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0 Introduction

The interest in fragments of predicate logics is motivated by the well-known
fact that full classical predicate calculus is undecidable (Church 1936). So it
is desirable to find decidable fragments which are in some sense “maximal”, ie
which become undecidable if they are “slightly” extended. Or, alternatively,
we can look for “minimal” undecidable fragments and try to identify the vague
boundary between decidability and undecidability. A great deal of work in this
area concerning mainly classical logic has been done since the thirties. We will
not give a complete review of decidability and undecidability results in classical
logic, referring the reader to existing monographs (Suranyi 1959; Lewis 1979;
Dreben, Goldfarb 1979); a short summary can also be found in the well-known
book (Church 1956). Let us recall only several facts. Herein we will consider
only logics without functional symbols, constants and equality.

(C1) The fragment of the classical logic with only monadic predicate letters is
decidable (Behmann 1922).

(C2) The fragment of the classical logic with a single binary predicate letter is
undecidable (this is a consequence of (Godel 1933)).

(C3) The fragment of the classical logic with a single individual variable is
decidable; in fact it is equivalent to Lewis’ S5 (Wajsberg 1933).

(C4) The fragment of the classical logic with two individual variables is decid-
able (Segerberg 1973 contains a proof using modal logic; Scott 1962 and
Mortimer 1975 give traditional proofs).
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(C5) The fragment of theclassical logic with three individual variables and bi-
nary predicate letters is undecidable (Surariyi 1943).
In fact this paper considers formulas of the following type

VaIyp(z,y) D Ve3yVzy(z,y, 2),

¢, % being quantifier-free, and the set of binary predicate letters which
can appear in ¢ or v, being fixed and finite.

(C6) The fragment of the classical logic with three individual variables, a single
binary and a (fixed) finite number of monadic predicate letters, is unde-
cidable (Suranyi 1959). ‘

In fact, this result deals only with formulas of the type

VeVy3dzp AVzVyVzy (o, being quantifier-free).

(C7) The fragment of the classical logic with formulas of the type Va3yvz
©(z,y,2), with a quantifier-free ¢, which can contain a single binary and
monadic predicate letters from a (fixed) finite set, is undecidable (Kahr,
Moore, Wang 1962; see also Lewis, 1979).

Now let us cite some results in non-classical predicate logic

(N1) The fragment of any sublogic of QS5 (Quantified 55) which is conser-
vative over the classical logic, with a single monadic predicate letter is
undecidable (Kripke 1962).

(N2) The fragment of QH (intuitionistic predicate logic) with a single monadic
letter is undecidable (Maslov, Mints, Orevkov 1965; Gabbay 1981; Kripke
1965 proves undecidability for a fragment with two monadic letters).

(N3) The fragment of QH with a single individual variable is decidable.
This result was proved syntactically in (Mints 1968) and semantically in
(Ono 1977), (Fischer-Servi 1978).

(N4) The fragment of QS4 with a single individual variable is decidable (Fischer-
Servi 1978).

(N5) The fragment of QS5 with a single individual variable is decidable.

This logic is easily embedded into Segerberg’s 2-dimensional modal logic
(Segerberg 1973), and the result comes as a consequence of (C4).

(N6) The fragment of any intermediate logic with three individual variables and
binary predicate letters is undecidable.

This is a consequence of (C5) obtained by Gédel double-negation transla-
tion of classical formulas into intuitionisitic formulas. Of course (C6) and
(C7) also can be extended to intermediate logics. As for modal predicate
logics with three individual variables, their undecidability immediately
follows from their conservativity over the classical predicate logic.




(N7) The intermediate logic of “constant domains” with a single individual
variable is decidable (Ono 1977).

(N8) One-variable fragments of quantified modal logics with constant domains
were considered in Shehtman 1987 (decidability results are stated for quan-
tified K, S4, T and some other modal systems).

(N9) The one-variable fragment of quantified provability logic for Peano arith-
metic is decidable (Artemov, Dzhaparidze, 1990), whereas the full logic
itself is not recursively enumerable (Vardanyan, 1986).

Summing up, we see that non-classical predicate logics with one individual vari-
able are usually decidable, whereas three variables usually bring undecidability.
So the case of two-variable logics is the most interesting, and it is analyzed in
the present paper. We show that undecidability is also very frequent here. In-
formally, the basic idea underlying the proofs is in viewing a 3-variable classical
model as a “3-dimensional cube”, while a 2-variable Kripke model is a family
of “2-dimensional cubes” parameterized by possible worlds, ie it is also a “3-
dimensional structure”. That is why sometimes we can embed a 3-cube into a
2-variable Kripke model.

1 Embedding QC-3 into QS5-2

Let us fix a classical first-order language Lo containing:
¢ a single dyadic predicate letter R;
e a finite set of monadic predicate letters: My (k < K);

o three individual variables: z,y, z;

]

propositional connectives: V,—;
o the quantifier 3.

Let L; be a modal first-order language containing;:

oy

. monadic predicate letters: Py, Pa: , @
. two individual variables: z,y;

. propositional letters: Ps, Ni(k < K);

2
3
4. propositional connectives: V,—;
5. the quantifier: 3.

6

. modal connective: O



Other logical symbols (A, =, D,V, etc) will be used as standard abbreviations.

Let also Lic be the corresponding classical language (i.e. L; without [J).
We define a translation ¢ — ¢’ of Lo-formulas to L;-formulas according to the
following inductive definition:

1. R(z,t) = Pi(t),R(t,2) = P(t) if t € {z,y};
2. R(z,z) = Ps;

3. R(t,r) =0(Q() D Pi(r)) if t,r € {z,y};
4. Myt Y'=0(Q(t) D Ny) if t € {z,y}

5. Mi(z)' = Ni;

6. (mp) =9

7. (pVY) ="' VY,

8. (Bte) =3ty if t € {z,y};

9

- (Fzp) = 0¢'.
We will use some particular L;-formulas
a; =VYz0Q(z);

an = V2Vy(O(Q(z) O A(y)) = O(Qy) D Pa(2)));
ag: = V2(0(Q(e) D Pi(e)) = 0(Q(z) D Bs));
asp = VaVy(O(Q(z) A E) D O(Q(z) D E)(for any atomic E).

Let a be the conjunction of all these formulas.

A QS5-frame is a pair (W, D) of two non-empty sets (elements of W are
worlds, and those of D are individuals). A (Kripke) Li-model over (W, D) is
a family of classical Lic-models in the domain D parameterized by W : M =
(wa )wEVV .

Let ¢ be an Lg-formula, a,b,c € D. Sometimes ¢ will be written as ¢(z, y, 2),
then ¢(a,b,c) denotes the result of substituting free occurnces of z,y,z in ¢
by a,b,c respectively; also the notations ¢(a,y, z),¢(a,y,c) etc will be used.
v(a,b,c) is called a D-valued formula.

The same agreements concern Li-formulas.

M,s E A(a,b) denotes that the D-valued L;-formula A(a,b) is true in the
world w of Li-model M, while 4 E ¢(a,b,¢) denotes that the D-valued Lo-
formula ¢(a,b,¢) is true in a classical model u. w F A(a,b) is used instead of
M,wFE A(a,b) if M can be easily restored from context. M F A(a,b) denotes
that A(a,b) is true in every world of M.

Lemma 1.1 Let p be a classical Ly model with the domain D , M be an L,-
model over (W, D),u € W so that for any a,b € D, k < K:



(i) M,ukF a;
(i) M,u E0(Q(a) D P(b)) & pnE R(a,b);
(iii) M,uEDO(Q(a) D Ni) & uk My(a).

Then

1

2.

M,uE O(Q(c) A Ala, b)) = 0(Q(c) D A(a,b)) for any a,b,c € D and any
Li-formula A(z,y);

pE pla,bc) & M,ukE OQ(c) A¢'(a,b)) for any a,b,c € D and any
Lo-formula o(z,y, z).

Proof.

1.

It is easily seen that u F O(Q(c) D A(a,b)) D O(Q(c) A A(a,b)). Indeed,
from (i) we obtain u F @1, and hence u F {Q(c). Then we notice that a
formula

QX D(OX DY) D QX AY))
1s true in every Kripke model and apply modus ponens in the world u.
The converse
uF O(Q(c) A A(a, b)) D O(Q(c) D A(a, b)) is proved inductively.
If A= P(z) (or Pi(y)), i = 1,2 then A(a,b) = P;(a) (respectively P;(b)),
and (*) follows from a4 p,(y).
If Ais a propositional letter then A(a,b) = A, and we apply Qy 4.
If A= Ay V As, with A;, A, satisfying (*), we have:

u F (0(Q(c) A A1(a,0)) V O(Q(e) A Az(a, b)) D
(O(Q(e) 3 A1(a,)) v O(Q(c) D Ax(a,b))).

Using laws of minimal modal logic K we obtain (*) for 4.
If A=-B, with B satisfying (*):

uF 0(Q(e) A B(a, ) > O(Q(e) D B(a,b),

then by a contraposition we easily obtain (*) for A.

If A =3zB(z,y) then A(a,b) = 3zB(z,b). Assume that u F O(Q(c) A
3z B(z,b)), and let us show that u F O(Q(c) D 3zB(z,b)) whenever B
satisfies (*), ie that v F Q(c) D 3z B(z,b) for any v € .

By our assumption, u F Q(Q(c) A B(a,b)) for some a € D and so u E
L(Q(c) D B(a,b)) by (*). Hence v E Q(z) D B(a,b),v F Q(c) D
JzB(z,b).

The case A = JyB(z,y) is proved similarly.

If A =0B(z,y) then (*) holds in any case. For, the following formulas
are valid in every QS5-frame:

0(Q(c) ADIB(a, b)) > 0OB(a, b),

O0B(a,b) > OB(a,b),
OB(a,b) > O(Q(c) > OB(a, b)).



2. By an induction over the construction of ¢.
If ¢ = R(z,z) then ¢' = Pi(z),¢(a,b,c) = R(c,a),¢'(a,b) = Pi(a). By
the condition (ii),

1 F Rie,a) & M,uF 0(Q(e)  Pi(a)),

and
M,uE O(Q(c) D Pi(a)) & M,ukE Q(Q(c) A Pi(a)),

by (1).

If ¢ = R(z,z) then ¢’ = Po(x), and the proof is almost the same.
Now the cases: ¢ = Ri(z,y), = Ri(y, z) must also be clear.

If ¢ = R(z,z) then ¢’ = P3,¢(a,b,c) = R(c,c),¢'(a,b) = Ps.

We have:

pER(c,c) e Muk D(Q(c). D Pi(c)) & M,ukF O(Q(c) D Ps3)
& M,uEQ(Q(c) A Ps),

by (ii), and (1).
If ¢ = R(z,y) then ¢’ = O(Q(z) D Pi(y)), p(a,b,c) = R(a,b),¢'(a,b) =
O(Q(a) D Pi(b)). By (ii) we have:

pE p(a,b,c) < M,ukED(Q(a) D Pi(b)).
On the other hand,

]\4-7 ukF OQ(C) (by al)y
M, uk 0Q(c) O (O(Q(a) D P1(b)) = O(Q(e) AD(Q(a) D F1(D))))

according to the laws of S5. Thus ¢ satisfies (2).

Similar reasonings can be used for ¢ = R(z,z), R(y,z), R(y,y), Mr(z),
Mi(y).

If o = My(z) then ¢'(a,b) = Ni,p(a,b,c) = Mi(c), and we have:

uE Mp(c) & M,ukEO(Q(c) D Ni)

according to (iil).
If o = ¢ V({ and ¢, satisfy (2) then

uEe(a,be) < pkEY(abe)VukE((abc) e
& M,u,F Q(Q(c) A'(a,b)) V M, uk O(Q(c) A('(a,b)) =
& M, uk O(Q(c) A'(a,0)) V O(Q(c) A¢'(a,b)).

The latter formula is obviously equivalent in QS5 to O(Q(¢) A ¢'(a,b)).
If ¢ = -9 and o satisfies (2) then

pEpabc) & plfd(abc) & Muk-~0(Q(c) AY'(a, b)) &
M, uk 0(Q(c) D ¢'(a,b)).



But the latter formula is equivalent in u to {(Q(c) A ¢'(a,b)), due to (1).
If ¢ = 3zp(z,y,2), then p(a,b,c) = 3z¢(z,b,¢), ¢ (a,b) = 3zy’(z,b),
pF pla,b,c) & for some d p kE ¢(d,b,c) & for some d M,uF O(Q(c) A
¥'(d, b)) (if ¢ satisfies (2)) & M,u F {(Q(c) A 3zy'(z,b)) (the latter
equivalence holds in any Kripke model-over a QS5~rame).

The case p = 3yy(z,y, z) is considered analogously.

If o = 3z¢(z, y, z) then p(a,b,c) = 3z¢(a,b, 2),¢'(a,b) = O¢'(a,b). Sup-
posing % to satisfy (2) we have:

pE ¢(a,b,c) < for some d,p F ¢(a,b,d) &
for some d, M,u E Q(Q(d) AY'(a,b)),

Hence p F ¢(a,b,¢) = M,uFE Q¢'(a,b) = M,ukE O0Y'(a,b) (because M
is an S5-model). But M,u F {Q(c) due to ay; therefore p = ¢(a,b,c) =
M,uE O(Q(c) AOy'(a,b)). The converse implication follows immediately
from the above equivalence.

Lemma 1.2 Let ¢ be an Lo-formula without free occurrences of z. Then QS5
FOp' = ¢, 0p' = ¢'.

Proof. The first equivalence is easily proved by an induction, using the following
QS5-theorems:

O(@CA vOB) =0A v OB,0-04 = -04,030OA = 3t0A.
Then we have: O(~¢') = (—p)’, and thus Q¢’ = ¢'. |
Theorem 1.3 For any closed Lo=formula ¢,
Fpe QS5-2 Fady.

(F means classical validity, QS5-2 is the Ly-fragment of the pure quantifica-
tional version of S5. 1)

Proof. [=] Assume that QS5-2 I/ o D ¢’. By Kripke’s completeness theorem
(Kripke 1959), there exists a QS5-frame (W, D) and an Li-model M over (W, D)
such that

M,uEa A~y

for some u € W. Then M,u E O-¢’, by Lemma 1.2. On the other hand,
M,uE a; implies M, u E QQ(c) for any c. Therefore

M,uk Q(Q(c) A —¢p')

1We leave aside a question of how to axiomatise QS5-2; eg is it true that we can take just
standard axioms and rules of QS5 and restrict them to the language L;?




and ¢’ = ¢'(a,b) for any a,b € D since ¢ (and ¢) is closed.
Let 1 be a classical Loanodel with the domain D satisfying (ii) (such a model
obviously exists). By lemma 1.1, we obtain

1 E —p(a,b, c)(= —yp),
and thus ¥ .

[«=] Assume that  ¢; then p i ¢ for some Lo-model p. Let D be the domain
of p1, and consider the QS5-frame (D, D). We can define an L;-model M over
(D, D) such that for any a,b € D, k < K:

M,aEQ(b) b= a;

M,aF P3s & pF R(a,a);

M,a ¥ Py(b) & pE R(a,b);

M;aF Py(b) & pE R(b,a);

M,ak N < pkE Mi(a).
Let us show that M,uF « for any u € D:

1. Since bF Q(b) for any b € D, we have u E «;.
2. For any b,c € D:
ukED(Q(b) D Pi(c)) bk Pi(c) e ukE R(b,c) <
cF Py(b) < uED(Q(c) D Pa(b)).
Hence u F as.
3. For any b € D:
uEO(Q(b) D Pi(b)) < bk Pi(b) & uk R(b,b) &
bE P < ukO(Q(b) D P3),
and so u F as.
4. For any b,c € D:

uF Q(Q(b) A Pi(c)) < bF Pic) © aEDOQ(b) D Pi(c)),

and thus u & agp,(y).
If E'is a propositional letter then u F Q(QO)AE) © bE E < u F
O(Q(b) D E), and thus u F a4 g in this case as well.
The conditions (ii), (iii) from Lemma 1.1 are satisfied by z, M and any
u € D:
uFO(Q(a) D Pi(b)) & aF Py(b) & puF R(a,b),
uF O(Q(a) D Ni) & ak Ny & puF My(a),

and thus by Lemma 1.1, u F =p(= —~¢(a, b, ¢) with a, b, ¢ arbitrary) implies

M, uk O(Q(c) A—¢'(a, b))

(and ¢'(a,b) = ¢'); hence M,u E O—¢', and M,u k —¢’, by Lemma 1.2.
Consequently M,ul « D ¢, and thus QS5-2 Hady.



|
Corollary 1.4 QS5-2 s undeczdable

Proof. The fragment QC-3 of %Efsgical predicate calculus in the language Lo
is undecidable (if K -is sufficiently large) as we have noted in the introduc-
tion (Surariyi 1943). Theorem 1.3, (together with G6del completeness theorem)
shows that QC-3 is reducible to QS5-2. |

QS5-2 can be also defined in purely classical terms. Viz, consider the clas-
sical first-order language L{ containing

1. binary predicate letters: Q, Py, Pa;

2. monadic predicate letters: P3,Nk(k < K);

3. individual variables: z,y, z;

4. propositional connectives: V,—;

5. the quantifier 3.

Atomic formulas allowed in L} are only of the types: S(z,z),S(y,z) (S be-
ing a binary predicate letter), Ni(z), Ps(z). Non-atomic formulas are built by
standard rules.

There is an evident translation 4 — A" of L; formulas to L{-formulas.

S(z)" = S(z,2),S(y)" = S(y,2) (fS=Q, P, P);

P} = Ps(z); N[' = Ni(2);

(AV B)" = ANV BY; (=AY = =AM,

Bz AN = Fz AN (3y)" = 3yA™,

(OA)N =VzA".
It is clear that every L{-formula is equivalent (classically) to some A”".
Lemma 1.5 Let p be a classical LY -model with the domain D, and let M be
an Ly -model over (D, D) such that
(%) M,cF A(a,b) & puE A(a,b,c) for any a,b,c € D and any atomic A.

Then (**) is true for any formula A.

Proof. The proof is inductive and quite easy. |
Corollary 1.6 Classical validity of L7 -formulas ts undecidable.
Proof. By lemma 1.5, for any closed L;-formula A,
(D,D)F A< DE A" A

fﬁ:’, \ Lhe
(ig\validity of A in a QS5-frame (D, D) is equivalent to classical validity of A"
in D).
But the set of all L;-formulas which are valid in every (D, D) is undecidable
(cf the proof of Theorem 1.3). Hence the result follows. |



Remark

In fact QS5 is complete wrt the frames of the type (D, D). This follows
from Kripke completeness theorem (Kripke 1959) and the following observa-
tion (which is an analogue of “p-morphism lemma”).

Let (W, D),(W’,D') be QS5-frames, f : W — W',g : D — D’ be onto
maps. Let M, M’ be Kripke models over (W, D), (W', D’) respectively, such
that

(%) MuF A(ay,...,an) & M', f(u) E A(g(a1),...9(an))

for any atomic (n-place) formula A. Then (***) holds for any formula A(z, ...,
z,). This claim is proved inductively, and it implies that any formula refutable
in some (W', D’) is refutable in some (D, D).

To obtain our further undecidability results, we have to specify Theorem
1.3 for V3V-formulas. Call an Li-formula simple if it hadeturrences of O and
quantifiers. A formula of the form Vz3y(\/[, OA;), with A;,..., A, simple, is
called quasisimple.

Lemma 1.7 Let p be a closed Lo=~formula of ¥3V-type. Then there is a qua-
sisimple Lq-formula ¢* such that

QS5+ ad (¢ =¢),
and this ¢* can be found effectively.

Proof. ¢ is equivalent to Yz3yVz1y, with ¢ in a disjunctive normal form:
Y= \/(/\pab A /\_‘Qac)
a b c
(Pabs gac are atomic). Then
QS5 ¢ = \/(/\ Pas A )\ )
a b c

Some of p’;, ¢, are classical, and we combine them together in every disjunct.
All the others are of the form R(¢,r)" = O(Q(t) D Pi(r)) or My (t) = DO(Q(t) D
Ni), with ¢,7 € {z,y}. Thus, we have:

QS5+ = \/(Xo A \OVaa A\ ~0Z00),
a d e

for some simple Xg, Y4, Zge-
But (cf. Lemma 1.1)
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QS5+ a D .0(Q(t) D Pi(r)) = Q(Q() A Pi(r)),
) a D .0(Q(t) D Ni) = O(Q(t) A Ny),
-and hence

QS5F &> .~0(Q() D Pi(r)) = D(Q(t) D ~Pi(r)),
a D .~0(Q(t) O Ni) =0(Q(t) D ~Ni).

Therefore, assuming « in QS5 we obtain:

¢ =V, (Xa AN OWay)  (for some simple Woy)
=V, (X. AOW,) (f Wa = A\; Way)
=N\, (Ug VvV, OVgr) (for some simple Uy, Vy)
Oy = A, 00U, vVV,0OVn)
= A\, (00U, vV, 8Vyn)  (according to QS5)
=V, 04; (for some simple A;),
and we can take ¢* = VeIy(\/,; 04;). |

Theorem 1.8 The set {A | A is quasisimple, QS5 o D A} is undecidable.

Proof. By Kahr-Moore-Wang’s theorem (Kahr, Moore, Wang 1962), the classi-
cal validity of Lo-formulas of ¥3V-type (for sufficiently large K') is undecidable.
By Lemma 1.7 and Theorem 1.3,

Epe QS5-2 Fade*

for any formula ¢ of this kind. Hence the result follows. |

2 Undecidable Intermediate Logics

Now let us consider the intuitionistic first-order language Lo having the same
predicate and propositional letters as L;, plus a new propositional letter S.

L, also has two individual variables: z,y. Intuitionistic propositional con-
nectives are denoted thus: -, V, A, —; quantifiers: V,3.

Every quasisimple L;-formula

A=vziy\/OA

(3

is translated to Lo:

A~ =32y \((S — 4) = 9).

The following intuitionistic formulas will serve for the same purpose as «; in
Section 1:

11



Xo,g = VaVy(S — .EV —E) (for any atomic E)

X1 = 32(Q(z) V ~Q(2)) — 5,

X, = Y2¥y((S V (Q(z) — P(y)) — (SV (Q() — P2(2)))),
X5 = Ya((S V (Q(2) — Pa(2))) = (S V (Q(z) — Pa),

Xap = VzVy((Q(z) — E) vV (Q(z) — —E)) (for any atomic E).
Let X be the conjunction of all these formulas.

Recall that an intuitionistic Kripke frame is a triple (W, <, D) in which
(W,<) is a poset, D is a function sending elements of W to non-empty sets,
such that D(u) C D(v) whenever u < v. An intuilionistic Kripke model (or an
Lo-model in our case) over (W, < D) is obtained by assigning a truth value in
every world v to every D(v)-valued atomic formula, so that a formula which is
true in some v, is true in any u > v. As usual, M,w E A(a1,as) (or sometimes
w E A(a1,a2)) denotes that a D(w)-valued formula A(a;,as) is true in a world
w of a model M; we suppose the reader to be familiar with the corresponding
definition. (In particular:

wE VzA(z,a) & Vu > wVd € D(u) u FE A(d, a);
wE 3zA(z,a) < 3d € D(w) wE A(d,a).)

An intuitionistic formula A is true in M if its universal closure is true in
every world of M; A is valid in a frame F (notation: F' F A) if A is true in every
Kripke model over F. L(F) = {A | F E A} is called the logic of the Kripke
frame F, L(F) — 2 is its fragment in our language L,. QH-2 is the Lofragment
of the intuitionistic predicate logic.

An Ly-formula is called simple if it is a simple L;-formula (e, if it is built
from atomic formulas using only V and —).

Lemma 2.1 Let M, be an Ly-model over (W, <, D) such that My, u E Xg g for
any atomic E. Then Mo U E S — AV =A for any simple D(u)-valued formula
A.

Proof. By an induction over the length of A. The base is provided by Xy .
fA=BvCadukES— BV-B,S— .CV-Cthenuk S — (BV
=B)A(CV~=C). But (BV-B)A(CV-C) implies (BVC)V (=B A-=C) in the
intuitionistic logic, and the latter formula is equivalent to (A V —A).
IfA=-Band ukF S — .BV-B, then obviously uF S — .~AV A (since B
implies —A). u

Lemma 2.2 Let My be an Ly-model over (U,<,D), A be a quasisimple L,-
formula, u € U Mo llE X NA-, My ¥ S. Let also Dy = D(u), W = {v|u <
’U&]\lz, vE S}

Consider an Ly-model My over (W, Dg) such that

(%) My, vE B & My,,vE B

12



for any v € W and any atomic Dg-valued B.
Then My,vE a A-A for anyv e W.

Proof. At first we observe that (*) holds also for any simple Dy-valued B. This
is proved by an induction; the only non-trivial case is: B = ~C. So suppose C
satisfies (*). Then

M, vE B & My, vFC.

But Ms,vE CV ~C for any v € W, due to Lemma 2.1. Hence
Ma,v '7{ C & My,E-C (= B),

and therefore B satisfies (*).
If A =Vz3y\/,OA;, then by the definition of A~ we have:

My, u E JzVy /\((S — A;) — 9),

and hence

Ja € DoVb € DoMo,u F /\z((S — Ai(a,b)) — S);
Ja € DoVb € DoViMy,u i S — Ai(a,b)

since Mo, u ¥ S. But then

Ja € DoVb € DoViIv € WMy, v ¥ Ai(a,b).
Now applying (*) to A;(a,b) we obtain:

Ja € DoVb € DoV;3v € WMy, v F ~Ai(a,b),
which is equivalent to

My, vk Javy [\ O-4;

(for any v € W). Thus M;,v F -A.
Let us show that Mi,v E a;. This is equivalent to

Va € DoIw € WM,,w E Q(a).

But the latter follows from the conditions of 2.2. Indeed, M5, u E X} implies
My, uE =Q(a) — S, and thus Ms,u ¥ =Q(a) (since Ma,u ¥ S). Then Ms,wF
Q(a) for some w > u. But M,,u E X; also implies My, u F Q(a) — S5, and thus
My, wE Sie weW.

Now consider as.

My, vE a; & Va,b e Do(Ml,v E D(Q(a) D Pl(b)) i=4
< My, v EDO(Q(D) D Pa(a))).

13



Both directions in the last ‘%’ are proved analogously, and let us show ‘=’
Suppose Mi,v E O(Q(a) O Pi(b)). Then My,u F Q(a) — Pi(b) ; indeed,
My, w F Q(a)&w > u implies w € W (as we have already seen), and hence
M, wE Q(a); My,wE Pi(b); M2, w E Py(b).
From Mj,u E X5 we have:
My, ukE Q(a) — Pi(b). — .SV (Q(b) — Poa)),
and therefore (since Ma,u ¥ S):
JWQ, uF Q(b) — Pg(a).
Now My,v EO(Q(d) D Pa(a)) follows easily:
My, wE Q@) . = My, wF Q(b) = My, wk P(a) = M, wkE Py(d).
Mi,v E a3 is proved likewise, using X3.
Let us consider ay p,(y). Suppose a,b € Do,
My, wE Q(a) A P;(b)
for some w € W. Then
My, wE Q(a) A Pi(b),
and thus
My, u ¥ Q(a) — ~P;(b).
But My, u F X4 p,(y) yields:
Ma,uk (Q(a) — —Fi(b)) V (Q(a) — P;(b)),
and hence
Ma,u E Q(a) — P;(b).
As we have seen before, this implies
My,v EO(Q(a) D Pi(b)).
Therefore M1,v F ay p,(y)-
All the other formulas a4 g are checked in the same way. |

Now consider the intuitionistic Kripke frame Fy = (W2, <, D), with a con-
stant domain N (the set of all positive integers), in which ¢2 = (Ws,<) is the
w-branched tree of height 2, see Figure 1:

1 2 3
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Figure 1

Lemma 2.3 Let A be a quasisimple Ly-formula, My be a Ly-model over (N,N)
such that My,v E a A=A for some v. Consider an Ly-model Ma over I'y such
that

My, wkE E & w#0&M,wEE

for any atomic N-valued E,E # S, and
My, wES Sw #0.
Then Ms,0FE X NA™.
Proof. At first we observe that
(%) My, wkE B & M, wF B

for any simple N-valued B and any w # 0. This is proved like (*) in the previous
lemma. (Note that M>,w E C V —C since w is maximal in F».)
Let A =Vz3y\/,0A4;. Then M;,v F —A implies

Ja € NVb € NVidw € NMy, w E =4;(a,b),
and from (**) we have;
Ja € NVb € NViM5, 07 S — Ai(a,b).
Since My, w E S for any w # 0, we obtain:
Jda € NVb € NViM,,0 F (S — Ai(a, b)) — S.

Therefore
My, wE 32¥y \(S — Ai(a,b). = §) (= A7).

Now consider Xo g. We have to show
M;,0F S — .E(n)V—E(n)

for any n € N, that is
Mo, wE E(n)V -E(n)

for any w # 0. But this follows from the maximality of w in ¢,.
The formula X; is equivalent to

Ve(Q(z) — S) AVz(-Q(z) — 5).

0 F ¥z(Q(z) — S) is obvious from the definition. On the other hand, M;,v E
a1, and thus

Va € N3w € NM,wE Q(a),
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that is
Va € N3w € NM3, w E Q(a).

Hence
Va € N 0¥ ~Q(a),

and this implies

0 EVz(~Q(z) — S).

The formula X, is equivalent to

Va¥y(Q(z) — Pi(y). — .SV (Q(y) — Pa(z)))A
VzVy(Q(y) — Pa(z). — .SV (Q(z) — A(y)))-

Let us consider the first conjunct; we have to show that
0F Qa) — Pr(b). — .SV (Q(t) — Pa(a)).
This is equivalent to
0F Q(a) — Pi(b) = 0 F Q(b) — Py(a).

So suppose
0F Q(a) — Pi(b).

Then
Ml,w = Q(a) D P](b)

for any w # 0, and thus
My, v EDO(Q(a) D A(D)).

But as provides then:
My,v EO(Q(b) O Pa(a)),

and therefore (since 0 F Q(b)):
M,,0 E Q(b) — Py(a).

X3 is checked by the same argument, using as.
For X4 g we have to show:

0F (Q(a) — E(b)) V (Qa) — ~E(b))
for any atomic E(z). So suppose
0K Q(a) — —E(b).
Then
My, wF Q(a) A E(b)
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for some w # 0, and hence

Mi,v E O(Q(a) A E(b)).
Applying a4 we conclude:

M, v ED(Q(a) D E(b)),

and this yields:
M2,0 F Q(a) — E(b).

Therefore 0 F X4 E. | |

Theorem 2.4 Let ¥ be a set of intuitionistic formulas such that QH-2 C ©
CL(F;)—2. Then '

1. for any quasisimple formula A,
QS5 FaD A (XANAT = 5)€eL;
2. ¥ is undecidable.

Proof. To prove (1), it is sufficient to show that

(11) QS5 FaD> A= QHF X ANA™S,
and

(12) FRbEXAA- > S=QS5FaD A

For (1.1), assume that QH I/ X A A~ — S. By Kripke’s completeness
theorem (Kripke 1965), we have then:

Arlz,tVX/\A— —>S

for some Kripke model M, over a Kripke frame (U, <, D) and for some t € U.
Thus there exists u >t such that uF X AA™;u ¥ S.

Let M; be an L;-model constructed as in Lemma 2.2. Applying this lemma,
we obtain My,v F o A —A, and therefore QS5 a D A.

For (1.2), assume that QS5 / o D A. Then by Kripke’s completenss theorem
(Kripke, 1959), A is refuted in some QS5-frame (Wy, N) with the domain N and
countable or finite Wy. The remark at the end of Section 1 shows that A can
also be refuted in the frame (N, N), ie there exists a model M; over (N,N) such
that My,v # A for some v. Then we construct a model M, over F» according
to Lemma 2.3. By this lemma, we obtain: M5, 0E X A A™; and M,,0 ¥ S by
the construction.

Thus X A A~ — S is refuted in Fj.

(2) follows from (1) and Theorem 1.8. |
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Since for a propositional formula A, (W, <, D) E A does not depend on D,
we can denote this by (W, <) F A (and say that A is valid in the propositional
Kripke frame (W, <)). Let

L(W,<) = {A| A is a propositional intuitionistic formula &(W, <) F A}.

For a propositional intermediate logic L , QL denotes the predicate interme-
diate logic (in the language with a countable set of individual variables) obtained
from Heyting predicate calculus by adjoining all substitution instances of the-
orems of L as new axioms; QL-2 denotes the fragment of QL in the language
L.

Corollary 2.5 For any propositional intermediate logic L, if L C L(¢2) then
QL-2 s undecidable.

Proof. Obviously QH-2 C QL-2. On the other hand, L C L(¢#,) implies QL
C L(F3) because L(F3) is closed under substitution and under the intuitionistic
inference rules. Hence QL-2 C L(F,) — 2 and we can apply Theorem 2.4. W

Theorem 2.4 provides many other examples of predicate intermediate logics with
undecidable Ly-fragments; we can add to QH-2 any new axioms which are valid
in Fy (e.g. Va-—P(z) — ==Yz P(z),Yz(P(z) V q) — VzP(z) V ¢, etc.).

To describe another family of undecidable intermediate logics, consider the
language L3 obtained from L, by adding a new propositional letter Sy. Simple
and quasisimple Li-formulas will be translated to L3 as follows:

e B% = B if B is atomic;
« (BVC) = BV CO;

o (Ve3y\/,;04;)° = 3avy \,((S — AV Sp) — S).
Let also
Yo,g = VaVy(S — .EV (E — Sp)) (if E is atomic);
Y =32(Q(z) vV (Q(z) — So)) — S;
Y, = Va¥y(SV (Q(2) — .Pr(y) V So). — .SV (Qly) — Pa(x) v So));
Y3 =V2(SV(Q(z) — .Pi(z) VSy). = .SV(Q(z) — P3));
Ysp =VaVy((Q(z) — .EV So) V(Q(z) A E — Sp)) (for E atomic).
Y denotes the conjunction of all these formulas.

Now let us prove the analogues of Lemmas 2.1 and 2.2.

Lemma 2.6 Suppose M is an Lz-model over (W,<, D) such that M ukE YoE
for any atomic E. Then

Mouk S — A%V (=A)°

for any simple D(u)-valued formula A.
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Proof. It is completely analogous to 2.1. Intuitionistic tautologies

(=B)° A(=C)° — (=(BVC))’,
B% — (-~=B)°

are used to analyze the cases A= BV C,A=-B. [ |

Lemma 2.7 Let Mz be an Lz-model over (U,<,D), A be a quasisimple L;-
formula, uw € U, M3, uEY AN A°, M3, u ¥ S. Let also

Do = D(u), W = {v | u < v&Ms,vE S&Ms,v ¥ So}.
Consider an Li-model My over (W, Do) such that
() M;,vE B& Mz, vEB°

for any v € W and any atomic Do-valued B.
Then My, vE aA—A for anyv € W.

Proof. Asin 2.2, at first we prove that (*) is true for any simple Do-valued B.
Consider the case B = —~C. Then B® = C® — Sp, and

My, vE B M, v C e Ms,vi C® e MsvE C°— S°(= BY).
In the latter equivalence, ‘=’ follows from 2.6 (since My,v F S); ‘<=’ is true

since M3, v i Sp.
Next consider A = Vz3y\/, OA;. We have:

Ms,uF A%(= 3avy \((S — A7V So) = 9)),

and thus

Jda € DOVb € DoVU\J;;,u E (S — .A?(a, b) \% So) et S;
Ja € DoVb € Dovzj\lg, u E{ S — A?(a,b) V So

since u ¥ S. But then
Ja € DoVh € Do¥i3v € W M3, v i Al(a,b),
and by applying (*) to Ai(a,b) we obtain:

M;,vE 3zvy N\ O-A;

I3

Le. My, vFE —A.
Now consider ai. From u F Y, u ¥ S we have (for any a € Dy):

u E{ Q(a) - SO)
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and thus
Al?)v = Q((l),Mz,'U VSO

for some v > u.
On the other hand, u E Y; implies

ukF Q(a)— S .
Therefore v € W, and My,v E Q(a) by (*). Hence
Va € Do3v € WMy, v E Q(a),

ile. My F o,
For the proof of M; F ay we will show only

Mi,vEO(Q(a D Pi(b)) = My, v ED(Q(b) D Pa(a)).

Suppose
Mi,v EO(Q(a) D Pi(b)).

Then
Mo, uE Q(a) — .Pl(b) VvV Sy

(since u F Q(a) — S as we have seen, it follows that for any v > u,
My, v E Q(a)&Mse,v i Sy
implies v € W, and hence
My, vE Q(a); My, v E Py(b); My, v E Pi(b)).
Applying Y5, we conclude:
uF Q(b) — .Ps(a) V Sy,
and hence one can easily get
My ED(Q(b) O Pa(a)).

We skip the proof of M; F a3, and consider ay p;(y)-
Suppose a,b € Dy, w € W,

My, wE Q(a) A Pi(b).

Then
My, wE Q(a) A Pi(b), My, w E( So,

and thus
M, ul? Q(a) A Fi(b) — So.
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Using Yy p,(y) We have then
My, u E Q(a) — .P;(b) V Sq,

and this implies
M; EO(Q(a) D F;(b)).

Therefore M) F ay p,(y)- |

Now consider the frame F3 = (W3, <, D) with the constant domain N in
which Wy = w+1=1{0,1,...,&} and ¢3 = (W3,<) as in Figure 2:

w

(i.e. ¢3 is ¢2 with the element w added at the top.)
Figure 2

Lemma 2.8 Let A be a quasisimple L -formula, My be an L;-model over (N,N)
such that My1,v E a A=A for some v. Consider an Lz-model Mz over I's such
that

Mz, wE E< (w# 0,w&M,wEE)Vw=w

for any atomic N-valued E,E # S, So;

M3, wES & w#0;
M3, wE Sy & w=w.

Then M3,0E Y A A°.
Proof. Similarly to 2.3. At first we observe that
(%) Ms,wE B° & M,,wF B

for any simple N-vlaued B,w # 0,w. As usual, this is easily proved by an
induction; note that
Ms,wkE B°V (B® — Sp),
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due to the structure of ¢3.
Let A= anyy OA;. Then M;,v F a A A implies
L

Ja € NVb € NVi3w € NM),w i A;(a,b),
and from (**) we obtain:
Ja € NVb € NVEM3, 0 A — .So V AY(a,b),
and hence ]
Ms,0F 3zvy \((A — SoV AY) = 5) (= A°).
0 E Yo, g follows from A
0k S — .E(n)V(E(n) — S).
Y7 is equivalent to
(3zQ(z) — S) A (32(Q(z) — So) — 5).

0 E 3zQ(z) — S is obvious, and the second conjunct is true because Af; F
VzdQ(z) (due to ai).

Y, is also equivalent to a conjunction of two formulas. Consider the first
conjunct, that is

¥4 = Yavy((Q(z) — -Pi(y) V So) — (Q(y) — Pa(x) V So) v ).

If
0F Q(a) — .Pi(b) VSo
then
My, wE Q(a) — Py1(b) for any w # 0, @;
and thus

M E D(Q(a) D) Pl(b))

By aj we get
M; EDO(Q(b) D Pa(a))

le.
M, wF Q(b) — Pa(a)

for any w # 0,w. Then
0F Q(b) — .Ps(a) V Sp.
Therefore we obtain 0 F Y. Y3 is considered analogously. The proof of

0 F Yy g is left to the reader. |
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Theorem 2.9 Let ¥ be a set of intuitionistic formulas such that
QH-2 C ¥ C L(F3) — 2.2 Then

(1) for any quasisimple formula A,
QS5FaD A (YAAL =S ex
(2] T is undecidable.

Proof. To prove (1), it is sufficient to verify
(1.1)QS5FaD> A= QHFY A4’ =S,
and
(12) EEYAA° - S=QS5FaDA.

For (1.1), assume that QH I/ Y AA® — S. By Kripke’s completeness thoerem
we have: :
M3, tHY ANA° = S

for some Kriple model Mj; over a Kripke frame (U, <, D) and for some t € U.
Then there exists u > t such that u F Y A A® and u ¥ S. Consider an Li-model
M, constructed as in 2.7. Applying 2.7 we obtain:

M, E a A-A.

Therefore QS5 / a D A.

For (1.2), assume that QS5 I/ o D A. Then M;,ng i A for some model M;
over (N,N) and for some ng € N (cf the proof of Theorem 2.4). Take the model
M3 over F3 constructed in 2.8. Then 2.8 yields

M3, 0EY AA°,

and M3,0H S by the definition. Thus F3 refutes Y A A% — S.
(2) follows from (1) and 1.8. |

Corollary 2.10 For any propositional intermediate logic L,if L C L(¢3) then
QL-2 is undecidable.

Proof. Immediately from 2.9. (Cf the proof of Corollary 2.5). |

Theorem 2.9 allows to prove the undecidability of two-variable fragments for
some other intermediate logics (e.g. for those having additional axioms

--3zP(z) — 3z—-—P(z),~q — JzP(z). — 3z(~q — P(z))

etc.).
Recall that an intermediate propositional logic is called tabular if it can be
presented as L(©) for some finite propositional Kripke frame ©. A maximal

2The notation ‘—2’ in this theorem (as well as in 2.10) refers to the language La.
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non-tabular logic is called pretabular. A nice theorem (Maksimova, 1972) states
that there are exactly three pretabular intermediate logics. Two of them are
just L(¢2) and L(¢3), and the third one is the well-known logic LC = H+(p —
q)V(g—p)

Since every non-tabular logic is included into one of these three, a proof
of an analogue of Corollaries 2.5 and 2.10 for sublogics of LC would provide
the undecidability of QL-2 for any non-tabular L. However, today we have no
such proof. So for many intermediate logics L the decidability of QL-2 remains
unclear (e.g. for logics of a finite width).

On the other hand, D. P. Skvortsov recently informed us that he can prove
decidability of QL-2 for any tabular L in the first-order language without equal-
ity and functional symbols.

3 TUndecidable Modal Logics

For the modal case, the method used in the previous section becomes much
simpler. Let us consider first-order normal modal logics in the language L; (the
same as in Section 1).

Recall that a (modal)Kripke frame is a triple (W, p, D) in which W # &, p C
W x W, D is a function sending elements of W to sets such that D(u) € D(v)
whenever upv. The notations: M,w F A(a1,a2),F F A, L(F) are used anal-
ogously to Sections 1, 2. QK denotes the minimal normal modal predicate
logic. -

Lemma 3.1 Let M be a Kripke model over a frame (U, p, D), A be a quasisim-
ple Li-formula, u € U, Do = D(u),

W={veU]|uw}#MuFaA-A
Consider a QS5-model My over (W, D) such that
(%) My, vEB& M,uFE B

for any v € W and any atomic Do-valued B.
Then M1 E a A—A.

Proof. Suppose A =Vz3y\/;0A;.. Then

M,uF —~A = 3a € DoVb € DoVidv € WM, v F ~4;@,6)
= 3a € DoVb € DoVidv € WMy, v E =A;(a,8)

(because (*) holds also for any simple Do-valued formula, as it is easily seen)

= M F 3avy /\ 0-A; = My F -4
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Also we have:
M,uk a; = Ya € DoM,uk OQ(a) = Ya € DoIv € WM;y,vF Q(a) = M1 F ay.

Let us show that

My E Vavy(O(Q(z) D Pi(y)) = Q) D Pa())).
Indeed,

M, EO(Q(a) D Pi(b)) < Yv e WMy, vF Q(a) D Pi(b)
< M,ukEO(Q(a) D Pi(b)) (since W = p(u))

< M,uEDO(Q(b) D Py(a)) (since M,uF ay)

S Yve WM,vE Q(b) D P(a)

& Vv e WMy,vE Q(b) D Pa(a) (by (%))

< M; EO(Q(b) D Pa(a)).

a3 is considered analogously.
Consider ay g:

M E O(Q(a) A E(b)) = Fv € WM;,v E Q(a) A E(b)

= 3JveWM,vE Q(a) A E(b) (by (*))

= M,uE O(Q(a) A E(b))

= MurD(Qa) D E}) (by ass)

= M; FO(Q(a) D E(b)) (by (*) and since W = p(u)).

Lemma 3.2 Let M; be a QS5-model over (N,N), A be a quasisimple formula
such that My,v E a A=A for some v. Let F = (W, p, D) be a Kripke frame with
the constant domain N such that p(u) is infinite for some u € W (so we can
assume that N C p(u)).
Consider a Kripke model M over F such that for any v € W and any atomic

N-valued B:

(%) M,vE B M,vEB ifveEN,

(k%) M,v¥ B ifvgN

Then M,ukF a A -A.

Proof. It is almost the same as for 3.1. We have:

M, uE —A = 3a € NVb € NVidv € NMy, v E —A; («,6)
= Ja e NVb e NVidv € N M,v E —A; (a,6)

(because (*) holds for simple formulas too)

= M,uF 3a¥y \ 0~4i (= -A).

2
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Also
My, uE oy = VaM,uFE OQ(a) = Ya3dv € NM;,v F Q(a)

= VaM,uF QQ(a) = M,uF a;.

Consider ajs:
M,uEDO(Q(a) D Pi(b)) = Vv e NM,v E Q(a) D Pi(b)
= Vv e NMi,vE Q(a) D Pi(b) (by (%))

= Vv € NMy,vE Q(b) D Py(a) (by a2)
= M,uF O(Q(b) D P:(a))

because M,v F Q(b) only if v € N.
The converse, and as $verified analogously. Let us check oy:

M, uE O(Q(a) A E(b)) = 3v € NM, v E Q(a) A E(b)
(v € N because otherwise M, v i Q(a))

= My F O(Q(a) A E(b))

= M, FO(Q(a) D E(b)) (by aq)

= M,uEDO(Q(a) D E(b))

again because Q(a) is false outside N. |
Theorem 3.3 Let ¥ be a set ofll-formulas such that
QK-2 CECL(F)-2

for some Kripke frame F = (W,p,D) with the constant domain N such that
p(u) is infinite for some u € W.
Then

(1) for any quasisimple A,
QS5FaD> Ao (aDA)EL;
(2) T is undecidable.

Proof.
(1.1) QS5FaD>A=>QKFaDA.

Indeed, assume that QK ¥ o D A. Then by the completeness of QK
(Gabbay, 1976),
M ukEaAN-A

for some world U in some Kripke model M. We can apply 3.1 (note that
p(u) # & since M,u kE OQ(a) for some a, thanks to a;) and construct a QS5-
model M; such that

MiEan-A

Hence QS5 a D A.
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(1.2) FFaDA=QS5FaDA.

Indeed, suppose QS5 a O A. By the completeness of QS5 we have a QS5-
model M, such that M;,v F a A—A for some v. Then we can construct a model
M over F according to 3.2, such that M,uF o A—A. Hence F i a D A. |

Corollary 3.4 Let L be a non-tabular normal modal propositional logic con-
taining S4. Then QL-2 is undecidable.

Proof. By Ehsakia-Meskhi’s re.sult (Ehsakia, Meskhi 1977), every non-tabular
normal extension of S4 is contained in L(¢2) (figure 1) or in L(¢3) (figure 2),
or in S5 (which is the logic of an infinite cluster), or in the logic of the frame

Figure 3 ’ ‘
W od:j oz in {A{z /0&;(; o.///e )gqme (cd.f./lyé_)"a

(#s an infinite cluster plus the top element), "ThenQL is valid in one of the
corresponding predicate frames with the domain N, and Theorem 3.3 can be
applied. |

Of course Theprem 3.3 is useful for many other systems, e.g. QL-2 is undecid-
able for L= K4, GL (Godel-Lob logic), T, B et al. Corresponding logics with
the Barcan schema

VzOA D OvzA

are also seen to be undecidable.
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