1=

Institute for Logic, Language and Computation

SHAVRUKOV’S THEOREM
ON THE SUBALGEBRAS OF DIAGONALIZABLE ALGEBRAS

FOR THEORIES CONTAINING IA¢+EXP

Domenico Zambella

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-92-05

&3
&3
&3

University of Amsterdam



The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language .

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montggue Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic
Montague grammar

LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Inequality

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience

LP-90-17 Paul er Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order
Arithmetic, and a Solution to a Problem of F. Richman

ML-90-07 Maarten de Rijke %h Note on the Interpretability Logic of Finitely Axiomatized

eories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jong11‘1, Duccio Pianigiani  Solution of a Problem of David Guaspari

ML-90-10 Michiel van Lambalgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas  Associative Storage Modification Machines
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette
A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcizar Generalized Kolmogorov
. Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
. Physiolc;§ical Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
Conditional, a case study in conditional rewriting
Other Prepublications

X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics,

Revised Version .

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev gn thg1 Complexity of Arithmetical Interpretations of Modal

ormulae

X-90-04 Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Lo_[%ics for Natural Turing Progressions of
Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAg+£2,, revised version

X-90-12 Maarten de Rijke Bi-Unary Intergrctabi]ity Logic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed
Point Proj , Craig's Progerty

X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic

1991

Logic, Semantics and Philosophy of Langauge . .

LP-91-01 Wiebe van der Hoek, Maarten de RijkeGeneralized Quantifiers and Modal Logic

LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld amic Semantics and Circular Propositions .

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief
Dependence Framework .

LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence

LP-91-07 Henk Verkuyl, van der Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sénchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Laqt}c and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic .
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for

Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders



- 86-06 Johan van Benthem

The ITLI Prepublication Series

1986

86-01 , The Institute of Language, Logic and Information

86-02 Pecter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick dc Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
Logical Syntax Forward looking Operators

Type shifting Rules and the Semantics of Interrogatives

87-01 Jeroen Groenendijk, Martin Stokhof
Frame Represeatations and Discourse Representations

87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
Polyadic quantifiers

87-04 Johan van Benthem
87-05 Victor Sinchez Valencia Traditional Logicians and de Mo?m's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under P tives
87-09 Herman Hendriks . Type Change in Semantics: The Scope of uantification and Coordination
1988 | p.88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Ajgorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1
LP-88-04 Reinhard Muskens Going ram'al in Montague Grammar
LP-88-05 Johan van Benthem "~ Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic-Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse

LP-88-07 Renate Bartsch
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anncke Kleppe . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | jfschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L&f's Type Theories with weak I-climination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

On the Early History of Intitionistic Logic

ML-88-04 A.S. Troclstra

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity
General Lower Bounds for the Partitioning of Range Trees

CT-88-02 Michiel H.M. Smid
CT-88-03 Michicl H.M. Smi% Mark H. Overmars Maintaining Multiple Representations of

een Toreavliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic

Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michicl H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
Time, Logic and Computation

CT-88-07 Johan van Benthem

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures
Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Ende Boas  Towards implementing RL
X-88-01 Marc Jumeler Other prepublications:  Op Solovay's Completeness Theorem

9 1 P-89-01 Johan van Benthemlo8ic. Semantics and Philosophy of Language:Tye Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals

LP-89-04 Johan van Benthem h:g‘un e in Action

LP-89-05 Johan van Benthem Modal o?ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adegruscy Problem for Sequential Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce's Propositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables

ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna  On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge I-completeness and Bounded Arithmetic

ML-89-06 Michicl van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
Investigations into Classical Linear Logic

ML-89-08 Dirk Roords
ML-89-09 Alessandra Carbone . Provable Fixed points in [Ag+£2y
CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations
nvlict, Peter van Emde Boas  On Space Efficient Simulations

CT-89-03 Ming Li, Herman Ncuféglise, Leen Tore
CT-89-04 Harry Buhrman, Lecn Torenvliet A Comparison of Reductions on Nondcterministic Space
CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvlict, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity Tor the Universal Distribution (Prel. Version)

CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Complcteness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Lecn Torenvliet  On Adaptive Resource Bounded Computations

CT-89-10 Sicger van Denncheuvel The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas )
X-89-01 Mariannc Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troclstra Index of the Heyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality
f—83-06 Peter van e Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
990 SEE INSIDE BACK COVER






Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

l ' E Institute for Logic, Language and Computation

SHAVRUKOV’S THEOREM
ON THE SUBALGEBRAS OF DIAGONALIZABLE ALGEBRAS

FOR THEORIES CONTAINING IA¢+EXP

Domenico Zambella

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications
for Mathematical Logic and Foundations

ISSN 0924-2090 ‘
Coordinating editor: Dick de Jongh . received August 1992






Shavrukov's theorem on the subalgebras of diagonalizable algebras for theories

containing IAp+exp.

Abstract. Recently Volodya Shavrukov [1] pioneered the study of subalgebras of
diagonalizable algebras of theories of arithmetic. We intend to show that his results

extend to weaker theories (namely to theories containing IAg+exp).

§0 Introduction. A diagonalizable algebra is a Boolean algebra (D,—,1) with an additional
operator O which satisfies the axioms:

Vxy OE-y)-»(0Ox—-0y)=T and Vx O@Ox-x)-0x =T.

Let T be a sufficiently strong axiomatized theory in the language of arithmetic. The predicate
of provability of T generates in a natural way an operator on the Lindenbaum algebra of T. The
resulting diagonalizable algebra Dy is called the diagonalizable algebra of T . The subalgebras of Dr
have been studed in [1], in particular the general problem of when a diagonalizable algebra D is
embeddable in Dr.

We will translate this question into a problem of provability logic and for this we need some
notation. Let L be the set of modal formulas generated by the language (—,0,1,{pilicw). We write
BE A if A can be derived using modus ponens and necesitation from B and Lob's axioms (hence £ A
means that A is a theorem of Lob's logic and BF A means F EIB‘—-> A, where OB is BAOB), we write
BI-A iff EB— A . When 4 is a set of modal formulas in the language £, AF A and 4I- A are
defined analogously. Given a set 4, consider the equivalence relation on £L: A =4 B iff Ak Ao B,
and let £ / A be the sets of =g-equivalence classes. The operator which maps the equivalence class
of A to that of OA is a well defined operator on L/ A which turns it into a diagonalizable algebra.
For every (denumerable) diagonalizable algebra D there is a set 4 such that Dis isomorfic to L/ A

Let T be an axiomatized theory in the language of the arithmetic and let Thm(.) be the

provability predicate of T. A T-interpretation is a map 1 which maps formulas of L to sentences of
the language of arithmetic such that T proves:
() uWOA)e Thm[uA)]; () L) (i) (A—B)e (UA) ->UB)).
(In the following we shall simply say an interpretation since the theory T will be fixed.) If for every
formula A in £, A A iff T+ 1(A) we say that interprets Ain T. We say that A is interpretable
in T if there exists an interpretation which intérprets AinT.

Given an interpretation of 4 in T there exists a natural embedding of £ /A in Dr and vice
versa. So, for any given theory T, the problem the problem of classifying diagonalizable algebras in

Dr, reduces to classifying the sets of modal formulas A4 which are interpretable in T.



We write as usual (0°L for L and O0®*'1 for O0O"1; the minimal n such that A= O"1 is called
the height of 4. If such an n does not exist, we say that 4 has infinite height . We say that 4 has the
strong disjunction property (s.d.p.) or, equivalently, that A is strongly disjunctive (s.d) iff Ais
consistent and for all formulas A and B if AF OAvOB then either AF A or Ak B. The same
classification is, mutata mutandis, applied to diagonalizable algebras. In the following T will a fixed
axiomatized theory (i.e. the theory is given along with its primitive recursive axiomatization). The
language of T contains the language of the arithmetic and -only for the sake of convenience- a symbol
for exponentiation. Thm(.) is the provability predicate of T. We write Thm°(L) for the sentence 00
and Thm™*!(1) for Thm(Thm®(1)) (we shall always omit the Godel-number symbols™ ). The
minimal n such that T+Thm®(1) is called the height of T. If such an n does not exist we say that T
has infinite height . The height of T is in fact the height of its diagonalizable algebra Dry. If all
Z;-sentences provable in T are true in the standard model, then T is X;-sound , otherwise T is
2;-ill . Shavrukov proved that every r.e. set of modal formulas is interpretable in the diagonalizable
algebra of a Z;-ill theory containing ¥;-induction provided it has the the same height as the theory.
Moreover every r.e. and s.d. set of modal formulas is interpretable in the diagonalizable algebra of a
Z;-sound theory containing Z;-induction. In i)arﬁcular, Z1-sound theories containing X¢-induction
have the same set of subalgebras and the same holds for Z;-ill theories of any fixed height. (Recall
that the Godel numbering of arithmetical sentences gives a natural recursive enumeration of a set 4
such that £/4 is isomorphic to Dr.)

The construction makes use of a Solovay function which ranges over a Kripke model. In the
case of infinite height theories the models used are of infinite height so Z;-induction is needed to
guarantee the existence of the limit. In the case of finite height theories this model has standard
height, so the proof in [1] goes through for IAp+exp. Thus in the present exposition we concentrate

only on theories of infinite height.

1 whish to thank Volodya Shavrukov for numerous suggestions and corrections. I owe very

much also to the stimulating criticisms and friendly encouragements of Lev Beklemishev.

§1 A lemma. In this section we prove a lemma which will be used to characterize the r.e.
sets of modal formulas interpretable in a theory T2IAg+exp. We assume the reader to be familiar

with the techniques introduced in [2].

A finite tree-like Kripke model k (in the sequel simply a model ) is a triple (W,R,I-) where
(W,R) is a finite tree with nodes W and order relation R, ac @ and I is a finite subset of Wxw. We

call W the universe of k and (W,R) the frame of k . We write wi-p; if (w,i)€ I-. The relation wi-A
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(w forces A) is then expanded to all the formulas of L in the usual way. We say thatk'is a
generated submodel (in the sequel simply a submodel ) of k if the frame of k' is a subtree of the
frame of k and the forcing relation of k' equals the intersection of the forcing relation of k with the
universe of k'. We write ki- A (k forces A ) iff the formula A is forced in the root of the model
coded by k, we write kk A (k is a model of A) if every node of k forces A. Then we have that k is
a model A iff k forces A. If Ais a finite set of formulas we write ki 4 (resp. kk 4) if for every
A€ 4, kI- A (resp. kk A). Then it easy to chek that if A4 is finite then A4k A iff every model of Ais a
model of A, and AI- A iff every model which forces A4 forces A (if A4 is infinite this may not be the
case since we will deal only with finite models).

In a first-order formula an occurence of a quantifier is said to be bounded if it is of the form
WV x<t or Ix<t where t is a term of the language of T. The Ag-formulas of T are the formulas
provably equivalent to formulas with only bounded quantifiers (having assumed exponentiation as a
primitive function of the language we should properly write Ag(exp) but in the present paper there
will be no risk of confusion). The X; formulas are those equivalent to a Ap-formula preceeded by an
existential quantifier. The theory whose axioms are those of Robinson arithmetic plus the
characteristic axioms for exponentiation and the induction schema for Ag-formulas is called IAy+exp;
the theory which contains also the schema of X;-induction is called IZ;. We refer the reder to [3] for
more details on these theories.

We fix a natural coding of modal formulas and of models in arithmetic; we shall use the same
symbol both for a formula (resp. model) and its code. We require that the coding assigns to proper
submodels of k a smaller code then to k itself. Having exponentiation as a primitive function, we
may require without loss of generality that ki- A and kF A translate into Agp-formulas. Given anr.e.
set 4 of modal formulas we may find, formalizing in the language of arithmetic the algorithm
enumerating 4, a Ag-formula "Ae 4x" (here A and x are the free variables of the formula) such that
for every A€ L, Ae 4iff dne , T-Ae A4;. We also require that, provably in T, for every x there
are only finitely many A such that Ae 4;. We call such a formula a description of A (in T). We
may formalize in T also the notion of L6b's derivability so that we can use the expression 4 ,F A
both when arguing in the real world and in the theory. Formalizing the proof of the completeness
theorem for L&b's logic in IAg+exp one can find a Ap-formula describing the relation A=A, We
shall also use the expression "AF A" when reasoning in T; this stands for for 3x (AxF A).

Once we fix a description of 4, it makes perfectly sense to say "T proves that A is s.d." this
simply means:
T+ 1(AE LAV AB (4= OAvOB)— (4 A v 4E B).
Obviously, an r.e. set of formulas 4 may have different descriptions and for one description

the theory T may prove that 4 is s.d. and for an other description it may not, possibly the "opinion"



of T may be incorrect. We shall deal with these phenomena in the next section; for the moment we

keep the description fixed and assume T proves that 4 is s.d..

Lemma 1. Let T be an axiomatized theory of infinite height containing IAg+exp and 4 an r.e. set of
modal formulas. If there is a description of 4 in T such that T proves that 4 is s.d. then 4 is
interpretable in T.

Proof. Let T be an axiomatized theory and A€ 4, be a description of an r.e. set of modal formulas
as in the hypothesis of the lemma. We shall define a Solovay function h(n) whose value is either 0
or the code of a model of 4, for some m<n. We agree that Ol A is some fixed provably false
sentence (e.g. 0£0), so the expression h(n) - A will always have a meaning. The Solovay function is
defined, simultaneously with the sentences Ag and A4, by an arithmetical fixed point. The definition

is the following.

Let A be the sentence ¥nh(n)=0. We order the modal formulas by increasing code and let A; be the
i-th formula in this order (this enumeration of formulas is redundant, since here formulas are actually
codes, but we introduce it for better readability). For every i and every string o€ 2! define a
formula:
Ag:=/\{Apln<i and o(n)=1}A/\{ 1A, In<i and 6(n)=0}
for each modal formula A=A; define the sentence:
Aa = Joe 2*[6(i)=1A3%n h(n) I Ag AV Te 2iH! (1<0— V*n h(n) K Aq)],

where 1< has to be read as T precedes ¢ in the lexicographic order. 3*n is an abbreviation of

Vm3In>m and V*°n of 713*n .

Leth(0)=0. For n>0 if n codes a proof of AgvA4 for some formula A, then:
(a) if h(n)=0 and A, ¥ A, then choose the minimal model k of 4, which forces 71 A and define
h(n+1)=k.
(b) if h(n)=h#0 and the root of some submodel of h forces 1A then let k be the minimal such
submodel and define h(n+1)=k.

In all other cases let h(n+1)=h(n).

If the theory T is strong enough one can use for A, simply the sentence 3mVn>m h(n)- A. Then
AovAa simply means that the limit of h is a model which forces the formula A, in particular, if h
moved to h(n+1) because n codes a proof of AgvA4, there will be a proof that h(n+1) is not the limit
of the function (in fact h(n+1) is choosen so that h(n+1)I- 71A). But in IAg+exp it is not possible to

prove that the limit of the Solovay function exists (one needs X;-induction), in particular it cannot be
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excluded that for some formula A both h(n) |- A and h(n)lF 77 A occurs for infinitely many n; thus
one would not have as desired, A, <> 71A,. To help the reader's intuition we present the following
semi-formal description of A,, which should clarify the definition above. To each formula A we attach
an infinite set C(A) such that either ¥'ne C(A) h(n) - A or ¥ne C(A) h(n)l- T1A. The set C(A) is
defined in the following way. Let C(Ag) = {n | h(n)lF 71 Ay} if this is infinite, C(Ag)={n |
h(n)IF Ap} otherwise. Let C(Aj+1) = {ne C(A;) | h(n)lF 71 Aj4,} if this is infinite, C(Aj4+1) =
{ne C(A;) | h(n)lFAi+1} otherwise. Finally, let A4 be the sentence Vne C(A) h(n) - A.

Claim 1. T proves V'n [ h(n)#0— Thm[3mh(m) is a proper submodel of h(n)] ].

Proof. In fact if h(n)0 then at some stage s<n for some formula A, s codes a proof AgvA, and
h(s+1)=h(n) - 7 A. By provable X; completeness Thm[ 1A¢] this together with Thm[AgvAA] yields
Thm[A,] and in particular Thm[3*°n h(n) I A]‘. From h(n)I- 7 A we get Thm[h(n)I 71A] by provable

X; completeness, thus the claim follows.

Claim 2.V ne ® Ime o such that T proves h(n)#0— Thm™(L). (So, since T has infinite height,
for every standard n, h(n)=0.)

Proof. This is an easy corollary of the previous claim.

To define 1(A) we need to assign "ad hoc" a model to 0. Following Shavrukov we shall

construct a formula 7" in such a way that for all standard formulas A and B the following properties

are provable in T.
1 I() (3) A4rA — T(A).
@) T(A-B) & (T(A) —» T(B) 4 T(OA)— 4EA.

(Roughly speaking the formula Z(A) says that A belongs to some a maximal consistent set 7’
containing AU { "OA | A¥0A}. Such a set 7 exists (for T) since otherwise for some A,,...,Ap
such that 4k¥0A,,..., A¥0A, we would have Ak 0OA,Vv....vOA,. This contradicts the s.d.p. of
A.) For the proof of the lemma only (1)-(4) are needed, so we prefer to postpone the definition of 7
and the proof of (1)-(4) after the proof of the lemma.

We define T to be the sentence AgAZ (A), and finally define: 1(A):= AAVTa, i.e. AAVIAQAT (A)].

We shall prove that 1 is an interpretation (claim 5) and that 1 interprets 4 in T (claim 6).

Claim 3. For every A€ £, T proves ¥V n h(n)I- A — A4.
Proof. Since A is standard we can replace in the definition of A4 the quantifications over strings by

finite conjunctions and disjunctions. So the claim is trivial.



Claim 4. For every Ac L, T proves Vn [h(n)=0 A AxFA — Y(A)]

Proof. Assume h(n)=0 and 4 < A. Reasoning in T we want to show A5vTa. Since h(n)=0 and
Ak A, the function can leave 0 only to a model of A and eventually move to some submodel of it.
So T1)g implies V' *nh(n)k A. By the previous claim, this implies Ax. On the other hand, by (3), we
have T(A), so, Ay implies Ta.

Claim 5. The function 1 is an interpretation. (i.e. properties (i)-(iii) are provable in T.)

Proof. We have to prove that for every standard formula A properties (i)-(iii) are provable in T, i.e.
YWOA) & Thm[1(A)], 71(1) and 1(A—B)e (1(A) -»1uB)). The proof is more readable if we
derive them both from T+Ag and from T+ A¢. In fact under the hypothesis Aq the sentence 1(A) is
equivalent to 7 (A) (by our convention that 0¥ A), while, under the hypothesis 1Ag, 1(A) is

equivalent to A,.

T+Ap + WOA)— Thm[1(A)]. Assume ([JA) and Ag and reason in T. As we just remarked, under
the assumption A, W(OA) reduces to T(0JA). By (4) we obtain Ak A, so, for some n, Ank A.
Since we assumed Ag, h(n)=0. Both 4 ,F A and h(n)=0 are X; sentence so by provable

3j-completeness we have Thm[4; F A] and Thm[h(n)=0]. By claim 4 we have Thm[t1(A)].

T+Ao + Thm[t(A)] = WTA). Assume Thm[AaV Ta] and Ag. It sufficies to show, reasoning in T,
that Z{00A). Since Thm[AsV T4], a fortiori Thm[ AgvAa]. Let n the code of the minimal proof of
AgVvA4, Since we assumed Ag, h(n)=0. Then Ak A, otherwise the function would leave 0 at stage

n+1, contradicting Ay. Then Ak OA and so, by (3), Z(OA).

T+Ag F 7(1l). Immediately from (1).

T+l F WA—B)e ((A) — 1(B)). Immediately from (2).

T+Ag F WOA)— Thm[u(A)]. Assume L(OA) and 1. It sufficies to prove Thm[AA] in T. By
our assumption Ags holds, in particular for some n, h(n)I- OA. The latter is a X; sentence so
Thm[h(n)- OA]. Since h(n)#0, by claim 1 we have Thm["Im h(m) is a submodel of h(n)"], thus

Thm[V *n h(n)IF A]. By claim 3, Thm[A,] follows.

T+ Aok Thm[WA)] = (OA). Assume Thm[AsvTa] and 1A It sufficies to derive Aga reasonong
inT. Since Thm[AsV T4], a fortiori Thm[AgvAA]. Letn a code of a proof of AgvA, which is large



enough to have h(n)#0. (Such an n exists since we assumed ~1A and any provable sentence has
arbitrary large proofs.) Then, directly from the definition of h and from the fact that the code of a
model is larger than the code of its proper submodels, we can conclude that ¥ *°n h(n)I-OA. Thus

Aga follows by claim 5.

T+ Aok 1(1). Immediate.

T+ 729F A —B) < (L(A) = 1u(B)). Is left to the reader.

Claim 6. For every Ae L, Ak Aiff T+ 1(A).

Proof. (= ) Assume AF A then for some 4 5k A. Since n is standard h(n)=0 and, by
Zj-completeness, THh(n)=0A44F A. So (A) by claim 6. Vice versa, (&), if TF 1(A) we have in
particular that T+ AgvAa. Assume for a contradiction that A A and let n be the code of the proof of
AovAa. In particular we have that 4, A then h(n+1)#0. This n is a standard number so this
contradicts the fact that h will spend all its standard live in 0.

The proof of the lemma is completed but for the definition of the predicate 7. We introduce the
formula V(o) which roughly says: A4 is C-conservative over 4, namely

V(o) :=VA[(Ar A;—>DOA) = (A-0A) 1.
Assume strings have been coded into numbers in some natural way, (e.g. choose Zqj)l=1 2! as code
of 6) so that on strings of equal lenght the relation "<" coincides with the relation "preceeds
lexicografically" or, when strings are thought as nodes of a binary tree, "is on the left of". Let U(c)
be the sentence which sais that ¢ is the leftmost string satisfying V(c),

U(0):=V(0)AV1e 21t (1< — 71 V(1))].

If A=A let T(A) hold if there is o 2i+! such that U(c) and 6(i)=1. Note that if 6,T € 2J for some i>j
and both U(c) and U(7) then t(i)=0(i). We have to show that for every standard formula properties
(1) to (4) of T are provable in T. As first thing let us remark that for all standard i, T proves
Joe2i*1 U(o), ie. i.e. there exists the leftmost string o satisfying V(c). Reason in T. A string
satisfying V(o) must exists otherwise for every oe 2i*! there would be a modal formula C such that
A Ag— OCg and AEOC. Since V ce2itl Ag is a tautology, one would have Ak Vc‘E 1 0Cq. By
the s.d.p. of 4 (provable in T) Ak OCg for some o, a contradiction. Now, once we know that one
string © exists satisfying V(o), the existence of the minimal one is again a consequence of the
standardness of i since the quantifiers over strings in 2i*! may be transformed in finite conjunctions
and disjunctions. This proves our remark, now we check in turn that properties (1) to (4) which we

required for T are provable in T.



1 T (3) A:A - T(A).

2) T(A-B) « (T(A) — I(B) 4) T(OA) = ArA.

We reason in T. It is obvuious that no string ¢ such that V(c), 6(1)=1, so (1) holds. (We write
6(A) for 6(i) where A=A;.) To prove (2) assume first that 7(A — B) and 7 (A). Let 6 be a
sufficiently long string such that U(c) and 6(A — B)=0(A)=1. Then 6(B)=1 otherwise Ag <> 1 and
surely could not satisfy V(o). The converse is similar. Property (3) is also a diret consequence of the
existence of an arbitrary (standard) long string satisfying U(c). For such a string we must have
o(A)=1 otherwise AF Ag — L and, by the definition of V(G), that Ak L. Last to prove (4) assume
that Z(OA). Let o be a sufficiently long string such that U(c) and 6(0A)=1. Then Ak A;— OA
so, by the definition of V(c), Ak O A. By the s.d.p. of 4 we get Ak A.

This completes the proof of lemma 1.1

§2. The theorems. We shall use lemma 1 to prove the two theorems announced in the

introduction. They characterize the r.e. sets interpretable in a theory of infinite height.

Theorem 1. Let 4 is an r.e. set of modal formulas and T is a X; sound theory containing IAg+exp,

then A is interpretable in T iff 4 is s.d..

Theorem 2. Let 4 is an r.e. set of modal formulas and T is a X; ill theory of infinite height

containing TAp+exp, then A4 is interpretable in T iff 4 has infinite height .

The "only if" part of both theorems is trivial. To prove the first theorem we show that, if 4 is
an r.e. set with the s.d.p. and T is a X;-sound theory, then we can find a description of 4 in T such
that T proves the s.d.p. of 4. Analogously for the second theorem. For the sake of readability we
shall give these proofs in an informal style, namely we shall merely describe algorithms and give for
granted their formalization in the language of T.

Suppose 4 is an r.e. set of modal formulas and let Ae 45 be any description of 4. To this
description we associate in a natural way the algorithm {4 s}sc o enumerating 4, i.e. an increasing
recursive sequence of finite sets {4 }se o such that 4 =Ugse 94 5. We shall construct a new
algorithm {¥g}se @ enumerating the same set 4 such that the canonical translation of { Vs}se e in

the language of the arithmetic yields a description with the desired properties.



The proofs of theorems 1 and 2 needs two modal lemmas, respectively lemma 2 and 3. These
are the adaptations of some lemmas of [1]. We shall present them in a form which is easly formalized

and proved in IAg+exp. Their proofs are moved to the end of this section.

A finite set Cof formulas is said to be adequate if: (i) Le C, (ii) all subformulas of any Be Care in
C (iii) for every B,Ce Cthere exists De Csuch that FD <« (B—C).

Lemma 2. Let Cbe a finite adequate set containing 4. The following are equivalent:
(a) 4 iss.d. (b) Ak L and VB,Ce C 4= OBvOC = 4k B or 4= C.0O

Proof of theorem 1. We are now ready to present the algorithm required to prove theorem 1. We
may code (with infinitely many repetitions) finite sets of formulas with natural numbers. The
property "s codes an adequate set" is Ag. With the same notation of the example given above

consider the following algorithm { ¥} e -

(Stage 0) Vo =@.
(Stage s+1) If s codes an adequate set C, if condition (b) of lemma 2 holds for for the set A 5N C and
.ﬁ,s n C I+ q/’s, let ‘I/,s+1 = r’/’s U (ﬂ.’s n O, otherwise let ‘1/’34.1: r’/’s.

From lemma 2 follows that that A=Uje s 50 { ¥s}se @ yields a description of 4. Formalizing

lemma 2 in JAg+exp, we have that T proves the s.d.p. of 4.1

Lemma 3. Let Cbe a finite adequate set containing 4. The following are equivalent:
(1) A has infinite height (2) there exists Be Csuch that B is s.d. and BE A 4.00

Proof of theorem 2. Given a X ill theory T choose a Ayp-formula ¢(x) such that T+ Ixo(x) and
ok Vx10(x). Inevery model of T there is a Ay definable number n, namely the minimal witness of
dx 6(x). The idea of the proof is the following: given any algorithm 4 s enumerating 4 we
construct a new algorithm which simulates 4 5 until the nonstandard stage n, but once this stage is
reached we stop the simulation and enumerates some arbitrary s.d. set containing A4 ;. In the real
world this stage n is never reached, so this new algorithm enumerates the same set as the old one.
But in any model of T this algorithm enumerates a finite s.d. set. Lemma 3 is used to guarantee that

some s.d. formula BE A5 always exists.

(Stage 0) Vo =@.



(Stage s+1) Let Cbe the finite set of formulas coded by s. If Cis adequate, AsNC 2 Vs and there
is a s.d. formula A in Csuch that Ak 4N C, (i.e. condition (b) of lemma 2 holds).Then:

Case 1: if Vx<s 0(x) let V1 =VsU(AsN O.

Case 2: if 3x<s o(x) let Vs 1=VsU{A}.

Otherwise let Vs11=Vs.

By lemma 3 the formula A required in case 1 always exists. In the real world case 2 never obtains, so
A=UseoVs. For the theory T case 2 obtains eventually, say at stage n, s0 Uge Vs is s.d.. This

completes the proof of theorem 2.[]

Proof of lemma 2. The direction (a)=> (b) is trivial. For the proof of (b)=> (a) assume that 4k L
and for all B,Ce C if A OBvOC then Ak B or A C. Fix a set At < Csuch that:

At:={Ge C| YCeC GIFCor GIFC}.
The elements of At are called atoms . Lety={Ge At | A¥ G }. By the adequateness of C,
EVAto T so, since A¥ 1, y20 . We claim that there is a model of AU {<OG | Ge v}. In fact, if not
then 4k Ve y10G. By (b), there is Gey such that 4F G quod non. This proves the claim.

Suppose now that for some formulas By, B, both 4£B; and A£B,, so we may assume that
there are two models k; and k; of 4 forcing respectively 71B; and 1B,. We shall show that
A¥0OB;vOB; by constructing a model k' of 4 which contains k; and ky as proper submodels. The
s.d.p. of 4 will follow.

Let k be a model of Au {OG | Gevy}. Letr, r; and rp be the roots of respectively kk; and kj.
LetR,R; and R, be the respective accessibility relations. Let k' be the model obtained grafting k; and
kj above the root of k. More precisely, the universe of k' is the disjoint union of the universes of
k,k; and ky and the accessibility relation of k' is the transitive closure of the relation RUR; URyU
{(r,r1),(1,;12)}. The forcing relation of k' is the union of the forcing relations of k,k; and k,.

We claim that k' is a model of A4 and k'l 0B ;1A 10B,. Obviously k' forces 7O0BjA0OB,
because k; and k, are submodels of k' forcing respectively B; and B;. To show that k' is a model of
A4, we prove by induction on the complexity of subformulas Ce Cthat k'I-C iff kI-C. The basis step
is trivial as well as the induction for Boolean connectives. We prove the induction step for OI.
Assume k'IF 70C. Then for some proper submodel w' of k', w'l- 71C. The model w' is a submodel
of k; or of kj or is a proper submodel of k. If w' is a proper submodel of k, then ki 700C follows.
Otherwise, let G be the atom forced in w'; since Ce C, by the definition of atom: either GI-C or
Gl 71C. But GI-C leads immediately to contradiction so, GI- 7C. Since both k; and k; are models
of 4, Ge Y. By our choice of k, kI /\gey<OG, so there is a proper submodel w of k which forces

G. Hence wi- C and kI 70C. Vice versa if kiI- 70C then for some proper submodel w of k,

10



wl- 7C. Since w is also a proper submodel of k', k'l 700C follows. This completes the proof of

the lemma.[1

Proof of lemma 3. (&) Is immediate. (=) Let us first observe that if 4 has infinite height and
Ar OCvOD then either Au {C} or Au {D} has infinite height. In fact, if A= OCvOD and for some
n both 4u {C}EO"L and Au {D}EDO"L then AF OC— 011 and ArOD— 011, Thus
Ar0O™1] and A has finite height. Now, list the formulas of C={Cj,...,Cp} define y:=4 and for
all i<n let Aj41:=4;uU {C} for the first C in C such that for some D in C, 4;F OCvOD, 4AC has
infinite height and 4; £C, Z;+1:=4; otherwise. Finally choose in Ca formula B equivalent to /\ 4y.

By lemma 2 and the previous observation, B satisfies the required properties.[]
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