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Abstract. The notion of arrow structure /a.s./ is introduced as an
algebraic version of the notion of directed multi graph. By means
of a special kind of a representation theorem for arrow structures
it is shown that the whole information of an a.s. is contained in
the set of his arrows equipped with four binary relations descri-
bing the four possibilities for two arrows to have a common point.
This makes possible to use arrow structures as a semantic base for
a special polymodal logic, called in the paper BAL /Basic Arrow
Logic/. BAL and various kinds of his extensions are used for ex-
pressing in a modal setting different properties of arrow structu-
res. Several kinds of completeness theorems for BAL and some other
arrow logics are proved, including completeness with respect to
classes of finite models. And the end some open problems and pos-
sibilities for further development of the "arrow" appreoach are
formul ated.

Introduction

There exist many formal schemes and tools for representing
knowledge about different types of data. Sometimes we can better
understand this knowledge if it has some graphical representation.
In many cases arrows are very suitable visual objects for repre-—
senting various data structures: different kinds of graphs, binary
relations, mappings, categories and so on. An abstract form of
this representation scheme is the notion of arrow structure
/a.s./, which in this paper is an algebraic version of the notion
of directed multi graph. Simply speaking, a.s. is a two sorted
algebraic system, consisting of a set of arrows Ar, a set of
points Po and two functions 1 and 2 from arrows to points, assign-—-
ing to each arrow x the point 1(x) - the beginning of x, and the
point 2(x) — the end of x. By means of 1 and 2 we define four re-
lations Rij i,j=1,2 such that xRijy iff i(x)=43(y). These relations

define the four possibilities for a two arrows to have a common
point. So each a.s. S5 determine a relational system W(S)=(Ar,
{Rij/ij=1’2}) called arrow frame /a.f./. It is shown that the

whole information of an a.s. S is contained in the arrow frame
W(S). Arrow frames as relational systems with binary relations are
suitable for interpreting polymodal logics, having modal operati-
ons, corresponding to each binary relation in the frame. So we
introduce a modal language £ with four boxes [ijl with standard
Kripke semantics in arrow frames . We show how different proper—
ties of arrow frames are modally definable by means of modal for-—
mulas of £. The logic of all arrow frames is axiomatized and
called BAL — the Basic Arrow Logic. This paper is mainly devoted
to study BAL and some of their extensions.

The paper is organized as follows.

Section 1 is devoted to arrow structures and arrow frames.



In section 2 we introduce semantically the notion of arrow
logic as the class of all formulas true in a given class of arrow
frames. Some definability and undefinability results are proved
there. For instance, applying some special technigques, called “"co-
pying", we show that the logic of all arrow frames coincides with
the logic of all normal arrow frames, which correspond to directed
graphs, admitting no more than one arrow between an ordered pair
of points.

In section 3 we give axiomatization of the logic of all arrow
frames — BAL and prove several completeness theorems.

In section 4, applying the filtration technic from ordinary
modal logic we prove that BAL and some other arrow logics possess
finite model property and are decidable.

In section 5 we study an extension of BAL with a new connective
interpreted by an equivalence relation between arrows, stating
that two arrows are equivalent if they have common begins and
common ends.

In section &6 we study another extension with a modal constant
Loop, which is true in an arrow if it has common begin and end,
i.e. if it forms a loop.

Section 7 is devoted to a short survey for possible directions
for further development, including extensions with different poly-—
adic modalities, corresponding to some typical relations between
arraows as Pathn, Pathm, Loopn, Trapeziumn, Triangle and others.

There are some natural generalizations of modal 1logic of binary
relations and Lambek Calculus. Finally it is shown a way of many

dimensional generalization of arrow structures, which makes pos-—

sible to consider an n—ary relation in a set as an n—dimensional

arrow structure. Among the logics based on n—-dimensional arrow

frames are some natural generalizations of the so called cylindric

modal Logics.

The idea to look for a logic based on two sorted structures
having points and arrows, was suggested to me by Johan Van Benthem
[BEN 90]1. The first results were included in the manuscript [VAK
201 and the many—dimensional generalization in the abstracts [VAK
921al and [VAK 92]1. The terms arrow frame and arrow logic were
introduced by Van Benthem [BEN 8%] in connection with some genera-
lizations of the modal logic of algebra of relations. Van Bethem’s
arrow frames consist of a set of objects with composition as a
ternary relation, converse as a binary relation and a set of iden-—
tity arrows. These relational structures are so abstract that
there is no any representation theorem stating that the arrows
look indeed as arrows, with beginning and end. We adopt Van Ben-—
them’s terminology, because it fits very well to the subject of
this paper.

1. Arrow structures and arrow frames

By arrow structure (a.s.) we shall mean any system S=(Ar, Po,
1, 2), where

® Ar is a nonempty set, whose elements are called arrows,

® Po is a nonempty set, whose elements are called points. We
assume also that ArnPo=9.

® 1 and 2 are total functions from Ar to Po associated to each

arrow % the following two points: 1(x) — the first point of x
(beginning, source, domain), and 2{(x) - the last point of x (end,
target, codomain). Graphically:

1(x)® >0 ()




If A=1(x) and B=2(x) we say that x connects A with B, or, that
(A,B) is a connected pair of points. It is possible for a pair of
noints {A,B) to b= connected by different arrows.

® For some technical reasons we assume the following axiom for
arrow structures:

(Ax) For each point A there exists an arrow x such that A=1{x)
or A=2(x). In other words, each point is ether the first or the
last point of some arrow.

fn a.s. S is called normal if it satisfies the following condi-
tion of normality

(Nor) If 1(2)=1(y) and 2(x)=2(y) then x=y.

Sometimes, to denote that Ar, Po, 1, 2 are from a given a.s. 5,
we will write AFS, PDS, 1S and 25.

The main examples of a.s. structures are directed multi-graphs,
and for normal a.s. — directed graphs without isolated points.
These are notions studied in Graph theory where graphs are visua-—
lired, or sometimes defined, by geometrical notions of a point and
arrow. In graph intuition arrow is a part of a line with some di-
rection, connected two points. Formally, the notion of an arrow
structure coincides with the notion of directed multi-graph with-
out isolated points. We will prefer, however, the term "arrow
structure” as more neutral, having models, not only connected with
graph intuition, as for example, categories and binary relations.

The example of a.s. constructed from a binary relation can be
defined as follows. Let R be a nonempty binary relation in a non-—
empty set W. Define Ar=R, Po={xeW/(dyeW) xRy or yRx)} and for
(x,y)eAr define 1((x,y))=x and 2((x,y))=y. Then, obviously (Ar,
Po, 1, 2) is a normal a.s. In some sense this example is typical,
because each normal a.s. can be represented as an a.s. determined
by a non—empty binary relation.

Let S be an a.s. The following binary relation p=ps can be de-—
fined in the set PDS. For each A,BePoS:

ApB iff (Bxeﬁrs)(i(x)=ﬁ and 2(x)=R)

According to some properties of PS we can consider different

kinds of arrow structures:
is serial a.s. if Pg is a serial relation (i.e. VA 3B ApB),

is reflexive a.s. if Pg is a reflexive relation,
is symmetric a.s. if Pg is a symmetric relation,

is transitive a.s. 1if Pg is a transitive relation,

¢ ¢ ¢ ¢ @
mwmw m mw ,

is total a.s. if Pg is a total relation, i.e. PS=PDSXPD§.

Let S be a given a.s. The following four relations Rij=Rij’

i,je{1,2> in Ar, (called incidence relations in 8), will play a

S
fundamental role in this paper:
xRijy iff i(xd)=4(y)

The following pictures illustrated the introduced relations:

% VY H Y
lely: y - xR

L 4

227

¢

X

Y ® Y

szly: > & > lezy + ® ¢

Lemma 1.1. The relations Rij satisfy the following conditions for



any %,y,z€fAr_ and i,j,ke{l,23:

S
(pii) xRijx, <

(ol j) I+ xRijy then ijix,

(7ijk) If xRijy and ijkz then xRikz.

Proof. By an easy verificatidn.ms

Let W=(W, Rll’ R22’ RIE’ R.,), Wx0, be a relational system. W

2177

will be called arrow frame (a.f.) if it satisfies the axioms
tpii), (oij) and (tijk) for any i,j,ke{l,2%and x,y,zeW. The class
of all arrow frames will be denoted by ARROW. If S is an a.s. then

the a.f. SAF(S)=(AFS, R?l’ Rgz, RS RS ) will be called a stan—

127 21

dard a.f. over S. The class of all standard a.f. will be denoted
by (standard)ARROW. One of the main results of this section will
be the proof that each a.f. is a standard a.f. over some a.s.,
i.e. (standard)ARROW=ARROW.

Lemma 1.2. Let § be an a.s. Then the following esquivalences are
true, where x,y,z range over Ars:

{i) § is normal a.s.iff ny(lely % szzy—»x=y),

(ii) 8 is serial a.s. iff 9Vxdy szly,

(iii) 8§ 1is reflexive a.s. iff any(lely % szlx) and
any(szly % ngzx),

{iv) S is symmetric a.s. iff any(lezy & lezx),

{v) § is transitive a.s. iff nySz(ngly—¢lelz 2 yREzz).

{vi) S is total a.s. iff Vije{l,E}nyBz(xRi z % zRajy)

1

Proof. As an example we shall prove (ii).

{—) Suppose S5 is serial and let xeAFS and 2(x)=A. By seriality

g such that ApB. Then for some yeArS we have

1(y)=A and 2(y)=B, so 2(x)=1(y), which yields valy. Thus

there exists BeFo

Vi dy szly.

(«—) Suppose Vx3y XREIY and let AePoS. Then by (Ax) there

exists xeArS such that A=1{(x) or A=2(x).

Case 1: A=1(x). Let B=2(x), then ApB.
Case 2: A=2{(x). Take y such that xRﬂly. From here we get

20:)=1(y) and A=1(y), Take B=2(y), then we get ApB. So in both
cases VAIB ApB.

The remaining conditions can be proved in a similar way. =
This lemma suggests the following definition concerning arrow
frames. Let W=(W, Rll’ R22, R12’ R21) be an a.f., then W is called:

&4 is normal a.f.if+f ny(lely & xRBﬂy—»x=y),

® Wis serial a.f. iff SVx3Iy XREIY’

® W is reflexive a.f. iff VkEy(xRZIY % quzy) and
VxBy(lezy % XRIIY)’

® Wis symmetric a.f. iff VkBy(lezy & xRZIy),

® W is transitive a.f. iff kaBz(szly—+xR z & YR222)’

11

® W is total a.f. iff Vije{1,2}V’xyaz(xRi z & zR

1 2J.y),. where the

variables x,y,z range over the set W.

a



The class of all normal arrow frames will be denoted by
(nor)ARROW. Analogously we introduce the notations (ser)ARROW,
{ref)ARROW, (sym)ARROW, (tr)ARROW and (total)ARROW for the classes
aof all serial a.f., reflexive a.f., symmetric a.f., transitive
a.f. and total a.f. respectively. We will use also a notation as
(ref) (sym)ARROW denoting the class of all reflexive and symmetric
arrow frames.

Obviously, if W is total a.f. then W is reflexive, symmetric
and transitive a.f. An a.f. is called pretotal if it is reflexive,
symmetric and transitive. The class of all pretotal a.f. is deno-
ted by (pretotal)ARROW. Using combined notations we have that
(pretotal )ARROW={ref) (sym) (tr) ARROW.

Let W=(W, Rll’ R22’ R12’ R21) be an a.f. and W SW, W’#0 and R;j

are the relations Rij restricted over W’. Then obviously the sys-—

tem W =(W?*,R}.,, RL.,, RI.,, RL,) is an a.f. called subframe of W.
11 22 12 21
The frame W’ is called generated subframe of W if

Vije{l,E}Vxew’Vyew(xRijy—ayeW’). If aeW then by ﬂa will be denoted
the smallest generated subframe of W, containig a. ﬂa is called an

arrow subframe of W generated by a. I+ W is an a.f. and there
exists some aelW such that ﬂ;ﬂa then W is called a generated a.f.

(by a). If £ is a class of arrow frames then by den we denote the

class of all generated frames of Z.
Lemma 1.3. (i) ((pretotal)ARRDW)genS(total)ARRDW,

(11) ((pretutal)ARRDN)gen=(tDtal)ARRDN

Proof. By an easy verification.ms
Let S be an a.s. and for ie{l1,2} and AEPDS define:

i(A)={xeArS/i(x)=A}, g{A)=1({(A),2(A)).

Lemma 1.4. The following is true for each x,yeArS and 1,3e{1,2%:
(1) If xei(A) and yej(A) then xR?jy,
(2) IF xR?jy then xei(A) 1ff yej(A),

(3) 1 (Au2(hA)=O.
Proof. By an easy verification.s
Lemma 1.4 suggests the following definition. Let

W= (W, Rll’ R22, R12’ Rzl) be an a.f. and o4y and o be subsets of

W. The pair (dl,dz) will be called a generalized point in W if it

satisfies the following conditions for each x,yeW and i,Jje{l1,23:
(1) I+ xedi and YEdj then xRijy,

(2) If xRijy then x€d, iff yedj,

(3 oby

The set of generalized points of an a.f. W will be denoted by
Po(W). Lemma 1.2 now means that g(A)=(1{(A),2(A)) is a generalized
point in the standard a.f. SAF(S) over 5.

For any binary relation R in W and x€W define R(x)={yeW/xRyJ}.

Lemma 1.5. Let U=(U, U11’ R22, R12’ R21) be an a.f.. Then for any

;3 2. i = =
®x,yeld and i,je{l,23: xRijy iff Ril(x) le(y) and Ri2(x) Rjz(y)

Ud.,)#ﬂ.

Proof. By an easy calculation, using the axioms of a.f.m
Lemma 1.6. Let W be an a.f. Then for any x,y,zeW and i,Jj,ke{1,23}:
(i) The pair k(z)=(Rk1(z), sz(z)) is a generalized point in W.



{ii) For each generalized point (dl,dq) there exists zeW and

ke{1,2} such that k(z)={d,.d,)-

1
(iii) xRijy iff 1{x)=3(y).
Proof. (i) Let i,je{l1l,2Y and xe€R

szix kjy' 2
get xRijy. This proves condition (1) from the definition of gene-

ki(z) and yeRkj(z). Then we have

Then by (oki) we obtain xRi and by (7tik3ji) we

and zR

ralized point. In a similar way one can verify condition (2). By
(pkk) we have kakx, sO Rkk(x)#a. This shows that R, . (:)UR _ (2) =0,

ki k2
which proves condition (3).
(ii) Let (dl’dﬂ) be a generalized point in W. Then there exists
zeW such that ze¢1Ud?.
Case 1: ze€d,. In this case we will show that k=1, i.e. that

1
(dl,d2)=1(z)=(R11(z),R12(z)) i.e. that d1=R11(z) and that

d2=R12(z).

Let xe¢1. Since zedl,

lized point we get xR
that xeRll(z).

Now let xeRll(z). Then lelx

definition of generalized point we get xed

then by (1) of the definition of genera-—

So by (o11) we obtain zR which shows

115" 1177

and since ze&d by (2 of the

1!

1" This proves the equ-—

ality o,=R,.. In a similar way on can prove that J4.=R,_,(z).
1 11 2 12

Case 2: ze€d,. In this case k=2 and we can proceed as in case 1.
(iii) By lemma 1.5. we have: xRijy iff R. (x)=Ri7(y) and

i1
le(x)=Rj2(y) iff (Ri (x)’RiE(x))=(Rj1(y)’j (y))iff 1i{(x)=3(y).m

1 2
Mow we shall give a construction of arrow structures from arrow

frames. Let W=(W, Rll’ Rons Rla’ qu). Define a system 5=5(W) as
follows: Ars=w, PDS=PD(§) — the set of general points of W, for
k=1,2 and zeW let ks(z)=k(z)=(Rk1(z),sz(z)) as in lemma 1.6. In

the next theorem we shall show that S(W) is an a.s. called the
a.s. over W.
Theorem 1.7. (i) The system S(W) defined above 1is an a.s. More
over:

(ii) The standard a.f. SAF(S5(W)) over S5(W) coincides with W.

(iii) S(W) is normal (serial, reflexive, symmetric, transitive,
total) a.s. iff W is normal (serial, reflexive, .. and so on )}
a.f. :

Proof. (i) By lemma 1.6.(i) and (ii) we obtain that the system
S{W) is an a.s.

(ii) By lemma 1.1 and lemma 1.6.(ii1) SAF(S5(W)) 1is a standard
a.f. such that for any x,veW and i,Jje{l,2}: xRijy iff  1(x)=3(y)

iff xR?jy, which shows that SAF (S (W) )=W.

(iii) By lemma 1.2. S(W) is normal (serial,...) a.s. 1iff the
corresponding standard a.f. SAF(S(W)) over S(W) is normal
(serial,...). By (ii) SAF(S5(W))=W, which proves the assertion. =
Corollary 1.8. (standard)ARROW=ARROW

Proof. From theorem 1.7.m

Let S and S’ be two arrow structures. A pair (f,g) of



11—Ffunctions f:ArS—eArS, and g:PoS—aPoS, is called an isomorphism

from S onto S§° if for any xeArS and i=1,2 we have g(is(x))=
(F{x)).

Lemma 1.9. Let S5 be an a.s. W=SAF(S) be the standard a.f. over
S, Po(W) be the set of generalized points of W, and S>=5(W) be the
a.s. aover W. Let for AePoS g(AY={1(A),2(A)) be the Ffunction

15,

defined before lemma 1.4. and for xeArS and 1i=1,&2 is,(x)=

(R?l(x),R?ﬂ(x)) be the function defined as in lemma 1.6.(i). Then:
5 onto Po(W).

5 and i=1,2: g(i(x))=18, (x).

Proof. Obviously g(A) is a generalized point in W. Let g(A)=

g(B). Then 1(A)=1(B) and 2(A)=2(B). For A we can find xeArS such

that 1 )=A or 2(:)=A. Then x<1 (A) or x<2(A). Suppose xei (A). Then
el (B), so 1(x)=B. From 1(x)=A and 1(x)=B we get A=B. In the case
xe2(A) we proceed in the same way and get A=B. This shows that the
mapping is injective. To show that it is "onto" suppose that
(dl’d?) is a generalized point in W. We shall show that for some
AePoS g{A)={1{A) . 2(A))=(d

Z€d.,,.

Casel: z€d, - Let 1(z)=A, so ze€l (A). We shall show that 1(A)=oL1

and that 2(A)=d.,. Suppose x€1 (A). Then 1(x)=A, so 1(x)=1(z) which

(i) g is a 11—function from Po

(ii) For any x€Ar

sd,) . Since o, Ud #0 there exists zed1 or

1 1772

yvields xRS Since zed then, by the properties of generalized

11%-
points we get xed

1!

g SO 1(A)Sd1. Suppose now that xedl.
z, so 1{x)=1(z)=A. Then xel1(A), so dlsi(n). Con—

In a similar way one can show that 2(A)=d,.

Then, since

T€d we get xR

1? 11
sequently 1(A)=d1.

Hence, in this case g(A)=(d, ,d,)-

1!

Case 2: zZ€dy- The proof is similar to that of case 1.

(ii) Let xeArg and i=1,2. Since gix))=01 ({1 x),a2(1(x)) and
S (%)), To show that g(i(x))=18,(x), we have to

i, (x)Y=(R,  (x2),R_
S il i2 5 5
prove that l(i(x))=Ri1(x) and that 2(1(x))=Ri1(x). For that pur-

pose suppose that yel ((1 (%)), so 1(y)=i(x). Thus yR?lx, which

vields yéR? (x). Consequently 1(1(x))SR?1(x). The converse inclu-—

1
sion and the second equality can be proved in a similar way. =
Theorem 1.10. Let S be an a.s., W=SAF(S) be the standard a.f. over
S and S(W) be the a.s. over W. Then S is isomorphic with S(W).

Proof. Let for xeArS fi{x)=x and +For AePoS g(A)=1(A),2(A)).

Then lemma 1.8 shows that the pair (f,g) is the required isomor-
nhism. =

Theorems 1.10 and 1.7 shaow that the whole information of an
a.s. 5 is contained in the standard a.f. SAF(S) over S and can be

expressed in terms of arrows and the relations R?j. An example of

such a correspondence is lemma 1.2. As for first order conditions
about the relation p this correspondence can be defined in an
effective way. The intuitive idea of this translation can be ex-
plained in the following way. By the axiom (Ax) for each point A
there exists ie{1,2} such that A=i(x). So each variable A for a

7



point is translatsq py 5 pair (i,x), where x denotes an arrow and
i denotes one of the numbers 1 and 2. Suppose now that we have
ApR, A=i(x) and B=i(y). Then by the definition of p we have:
(3u) (1 (u)=i (x) & 2(uw)=3i(y)) which is equivalent to (Bu)(xRilu %

URon)' So if A is translated by (i,x) and B by (j,y), then the

corresponding translation of ApPB will be the formula

==\ = 4 2 - i LY .= -
© xSijy (HU)("Rilu % uszy) Here obviously 513 RIIOREJ The para

meters i and i in ¢ can be eliminated according to under what kind
of quatifiers are A and B. If for example A is under the scope of
(VA), we change this quantifier by (Vi) (V%) and accordingly for
(3A). Then quantifiers of the type (Vi) and (3i) can be eliminated
in a standard way by conjunctions and disjunctions of formulas,
putting on the place of i 1 and 2. Let us take for example the
formula (VA) (ApA). First this formula is translated by
(Vi)(Vx)xSiix. Eliminating (Vi) we obtain

(Vx)(xsllx) % (V) (xS, %), which is equivalent to

(Vx)(By)(lely & szlx) % (Vx)(By)(xREly& szzx)

which is exactly the condition of reflexivity of p from lemma 1.Z2.
The translation of the formula (VA) (3B) (ApB) is the following:
(Vi)(Vx)(Ej)(Ey)(xSijy)

Eliminating (Vi) we obtain the conjunction of the following two

formul as:
p1j=(Vx)(33)(3y)(x81jy),

p2j=(Vx)(3j)(3y)x82jy).
Eliminating (33) from plj and pzj we obtain the following formulas
pl and pE:
qo1=(V}:)((3y)(>:S1
p2=(Vx)((Sy)(szly)v(By)(xSEEy)). Substituting here Sij we

ly)v(ay)(xslzy)),

obtain
p1=(Vx)((3y)(Hz)(lelz & szly)v(Ey)(az)(lelz & zRgzy)),
p2=(Vx)((3y)(32)(xR212 % szly)v(Sy)(Bz)(xﬂzlz % ZRZEY)

The formula p1 is always true in a.s. because in the second dis-
junct we can put y=z=x. It follows logically from ¢, the following

formula e=(¥x) (3z) (xR which is exactly the condition of seri-—

2177
ality from lemma 1.2. It is easy to see that ¢ implies in a.s. the
formula pz.

The described intuitive idea of translating first order senten-—
ces for points in terms of p and = in arrow structures into equi-
valent sentences for arrows in terms of the relations Rij can be

given in precise terms, but we will do not that in this paper.

2. Arrow logics = semantic definitions and some definability and
nondefinability results

In this section we shall give a semantic definition of modal
logics, called arrow logics. For that purpose we introduce the
following modal language ¥£. It contains the following symbols:

® VAR — a denumerable set of proposition variables,

® 1, A, v — classical propositional connectives,

e [ijl, i,j=1,2 — four modal operations,

/!



® (,) — parentheses.

The definition of the set of all formulas FOR for £ is defined
in the usual way.

gbbreviations: A=2B=-AvH, AeB=(A=3B) A(B=a24A) , 1=AvA, =-1,
<i3j>A=-[131-A.

The general semantics of £ is a Kripke semantics over relatio—
nal structures of the type W=(W, Rll’ R22, R12’ REI) with W=g,

called frames. The standard semantics of £ is over the class ARROW
of all arrow frames. Let us remind the basic semantic definitions
and notations, which we will use /for more details about Kripke
semantics and related notions we refer Segerberg [SEG 711, Hughes
2

% Cresswell [H%C 841 and Van Benthem [Ben 8&1/. W
Let W=(W, Rll’ Rﬂz’ R17! Rzl) be a frame. A function v:VAR—2

assigning to each variable peVAR a subset v(p) of W is called a
valuation and the pair M=(W, v) is called a model over W. For xeW
and A<FOR we define a satisfiability relation x"—;——A in M /to be

read "A is true in % at the valuation v"/ by induction on the com—
plexity of the formula A as in the usual Kripke definition:
x"—;——A iff Aev(A) for AeVAR,

x| -A iff xﬂ—;—+ﬁ /not xl
xH—;——AAB iff xﬂ—sf—ﬁ and xﬂ—;——B,
K“—;——AVB iff x"—;——é or xﬂ—;——B,
|l CijlA i+f (Vyew)(xRijy — yﬂ—;——A).

We say that A is true in the model M=(W,v), or that M is a
model for A, if for any xeW we have xﬂ—;——A. A is true in the

Az,

frame W, or that W is a frame for A, if A is true in any model
over W. A is true in a class £ of frames if A is true in any mem—
ber of £. A class of formulas L is true in a model M, or M is a
model for L, if any member of L is true in M. L is true in a class
of frames £ if any formula from L is true in Z. L is called the
logic of £ and denoted by L(X) if it contains all formulas true in
T. Dbviously, this operation of assigning sets of formulas to
classes of frames is antymonotonic in the following sense:

If £<2* then L(Z7)<sL ().

In this paper we will study the logics L ( {standard)ARROW,
L (ARROW), L ((nor)ARROW), L ({(ser)ARROW), L ((ref)ARROW,
L{(sym)ARROW), L{(tr)ARROW), L{(pretotal)ARROW), L{(total)ARROW).
The most important logic from this list is L({(standard)ARROW). The
first result which, can be stated for L(standard)ARROW) and which
follows immediately from corollary 1.8. is that

L( {(standard) ARROW) =L (ARROW) .

We say that a condition ¢ for Rij is modally definable in a

class T of frames if there exists a formula A such that for any
frame WeZ: A is true in W iff ¢ holds in W. If a class of +frames
is characterized by a condition ¢ which is modally definable in
the class of all frames, then we say that ¥ is modally definable
class of frames. The following lemma is a standard results in
modal definability theory.

Lemma 2.1. /Modal definability of arrow frames/ Let Z be the
class of all frames and A€VAR. Then in the next table the conditi-
ons from the left side are modally definable in £ by the formulas
from the right side: (i,j,k=1,2)

(pii) (Vx)xRiix, (Pii) [iiJA=A,

(ol ) (ny)(xRijy — yRJix) (£ij) AvL[ijil-LfiilA,



(tijk) (nyz)(xRin and yRsz —_ xRikz) (Tijk) [iklA=[iilLjkI1A.

Corollary 2.2. The class ARROW is modally definable.

Lemma 2.3. Let I=ARROW and AeVAR. Then in the next table the
conditions from the left side are modally definable in Z by the
faormulas from the right side:

seriality of an a.f. (ser) <21>1,

reflexivity of an a.f. (ref) (C111L21]JA-’AN) A(L21IL22TA-A),

symmetricity of an a.f. (sym) [121L12]A=A,

transitivity of an a.f. (tr) [111022]1A-[21]A.

Proof. As an example we shall show the validity of (tr) in an
a.f. W implies that W is a transitive a.f. For the sake of contra-
diction, suppose that (tr) is true in W and that W is not transi-
tive a.f. Then for some x,y,z€W we have szly and

not(EzeN)(lelz % zszy). Define v{A)=W\{yX. Then yH—;—%A and
since xR?Iy we get xﬂ—v—#EEIJA. We shall show that

vl

[111C22]1A. Suppose that this is not true. Then for some

z,teld we have xR zR,t and tu—v—+A, hence t=y. So

(32)(xR112

Corollary 2.4. The classes (ser)ARROW, (ref)ARROW, {(sym) ARROW,
(tr)ARROW and (pretotal)ARROW are modally definable.

We shall show that the condition of normality of an a.f. is not
modally definable and consequently that the class (nor)ARROW 1is
not modally definable. We shall show Ffirst that the logic
L {{nor)ARROW) coincides with the logic L{(ARROW). For that purpose
we shall use a special construction called copying, adapted here
for relational structures in the type of arrow frames.

Let W=(W, Ryys Roops Ryns Ryy) and W=(W,Ry,, RG5, Rigs Ry be

two frames and M=(W, V), *=(W’, v’) be models over W and W' res-—
pectively. Let I be a nonempty set of mappings from W into W'. We
say that I is a copying from W to W if the following conditions
are satisfied for any i,Jje{1,2}, x,yeWand f,gel:

(I1) (Vy eW’) (JyeW) (gel)gly)=y”

(I2) If f(x)=g(y) then x=y,

(Rijl) If XRijy then (erI)(ageI)f(x)R;jg(y),

(Rijz) If f(x)Rijg(y) then xRijy.

We say that I is a copying from M to M if in addition the follow-
ing condition is satisfied for any peVAR, xeW and fel:

(V) xevip) iff fF00)ev’ (p).

For xeW and fel f(x) is called f-th copy of x and +FfW)=
{f(x)/%eW} is called f-th copy of W. By (I1) we obtain that W=
UCf (W) 7fel}, so W’ is a sum of his copies. If I is one element set
{f¥ then f is an isomorphism from W onto W’.

The importance of the copying construction is in the following

Lemma 2.5. (i) (Copying lemma) Let I be a copying from the
model M to the model M’. Then for any formula Ae¥, x<W and felI the
following equivalence holds:

meT—A iff f(X)LTF—A .

(ii) If I is a copying from the frame W to the frame W’ and v
is a valuation, then there exists a valuation v’ such that I is a
copying from the model M=(W, v) to the model M’ =(W’, v’).

Proof. (i) The proof is by induction on the complexity of the
formula A. For AeVAR the assertion holds by the condition (V) of
copying. If A is a Boolean combination of formulas the proof is
straightforward. Let A=[ijlB and by the induction hypothesis

11%*
% zR,,Y) . which is a contradiction. =
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(i.h.) suppose that the assertion for B holds.

(—) Suppose x| v [ijlB and fel. To show that fOGol vE

suppose f(x)R;jy’ and proceed to show that 71 v . By (I1)
(IyeW) (Agel)gly)=y’, so f(x)R;jg(y) and by (Rijz) we get xRijy.
From xRijy and xl [ijilB we get yH-;——B. Then by the i.h. we get

g(y)"—;;—B, s0 Y’"—;T—B-

Lij1B

(«—) Suppose f(x)I [ijlB. To show that xl [ijlB suppose

v,
xRijy and proceed to show that y"—;——B. From xRijy we obtain by

(Rijl) that there exists geW such that f(x)R;jg(y). Then, since
00 v —R and by the i.h. y"—;——B.

(ii) Define for peVAR:

v (p)={x’eW’ /7 (TxeW) (Ifel) f (x)=x" and xevip)Z
We shall show that the condition (V) of copying is fulfilled. Let
xeW and fel and suppose xev(p). Then by the definition of v’ we
have f(x)ev® (p). For the converse implication suppose fGidev? (p).
Then there exists yeW and gel such that f(x)=g(y) and vyevi(p). By
(IZ) we get x=y, so0 xevip).m

Lemma 2.6. Let W=(W, Rll’ oo RIE’ R21
Then there exists a normal arrow frame ﬂ’=(N’,R;1,Ré2,R12,Rél) and
a copying I from W to W’ and if W is a finite a.f. the same is W'.

Proof. Let B(W)=(B(W), O, 1, +, .) be the Boolean ring over the
set W, namely B(W) is the set of all subsets of W, 0=9, 1=W, A+B=
(A\BYU(B\A) and A.B=AB=AnB. Note that in Boolean rings a—-b=a+b.

We put W =WXB(W), I=B(W) and for fel and xeW we define fix)=
(x,f). Obviously the conditions (I1) and (IZ2) from the definition
of copying are fulfilled and each element of W’ is in the form of
f(x) for some fel and xeW.

For the relations R;j we have the following definition:

[ijilB, we get gy}l v

R ) be an arrow frame.

f(x)R;jg(y) iff xRijy & (f+i.{xI=g+j.{y?). Here the indices i,

je{1,2? are considered as elements of B(W): 1 is the unit of B{W)
and 2=1+1=1-1=0.
To verify the condition (Rijl) suppose xRijy and fel. FPut

g=Ff+i.{x2—j.{y¥. Then f+i.{x}=g+ij.{y}, which implies f(x)R;jg(y).
Condition (RiJE) follows directly from the definition of R;j. So I

is a copying.
The proof that W’ with the relations R;j is an arrow frame Iis

straightforward. For the condition of normality suppose
f(x)Rilg(y) and f(x)Rézg(y). Then we obtain lely &

(F+1. {x3=g+1l.{y3) and XREEY & (f+2.{x3¥=g+2.{y}). From here, since

2=0, we get f=g and f+{x3i=g+{y}, which implies {x¥={y?}, hence x=y
and f(x)=g(x). Thus W’ is a normal a.+f.

Suppose now that W is a finite a.f. Then the Boolean ring over
W is finite too and hence W’ is a finite a.f.m

If £ is a class of a.f. then the class of all finite a.f. from
Z is denoted by Zfin'

Theorem 2.7. (i) L{(nor)ARROW)=L (ARROW) .
(ii) L({((norYARROW) _. Y=L(ARROW_. ).
fin fin
Proof. (i) Since (nor)ARROWSARROW we get
L(ARROW) € L((nor)ARROW). To prove that L ((nor)ARROW) <L (ARROW)

11



suppose AeL (ARROW). Then there exists an a.s. W, xeW and a valuat-
ion v such that xll—\T—/-A. By lemma 2.6. there exists a normal a.s.

W' and a copying I from W to W'. By lemma 2.5.{ii) there exists a
valuation v® in W’ such that I is a copying from the model (W, v}
to the model (W, v’). Then by the copying lemma we get for any
fel that f(x)"—;;%é. So A is not true in W*and hence

Ael ( (nor)ARROW) . So L {{(nor)ARROW) <L (ARROW) .

(ii) The proof is the same as the proof of (i), using the fact
that lemma 2.6 guaranties that W’ is a finite a.f. =

Corollary 2.8. The condition of normality of an a.f. is not
modally definable.

Proof. Suppose that there exists a formula ¢ such that for any
a.f. W: ¢ is true in W iff W is normal. So pel((nor)ARROW) . Let ﬂﬂ

be an a.f. which is not normal. Then ¢ is not true in W s0

_0’
pel (ARROW) , hence by theorem 2.7 pel ({(nor)ARROW), which is a con-—
tradiction.ms

Another example of modally undefinable condition is totality.
First we need the following standard result from modal logic.

Lemma 2.9. Let T be a nonempty class of a.f. closed under sub-
frames and let Sgen be the class of generated frames of Z. Then
L(Z)=L(Z ).

gen
Corollary 2.10. (i) L{{pretotal)ARROW)=L{{({(pretotal)ARROW) )=

gen
L{(total)ARROW.
{(ii) L((pretotal)ARRDW)fin)=L((((pr‘etutal)ARRDN)g ) )=

en fin
L{i((total)ARROW) _. ).
fin

Proof. (i) The first equality follows from lemma 2.9 and the
second — from lemma 1.3.

{ii) Use the fact that generated frame of a finite frame is a
finite frame too. =

Corollary 2.11. The condition of totality of an a.f. 1is not
modally definable.

Proof. Suppose that there exists a formula ¢ such that for any
a.f. W: p is true in W iff W is total a.f. Then pel ( {(total) ARROW)

and by corollary 2.10 pelL ((pretotal)ARROW). Let ﬂo be a pretotal

a.f. which is not total (such frames obviously exist). Then ¢ is
not true in ﬂﬂ, so el ((pretotal)ARROW) — a contradiction.m=s

3. Axiomatization of some arrow logics

In this section we introduce a syntactical definition of arrow
logic as sets of formulas containing some formulas as axioms and
closed under some rules. The minimal set of axioms which we shall
use, contains those from the minimal modal logic for each modality
[ijl and the formulas, which modally define arrow frames. The for-—
mal system, obtained in this way is denoted by BAL and called
Basic Arrow Logic.

Axioms and rules for BAL.

(Bool) All or enough Boolean tautologies,

(K[£ijl) L[ijl(A=:B)=(LijlA=L[ijlB),

(Pii) [iilAaA,

(Zi3) Avlijil-CiilaA,

(Tijk) [iklA=LCi31CikIA,

(MP) A’A*B,(N[ij])

5 s1,]1 are anymembers of{1,2} and

L
[ijlA

12



A and B are arbitrary formulas.

We identify BAL with the set of its theorems.

By an arrow logic (a.l.) we mean any set L of formulas contain—
ing BAL and closed under the rules (MP), (NLijl) and the rule of
substitution of propositional variables. So BAL is the smallest
arrow logic. We adopt the following notation. If X is a finite se—
quence of formulas , (taken as a new axiom) then by BAL+X we deno—
te the smallest arrow logic containing all formulas from X. We
shall us the following formulas as additional axioms:

(ser) <211,

(ref) ([111021A=3A) A([211[22]1A-A),

(sym) [121[12]1A-A,

(tr) [111022]1A-[21]A.

Let Xc{ser, ref, sym, tr} and let for instance X={ser, trl.
Then BAL+X= BAL+ser+tr. We will use also the notation (X)ARROW and
for that concrete X (X)ARROW= (ser) (tr)ARROW.

Let L be an a.l. and £ be a class of arrow frames. We say that
L is sound in £ if LSL(Z), L is complete in £ if L(Z)sL, and that
L is characterized by £, or that L(Z) is axiomatized by L, if L is
sound and complete in Z, i.e. if L=L(Z).

In the completeness proofs we shall use the standard method of
canonical models. We shall give a brief description of the method.
For more details and some definitions we refer Segerberg [SEG 711
or Hughes % Cresswell [H&C 841. L L L L

Let L be an a.l. The frame QL=(NL, Rll’ RQE’ RIE’ R21) will be

called canonical frame for the logic L if NL is the set of all
maximal consistent sets in L and the relations Rtj are defined 1in
W as follows: ngjy iff {AeFOR/L[ijlAexlcy. For peVAR the function

L

vL(p)={xewL/pex} is called canonical valuation and the pair

ML=(QL,VL) ijs called the canonical model for L. The following is a

standard result from modal logic.
Lemma 3.1. (i) Truth lemma for the canonical model for L. The
following is true for any formula A and xewL= x"—;r—A iff Aex.
L
(ii) If AeL then there exists xeNL such that Aex.

Lemma 3.2. Let L be an a.l. Then the canonical frame EL of L is

an a.f.

Proof. It is well known fact from the standard modal logic that
the axiom (Pii) yields the condition (pii) for the canonical
frame. In the same way the axioms (Z£ij) and (Tijk) yield the con—

ditions (sij) and (7Tijk) for EL' Thus EL is an a.f.m

Theorem 3.3. BAL is sound and complete in the class of all
arrow frames.

Proof. Soundness follows by lemma 2.1 and the completeness can
be proved by the method of canonical models. Let L=BAL. By lemma
3.2 the canonical frame for L is an a.f. To show that L (ARROW)ESL

suppose that AeL. Then by lemma 3.1.(ii) there exists xewL such

that Aex. Then by the truth lemma we have x“—;—+ﬁ, soa A 1is not
L
true in the a.f. QL. Then A<l (ARROW), which proves the theorem.m:

Corollary 3.4. BAL=L (ARROW)=L ( (nor)ARROW) .

Proof — from theorem 3.3 and theorem 2.7. =

Lemma 3.5. Let L be an a.l. Then the following conditions are
true:

1=



(i) (ser)eL iff QL is a serial a.f.,

(ii) (refel iff QL is a reflexive a.f.,
(iii) (sym)eL iff EL is a symmetric a.f.,
(iv) (tr)eL.  iff EL is a transitive a.f.

Proof. As an example we shall show (iv){(—). Suppose (tr)=
[1131C221A=+[21]JAeL.. and pruceestu shopw the coedition of transiti-

vity of Wz (VxyeW ) (JzeW ) xRy y—xR ,z & ZR55Y) -

Let M1={A/[113Aex}, M2={A/(BBey)(ﬂA»[ZZ]ﬂBeL)} and M=M1UM2.

Then the following assertion is true:
Assertion. (i) If Al,...,AneMi then AIA-.-AAnEMi, i=1,2,

(ii) If AeMi and A<$Bel. then BeHi, i=1,2,

(ii1) MIUMELiS L-inconsistent set iff 3AeFOR: AeMl and ﬂAeME,
{(iv) If xREly then M is L-consistent set of formulas.
(v} Let =z be a maximal consistent set. Then Mzsz implies
zRézy, and MISz implies xRtlz.

. L L
(vi) If xRy then (H_GNL)("Rll- % szzy).

Proof. The proof of (i) and (ii) is straightforward and (1i1)

follows from (i) and (ii). L
Let us proof (iv). Suppose xROIy and that M is not L-

consistent. Then by (iii) there exists a formula A such that A€M1
and ﬂﬁeﬁg. Then [11]JAex and 3IBey such that -—A+[22]1-BeL, hence

A-+[221-BelL. Then by the rule (N[L111) we get [111(A-[221-BleL and
by axiom (K[111) and (MP) we obtain that [111A=[111[22]1-BeL.. But
[111Aex, s0 [111L221-Rex, Then by the axiom (tr):

[111[221-B=2[211-B and {(MP) we get [21]-Bex and since ngly we get

-Bey. Since Bex we obtain a contradiction.

(v) Suppose HZSzeNL. Suppose that not ZREZY' Then for some for-—

mula & we have:[221Bez and Bey, so -Bey. Since -[221Ba2[Z2]1--Bel,
hence -[22]1Bez

then by the definition of M, we get that ﬂ[22]BeM2,
- a contradiction. The second part of (v) follows by the definiti-
on of RL

11°

(vi) Suppose thly. Then by (iv) M is an L-consistent set. Then

there exists a maximal consistent set z such that Msz and by (v)
we have lelz and zR22y. Now the proof of (iv) (—) follows direct-

ly from assertion (vi). =

Theorem 3.6. Let Xc{ser, ref, sym, tr}. Then BAL+X=L ({(X)ARROW).

Proof. The consistency part of the theorem follows from lemma
2.3 and the completeness part can be obtained from lemma 3.95. as
in the proof of theorem 3.3. =

Corollary 3.7. (i) BAL+ref+sym+tr=L ((pretotal)ARROW),

(ii) BAL+ref+sym+tr=L ((total) ARROW) .

Proof. (i) is a direct consequence of theorem 3.6 and (ii)
follows from corollary 2.10. =

4. Filtration and finite model property

In this section, applying the techniques of filtration coming
from classical modal logic, we shall show that BAL and some of its

14
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extensions posses finite model property and are decidable. We
adopt the Segerberg’s definition of filtration, adapted for the
language £ of arrow logics ( see [SEG 711).

Let W=(W, Rll’ R22, R12, REI) be an a.f. and M=(W, v) be a mo—

del over W. Let ¥ be a finite set of formulas, closed under sub-

formulas. For x,yeW define:
M~y iff Q(VneW)(xH—v——A iff y“—;r—A), | |={yeW/u~y2,

W ={|x|/xeW}, for peVAR v’ (p)={|x|/xev(p)3.

Let R;j i,i=1,2 be any binary relations in W such that W =(W*,
R;l, Réz, R;z, Réi) be an a.f. We say that the model M ={W", %)
is a filtration of the model M trough ¥ if following conditions
are satisfied for any i,3=1,2 and x,vyeW:

(FR. .1) If xR. .y then |[x|R} .|yl,

i3 113 1]

(FRiJE) If |%|R|y| then (VLijilAed) (x|

7 [ijlA — y"—;——A).

The following lemma is a standard result in filtration theorvy.
Lemma 4.1. ([Seq 711){(i)/ Filtration lemma/ For any formula Ae¥
and xeW the following is true: x"—;——A iff leﬂ—;;—ﬁ.

(i1) Cardw’£2n, where n=Card¥.

Let L be an a.l. We say that L admits a filtration i+ Ffor any
frame W for L and a model M={(W,v) over W and Ffor any formula A
there exist a finite set of formulas ¥ containing A and closed
under subformulas and a filtration M= ,v*) of M trough ¥, such
that W* is a frame for L.

Corollary 4.2. (i) Let ¥ be a class of arrow frames, let Zfin
be the class of all finite arrow frames from £ and let L(X) admits
a filtration. Then L(Z)=L(zfin)'

{(ii) If L(X) is finitely axiomatizable then it is decidable.

Lemma 4.3. Let W be an a.f., M=(W, v) be a model over W and
M*’=(W’,v,) be a filtration of M trough ¥. Then:

(i) If W is a serial a.f. then Wis a serial a.f.,

(ii) If W is a reflexive a.f. then W' is a reflexive a.f.,

(iii) If W is a symmetric a.f. the W' is a symmetric a.f.,

(iv) If W is a total a.f. then Wis a total a.+*f.

Proof. As an example we shall prove (iii). We have to show that
(VIX!EW’)(3|Y|€W’)(IX|R;2IYI & IyIRizlxI). Suppose |[x|€W’. Then

12y & lezx.
(FR121) of the filtration we aobtain leRizlyl & Ileizlxl. =

Theorem 4.4. The logic L(ARROW) admits a filtration.

Proof. Let A be a formula and let ¥ be the smallest set of for-
mulas containing A, closed under subformulas and satisfying the
following condition

(x) If for some i, ji=1,2 [ijilAe¥ then for any ij=1,2 [ijilAe¥.

It is easy to see that ¥ is finite and if n is the number of

there exists yeW such that xR Then by the condition

subformulas of A then Card@S24n. Then define W’ and v as 1in the
definition of filtration. We define the relations Rij in W as

follows:
IxIRijlyl iff (VLiidAeW) (Vke{1,23) (xI v v Lik1A).

First we shall show that the frame W’is an a.f. The conditions
(pii) and (cij) follow directly from the definition of R;j. For
the condition (7ijk) suppose IxIR;jlyl and lle;klz]. Ta prove

[ikJA«—vyl

lle;kIzl suppose [iklAe¥, 1le{1,2} and for the direction (—) sup-
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[kl1lA. From

pose x| [illJA and proceed to show that =zl

v
[iklhe¥ we get L[ijlA,LillAe¥. Then IxIR;jlyI, [ijlAed and

w £jllA. This and [illAe¥ and IyIRBPIZI

[il131A imply yl
[kl1A.
v

The converse direction («) can be proved in a similar way.
It remains to show that the conditions of filtration (FRijl)

v

imply =zl

and (FRiJZ) are satisfied.

For the condition (FRijl) suppose xRijy, [ijlAe¥®, ke{l,2} and

for the direction (—) suppose xl [ik1A, ij z and proceed to

32
show that z"—;——A. From xRijy and ijkz we get xRikz and since

|
H

[ik]1A we get zH—;——A. For the direction (+) suppose

vl : Lik1A, xRikz and proceed to show that zH—;——A. From xRijy we
get ijix and by xRikz we get ijkz. From here and vyl [ik]1A we
aobtain z"—v——A. This ends the proof of (FRijl)'

For the condition (FRijE) suppose lle;jlyl, [ijilAes¥

[ijlA. From here we obtain vyl

andx | [ijilA and since ijjy we

v
get yﬂ—;——A. This completes the proof of the theorem.

Corollary 4.5.
(i) BAL=L(ARRON)=L(ARRDNfin)=L(((nor)ARRDW)fin).

{ii) BAL is a decidable logic.

Proof. (i) The first two equalities follow from corollary 3.4
and theorem 4.4. The last equality follows from theorem Z2.7.

(ii) is a consequence of corollary 4.2 and corollary 3.4. =

Theorem 4.6. Let Xc{ser, ref, sym}. Then the logic L {{X)ARROW)
admits a filtration.

Proof. Use the same filtration as in theorem 4.4 and apply
lemma 4.3.8

Corollary 4.7. Let X<{ser, ref, sym}. Then:

(i) B+X=L{(X)ARROW)= L(((X)ARRDW)fin)

(ii) B+X is a decidable logic.

Theorem 4.8. The logic L{{total)ARROW) admits a filtration.

Proof. Use the same filtration as in theorem 4.4 and apply
lemma 4.3.8

Corollary 4.9.

(i) B+ref+sym+tr=L ((pretotal)ARROW)= L ((total)ARROW=
L(((tntal)ARRDW)fin)=L(((pretotal)ARRDW)fin)

(ii) B+ref+sym+tr is a decidable logic.
5. An extension of BAL with a modality for equivalent arrows

We saw that the condition of a normality is not modally defi-
nable. This means that the language ¥ is not strong enough to tell
us the difference between normal and non normal a.f. In this sec-—
tion we shall show that there exists a natural extension of the
language £ in which normality become modally definable.

Let W be an a.f. and for x,yeW define

(=) x=y iff lely & xR22y.

1A



Graphically x=y:

Y
The relation = is called an equivalence of two arrows.

By means of = the normality condition is equivalent to the fo-
l1lowing cne:

(Nor?) {(V¥xyeW) (x=y — u=y).

1f we extend our language £ with a new modality [=], interpre—
ted in a.f. with the relation =, then (Nor’) is modally definable
by the formula p=[=lp.

Let the extension of £ with [=] be denoted with £([=1).The ge-—
neral semantics of £([=]) is defined in the class of all relatio—
nal structures /called also frames/ of the form W=(W, Rll’ REQ’

R12’ RBI’
class of arrow frames with the relation = defined by (=).

We shall show that the condition (=) is not modally definable.
For that purpose we introduce the following nonstandard semantics
of £([=1).

By a nonstandard =—arrow frame (=—a.f.) we mean any system
W={W, Rll’ R22, R REI’ =) satisfying the following conditions

for any x,y.zeW and i,3,kef{l,23:
(pii), (sij) and (7iik),

=). The standard semantics of £([=1) is defined in the

12?

(=p) HEM,

(=o) HEYy —F Y=x,

(=T) XK=y & y=z — u=z,

(=ERii) HEY — xRiiy

The class of all nonstandard =—-arrow frames 1is denoted by
Nonstandard—=—ARR0OW.

It can be easily seen that if a nonstandard =-a.f. satisfies
the following conditions

If a nonstandard =—a.f. satisfies the condition

(RllnRZQSE) lely % szzy — K=Y,
then it is called a standard =—-a.f. It is easily seen that in any
standard =—a.f. we have

HSY —> lely & szzy.

The class of all nonstandard and standard =—arrow frames are
denoted respectively by Nonstandard—-=—ARROW and Standard—-=—ARROW.

All conditions from the definition of nonstandard =-a.f. are

modally definable by the following formulas respectively:
(=P) [=1A=A,
(=) Avi=1-[=1A,
(=T) [=1A=[=1C=1A,
(Sii) [iiJA=a[=1A, i=1,2.

We shall show that the condition (RiiSE) is not modally defina-—

ble. For that purpose we shall proof first that
L (Standard—-=—ARR0OW) =L (Nonstandard—=—ARROW) .
Lemma 5.1. Let W=(W, Rll’ R22’ R12, R21’

=—a.f. Then there exists a standard =—a.f. W =(W", Rll’ R22, R12’

=) be a nonstandard

517 =*) and a copying from W to W> and if W is a finite a.f. then

W' is a finite a.f. too.

Proof. Use the same construction as in the lemma 2.6 with the
following modification. Let =(x)={yeW/x=y}. Since = is an equiva-
lence relation then =(x)==(y) implies x=y. The definitions of R;j
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and = are the following:
f(x)R;jg(y) iff xRijy & (F+i.z=(x) = gti.=(y))

fFuy="gly) iff x=y & f=g.

The details that this will do are left to the reader. =
Corollary 5.2. L (Standard—=—-ARROW)=L (Nonstandard—-=—ARROW).
Now the axiomatization of L{Nonstandard-=—ARROW) is easy.
Denote by [=]BAL the following axiomatic system:

Axioms and rules for [=1BAL

(I) A1l axioms and rules of BAL,
{I11) The following new axioms:
(=P) [=1A=A,
(=) A[=1-[=1A,
(=zT) [=1A-[=1L[=1A,
(cii) [iilA=al=1A, i=1,2.
Theorem 5.3. [=1BAL is sound and complete in the class Nonstan-—

dard—-=—ARR0OW.

Proof — by the canonical construction. =

Corollary 5.4. [=1BAL=L (Nonstandard-=—-ARROW)=
L {Standard—-[=1-ARR0OW) .

Theorem 5.5. (i) [=1BAL= L (Nonstandard-=—ARR0OW)=
L((Nonstandard—E—ARRDw)fin)

(ii) [=1BAL is a decidable logic.

Proof. Apply the filtration technic with the following modifi-—
cation: the definition of the relations R;j is the same as 1in

theorem 4.4., the definition of =" is the following

Ix1=" ly| iff (V[=1AeD) (xIl——I[=1A +— yl——I[=1A) &

IxIR;IIYI % leRézlyl-

The details that this definition of filtration will do is left
to the reader. =

6. Extensions of BAL with propositional constant Loop

We say that an arrow x forms a loop if lezx. Graphically

>

Let W be an a.f. We let Loopw={xGWIxR12x}.

Lemma 6.1. In the language eroop is not expressible in a sense
that there is no a formula A in £ such that for any a.f. W, valua-
tion v and xe€W: x“—;r—A iff xeLoopw.

Proof. Let W={a, b, ¢}, R =R ={(a,a), (b,b), (c,c)3,

11 22

R12=R21={(a,a), (b,c), {(c,b)}. It is east to see that W with the

relations Rij is an a.f. Let v be a valuation in W such that for

any peVAR v{(p)=®. Then by induction on the complexity of a formula
one can see that for any formula A the set v(A)={er/xH—C——A} is

ether W or 9. Suppose now that there exists a formula A such that
xﬂ-;——A iff xeLoop. Then v(A)={a} which contradicts the previous

result. =

Let £(Loop) be an extension of the language £ by a new proposi-
tional constant Loop with the following standard semantics: for
any a.f. W, valuation v and xeW: xl loop iff xeLoupw. Loop has

also a nonstandard semantics which can be defined in the following
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way. By a nonstandard Loop arrow frame we mean any system W=(W,

Rll’ R22’ R12, R21, &) such that (W, Rll’ R22, R12’ R21) is an

a.f¥. and 6 /sometimes denoted by 6w/ is a subset of W. Then the

interpretation of Loop in a nonstandard Loop a.f. W is: xﬂ—;—-Loop
ift xeéw. A nonstandard Loop a.f. W is called a standard one if
the folfbwing two conditions are satisfied stating together that

Loopw—éw

{(Loop 1) (Ver)(xeé — xeLoupw),
(Loop 2) (Ver)(weLoopw — xeé ).

The class of all nonstandard Loop arrow frames is denoted by
NonstandardLoopARROW. Accordingly the class of all standard Loop
a.f. is denoted by StandardLoopARROW. It can be easily shown that
the condition (Loop 1) is modally definable in
NonstandardlLoopARROW by the following formula

(Loop) Loop={(L12]1A=A).

1f a nonstandard Loop a.f. satisfies (Loop 1) we call it a
general Loop a.f. The class of general Loop arrow frames is deno-—
ted by GenerallLoopARROW. We shall show that condition (Loop 2) is
not modally definable in GenerallLoopARROW. For that purpose we
shall use the copying construction, which for frames with & con—
tains an additional condition

(&) For any x<W and fel: xebd iff fix)ed’.

The copying lemma for this version of copying is also true.

Lemma 6.2. Let W={(W, Rll’ R22, R12’ R21’ &) be a general Loop

a.f. Then there exists a standard Loop a.f. W =(W", 11, R;E, R;z,
R’

) &%) and a copying I from W to Wand if W is a finite then W’
is a finite frame too.
Proof. The construction of I and W” is the same as in the proof

of lemma 2.6. To define R;j we First define the Ffunction

jb if xed
E(x)=
11 if x=d

where O and 1 are considered as zero and unit of the Boolean ring.
Then:
f(x)R;jg(y) if+f xRijy & (F+i.S5(x)=g+i.S(y)).

&’={x”/Ineb Ifel F(x)=x’2

The proof that this is a copying and that W is an a.f. 1is the
same as in lemma 2.6. Let us show that W’ is a standard Loop a.f.

For the condition (Loop 1) suppose x’e€d’. Then x7’=f(x) for some
xeb and fel. S50 we have lezx, &(x)=0 and hence f+1.56(x)=F+2.5(x).
This shows that f(x)R’ f(x) hence x’Riz -

For the condition (Loop 2) suppose x R’ﬂx’. Then for some xeW
and fel we have f{(x)=x" and f(w)Rizf(A). Then lezx and f+&(x)=F,
so0 &(x)=0, which yields that xeé. Thus x’€d’. =

Lemma 6.2 implies the following

Theorem 6. 3. L (LoopARROW)=L (GeneralloopARROW) .

Corollary 6.4. Condition (Loop 2) is not modally definable.

Now the axiomatization of L(LoopARROW) is easy: we axiomatize
L (GenerallLoopARROW) adding to the axioms of BAL the axiom

(Loop) Loop=(L12]1AaA).

The obtained system is denoted by LoopBAL. Using the canonical
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construction one can prove the following
Theorem 6.5. LoopBAL is sound and complete in GenerallLoopARROW.
Corollary 6.6. LoopBAL=L (GeneralloopARROW)=L (LoopARROW) .
The constant Loop makes possible to distinguish the logics
L (LoopARROW) and L {(nor)LoopARROW). Namely we have
Lemma 6.7. Let g=AALoop=[12]1(Loop=A). Then:
(i) =L (LoopARROW),
(ii) el ((nor)LoopARROW),
(iii) L {LoopARROW)#=L ( (nor)LoopARROW).
Proof — straightforward by the completeness theorem.ms
The formula ¢ from lemma 6.7 modally defines in
General LoopARROW the following condition

(noro) (ny)(lely & ned & yebdb — x=y)

Let W be a general Loop a.f. We call W quasi—normal if it sa—
tisfies the condition Noro.

Lemma 6.8. Let W=(W, Rll’ Rons RIE’ Rﬁl’ &) be a quasi-normal
general Loop a.f. Then there exists a normal Loop a.f. W=(W, Ril’

Razs Rize Roye
then W” is finite too.
Proof. The construction of I, W and R;j is the same as 1in

&%) and a copying I from W to W™ and if W is finite

lemma 6.2 with the following modification of the function &(x):
Io if xedb
S(x)=

1{x} if xed

The proof that W’ is a standard Loop a.f. is the <same as in
lemma 6.2. Let us show the condition of normality. For, suppose

f(x)R;lg(y) and f(x)R5,g(y). Then we have lely & (F+S5(x)=g+&(y))

and szqy % (f=g). From here we get &50)=&(y).
Case 1: §0x)=8. Then &(y)=0 and hence x,yeéw. By lely and

x,y€s . we get by (noro) x=y and by f=g we nbtain—k(x)=f(y).

W
Case 2: &6(x)=0. Then &(y)=® and hence {x}={y}, so x=y and con-—

sequently f(x)=g({y). This proves the condition of normality. =
From lemma 4.8 we obtain the following

Theorem 6.9. L((noro)GeneralLDDpARRDW)=L((nor)LDDpARRDW).

Let NorLoopBAL=LoopBAL+A~Loop-[12](LoopsA). Using the cananical
method we can easily prove the following

Theorem 6.10. NorLoopBAL is sound and complete in the class
(noro)GeneralLoopARRDw.

Corollary 6.11. NorlLoopBAL=L ( (nor)LoopARROW) .
Lemma 6.12. The logics L {(GeneralloopARROW) and
L((noro)GeneraanopARRDW) admit a filtration and are decidable.

Proof. For the L (generalLoopARROW) use the same filtration as
for the logic L{ARROW) with the following definition for =H

&7={|x|/neb}.

We have to show that the filtered frame satisfies the condition
(Loop 1). Suppose |x|e&’. Then xe€d and by (Loop 1) we get lezx.

Then by the properties of filtration we get |X|R;2|Y|-

For the logic L{{(nor.)GenerallLoopARROW) we modify the definiti-

0
on of R;j as follows:

20



[ikl1A «— x|
v v

|2 R . |y| iff (VLijilAe®) (Vke{l,23) (xl [ik1A) %
13

(x,yed”> — [x|=|y|?.

The proof that this definition works is left to the reader. =

Corollary 6.13. The logics LoopBAL and NorloopBAL possess fini-—
te model property and are decidable.

The language £([=1,Loop) is an extension of the language £([=1)
with the constant Loop. The standard semantics of this language is
a combination of the standard semantics of £(L[=]) and £(Loop).
This semantics is also modally undefinable. To axiomatize it we
introduce a general semantics for £([=]1,Loop) as follows.

A frame W=(W, Rll’ R22, R12’ R21’ =, &) is called a general

Loop—= arrow frame if (W, Rll’ R22, R12’ R21) is an a.f. and = and

& satisfy the conditions on the left side in the next table:

(p=) HEN, (=P) [=1A=A,

{(o=) XNSY—SYS=X, . (=X) AI[=1-[=]A4,

(t=) w=yky=z—u=z, (=T) [=1A=L[=1L[=1A,
(ESRii) xsy—»xRiiy, i=1,2, (€ii) [iiJA-a[=1A, i=1,2,
{Loop 1) leﬁx—+xeé, (Loop) Loop=([=1A3A),
(=6) x=y & xeb—oyed, (=Loop) Loop=s(=1Loop,

(sRllé) lely % xed & yeb—xz=y (=11Loop) Loopal=l1A=[111(Loop=A).

If in addition W satisfies the condition (R ﬂquSE) and

11
(Loop2) it is called standard Loop—-= arrow frame. The classes of
all general Loop—= arrow frames and standard Loop—-=—arrow frames
are denoted by Generalloop—=—ARROW and StandardlLoop—-=—ARROW res—
pectively.

All conditions from the left side of the above table are mo—
dally definable by the corresponding formulas from the right side.

We axiomatize the logic ¥([=],Loop) by adding all these formu-—
las as axioms to the logic BAL The obtained system is /denoted by
[=1LoopBAL.

Theorem 6.14. The logic [=]lLoopBAL is sound and complete in the
class Generalloop—=—ARR0OW.

Proof — by the canonical construction. =

Lemma 6.15. Let W=(W, Rll’ R22’ R12’ R21, =, &) be a general
Loop—= a.f. Then there exist a standard Loop-= a.f. W =(W", Ril’
Réz, Riz, Rél’ =*, 6%) and a copying I from W to W'.

Proof. The set W', I, &% and R;jare defined as in lemma 6.8

with the following modification of the function &(x):
Jb if xed
&(x)=

1;(x) if xed

The relation =’ is defined as in lemma S.1. The proof that this
construction works is left to the reader. =

Corollary 6.16. [=]lLoopBAL=L (Generall oop—=—ARR0OW) =
L {StandardlLoop—=—ARROW) .

7. Further perspectives

A. Extensions of BAL with additional connectives.

Sections S5 and & can be considered as examples of possible
extensions of the language £ with operators having their standard
semantics in terms of arrow frames. There are many possibilities
of such extensions, depending of what kind of relations between
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arrows we want to describe in a modal setting. The main scheme is
the following: to each n+l-ary relation R(xo,xi,...,xn) to intro-

duce an n—-place modal box operation [R](Al,...,An) with the

following semantics, coming from the representation theory of
Boolean algebras with operators ( [J&T 511, see also [VAK 911):

xoﬂ [R](Al,...,A Y iff
(Vxl,...,xneW)(R(xo,yl,...,x )—»xlﬂ v Al or...or xl

The dual operator <R>(Al,...,An) is defined by ﬂ[R](ﬁAl,...,ﬂAn).

A )
n

In the following we list some natural relations between arrows,
which are candidates for a modal study:

1% i s P W >
Pathn("l""’xn) iff 41R21A2 % x2R21 3 % &xn-lel"n’ n=2

X X X

i 2 n
> T

Pathm(xl,xz,xs,....) if+f (Vn)Path(xl,...,x )

n

Loopn(xl,xg,...,xn) iff Pathn+1(x1,...,xn,x1)

Converse: xSy iff Loop,(x,y) ///\\a

Trap921umn(x1,...,xn,y) iff Pathn(xl,...,xn) & lelly & an22y

X
[y
\
L[ ]
[ ]
L]
/\ y
X

Triangle(x,y,z) iff Trapezium?(x,y,z) —_—

Connectedness: Con(x,y) iff
AnZ23Ix, .. .%_12 X=X & x =y & Path (x4, ,,...,%)
1 n 1 n n 1 n

X Y
> » heemn e —m—

Double side connectedness: Dcon(x,y) iff Con(x,y) % Con(y,x)

® . Y
N
> > ..---—)\
\: P e e ——

The relations Pathn, Pathm . Loopn can be used to define also
semantics for suitable propositional constants:
Path , Pathw » Loopn s Loop as follows.
Pathrl iff (I PEEERE N cW)Path (xl,xﬂ,...,xn),
Path iff (Exﬂ, ,,...)Path (yl,yq,y,,...),

Loop iff (Byz,...,x )Loop (xl,xz,...,x )

Loop iff 3n x|

Loopn.

These considerations motivate the following general problem:
develop a modal theory /axiomatization, definability, (un)decida—
bility/ of some extensions of BAL with modal operations correspon-—
ding to the above defined relations in arrow structures.
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For example, the extension of BAL with the modal operations

AeB=<Triangle>(A,B), A-1=[Converse]A and the propositional con-
stant Id=Loop is a natural generalization of the modal 1logic of
binary relations ([BEN 8%1, [VEN 891, [VEN ?11). This logic has a
closed connection with various versions of representable
relativized relational algebras ([KRA 891, [MA 821, [NEM 911).

B. Arrow semantics of Lambek Calculus and its generalizations.
Let A/B and A\B are "duals" of AeB with the following semantics:
x“—;——B/A iff (VyzeW) (Triangle(x,y,z) & y"—v——A — zu—v——B),

yH—;——A\B iff (VuzeW) (Triangle(x,y,z) & xﬂ—;——A — zﬂ—v——B)

The modal connectives AeB, A\B, and A/B can be considered as
the operations in the Lambek Calculus. Mikulas [Mik 921 proves a
completeness theorem for the Lambek Calculus with respect to a
relational semantics of the above type over transitive normal
arrow frames /this is an equivalent reformulation of Mikulids re-—
sult in "arrow" terminology/. Roorda [Roor 911 and [Roor 91al stu-—
dies a modal version of Lambek Calculus extended with classical
Boolean operations. S50 it is natural to study an extension of BAL
with the above dyadic modal operations, which will give another
intuition for the operations in the Lambek Calculus.

C. Arrow logics and point logics over arrow systems.

With each arrow structure S=(Ar, Po, 1, 2) we can associate
thefollowing two relational systems: the arrow frame (Ar, Rll’
R22, R12’ Rzl) and the point frame (Po, p). The +First system is
used as a semantic base of the logic BAL and the later can be used
as a semantic base of an ordinary modal language with a modal ope-—
rator o. So each class Z of arrow systems determines a class of
arrow frames Ar (X) and a class Po(X) of point frames. A general
question, which arises is the problem of comparative study of the
corresponding logics L{Ar(X)) and L(Po(X)). A kind of a correspon-—
dence between first order properties of FPo(Z) and Ar(Z) was shown
in section 1.

D. Many-dimensional generalizations of arrow systems.

The introduced in this paper arrow structures can be generali-
zed to the so called n—dimensional arrow structures ([VAK %1al) in
the following way. Let S=(Ar, Po, 1,...n) be a two sorted algebra-
ic system. 5 is called an n—dimensional arrow structure if for any
i=1l,...,n, 1 is a function from Ar to Po satisfying the axiom:

(VAePo) (i 1=Zi=n) (JxeAr) (i (x)=A)

The arrows in an n—dimensional a.s. looks like as follows:

1(x) 2(%) 3(x)eiweeaaan(u)
& & L 4 »&

A natural example of n—dimensional a.s. is the set of all
n—tuples of a given n—ary relation. Among the logics based on
n—dimensional arrow frames are some generalizations of the so
called cylindric modal lLogics (LVEN 891, [VEN 211). These logics
have also a very closed connection with some versions of represen—
table relativized cylindric algebras [NEM 911].

Acknowledgments are due to Johan Van Benthem for calling my
attention to arrows and arrow logics and to Hajnal Andréka and
Istwan Németi for many stimulating discussions and pointing the
connection of "arrow" approach to some problems of algebraic
logic.
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