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How to broaden your horizon*

by
Harold Schellinx
Department of Mathematics and Computer Science
University of Amsterdam
[harold@fwi.uva.nl]

Abstract

We generalize the proofs in Meyer and Ono(1992) of the finite model
property for BCK and BCIW to an infinite collection of extensions of
BCI with a ‘knotted’ rule of contraction or expansion. As a corollary we
get that BCI has the finite model property (with respect to the class of
models under consideration) only if it is equal to an intersection of these
extensions.

1 Introduction

Linear implicational logic or BCI is the fragment of intuitionistic implicational
logic obtained by deleting the structural rules of weakening and contraction from
the formulation of intuitionistic implicational logic as a sequent-calculus. So we
have the identity axiom:

[ax] A= A4,

the logical rules:

' A= 1B [DL] I'n=A4 TI',B=C
I'= AB I'y,T2,AB=C

[> R]

and the cut-rule:
I'i=4 Pz,A = B
v Fl,Fg = B )

[cut]

(Here I',T'; denote multisets (so ezchange is implicit), while AB abbreviates
ADB,)

*EXERCISE: Explain the title.




An equivalent Hilbert-type formulation is given by the axiom-schemes

(B] (BC)((AB)(AC))
[C] (A(BC))(B(AC))
1] AA

and modus ponens as a single rule of inference.
If we extend BCI with the structural rule of weakening

I'=B

[wea k] m

(for the Hilbert-system with the axiom-scheme [K] : A(BA)) we obtain the
implicational fragment of affine logic, a.k.a.! BCK.
If we extend BCI with the structural rule of contraction

T A, A= B

cont] A5 B

(for the Hilbert-system with the axiom-scheme [W] : (A(4B))(AB)) we get the
implicational fragment of the relevant logic R, a.k.a. BCIW.

Let us write A™ to denote n copies of some formula? A. We then can define
for any pair of natural numbers (n, k) a structural rule as follows:

T, A" = B

We will denote the logical system thus obtained by BCI}. Note that BCI}
can equivalently be obtained by extending the Hilbert-system for BCI with an
axiom-scheme [n ~» k| defined as

(:XD(XD(...(XDA)...)))D(XD(XD...(XDA)...)),
n k

(which for n = 0 should beread as AD (X D (X D...(X D A4)...),for k=0
as (X D(XD...(XD4)..))DA)

Clearly BCI',: is just BCI, while BCI{ for n # 0 is weird, to say the least:
in BCI% any formula ¢ is derivable; also, for all n > 0 the instance (p™ D p) D p
of the axiom-scheme [n ~» 0] is not valid classically. On the other hand, for all
pairs (n, k) such that k = 0 — n = 0 what we have is an eztension of BCI that
is a fragment of intuitionistic implicational logic. In fact, for n < k each logic

1.e. also known as
2By ‘formula’ we will of course always mean an implicational formula.



BCI} is a fragment of BCI? (which is just BCK), while for n > k > 0 clearly
BCI} is a fragment of BCI? (which is just BCIW).

In Meyer and Ono(1992) it is shown that BCK and BCIW have the finite
model property with respect to a certain class of ordered monoids. The purpose
of this note is to show that Meyer and Ono’s proof of the finite model property
for BCK uniformly generalizes to a proof for BCI}, for all n < k, and that
their proof of the finite model property for BCIW uniformly generalizes to a
proof for BCI%, for all n > k. Ie. we will show that for a suitable class of
structures, ¢f a formula ¢ is valid on all its finite members, then it is derivable
in BCI%. Crucial in this generalization is the construction of finite so-called
BCI}-monoids in section 3.

All these logics in fact are proper extensions of BCI (it is easy to show that
BCI = [n ~ k] iff n = k) and it seems not too farfetched to conjecture that
BCI is their intersection. In the final section we observe that it is an easy
corollary of our proof of the finite model property for all the extensions that
in fact this is equivalent to the statement that BCI itself has the finite model
property (with respect to this class of models).

2 BCI}: structures, validity and completeness

We begin by introducing the notion of BCI;-monoid, being an obvious gener-
alization of the BCI-, BCK-, and BCIW-structures of Meyer and Ono(1992).

2.1. DEFINITION. A BCI-structure is a quadruple (M, -,1, <), with M a set
and 1 € M, such that - is a binary operation on M that is monotonous with
respect to the binary relation < on M (i.e. for all z,y,z € M we have that z < y
implies - z < y - z) and (M, -,1) a commutative monoid with unity 1.

A BCI};-monoid is a BCI-structure of which we moreover demand that, for
all z € M, 2" < z* (taking 2° to denote the unity 1). a

Note that we do not ask anything special of the relation <. However, we
observe the following.

2.2. LEMMA. A finite BCI-structure (X, <) is both a BCI}-monoid and a
BCI*-monoid for some (n # k) if and only if < is reflexive.

ProOOF: If X is finite then there are n # k such that z® = z*, for all z. By
reflexivity then both z” < z* and z* < z”, for all . For the converse, observe
that all BCI;-monoids are reflexive. ]

We define validity on BCI};-monoids just as validity on BCI-structures: a



valuation |= on a BCI}-monoid is a relation between elements of M and propo-
sitional variables satisfying the monotonicity condition

[mon] zf=p and z <y implies y=p.

Each valuation has a canonical extension to a relation between elements of
M and implicational formulas by z = AB if Vyy k= A= zy | B.

A formula ¢ is said to be valid on a given BCI}-monoid X (written as X |= ¢)
if 1 = ¢ for all valuations |=.

With respect to validity on BCI-structures we observe:

2.3. LEMMA. A formula ¢ is valid on all (finite) BCI-structures iff it is valid
on all (finite) reflexive (even: all discrete) BCI-structures.

PROOF: Suppose (X, <) [~ ¢ for some valuation |=. Define =* on (X,=) by
z =* p iff ¢ |= p, for propositional variables p. Then obviously z =* ¢ iff z = ¢
for any formula 1. Therefore 1 =* ¢, so ¢ is not valid on a reflexive (more so,
a discrete) BCI-structure. O

2.4. REMARK. It seems that in general the condition ™ < z* does not ensure
validity of [n ~ k], so in fact we can not guarantee soundness of alllogics BCI}
with respect to validity in BCI}-monoids. The reader might want to verify
however that soundness does hold in case k = 1.

2.5. DEFINITION. Let I', A be multisets of formulas. We say that I' |} A iff
A = z is obtainable from I' => z by means of some (maybe no) applications of
rule [n ~ k] (z being an arbitrary formula). O

So |} is a partial order on the collection of multisets of formulas. Note that
for k =n we have I' |* A iff ' = A. Also obviously I' |? A iff A ¥ . So T and
A are [}-comparable if and only if they are |¥-comparable.

2.6. ProPoOsITION. BCI}-logic is complete with respect to the class of all
BCI};-monoids, for any n, k.

PRrooF: (This is standard, and as in Meyer and Ono(1992). We give an outline
of the proof, for we will need some of the notions and details later on.)

Suppose BCI} I A. Let S = {S1,...Sn} be the set of all subformulas of 4.
Let ¥ denote the collection of all finite multisets with elements in S.

(Note that each element can be unambiguously represented by a vector
(a1,...,am) with entries in the set IN of natural numbers, and a; denoting the
number of occurences of S;. Clearly, (X,U,0,|) is a BCI;-monoid, with as
isomorphic representation the set of all m-dimensional vectors with entries in

4



IN, pointwise addition as operdtion, 0 := (0,...,0) as unity and the obvious
interpretation of the relation |}.)
Then, for propositional variables p appearing in A, define

I'kEp if BCI;FI =p.

One then shows by induction on the complexity of S; € S, that for all
subformulas S; of A we have that

TS iff BCI}HT =S

(I T = B D C, note that by induction hypothesis {B} = B, so I', B = C,
a.w.a.d.> by induction hypothesis. Conversely, if BCI; T = B D C and
A = B, then BCI; - A = B by inductive hypothesis. So BCI} - I';A = C
by an application of cut, and I', A |= C by inductive hypothesis.)

We conclude that 0 [~ A. ]

3 Finite BCI}-monoids

We are going to construct finite BCI}-monoids on intitial segments of the nat-
ural numbers, for any n # k.

Let mod(a,b) denote the remainder of a on division by b. For any pair of
natural numbers R > 0 and 7 > 1 define an operation [R, -], on natural numbers
as follows:

mﬂhz{a—R ifa<R

mod(a — R,7) otherwise.

It is easy to see that then R + [R,a], maps the natural numbers onto the
initial segment {0,1,..., R+ 7 —1}; moreover, it is the identity on this segment,
as for a < R+r — 1 we have that [R,a], =a — R.

We define on {0,1,...,R+ r — 1} an operation &, by:

a®;b=R+[R,a+b],.

3.1. ProposiTioN. ({0,1,...,R+r—1},@,,0) is a commutative monoid with
unity 0.

Proor: Commutativity is clear because of commutativity of +; neutrality of 0
follows from the remarks above. So it remains to show associativity of &®,.

*1.e. and we are done



By definition (a ®, b) ®, ¢ = R+ [R,(a &, b) + ¢],. First suppose that
a+b+c < R. Then obviously a +b < R, so (a®, b) ®,c=R+[R,a+b+c],.
Otherwise a+b+c > R. Ifa+b < R we again have (a®,b)®,c = R+[R, a+b+c|,.
So let us suppose that a +b > R. Then

(a®,b)®,c = R+[R,R+[R,a+b]+,
= R+ mod(mod(a+b— R,r)+c,r)
= R+mod(a+b+c—R,r)
= R+ [Ra+b+c],

So (a @, b) ®rc= R+ [R,a+ b+ c], in all cases. Similarly one shows that
a ®, b(®rc) =R+ [R,a+ b+ ¢, a.w.a.d. m|

The following two lemma’s give some properties of the operation &®,.

3.2. LEMMA. Leta,b,h € {0,1,...,R+7r —1}. Then (i) (a+b) — (a ®, b) =
0 mod r; (ii) if h < (a®,b) and (a+b)—h = 0 mod r, also (a®,b)—h = 0 mod 7.
Proor: For (i), either a ®, b =a+ b, or a ®, b = R+ mod(a +b— R,r). For
(ii), just note that (a ®,b) —h = (a+b) — h — ((a + b) — (a &, b)) and use (i).

O

Let @7a stand forg,EBraEB,....EB,.a.

n

3.3. LEMMA. For all z,a € {0,1,...,R + r — 1} we have (®la) ®, z > z;
moreover ((®,a) ®, z) —z = 0 mod .
Proor: By the above @]a equals either ra or R+ mod(ra — R,r) which in turn
equals R+ mod(—R,r). In the first case we obtain z @, ra, which either equals
z+ra >z, or R+mod(x+ra— R,7) = R+ mod(z — R,7r).

In the second case we obtain

z &, (R+ mod(—R,7) = R+ mod(z+ R+ mod(—R,r)—R,7)
= R+ mod(z + mod(—R,r),r)
= R+ mod(z — R,7).

It therefore suffices to show that for any z € {0,1,..., R+7—1} we have that
z < R+ mod(z — R,7). If x < R this is obvious. Otherwise R<z < R-+r—1
and R+ mod(z — R,r) =R+xz — R==.

The second claims follows by noting that mod(z — R,r) = r — mod(R — z,r),
so R+ mod(z — R,r) —z = (R —z) —mod(R — z,r) +r = 0 mod 7. ad



We will write M for ({0,1,...,R +r — 1},&,,0), suppose r =| n — k |
for some n # k and consider the elements of M as representing the number of
occurrences of some formula ¢. Let ', A range over multisets having ¢ as their
sole element (when non-empty). T',A then are uniquely represented by their
cardinality and we have a relation |} between natural numbers by defining z |} y
iff ', A have z,y elements and T' |} A in the sense of definition 2.5.

So the following hold:

eifk>nthenz|}yiff (z=yorn<z<yandy—2z=0mod(k—n));

eif k <nthenz |fyifyfzif (@=york<y<zandz-—y=
0 mod (n — k)).

One easily verifies that for any n # k any subset of IN without |}-comparable
elements is finite. Moreover, for k < n, there obviously are no infinite ascending
chains, while for n < k there are no infinite descending chains. (Le. for n < k
the relation |} is a well-quasi-ordering on the set of natural numbers.)

3.4. PROPOSITION. If min(n,k) < R, then (M, |}) is a finite BCI}-monoid.
PRroOOF: We show monotonicity of |} with respect to ®,. Suppose z |} ¥.

If k>nandz=y, then z B, 2 =y D, z. So let us assume that n <z <y
and (y — ) =0 mod r. Then y = = + ar for some natural number a. Now

z®z=R+ R,z + 2], and

Y& z=R+[R,y+z2], = R+[R,x+ar+z].

fy+z< Rthenz®,2=2z+2, y®, 2z = y+ 2z a.w.a.d., as obviously
z+z |} y+z. Otherwise y®,z = R+mod(z+ar+z—R,r) = R+mod(z+z—R,7).
If 4+ 2 > R, then in fact y &, z = =z @, z a.w.a.d. Otherwise x ®, z = = + z.
Then n < & ®, z < y B, z and moreover (y B, 2) — (z B, 2) = R+ mod(x + z —
Rr)—(z+2)=R—-(xz+2)—mod(R— (z+2),r)+r=0modr.

So z @, z |} y ®, z in all cases, q.e.d.

If £ < n we reason by duality, as in that case

zfy < y],’iw = yGBrzlf’ta:EB,‘z & D,z |fydrz.

To complete the proof we need (®Pz) [ (®Fz) for all z € M. Let us assume
that k > n. Then (®Fz) = (®7z) ®, (®lz). Put y := (&Pz). We will show
that y |7 (Prz) @, y. If ¢ = 0 we have equality. Otherwise y = nz > n or
y = R+ mod(nz — R,r) > R > n by assumption. S.w.a.d.* by lemma 3.3.

For n > k we use once more duality. (Here we need the assumption that
R>k). ad

“Ie. So we are done




3.5. REMARK. Though the condition “min(n,k) < R” is sufficient, it is not
necessary. E.g. for k > n we may have n > R, while nevertheless (M, |}) is a
finite BCI}- monoid. This can be the case if mod(nz — R,r) > 0, for all nz > R.

4 The finite model property

After having shown how one may obtain finite BCI}-monoids, we can continue
exploiting Meyer and Ono(1992), in order to generalize the proofs there given
of the finite model property for BCK (which for us is nothing but BCI?) and
BCIW (which is BCI?) to a proof of the finite model property for BCI} for
all n < k, respectively to a proof of the finite model property for BCI} for all
n>k>0.

As a starter, we will generalize their notion of ¢-critical formula.

4.1. DEFINITION. Let ¢ be a formula, I' a multiset of formulas.
e if n < k we say that I is (&, n, k)-critical iff

— (i) BCI? - T = ¢;
— () IfA[PT and A #T, then BCI} I A = ¢.

e if k < n we say that T is (@, k, n)-critical iff

— () BCIL T = ¢;
— @) ETrPAand A#T,then BCI;FA=¢. O

4.2. PROPOSITION. Let ¥ be the collection of all finite multisets with elements
from some finite set of formulas S. Then the set

R(¢) :={T € X |T'is (¢, n, k)—critical }

is finite, for any n # k.

Proor: If I', A are distinct elements in R(¢), then they are neither |}- nor
|¥-comparable. The claim then follows from the fact that for n # k either the
relation [P or the relation | is a well-quasi-ordering, as it is equivalent to the

pointwise lifting of the ‘singleton-order’ to |S|-tuples. See e.g. Rosenstein(1982).
a

We can now more or less copy the finite model property proofs in Meyer and

Ono(1992), with just some additional arguments using properties of ®,. To keep
this note self-contained, we will nevertheless work through the details.

8




Suppose BCI}, I/= A. Let S, X be as in the proof of 2.6. Then Uyes R(¢)
is finite, by proposition 4.2.

First we assume that n < k.

Let R := maz{n,maz{a; | (a1,...,am) € UR(¢)}}, where (a1,...,an) is
the vector representing the multiset {S7*,...,S%"}. Let » = k —n, and take the
set V of m-dimensional vectors with entries < R+r — 1. Define an operation @,
onV by (ai1,...,am) ®r (b1,...,b;m) = (a1 &y b1,...,am D bp), and a relation
2 by (a1, ., am) |7 (b1y- . bm) Hf Vi [P bi.

(In what follows we will write a for (a1,...,am), etc.)

By the results of the previous section it is clear that (V,@®,,0,|}) is a finite
BCI}-monoid. Take the refuting valuation |= used in the proof of 2.6. Define a
valuation =* on (V,|}) by a =* piff a |= p, for any variable p in A. (Observe
that =" satisfies [mon], because |= satisfies it.)

Then we apply induction on the complexity of S; € S in order to show that
for all subformulas S; of A we have that a =* S;iff a |= S;.

Let S; = B D C. Suppose a | B D C and b =* B. Then by inductive
hypothesis b = B, and therefore a+b |= C. Let ¢ be (C,n, k)-critical and such
that ¢ [¢ a+ b. (Such c has to exists as there are but finitely many vectors x
with the property that x |} a+b.)

CLaM: ¢; |f (a; ®, b;). Indeed, as ¢; |} a; + b;, ¢; < n would imply that
¢; = a; +b; = a; ®, b;; otherwise, by criticality, n < ¢; < R;ifa; +b; < R+r—1,
then a; ®, b; = a; + b;; otherwise ¢; < a; ®, b; (because R+r—1 > a;®,b; > R.)

The second part of lemma 3.2 then gives (a; ®, b;) — ¢; = 0 mod r, a.w.a.d.

As ¢ = C, by inductive hypothesis ¢ =* C, and thus a @, b =* C by the
above claim and [mon]. We thus showed that a =* B D C.

Conversely, let a =* B D C and b |= B. Take a (B, n, k)-critical ¢ such that
oIt

As Vi.c; < R+ 71— 1 we have ¢ F* B, so a®, ¢ F* C. The inductive
hypothesis then tells us that a ®, ¢ = C.

But a;®,¢; |} a;+b;: for ¢; |} b; implies a; @, ¢; |} a;®,b; (by monotonicity of
|% with respect to &, ); also a;®, b; |} a;+b;, and the result follows by transitivity
of |¥. Therefore a+ b |= C by [mon], and we showed a = B D C.

But then (V,|) (for n < k) is a refuting finite structure for A.

We proceed to the case that n > k.

We now put R := maz{k,maz{a; | {(a1,...,am) € UR(¢)}} and similar to
the previous case we take the finite BCI}-monoid (V,®,,0,|7), with 7 =n — k
and the refuting valuation |= used in the proof of 2.6. Again we define a valuation
E* on (V,|}) by a =* piff a |= p, for any variable p in A.

By induction on the complexity of S; € S we show that a =* S;iffa |= S;
for all subformulas S; of A.



Let S; =B D C, al=B D C and b |=* B. By inductive hypothesis b = B,
soa+bl=C. Asa®,b |¥ a+b, wehave a+b [P a®, b, and therefore ([mon])
a®, b |= C. By inductive hypothesisa®, b =*C,soa=* B> C.

Conversely, suppose a = B O C. This means we have b € V such that
b |= B and a+b [£ C. There is a (C, k,n)-critical ¢ such that a+ b [} c, i.e.
c |k a+b. As before we conclude ¢ |¥ a®, b,s0 a®, b |} c,and a®, b £ C.
Therefore a @, b =* C by inductive hypothesis.

Now say b = (b1,...,bn). We define b’ = (b},...,bl,), where b, = R +
[R,b;],. Then b’ €V and b [} b’ (for if b; < R+ r — 1, then b, = b;; otherwise
b; = R+ mod(b; — R,7), so k < b; < b; and b; — b, = b; — R — mod(b; — R,7) =
0 mod r). Moreover

a®,b' = R+|[R,a;+bl],

R+ [R,a; + R+ [R,b;],],
R+ [R,a; + b,

a®,b.

So b’ = B and by inductive hypothesis b’ =* B. However a®, b’ &* C. So
aE*BDC.

Thus we found also for k < n that (V,|}) is a refuting finite structure for A
and we have shown:

4.3. THEOREM. (Finite model property for BCI}) BCI} is complete with
respect to the collection of all finite BCI}-monoids, for all n # k. O

4.4. ProrosiTION. BCI}, is complete with respect to the collection of all finite
BClI-structures, i.e. if ¢ is valid on all finite BCI-structures then it is derivable
in BCI}, for any n # k.

PRrooOF: If ¢ is valid on all finite reflexive BCI-structures, it is valid on all finite
BCI};-monoids. O

4.5. COROLLARY. BCI has the finite model property only if it is the same as
Ng BCIg, for some J C {(n,k) | n # k}. a

4.6. REMARK. The argument given follows a quite general pattern, that might
be instructive to sketch.

Let £ be some logic, and suppose we have a collection of logics L; D £. Let
moreover classes of structures M(L) for £ and M(L;) for L; be given, such that
M(L;) C M(L) and each finite L-structure is an L;-structure for some i. Then
one easily shows:
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1. £ has fmp® = (), L;=CL;
2. Bach L; has fmp and (;L; =L = L has fmp,

provided (for 1) that L; is sound, (for 2) that L; is complete with respect to the
given collection of L;-structures.
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