Ty, () & Ts+(c)<m+1b);

4" if 6 e Z(m,n), ¢'e & (k,m), a€ Dy, then
a-(600') =¢ (a-6)-6;

(5) as before.

As in the modal case, we have then

(6" for any 5 € Z” (m,n),
VbeDpdae Dy Tela) =mb ,

and in a particular case m=0:
VueF JaeDymp la) =pu.

The conditions (1), (4'), (5) mean that F corresponds to (so to say)
"a cofunctor from Z to QO up to clusters”". In the presence of (1) and
(2", <pin (3") (i) can be replaced by =~p , and <p+1 in (3') (ii) can be
replaced by =m+1 as well.

An i-metaframe F is called an intuitionistic metaframe with

equality (i=-metaframe) if it also satisfies conditions

(05) a<pb & a-prpj=aprnj=> b prni=Db:prn,j;
(05)" for any a€ Dp+1 |
a:'Prn+l,n = @ Pro+ln+l = 2-jn+l =p2-jnt;
(0=)" for any m,n>0, ¢ € Z(m,n), a€ Dy
a-(6opryi)=a-(coprm,j) & (a 6) prm,i= (@ ) prm,j -
In some situations it is convenient to use a narrower class of

intuitionistic metaframes. A strong intuitionistic metaframe ( i*-
metaframe) is a metaframe satisfying conditions (0), (1), (2), (4), (5),
and (3"). In this situation (3') can be replaced by

(3#) for any 6e&(m,n), a€ Dy, be Dy41 such that ﬂg(g)=ﬂjm+1(b_):
(i) 3c €Dns1(Mjpe1(C) = a & b<m+1Te+(€)),
(i) Jc €Dp+1(asnTj,, (c) & To+(c) =Db).
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A strong intuitionistic metaframe with equality ( it =-metaframe)
is an it-metaframe satisfying also (0¥)', (0¥)".

It is clear that (0=) implies (0=)", (4) implies (0=)", (n) implies
(n') for each n=0,2,3,4, and (0") follows from (0#)&(1)&(2)&(4). Hence
we obtain the following implications between the notions introduced:

m~=-metaframe = it=-metaframe = i=-metaframe

! U U

m-metaframe = it-metaframe = i-metaframe .

Also it is clear that it=-metaframe < it-metaframe &
i=-metaframe.

2.5. Characterizations of soundness.

Lemma 2.5.0 Let ¥ = (D,II)be an i- (or m-) metaframe
satisfying (I)i (or (I)™ respectively), A be an intuitionistic
(respectively, modal) propositional formula, n=0. Then

FrE ANl & AelILp(Dp, <p) (respectively, A€ MLp(Dp, <p) ).

_Remark. Once Theorem 2.5.1 is proved, the reference to (II) in

this lemma becomes redundant. But 2.5.0 will be used for proving
2.5.1.

Proof. This is an immediate consequence of truth definitions in
2.2 and 1.2 and of conditions (II), (5). X

Theorem 2.5.1. ('Soundness Theorem")
/1/ Every i(=)-metaframe is i(=)-sound.
/2/ Every m(=)-metaframe is m(=)-sound.

construction of A (using (1), (2), (4), (5), and also (0=)" for the case
A=(x1=x2), and (3) for the quantifier case). The condition (IV) is also
proved inductively (applying (0=)" for the case A=(xj=x;j) and (1) for
the cases A=P(xs), and A=V zB, A=3zB ). Then using (III') (and (IV) in
the intuitionistic case) we prove (III) and the following claim:

(III") &, aE A [x] does not depend on renaming of bound
variables in A.

Condition (II) follows immediately from (III) and (6). Now by
2.5.0, we prove validity of the propositional axioms of H ( or S4).
Verification of the predicate axioms is straightforward using (III)
(and (IV) for the intuitionistic case). The equality axioms are checked

using (0=) (and (IV)). (III) (together with (IV), in the intuitionistic
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case) implies that ML~()(F) and IL~(=)(F) are closed under
substitutions for individual variables and also under exact
substitutions for predicate letters; we call a substitution (C/P2(x)) (cf.
1.1.) "exact" if FV(C)c x. To prove the last statement we show that

g, ak (C/Prx)A[x] & &', aF Alx]
provided that &'(PR) = { beDyl &, b E C [x]}. Then we observe that
each substitution in A is an exact substitution in some Alnl and
therefore ML~()(F), IL~()(F) are substitution closed, and the proof
of (I) is completed.X

_Remark Due to Theorem 2.5.1, for i-metaframes, in the truth-
definition for 3I-formulas, <p.1 can be replaced by =p'-1 (to show this
we need (2") and (IV)). For it-metaframes (and in particular, for m-
metaframes) condition (2) allows us to replace <p.1 by =, i.e. the
definition is the same as in the modal case. Moreover, if z€ x , in it-

metaframes we have:
t,ak 3zB [x] & TbeDnyi (T, (D=2 & &, bk B [x+z] ).

Theorem 2.5.2./1/ Every i=-sound i-metaframe is an i=-
metaframe (and thus, every i=-sound it-metaframe is an i+=-
metaframe).

/2/ If F is an m-metaframe and QH= ¢ IL=(¥), then ¥ is an m=-

metaframe (and thus, every m=-sound m-metaframe is an m=-
metaframe).

A=(xj=xj); condition (0%) follows from the axiom

Vx,y,z(y=z - (Pr*l(x,y)e Potl(x,2))
in the intuitionistic case, and (0=) follows from an analogous axiom in
the modal case. .

Call a metaframe F = (D, Il) an i*-metaframe if it satisfies (1),
(4", and

(2")* for any 6 € Z(m,n), a€ Dp ,b€Dp :
a6 <mc=> 3b(asnb & (b 6) =mcid(m));
(3")* for any 6€&(m,n), aé Dy ,bE D41 :
(i) b jm+1 Sma-6 = Jc€Dnp+1(c jn+1 <p a-id(n) &
b-id(m+1)Sm+1(c-6*));
(i) 26 <m b jm+1=> Ic €Dp+1(a-id(n) <p € jn+1 &
(c-6*)Sm+1b-id(m+1));
(6")* for any ¢ €&~ (m,n),
YbeDp3dae Dy (a - 6) <yb-id(m) .

"
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F is an i*=-metaframe if it also satisfies (0=)', (0¥)",(0=)". ¥ is an
m*-metaframe if it satisfies (4) and

(1*) for any ¢ € Z(m,n), a,b€ Dy:
a<mb = JceDp(a 0 <mc & b 6 =c-id(m));
(2*) for any 6 € Z(m,n), a€ Dy ,beDpy :
a6 <pc = JbeDp(a<pb & (b-6) =c-id(m))
(3*%) for any 6 € Z(m,n), a€ Dy , b€ D41 :
b jm+1 =2a:6 => Jc€Dp4i1(c-jn+1 =a-id(n) & b-id(m+1)=(c-5+));

(6*) if c€Z™ (m,n) then T (Dn)=Tid(m)(Dm)-

Thus an i-metaframe is an i*-metaframe satisfying (5) and (0)
(analogously, for i=-, and for m-metaframes); omitting (5) makes all
other conditions in the previous definitions rather awkward.
However these definitions are involved in the following important
statement. '

Proposition 2.5.3 ("Soundness criteria")
/1/ A metaframe is i(=)-sound iff it is an i*(=)-metaframe.
/2/ A metaframe is m-sound iff it is an m*-metaframe.

Proof. (Sketch) The "if " part is proved as in 2.5.1. To prove "only
if" in /1/, we notice that (1) follows from (IV) applied to A=Pm(x¢),
the conditions (2')*, (3')*, (4") follow from (III) applied to
A=(Pm(y) > Qm(y)), IzPm+l(y,z), VzPm+l(y,z), A=PK(y¢'), and the
condition (6")* follows from (II) applied to A=Pm(xs). The conditions
(0=)', (0=)",(0=)" are verified as in Theorem 2.5.2.

For "only if " in /2/, the proof is analogous. The conditions (1*),
(2*%) follow from (III) applied to A= Pm(y), the conditions (3*) and
(4) follow from (III) applied to A=3zPm+1(y,z) and A=PX(y¢); and for

(6%) we apply (II) to A=P™(x¢).
Lemma 2.5.4 /1/ For any i*(=)-metaframe ¥ there exists an i(=)-
metaframe ¥ 'such that IL(=)(F) = IL(=)(F ). |
/2/ For any m*-metaframe ¥ there exists an m-metaframe ¥ '
such that ML=(F) = ML=(¥ ).

Dp" = {a€ Dy la-id(n) =pa} (={beDn [ Ja€Dpa-id(n) =n b}, by (1),
(4"), and with < and T coming as restrictions from F (this is
correct, since by (4'), g maps Dy into Dy" for any s €& (m,n)).
Properties of i*(=)-metaframes for F imply all properties of i(=)-
metaframes for F" , except (5). Instead of (5), F" satisfies



(5" a-id(n) =pa (if a€ Dp").
Also IL~(3)(F) = IL~(=)(F ") since inductive reasoning shows that

t,akF Alxl & &7, aid@) F A[x]

holds for any valuation & in ¥, its restriction &" to ", for any
A€ IF(=), with FV(A)Sx ,aeDy.

Finally we set F '= (D', "), with

Do'= Do" \ { ueDg" | Vn>0 Dy y"= @}; Dp'= Dy" if >0,

Ts'(a)=a if 6=id(n), n>0; T¢'(a)=Ts(a) otherwise.

Then ¥ 'is an i(=)-metaframe (the conditions (0') and (5) follow
from the definition of Dg' and Tid(n) ), and IL~GCG)F) = IL~CG)NF")

(the difference between T jd(n) and Thd(n) does not matter here
since ¥ "satisfies (5') and (IV); and Dg" can be replaced by Dg' due to

(6"). .
For /2/, the proof is analogous. We set
T I= (D'a H')9 Dn"-"- { QE Dnl gld(n)=§ } (= ﬂld(n)(Dn), by (4))9
T 6'=(TTs IDn), a<pb & ¢ (aspc & ¢-id(n)=b).

Then ¥ 'is a metaframe required.
Now- from 2.5.3 and 2.5.4 we deduce

Theorem 2.5.5. ("Maximality Theorem")
/1/ For any i(=)-sound metaframe ¥ there exists an i(=)-
metaframe ¥ 'such that IL&G) (F)=ILE)(F).
/2/ For any m(=)-sound metaframe ¥ there exists an m(=)-
metaframe ¥ 'such that ML) (F)=ML=)(F).

This theorem says that m(=)- (i(=)-) sound metaframes are
logically equivalent to  m(=)- (i(¥)-) metaframes , and therefore
maximal metaframe semantics are provided by m(= )metaframes or
by i(=)-metaframes. :

2.6. Remarks on strong intuitionistic metaframes.

Let F = (D, ) be a metaframe satisfying (1). A metaframe (D', II")
is called a skeleton of F and denoted by (¥ /=) if (Dn', <n") = (Dn/=n)

(cf. 1.2), and T5'(lal) = ITTg(a)l (provided that a€ Dy, O'EZ(m n)); Ibl
denotes the cluster including b.
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A metaframe (D", Il ") is called a 0-skeleton of ¥ and denoted by
(F I=0) if (Do", <0") = (Do/=0) , (Dn", <n") = (Dn, <p) for n>0; Me"=T¢
for 6 € Z(m,n), m,n>0, and T A,"(@) = ITTAp()l (for n>0, a€ Dy).
(1) guarantees the correctness of these definitions.
If F is an i-metaframe then (¥ /=) is an it-metaframe. Also if ¥ is
an i(+)(=)-metaframe then (F /=¢) is an i(+)(=)-metaframe as well, but

this is not necessarily true for (F /=) because (0=)', (0)" may be
violated in (D1/=1).

Lemma 2.6.1 /1/ IL(Z)(F/=¢)=ILE)(F) for any
i(=)-metaframe ¥.
12/ IL(F/=)=IL(¥F) for any i-metaframe #.

"factorized" valuation &' in F = (F/=(0)), for any ae Dy, x2FV(A) we
have:

g,akF Axl < &¢,bF Alx],
with b=lal in the proof of /2/, and in the proof of /1/: b=a if n>0, b=lal
if n=0.

Proposition 2.6.2. For any i-metaframe ¥ there exists an i*-
metaframe & 'such that IL(F =IL(F).

Lemma 2.6.1. K
Therefore for logics without equality, it-metaframes generate the
same semantics as i-metaframes (i.e. the maximal one, due to

Theorem 2.5.3).
We do not know if this proposition can be extended to
superintuitionistic logics with equality; we are able to show only that

in this case each i=-metaframe is logically equivalent to some i=-
metaframe satisfying (2) and (6) (but not necessarily (4)).

3. Completeness in metaframe semantics.

3.1. Canonical metaframe models for modal logics.

A predicate formula A is called an n-formula if FV(A)& {v1,..-,Vn}-
A set of n-formulas is called an n-set .Let L be a m.p.l. As in
classical logic, an n-set aS MF is called an L-n-type if
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A set of n-formulas is called an n-set . Let L be a m.p.l. As in
classical logic, an n-set aS& MF is called an L-n-type if
- a is L-consistent (ie. for any A1,...,Ap€a, (A l1<icmAi) €L )3 ;
» a is maximal 1i.e. for any modal n-formula A, either Ae L or
TTAeL.

The following Lemma 3.1.1 is standard, and 3.1.2 is trivial.

Lemma 3.1.1. (Lindenbaum)
Each L-consistent n-set of modal formulas is contained in some

L-n-type.

Lemma 3.1.2. If a is an L-n-type, ¢ €& (m,n), then the m-set
{A | A is a modal m-formula, (vs(1) ,...,Vs(m)/V1,...,Vm)A€a} (denoted
by (a-6)) is an L-m-type.

Let Dp, n be the set of all L-n-types; and consider the following
relation in Dy p : '

asp,be VA (OAca = Achb).

A standard proof shows that <y, , is reflexive and transitive.

The canonical metaframe of the logic L is defined as ¥y, = (D,
My,), with Dy, = (DL,n, L n)new » BL= (TTL,s)seMorE » TL,s(a)=(a-5). The
canonical metaframe model is defined as My, = (Fy, , &1,), With

gL (PM)= {ae Dy nl P2(vy,...,vn)€a} .

Proposition 3.1.3. ¥y, is a modal metaframe.

To prove (2), we assume that a€ Dy, p, a-6 SLnC i.e. that for any
modal m-formula A, OAs€a implies Aec (here Ag denotes
(Ve(1) »---sVe(m)/V1,---,vm)A ); we have to find a€ DL p such that

aspb,b6=c. Or equivalently, b should contain the set
B={A|OAea} U {Cs | Cec},

and by 3.1.1 we have to show L-consistency of B. Suppose the
contrary. It is easily seen that both {A | OAea} and {Cs | Cec } are
closed under conjunctions; so inconsistency of p implies T7(AACg)eL
for some Cec,0A€a . But then (AD 1Cqs )eL ,(OADOCs )eL, and
thus 0 77Cs € a . Hence 771C € ¢ by our assumption, and this
contradicts the consistency of ¢ .

\3 Everywhere we suppose that the case m=0 is also included; in this case the
conjunction is empty and equals to (LD L1).
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that ¢ should contain the set 3= a U {Bg+ | Beb }, and we have to
show L-consistency of § . Assuming the contrary, we obtain since a
and {Bs+ | Beb } are A-closed: 1(AABg+)eL for some Beb , Aea, and
hence (AD T1Bg+)eL. Remembering that

Bo+ = (Vo(1) »+rsVo(m)sVn+1/ViseesVm:Vm+1)B and Va1 € FV(A),

we have: (ADVvpse1 1Bg+)eL , (AD 713vp4Bs+)eL , and thus
—13vp41Bs+ €a . On the other hand Ivp41Bg+€a since Ivp41Bo+ is
equivalent in L to (3vm+1B)s , and Beb implies 3vm+1B€Db ,
Ivm+1B€ b jm+1 = a6, (3vm+1B)s€a. This contradiction yields the

L -consistency of 3 .

Theorem 3.1.4. ("Fundamental Theorem")
For any L-n-type a and modal n-formula A,
M, ,akEA [vy,..,vn]l & Aca.

induction on the number of logical symbols in A. Here we consider
two cases.

If A=P™m(vgs), v=(V1,...,Vn), G €&(m,n), then a E A [v] & (a-6)€ &y (P™)
& Pm(vyq,..,vm)€(a-6)< Aca (by definitions of k, &5, and (a:6) ).

If A=3zB then we can suppose z=vp4+j . Indeed, :eénanﬁhg of
bound variables in A leads to a formula A' such that (A= A')eL ; and
Aea & A'ea since a is a type; on the other hand %y, is m¥s0und
(by 3.1.3 and 2.5.1), and thus a F (A=A)ie. ak Aiffak A"

Now if A=3vp4+1B, by the inductive hypothesis and the definition
of forcing we have:

akF A & JbeDpnp+1(b-jn+1 = 2 & Beb).

Recall that b-jp+1 = a means: Cea & Ceb for any n-formula C. If
such b exists we have Ivp+1B (=A) €b ( since (BD 3vpyB)eL ), and
thus A€ a . Conversely, if Ae€a then we can obtain b by extending the
L-consistent set a U {B}.

Corollary 3.1.5. L2 ML(#y,) for any m.p.l. L.

and thus 77 A€a for some L-n-type a (by 3.1.1), My,,a kF 7TA [vy,...,vn]
by 3.1.4, and hence #i, ¥ A. '

3.2. Canonical metaframe models for superintuitionistic logics.

Now we will modify the previous construction for the
intuitionistic case.
Let L be a s.p.l. An n-set ac IF is called an L-n-type if



eais L-closed :if A1,...,Ap€a and (( AN 1<i<mAi) = B)€e L then
Bea;

e a is disjunctive : if BV C)ea then Bea or Cea;

el¢ga.

Lemma 3.2.1.Let (S,T) be an L-consistent pair of n-sets i.e. for
any Ay,...An€S, Br,...Bm€T, (/\;Ai) = (V) B)¢L.* Then there
exists an L-n-type a such that Sca, Tna=0@.

The proof is standard.

Lemma 3.2.2. If a is an L-n-type, 6 €& (m,n), then (a-5) is an L-
m-type.

The proof is trivial.
Let Dy, p be the set of all L-n-types; it is partially ordered by the
relation :

aspab&s ac b

The canonical metaframe of the logic L is defined as

:FL = (DLa HL)9 with IDL = (DL,II9 SL,n)nE(,O > HL= (nL,G)GEMOIE: >
TL,o(@)=(a-6). The canonical metaframe model is defined as

ML = (FL , &L), with
gL (PP)= {a€Dp,nl P2(v1,...,vn)€a} ;
obviously & is an intuitionistic valuation.

Proposition 3.2.3. #j, is an it-metaframe.

For (2), assume that 2-6 € ¢ ,a€DLn, c€DLm, 6 € &(m,n). Due to
Lemma 3.2.1, to find b2 a such that b-6 = ¢ it is enough to show L-
consistency of the pair (au(cls), ((-c)le)) (here (-c) denotes {D | D is
an m-formula, D¢ c}, and for any m-set S, (SI6)={Xs | X€S}). Assuming
the contrary we have (AA Cg— Dg)€eL for some Aea , Cec, De(-¢c)
(since a , ¢ are A-closed, (-¢) is V -closed). But then (A— (Cs— Dg))€L,
(Coe—Dg) (=(C>D)g)ea, (C—oD)ec, and this contradicts to Cec , De(-¢).

For (3#), assume that aeDpp, b€ DL m+1 , G€Z(mM,N), -6 = b jm+1
ie. Bsea & Beb for any m-formula B. By Lemma 3.2.1, the required
statements (i), (ii) follow from L-consistency of the pairs (aU (blet),
-a) and (au(blet), ((-b)le*)). The first one is consistent because
otherwise (AABg+— A")eL for some Aea, Beb, A'e(-a), and then

M The empty disjunction is defined to be L.
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(since A,A' are n-formulas) (AA3Jvp41Bs+— A')eL, and the latter
formula is equivalent in L to (AA(3vm+1B)s— A'). But Beb implies
J3vm+1Beb , and (Ivpm+1B)s€a by our assumption, hence A'ea , and
the contradiction follows. The second pair is L-consistent because
otherwise (AABg+— (B')g+)eL for some Aea , Beb , B'e(-b), and then
(A-> ¥V vns1(Bs+ = (B)g+)eL, (A= (Vvm+1(B—B))s)eL,
(Vvm+1(B>B))s)€ea, Vvms1(B—B)eb ,(B—B")eb, B'eb , and we
come to a contradiction.

Theorem 3.2.4 ("Fundamental Theorem")
For any L-n-type a and intuitionistic n-formula A,
My, ,aEA [vi,...,vn]l & Ac€a.

Proof. It goes along the same lines as in 3.1.4. Here we consider

the case A=V vp+1B only. By the inductive hypothesis and the
definition of forcing we have:

akF A & VbeDL+1(b-jn+1 2 a = Beb).

Thus Aeaonlyif a F A (for, Aca and b-jp+1 =2 a imply A€b,
and also Beb since (A— B)eL). Conversely, if A¢a then we can
construct b€ D, n+1such that (b-jn+1 2 a & B¢b) since the pair
(a, {B}) is L-consistent . K

Corollary 3.2.5. L2IL(#y,) for any s.p.l. L.

and thus A¢ a for some L-n-type a (by 3.1.1), My, a ¥ A [vy,...,vn] by
3.2.4, and hence ¥, ¥ A. K

3.3. Completeness theorems (modal case).

Recall that a general (propositional Kripke) frame (cf. [1]) is a
triple (F,<, X) consisting of a frame (F,<) and a non-empty family X of
subsets of F which is closed under Boolean operations and under the
operation 0S={x | Yy(x<y = yeS)}. A general frame & =(F.5, X) is
called descriptive if

o & istight: Vx,yeF(VSeX(xeOS = yeS)= x<y);
e & is compact :if X'S X and X'is finitely centered ( i.e.
M 9= @ for any finite non-empty S X ) then [1 X'= @ N5

\5 For non-reflexive frames (which are not considered here) & should also be
"distinguished".



A valuation in & 1is a valuation & in F such that &(P0)e X for any
POe PLO . A propositional formula A is called valid in & (notation:
Bk A)if §F A for any valuation & in & . For a logic L, 8FL
abbreviates VAeL ®&F A; FEL has an analogous meaning.

A propositional modal logic L is called canonical [1]if @FL
implies FE L for any descriptive general frame & = (F,<, X).

Quite a lot of well-known modal logics are canonical (S4, S4.1,
S4.2, S4.3 are among them). All "Sahlqvist logics" [10] are canonical;
this follows from [11].

Every canonical propositional logic is complete in Kripke
semantics; this is a consequence of the propositional "Fundamental

Theorem".

Now let L be a m.p.l.; for any modal n-formula A (n=0) consider
the set

Al n={ a¢Dpn | Aca} (= {2aeDpLn!l My ,a FA [v,...,val} ).

Let

XL n={ |IAlLn | A is an n-formula}, &1, n=(DL,n, <L, XL ,n)-

Lemma 3.3.1. &1, nis a descriptive general frame.

Proof. To show that &y nis a general frame, we observe that
IAABILn = |AlLn NIBIL p, IOAIL n = OlAlLn etc. & pnis tight
according to the definition of <p, 5. To show compactness, suppose
X'G XL n is finitely centered. Then the set «={Al |AlL n€ X'} is L-
consistent; indeed consider Afi,..., Am€X ; take any
belAjlLaN...NIApIL g ; then Ap,..., Am€b , and thus 7(A1A...AAp)€L.
Now if xSa,aeDpa (3.1.1) then aell X'\ X

We skip an easy inductive proof of the following

Lemma 3.3.2. Let n be a valuation in &1, 5 , Bj (i20) be n-formulas
such that »(F;0) = Bl n . For any propositional modat formula A
whose propositional letters are among F10,..., Fk0 let

A7 = (By,..., BW/F10,..., F0 )A.

Then for any ae D, n
n,ak A= My, ,akEA” [vy,.., val
(Recall that F;0 is the i-th propositional letter, vide 1.1.)

Lemma 3.3.3. @pLn F Lp.

valuation » in &1, n . Then for any ae Dy n , A7€a . Hence », a F A by
3.1.4 and 3.3.2. Therefore @ a F A.

26
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We call an m.p.l. L metaframe-canonical if L€ ML(¥g,). In this
case L=ML(¥,) by 3.1.5, and thus every metaframe-canonical logic is
complete w.r.t. modal metaframes.

Theorem 3.3.4. Let L be a canonical propositional modal logic,
then QL is metaframe-canonical.

(DQL,n, SQL.n )F L since @QL,nis descriptive(3.3.1) and L is canonical.
Hence Fqr, F Al for any AeL (by 2.5.0), ie. LEML(¥qg). But
ML(¥qL) is an m.p.l. since gy, is an m-metaframe (3.1.3) and by the
Soundness Theorem (2.5.1). Consequently, QL € ML(¥qr,)- ®

Recall that the Barcan formula is Ba= 3xP1(x) 2 IxOPI(x).
Lemma 3.3.5. LetL be an m.p.l. containing Ba, then Bae ML(#,).

condition:

(@) for any a,beDy, p,ce€Dy, 41 >
a<ypnb=Cjn+1 = 3Id€Dy, 141 ASLpC & d:jn+1=2).

Assume that a <y, , b=c-jn+1. To find d it is sufficient to prove L-
consistency of the (n+1)-set x=aU {OC 1 Cec}. But o is consistent
because Cec, Aca, (OCD TA)eL imply (Avy:1OCD TA)eL, and
hence (O 3vpe1CD TTA)e Ll (due to Ba). But Cec implies IvyCec,
Ivp+1Ceb, O3vpe1Cea (since a <y, 5 b), and this yields L-inconsis-
tency of a .

The condition (&) guarantees that Bae ML (¥y,) i.e. that Fp, F Baln]
for any n>0. To show this consider an equivalent of Balnl :

O V1PV, V1) D IV 1 O PoHL(Y,vpyq) (With y=(v1,...,vp)). By D)™
it is enough to establish that &, a k Balnl [v] for any valuation ¢ in
¥, and for any a€ Dy, , . But this follows easily from (O).

‘Theorem 3.3.6. Let L be a canonical propositional modal logic. Then
QLB=QL+Ba is metaframe-canonical.

3.4. Completeness theorems (intuitionistic case).

Now let us briefly show how to transfer the previous
considerations to superintuitionistic logics.
A subset S of a frame (F,<) is called conic if OS=S. A general
(propositional Kripke) intuitionistic frame is a triple @ = (F.<, X)
consisting of a frame (F,<) and of a family X of its conic subsets
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A subset S of a frame (F,<) is called conic if O0S=S. A general
(propositional Kripke) intuitionistic frame 1is a triple & = (F,<, X)
consisting of a frame (F,<) and of a family X of its conic subsets
containing @ and closed under finite unions and intersections and
under the operation S~ T = 1 {UIUCF, SnUCT}.

P is called descriptive if it is tight (as in 3.3) and compact :

if (X, X ") is a finitely centered pair of subsets of X (i.e. if for
any finite 9 ‘e X', 7' x", (1 y’NU o )= @) then

M xN\U x=@.N6
Further definitions (of valuations, validity, canonicity, IAlf, n etc.)
are analogous to 3.3.

Lemma 3.4.1. & is descriptive.

IAABILn =1AlLn N 1BlLn, IAVBILa =1AlLa U IBlLn | A= Bl =

IAlLn = IBlLn,lllLn =9@. Thus &1, 5 is a general intuitionistic frame.

Its tightness is clear; compactness follows immediately from 3.2.1.
The following two lemmas are analogues of 3.3.2 and 3.3.3.

Lemma 3.4.2. Let » be a valuation in &1, 5 , B;i (i20) be n-formulas
such that »(Fi%) = IBjlL » . For any propositional intuitionistic
formula A whose propositional letters are among F19,..., FO let

A7 = (Bi,..., BK/F10,..., F 0 )A.

Then for any ae D, n
n,ak A= M, ,a kA7 [vy,..., val.

Lemma 3.4.3. @pnF Lp.
We call a s.p.l. L metaframe-canonical if L € IL(¥y,). In this case

L=1IL(¥y) by 3.2.5, and thus every metaframe-canonical logic is
complete w.r.t. strong intuitionistic metaframes.

Theorem 3.4.4. Let L be a canonical propositional
superintuitionistic logic, then QL is metaframe-complete.
The proof is analogous to 3.2.4.

as well) is complete in functor semantics. This stronger version was
proved by S.Ghilardi [6]. However it is not clear if his methods can be
extended to the modal case.

The following predicate formula:

D= Vx(Pl(x)Vq)— (VxPL(x)Vq)

\6 Here we suppose that [1 @ =F, U@ = @.
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is called the constant domain principle.

Lemma 3.4.5. Let L be a s.p.l. containing D, then De IL(¥y,).

proof of 3.3.5. Let a <y, , b=c"jn+1. To find d, it is sufficient to prove
L-consistency of the pair (a,-aU -c¢). Assume the contrary. Then
(A= A'VC)HeL for some Aea,A'e(-a),C'e(-c) . Applying rules of QH
and the formula D we have: (A— A'VVvp+1C)eL  and hence we
obtain subsequently: Vvp41C'ea ,Vvp41C'eb ,Vvps1C'ec, C'ec, and
this is a contradiction.

Now De IL(¥y,) follows from () rather easily. X

Finally we come to the following

Theorem 3.4.6. Let L be a canonical propositional
superintuitionistic logic. Then QLD=QL+D is metaframe-canonical.

4. Representation theorems.

4.1. Pre-bundles.

A (Kripke) pre-bundle over a frame F is a triple F=(F,D,T) in
which T is a pre-p-morphism of a frame (D, <') onto a frame (F,<).
Thus every pre-bundle over a p.o. set is a Kripke bundle.

As with Kripke bundles, for a pre-bundle there exists a splitting
D= UueF(D(u)) ; the D(y)="1"1(u) are non-empty and disjoint; and
there is a metaframe F*[ F]=(D*, Il *) such that D*=(Dp*, <p*)n>0 ,
(Do*, <0*)= (F,<0), Dp*= UueF(D(u))n, <p* is the same as <pin 1.3 for
Kripke bundles, Il *=(TT¢*)seMorE » To*(a)=ac .

In general, F*[ F] need not be an i-metaframe. For example, if
F={ug,uz,u2} and up<ui=uz, Dwg)={a1,a2}, D;)={b1}, D@y)={b2}, ai <" bj
(i=1,2), b1 =' by then (2') fails in F*[ F].

Therefore, the "semantics of pre-bundles” is incorrect.

4.2. Quasi-Cartesian and Cartesian metaframes.

A metaframe F = (D, Il) is called quasi-Cartesian (briefly, qC-
metaframe ) if
* Ta(D1)=F, ie. F=(F,D,m) = ((Do, <0),(D1,<1),T A ;) is a pre-bundle;
o for any n, Do € Dp* (Dp* comes from F);
o for any 6 € £(m,n), TMe=T *Dp .
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F is called Cartesian (briefly, C-metaframe ) if also Dy=Dp* (and

thus, T =T ¢* for any 6 € Z(m,n), Dpy = De)").

In these cases we say that ¥ is a (q)C-metaframe over the pre-.
bundle F.

We will also use such abbreviations as "Cm-metaframe"”, "qCi-
metaframe" etc.

In qC-metaframes (as well as in those derived from C-sets)
abstract n-tuples and transformations are real; but the equality
<p*=<, can be false for some n>1. This allows us to use the notation
(F, D) for arbitrary qC-metaframes over F.

For qC-metaframes, definitions of forcing from 2.2 can be
somewhat simplified and made more like standard Kripke
semantics.

Namely, we can define &,u F (a/x)A for ueF, a€Dpy and
D )-formula (a/x)A (which will be abbreviated to A(a) ). Each ¥-
formula (a, x, A) corresponds to the unique Dgy)-formula A(a), but
this correspondence is not one-to-one. (E.g. P2(a,b) corresponds to
((a,b),(x,y), P2(x,y)) and also to (a, x, P2(x,x)).) Nevertheless, the
definition given below is correct because, due to property (III) from
2.2, &,aF A[x] must be the same for all #-formulas corresponding to

Aa).

* &, uk PU(a) & ae E(Pm);
e ., u .k L ;
e ¢, uF a=b & a=b;
e Z,uk BAC)(a) & &, uk B and g,u F C(a);
g, ukF BvC)a) & & uk B(a) org,uk C(a);
s Z,ukF B-0C)a) & VvVb(usygv&beDpy&asnb &
g, vEB(Mb) = & vE Cb) )
e Z,uk VzB(a,z) & VvVbVc(ugyv & (b,c)eDpriyv&asnb =

¢, v E B(b,c));
« Z,akF JzB(a,z) & 3IvIbIc (u=g v & (b,c)€EDps1yvy &a=nb &
¢, v E B, ) in qCi-metaframes,

or < 3Jc((a,c)eDp+1yv & &, uF B(a,c))
in qCit-metaframes.

definition is analogous; the first three items are the same; for 3-
formulas it is the same as in qCi*t-metaframes, and

«Z,uk BDC)a) & ¢&uk B@org uk C@a);
e t,uk OB(a) & 3Ivib(ugo v& beDpy & a<nb & &, vk B(b)).
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A formula A (with FV(A)={x1,...,xn}) is true w.r.t & iff &, uk A(a)
for any ueF, a€Dpy .

4.3. Representation of m=- and i=-metaframes.

Theorem 4.3.1. (i) Let ¥ = (D, II) be a qC-metaframe. Then the
following conditions are equivalent:

« F is an m-metaframe,

» ¥ is an m=-metaframe,

« F is a Cartesian i+-metaframe,

« ¥ is a Cartesian metaframe satisfying conditions (1) and (2).

(i) Every m=-metaframe is isomorphic to a Cartesian m=-
metaframe over a Kripke bundle.

(1 If F is a qC-metaframe, (3) can be rewritten as:

"for any ¢ € Z(m,n), u€F, if a=(ay,...,an)€ Dnu ,

b=(ag(1)s---»26(m),bm+1) € Dm+1,u , then c=(a1,....an,bm+1)€Dn+1,u "-

Hence it is clear that F satisfies (3) iff it is Cartesian.

(ii)) Let F = (D, Il) be an m=-metaframe. Consider a Kripke bundle
F=(F,D,m) = ((Do, <0),(D1, £1),TA). For a€Dpu, n>0, set
k(a)=(a:prn,1,---,2 Pra,n) € (D) )2. By (3) and (0%),

YueF V>0 VYbe (D) )? 3! a€ Dpy k(a)=b.

Consequently, k is an isomorphism between ¥ and the Cartesian
m=-metaframe F = (F, D) in which B’ = (Dp*, <p")n>0-

Therefore the maximal metaframe semantics for m.p.l.='s is given
by Cartesian m=-metaframes. The next theorem proves an analogous
fact for s.p.L.(=)'s; however Theorem 4.3.1 itself cannot be transferred
to the intuitionistic case.

Theorem 4.3.2. (i) For any i(=)-metaframe ¥ = (D, Il) there exists
a quasi-Cartesian i(=)-metaframe ¥ '= (F', D) over a p.o. frame F'
(and thus, F'is a Kripke bundle) such that IL(=)(F )=IL(=)(F).

(i) For any i(=)-metaframe ¥ = (D, II) there exists a Cartesian

(i) Due to 2.6.1, we can suppose here that ¥ is an i-metaframe
over a p.o. frame F. Let ¥ '= (F', B’), with F'=(F,D',7"),

D' = (Do), <n')n>0, D'= Uy, o ( Dk x Ik);
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T'(2,))=T A (@) Gf (a,j)€ (Dx x Ix)),
Dy'= {(a*)s | a6 Dk, 6 € &(n,k), k>0} (a* denotes ((a,1),...,(a,k)) if ae Dx);
(@*)s <p' (0*)r & (a-6) < (b -T) (in F).

A straightforward check shows that ¥ 'is a qC-metaframe and an
i-metaframe. By the construction, (F /=")=(¥ /=), and hence
IL(FH=IL(¥) (2.6.1).

(ii) Suppose ¥ = (F, D) is a qCi-metaframe.
Let F '= (F',B"), with
F'=((Do', <0),(D', <1'),7"),
Do'= Uk>oDk;
D'= U, ¢ ( Dk x Ix);
T'(a,j)=a if (a,j)e D' (and thus D'(a) = {a} x Ix whenever a€ Iy ; each
D'(a) is finite);
aso'be a-Am<ob Ap in ¥ (if 2¢Dm ,beDy );
D = (Dn', €0 )n>0,
Dp'= ((D")*)n coming from F' ( hence Dy'= Uk>0 ({a} x Ixnr=
Ugso{(@*)s 126Dk, 0€Z(nk)} )
@*)s <n' 0*)r & (a-0) < (b T) in F (f n>0).

Then one can prove that F 'is a C-metaframe and an i-metaframe
and that (F /=")=(¥ /=). Therefore IL(¥F ")=IL(¥F).

(1) For this case we need an auxiliary definition.

A (quasi-) Cartesian equipped intuitionistic metaframe ((q)Cei-
metaframe) is a triple ¥ = (F, B, =) such that (F, D) is (quasi-)
Cartesian i-metaframe (F=(F,D,m), B' = (Dn', <n')n>0 ) and =1 is an
equivalence relation on D satisfying three conditions (cf. (07)",(0=)" in
2.4):

(*) a=;b = a=;b, M(a)=T1(b);

(**) (at,...,an) <qp (b1,...,bn), aj =1 aj = bj =1 bj (n>0);

(***) (a1,...,an, an+1)€ Dn+1, an =1 an+1 =

(21,...,an-1, an)=p(a1,....an-1, an+1)  (0>0).
Note that a (quasi-) Cartesian i-metaframe is a (q)Cei- metaframe
in which (=;) is an equality relation.

A (q)Cei-metaframe ¥ = (F, D, =) gives rise to an i=-metaframe
(F/=1)= (D', L *), in which D'= (Dn/=p, <n0)n20 ,



(al,...,an) =n (bl,,bn) = (Vl a = bl) Vv (a]_ =..=4dn =1 b]_ = ... =bn)

if n>0;

u=gv & u=v (for u,veF);

<n' and T ;* come from <, and T ("via representatives").

Then we can define the s.p.1.(%) of F as IL(=)(F) = IL(Z)(F /=;), or
equivalently, we can reformulate the definition in 2.2, with only the
change: &,a F xi=xj < “prn,i(ﬁ)'—'l“prn,j(@)-

Lemma 4.3.3. 1) For any i=-metaframe & there exists a qCei-

metaframe &' (over the same frame) such that IL=(F)=IL=(F").
2) For any qCei-metaframe ¥ there exists a Cei-metaframe ¥

gCi=-metaframe then ¥'is a Ci=-metaframe.

A proof of 4.3.3 repeats that of 4.3.2 for the case I. We set:
@j) =1' k) & a=b & Mpr, ;(a)=Tpr,  (2) to get 1), and
(a,j) =1' (b,k) & a=b & aj=; b to get 2).

To show logical equivalence of ¥ and ¥ ', instead of 2.6.1 we use
the following claim: SR

if £, &' are valuations in ¥ and ¥ 'respectively, and
g'(Pm)={(a*)s | (a-6)€ &(PM)} for any Pme PLM m=>(0, then
¢, acokF Alxl & &, (a¥)s F Alx].

Lemma 4.3.4. 1) For any Cei-metaframe ¥ there exists a qCi-
metaframe F' (over the same pre-bundle) such that IL=(F)=IL=(F").
2) The 0-skeleton (F /=q) of a qCi(=)-metaframe & is also a

qCi(®)-metaframe. '-"

the condition (ee¢) is equivalent to:

YueF Vai,...,an, b1,....bn€ D) (Vi aj=1bi) = (ai1,...,an)=,(b1,...,bn)).

Setting
.7: ‘= (]Fs D’)y D'= (Dn', Sn')nZO H Dn' = {QEDD.' VIL’ (al=]_a_] = aizaj )}:
<n'= <p'IDn,

we have for any n>0:
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<n'= <pn'IDn,

we have for any n>0:
VQ_E Dn EIQE Dn' Vi a1=1b1

Hence, if & is a valuation in F and &' is its restriction to ¥ 'then
for any A€IF=, ueF, ae Dy,

t,akFAxl e &, aF Alx]
(this is proved by an induction on the length of A).

Now the case II of 4.3.2 is clear. Given an i—-metaframe F , we
construct its equivalents: a qCei-metaframe #; (Lemma 4.3.3, 1)), a
Cei-metaframe ¥, (Lemma 4.3.3, 2)), a qCi=-metaframe %3 (Lemma
4.3.4, 1)), and a qCi=-metaframe ¥, over a p.o. frame (4.3.4, 2)). This
yields (i).

The statement (ii) follows from (i), by 4.3.3, 2).

4.4. Cartesian metaframes and ( -sets.

2) There exists a counterexample to 1) having only one
uncountable domain.

frame F. Let C be a subcategory of SET such that

Obc= {D(u) lue F},
C(u,V)={ f: D(ll) —)D(V) | ¥n>0 Val, cees anE D(u) (al,...,an) Sn
(f(al),..., f(an)) }

Let F be an inclusion functor C — SE7 . Then F[F] = F since

a<,b & 3Ife(C(uyv) Vib;=1(a;) (whenever usyv, aeD,, ,beD, )
To prove (=), we enumerate D(u): D(u) = {ay, ..., 4, ...}, and using the
property (2) from 2.4, we get the sequence by, ..., by, ... satisfying
(ag,...,ag) <g(by,...,by) for all k; then the function f sending each ay to
by isin C(u,v).

2) Let F =(F, D) be a Cartesian metaframe over the two-element
chain F=({uy,v(},<(), with D(uo) =@, D(VO) =20,
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there exists a function f=F~(u): D(yq) = D(y,)» and thus a;#a,,
f(a;)=f(ap)=b for some a;, a,€D ), b€ D (y,)- Hence (aj,ay) <5(b,b) is
not the case in ¥ , and this is a contradiction.

nothing but (C-sets. However we do not know if arbitrary cm=-

metaframes are equivalent to (-sets.

The following theorem shows that for modal logics without
equality the situation is different; moreover, for this case m-

metaframes are stronger than m=-metaframes ( and therefore, than
C-sets).
Theorem 4.4.2. Let C;{'= P(x)DP(y)vQX)VQ(y), C,'=
P(x,y) D P(x,x)V Q(x)V Q(y), C;=Q(z) v O(OQ(z) 2 VxVy(;), i=1,2.
Then
1) FE C; = FE C, ,for any m=-metaframe ¥ ;
2) F~E C;, F~ K C, ,for some m-metaframe F~.
Proof. 1) By 4.3.1, we can assume that ¥ is Cartesian. So let
¥ =(F, D), and suppose , &,uy # C,lml(a,a) for some valuation & in ¥,
(a,a)e (D(uo))m"'l. Then we have (for some u;,d,,d;,b,b):
u() S() u]_a (.a'.sa)smq-]_(h,b), (b.sb)e (D(UI))m+19 d()adle D(ul);
g, uy £ Q(a.a);
&,u; E OQ(b,b) AP(b,dg,d;) A TTP(b,dg.dg) A T1Q(b,dg)A T1Q(b,dy).
Hence dy#d;. Taking &'(Q)=&(Q), ¢'(P)={(b,dy)} we have :

&' ug £ Qa,);
&'u; E OQ(b,b) AP(b,dg)A T1P(b,dy) A T1Q(b,dg) A T1Q(b.dy),

and therefore &',uy £ C;Ilml(a,a).

2) Let Dy={cq,dg.d;}; for n>0, let =, <, be the following relations in
Dln X
a~ b & a=b V Vi (a=b=c,;V {a;,b;}={dy,d;});
a< b & a= b vV Vib;=c;.

Then
a~ b & as; b &bspa.

Let (D,~,<,7) be the skeleton of (D{",<,) for n>0 and
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a=pb & as b & bsja.

Let (D,~,<,7) be the skeleton of (D;%,<,) for n>0 and
(Dg~,<9™)=({u},=) be a reflexive singleton. a~ denotes the class
a (mod=,) (if ae D).

Let F~ =(D~, ) be a metaframe in which Il = (TTs)seMorE , s 1S a
constant map if 6=A,, Ts(a~)=(as)~ otherwise.

Let & be a valuation in F~ such that £(Q)={c;~}, &(P)={(dy,d{)~}.
Then &,dy~ £ C, [z].

On the other hand, F~F C;[ml. For, consider any model in ¥~, and
suppose (2,2)~ ¥ Q(z,2) [z,z], (b,b)~ ¥ 0OQ(z,2) 2 (VxVyC;)ml [z,2],
(a,a)<,41(b,b). Then (a,a)=,,,1(b,b) is not true, and hence b=cy,
b=(cq,...,c1). But it is easily checked that (b,b)~F Q(z,z) implies (b,b)~F
(VxVyC,')ml [z,z] (note that (b,dy)~=(b,d;)~), and the contradiction
follows.
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