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ON THE STRUCTURE OF KRIPKE MODELS!
OF HEYTING ARITHMETIC

ZORAN MARKOVIE

ABSTRACT

Since in Heyting Arithmetic (HA) all atomic formulas are decidable, a Kripke
model for HA may be regarded classically as a collection of classical structures
for the language of arithmetic, partially ordered by the submodel relation. The
obvious question is then: are these classical structures models of Peano Arith-
metic (PA)? And dually: if a collection of models of PA, partially ordered by
the submodel relation, is regarded as a Kripke model, is it a model of HA? Some
partial answers to these questions were obtained in [6], [3], [1] and [2]. Here
we present some results in the same direction, announced in [7]- In particular,
it is proved that the classical structures at the nodes of a Kripke model of HA
must be models of IA; (PA™ with induction for provably A; formulas} and that
the relation between these classical structures must be that of a A;-elementary
submodel.

§0. Introduction

It is easy to see that in a Kripke model of a theory with decidable atomic formulas,
old elements can not acquire new atomic properties in later worlds. From a classical
point of view, a Kripke model of such a theory may be regarded as a partially ordered
collection of classical structures for the same language, where the partial order is
introduced by the submodel relation (as opposed to a homomorphic embedding in
the most general case). The intuitionistic satisfaction relation in such a model,
usually called forcing, may be compared to Robinson’s model theoretic forcing,

1The research reported here was supported through a project with the Science
Fund of Serbia. The paper was written during the author’s stay at University of
Amsterdam financed by a Tempus project JEP 1941-91. The author wishes to
express his gratitude to the logic group of FWI, UvA for their hospitality and in
particular to his host, professor Troelstra and also professor de Jongh with whom
he had some very useful discussions.




except that two new logical connectives are also considered: — and V, different
from their classical counterparts. However, intuitionistic formulas may be regarded
as having a meaning also in the classical structures, by the obvious identification of
@ — ¥ with = V 1 and of Yzp(z) with —Jz—p(z).

Kripke models for Heyting arithmetic (HA) were explicitly considered for the
first time by Smorynski in [8], where he defined a powerful collection operation,
which he used to prove a number of metatheoretic results about HA. Collection
enables one to construct new Kripke models for HA starting with some given mod-
els and even to construct completely new Kripke models starting with models of
PA. However, the new models thus obtained can only have ordering with finitely
many levels. Further, the universes at all but the terminal nodes (endpoints) must
necessarily consist of the standard natural numbers, unless we also introduce the
notion of ”Kripke model of HA definable in a nonstandard model of PA”, which
complicates matters considerably.

It looks as if a better understanding of Kripke models of A requires a better
understanding of the classical structures at their nodes. However, forcing at a
node coincides with the truth in the corresponding classical structure for a very
restricted class of formulas only (it is shown here to be ;). Each formula whose
decidability is not forced at some node may give rise to a whole Rieger-Nishimura
lattice of intuitionistically non-equivalent formulas. Therefore the problem of what
must hold in all classical structures at the nodes of a Kripke model of HA does not
appear to be easy.

The natural assumption is that the classical structures are models of PA. In-
deed, it was shown in {3] that a Kripke model of HA on a finite frame (with finitely
many nodes) must have a model of PA at each node. However, in a recent paper [2]
Buss shows that a Kripke model consisting of classical models for PA, need not even
be a model of II; induction. Obviously, the classical structures at the nodes, besides
being models of PA or a significant fragment thereof (certainly all prenex theorems
of HA have to be satisfied), must also be interrelated in some ways. It is shown
here that if a node s is smaller than the node ¢ (in the partial ordering of a Kripke
model of HA), the classical structure associated with s, must be a Aj—elementary
submeodel of the structure associated with ¢.

The approach taken here is purely clagsical and we make an effort to use stan-
dard model-theoretic terminology wherever possible. That the results obtained in
such a manner may still have intuitionistic relevance (via arithmetization and -
conservativeness of PA over HA) has been argued in [8] and [9].

§1. Notation

For simplicity, we may define a Kripke model for HA to be a structure

Mm=7,0,<) A :teT)
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where (T, 0, <) is a tree with the least element (cf.[5] and [8]) and for cach t € T,
2, is a classical structure for the language of arithmetic such that for any s, € T,
s < t implies M, C A; (A, is a submodel of ;). Elements of T are called nodes.

The forcing () relation between a node t and a sentence ¢ in the extended
language containing names for all elements of A, (the universe of A;), is defined in
the usual way: forcing for atomic sentences coincides with truth (F) in 2 (more
precisely: (2, 4;)), inductive clauses for V,A and 3 are just like in standard truth
definitions and:

tlF @ — @z iff  forevery ' >t (# I 1 or t' - ga),
t - Vaep(x) iff  for every t' > t and every a € Ay (t' - p{a))

(We use the same notation for ¢ € 4; and its name in wla).)

By Heyting arithmetic we understand the intuitionistic first-order logic with the
usual axioms for PA~ (care should be taken to put the obvious bound on the only
existential quantifier) and the induction schema. Thus PA is obtained by adding to
HA the Principle of Excluded Middle (or some other appropriate schema). HA may
be formulated with symbols for all primitive recursive functions (cf. [10] or {L11]) or
with predicate symbols only (cf. [8]), but for the resnlts presented here this would
not make any difference.

If the free variables of a formula ¢ are not explicitly stated, we shall use Vz¢
to denote its universal closure (i.e. we assume that all the free variables of ¢
are contained in the finite sequence z). Thus we denote the decidability of ¢ by
HAF VZ(p V ). In such contexts we shall use @ € A; to denote an appropriate
finite sequence of elements of the universe A;, and (@) to denote the formula in
which the appropriate names for the elements of A, are substituted.

All the other notation is as in [10] or [11], where also all the results that are
invoked may be found.

§2. Ay - Formulas

It was proved in [6] that in a Kripke model of a theory with decidable atomic
formulas, the following holds for every node ¢:

Lemma 1. (i) If ¢(Z) is a quantifier-free formula and & € A, then
tl-p(a) vV —e(a)

(ii) If @(Z) is an existential formula (i.e. ¢(2) = 3y ... ¥(Z,y1, ... ,¥n), where
¥ is quantifier-free) and @ € A;:

tip(a) iff A= p(a)
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(i) If () is in prenex normal form and @ € A; then:
th (@) implies %A p(a).

As an immediate consequence we have the following:

Corollary 1. I 9 = {{(T,0,<); A, : t € T) is a Kripke model of HA, then for
everyte T
A = PA™.

However, in Intuitionistic predicate calculus formulas do not necessarily have
equivalent prenex normal forms, so (iii) can not provide much information on the
induction schema. Using an old Kleene’s result that decidable formulas in HA are
closed under bounded quantification, we prove:

Theorem 1. If = {T,0,<); % :t € T} is a Kripke model for HA and o(x)
is a Ag formula (i.e., with all the quantifiers bounded), the following holds for any
s,teT and @ € Ag:

(i) 1 (@) V(@)
(i) t i (@) iff A E p(a)
(iii) t < s implies (%: |= e(@) if A, |= (@) (ie Ay <aq, Us)

Proof (i) Starting with Lemma 1(i), we prove that the set of decidable formulas
is closed under propositional connectives and bounded quantifiers.

Cases where ¢ = 3 < y¥ or ¢ =Vz < yy for decidable 1 are theorems *150.
and *151. in [4].

If ¢ = @1 V 2 where ¢y, @3 are decidable formulas and ¢ I ¢1 V 2, then
ti o1 and LI 2 and by the decidability of ¢y and @2, t 1= ~@1 A 23, which is
equivalent to t - =(p V ¢2).

=1 Ay and tIfF @1 Ao, then tlf ¢ or t I 1. In the first case ¢ I~y
and in the second t I =3 s0 ¢ IF =1 V —pa which implies ¢ IF =(p1 A p2).

If p = 1 — w2 and ¢ I @1 — g2, it follows that for some s > t, s |- 3 and
s I¥ p2. By decidability of ¢ and @, it follows that £ I @1 and ¢ Ik -3, so for
every t/ > t, t IF 1 and ' I @2, ie, tIE 2(p1 — ©2).

(ii) Induction on the complexity of ¢. By Lemma 1(ii) the Theorem holds if ¢ is
gquantifier-free.

Let ¢ = 3z < ay(z) and suppose ¢ |- 3z < atp(z). By definition this means
that for some b € A, t - b < a and t |- ¢(8). This is equivalent to A; = b < a,
and, by induction hypothesis, A, k= 1p(b), which means A, F Az < ay(z).

Let ¢ = Vz < a(z) and suppose ¢ I Ve < atp(z). This implies that for every
be A, tl-b< aimplies ¢ I-$(b). So,if t1-b<a then, by induction hypothesis,
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Ay - 2p(b). It b < a, we have A, |- =b < a. In any case %; IF b < a — ¥(b), for
every b € Ay, so A, | Ve < a(z). Suppose now 2, |= ¥z < ay(z) and consider the
formula o < a~(x). Kt 3z < a—(z) then for some b € A, t-b < a A=t(h).
By induction hypothesis then A, }£ ¢(b), so ™ F & < a A ~9(b} contradicting
A; E Ve < ay(z). Therefore, by (i}, ¢ - -3z < a~¢(z). By intuitionistic logic,
this is equivalent to ¢ |- V& < a——¢)(z). As ¢ is decidable (by (i)) it follows that
t Ve < av(x).

Let ¢ = o1 — wg. HtIF @1 — ¢y then t |- ¢ or t If 1 and by induction
hypothesis we have 2; B @3 or % @1, so U F g1 — 2. Suppose now that
Ay F 1 — po. If A F g, by induction hypothesis we have £ I o, If A F g,
by induction hypothesis we have ¢ If 1 and by (i), t = 1. In either case we get
t I ¢y — 2. The cases where the principal connective of ¢ 1s V or A are trivial.

(111) The fact that 2, C %, for { < s, implies that (iii) holds for quantifier-free for-
mulas (with parameters from A;). The proof proceeds by induction on the number
of (bounded) quantifiers in ¢.

Let ¢ = e < ay(x) and suppose A, F Iz < ay(z) ({ < 5, a € Ay). By
(ii), it follows that s |- 3z < a9(z). Then, ast < 5, ¢ f -3z < a(x), so, by
(1), t & 3z < ayp(z). Applying (ii) again, we get &, F Iz < ay(z). The converse
is trivial, by classical model theory and induction hypothesis on i(zx), Ay being a
submode] of ;.

Let ¢ = Vo < ay(z) and suppose 2; F Vo < ay(z). If A, ¥ V& < ay(z)
then ¥, F 3z < a—t(z) and we may apply the above argument, obtaining the
contradiction. Thus %, F Vz < ati(z). The converse is trivial, as above.

§3. A, - Formulas

For arbitrary formulas 4(y) and x(y)} in the language of arithmetic let us define the
sentences:
A, x) EVEEy(y) — Yux(),
PA(, x) £ Y2Y5¥zTuTo(($(y) — x(2)) A (x(w) = ¥(v))).

Lemma 2. Ifvy and y are Ay formulas then:

(i) HAF A(y,x) iff HAF PA(y, x)

(i) HAF A(y,x) if PAF A(#,x).
Proof It is easy to check that PA(%, x) — A(#, x) is a theorem of intuitionistic
logic. Also, HA being a subtheory of PA, HAF A(y, x) implies PAF A, x). From
PAF A(3, x) it follows, by classical logic, that PAF PA(#, x). Since PA(¢,x)is a
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1, sentence, we may use the fact that PA is conservative over HA with respect to
11, sentences (cf{10],3.8.6) to obtain HAF PA(Y, x).

We may now define A; to be the set of all £y formulas Ay (Z, y) such that for
gome x € Ng
PA A(¥, x)

(or equivalently HAF A(¢, x)).

Using the preceding results (which includes the theorem that PA is conservative
over HA with respect to Il sentences) we can give a proof of what is sometimes
called the Kleene-Post rule, as a formal analogon of the theorem of recursion theory.

Theorem 2.  Let () be a formula in the language of HA such that for some
Ag formulas ¥ and x:

HA + Vz(p(z) < Jyd(z,y)) and

HAF Vz(p(z) < Yyx(z, 1))

Then HA F Vz(p(z) V ~p(2)).

Proof From the assumptions of the Theorem we may immediately derive:
HAF Ve(Jy(z,y) < Yyx(z, ), ie. HAF Al x).

Assume now that ¢ is a node of an arbitrary Kripke model 9% of HA, and assume
for some a € Aq, ¢ | ~p(a). This means that for some s > ¢ in M, s i+ p(a). By
the first assumption of the Theorem, since s IFHA, it follows that s I= Jy(e, y),
i.e., for some b € A;, s I- ¥(a,b). By Theorem 1.(ii) this implies 2, & ¥(a, b) and
Ay t: 3?,”;5(0: y)-

For any node ¢ in M, by Lemma 2.(i), we have t |- PA(¢, x}. As PA(¢, x) is
a prenex formula, by Lemma 1.(ili), we get %, |= PA(%, x) and by classical logic

Thus we may derive U, = Yyx(a,y). By classical model theory, using Theorem
1.(ii1), it follows that A | Yyx(a,y) and so ¥; | Jy¥(e,y} and ¢ I+ Jytp(a, y) as
above. Using the first assumption of the Theorem we get ¢ I ela).

Remark. It is obvious from the proof that i and x may be taken to be ¥; and II,
formulas, respectively. Also, each of the exibited quantifiers may be replaced by a
string of quantifiers of the same type.

Corollary 2. Ifv is a £, formula and x is a II; formula and PAF YZ(¢ < x)
then HA F VZ(y V ) and HAFYz(x V x).

Proof Using Lemma 2. we obtain HAF A(4, x) and may then apply the proof of
the preceding Theorem,




Remark This argument does not extend any further, to arbitrary formula @ which
is, provably in PA, equivalent to a A, formula, since such ¢ may contain, for
example, subformulas of the type ¥Z(£ v —§) for & of arbitrary complexity.

The converse to Theorem 2. actually also holds.

Theorem 3.  Formulas decidable in HA are in A;(HA), ie, if HA - VE(p(Z) V
—(#)) then there exist a T; formula ¢ and a I, formula y such that:

HA b Va(p(E) = 9(z)) and  HAFVE(p(2) = x(2))-

Proof (provided by de Jongh). Using the standard procedure for eliminating the
disjunction in HA we get:

HA FVzdy((y = 0 — ¢(B)) A(my = 0 = —p(2)))-

Since y = 0 is decidable, we have HAF VZ3y(y = 0 < o(E)).

Using the fact that HA is closed under Church’s rule (cf [10], 3.1.18. or 4.4.6.)
and assuming HAF T(z,y,2) A T(z,y,2") — 2z = 2’ (c£[10], 1.3.10.), with some
manipulation, we get that for some e € N,

HA F VE(p(&) — 3w(T(e,&,w) AUw =0)).

The other part proceeds similarily, starting with HAF VZ(-¢(Z) V w(Z)), and
obtaining HAF VZ(p(2) & Yu~(T(d, z,w) AUw = 0)) for some d € N.

From Theorems 2. and 3. and the proof of Theorem 1.(i) we may immediately
derive that the set of formulas A;(HA} is closed under propositional connectives
and bounded quantification.

Lemma 3. Ift and s are nodes of a Kripke model of HA and t < s then:
Qtt <A, QIS.

Proof Let 3, x € Ag be such that HAF A{y, x) and assume, for some a € A,
A, & 3yv(a,y). Then s |- Fp(a,y), so t If —3y(a,y). By Theorem 2, it follows
that ¢ - Jy(a, y) and so A F Iyi(a, y)-

We may restate now the results of this section as a strengthened version of
Theorem 1.

Theorem 4. M = {{(T,0,<); % : t € T) is a Kripke model of HA and
@(z) € Ay and ¥(Z) € X1, the following holds for anv t,s € T and any & € Ay:

(i) tI- (@) Vv ~¢(a)

Gi) ¢ (@) T A Ep(@)




(i) ¢ < s implies (A, E p(@) ff U, Fp(@) (e A <a, Bs)-

The following two lernmas show that these results are in a sense the best pos-
sible, considering that HA+—Mpp is consistent (cf.[10], 3.8.3).

Lemma 4. Ifin a Kripke model M = ({T,0,<); %, : t € T) F HA,
s<t implies %, <g, %; foranys,te T,
then M F Mpgr.

Proof We show that in this case Markov’s principle holds in 9 for all ¥ formulas.
Suppose for some t € T, @ € A; and p € ¥y that |- ~—-3zg(x,d). This means that
for every #' > { there exists {/ > t' such that ¢ I- Jzp(z,a). Since Jzp(z,a) is 1n
%, it follows that A F Jzp(z,a). Ast <17, by the assumption of the lemma, we
have 9, F 3zp(z,a) and t - Jzp(z,a). Therefore

0 I+ Vg(—~Jzp(z,y) — Jee(z, §))
Lemma 5. Ifin a Kripke model M = {(T,0,<); ¥ : t € T) F HA, we have for
every t € T, every Il formula ¢ and every a € Ay
tl- ofa) iff A Fe(a)
then M E Mpr.

Proof We shall show that 901 satisfies the condition of Lemma 4. Let s <t €T,
¥ € Ag and suppose U, F Vai(z, ). By the assumption of this Lemma we have
s b Yzi(z, @) and so ¢ - Yey(x,a) and again A, EVr(x,a). Thus A, <z, 4.

We end with a theorem which one would not expect to be optimal in the sense
in which Theorem 4. is.

Theorem 5. Ift is a node in a Kripke model of HA then % F 14,

Proof %, E PA~, by Corollary 1., so let Jyp(z,y) be a Ay formula and assume
A, E y(0,y) AVz(Qyy(z,y) — yd(e+ L y). 2 ¥ YeIyip(z,y) then for
some a € A, we have %; }£ Jyv(a,y). Since Jy(a,y) is a 4 formula, we derive
t It Jyv(a,y) and since it is also Ay, we must have ¢ I= =Jsp(e, y), by Theorem
9. This means ¢ |- 3z-3y)(x, ). But in HA the least number principle holds for
decidable formulas (cf.[4],* 149a), so we may derive:
¢ de(—3yy(x, y) AVz < 2-3yd(z,y)).

Therefore, for some ¢ € A, we have t - ~Jyy(c,y) and ¢ IF Yz < ¢3yy(z, 3}, since
Jyy(z,y) is decidable. From the first we derive A, F Yy—-ip(e,y) and from the
second U, F Vz < cIyd(z,y). Obviously ¢ # 0 since we assumed A, & Ayl(0, y).
Then t b Jy(y + 1 = ¢}, ie, ¢ — 1 € Ay and ¥ F Syy(c — 1,y). However, by

the assumption, this would imply ®; F 3y¢¥(c,y) which is a contradiction. Thus
A, EVeIyy(z, y).
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