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Abstract

In this paper we show that the category Cinf of continuous information
systems introduced in [13] can be constructed from the category Rel of sets
and relations in a systematic way: we prove that Cinf is the category of
coalgebras of the lower powerdomain comonad on the Karoubi envelope of
Rel. Informally, this means that the category of continuous dcpo’s is in
proportion to the Karoubi envelope of Rel, like the category of sets and
functions is in proportion to Rel.

1 Introduction

The original notion of an information system was introduced in [12], where it
was shown that information systems provide concrete representations of Scott
domains. Since, other types of information systems have been introduced to
provide concrete representations of other classes of domains (see for example
[2, 5,7, 8, 13]).

In [7, 8] we showed that various categories of information systems can be
systematically generated from the category Rel of sets and relations (and also from
associated categories of coherence spaces and qualitative domains) by means of
category-theoretically constructions such as the Karoubi envelope and the Kleisli
category construction. This allowed us to give simple definitions of operations
on information systems by first defining them on Rel and then considering their
extension to the generated categories of information systems. However, the largest
category of information systems that could be obtained in this way from (an
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analogue of) Rel was the category of information systems corresponding to the
continuous Scott domains.

In this paper we extend these results by showing that the category Cinf of
continuous information systems (introduced in [13]), which is equivalent to the
category Con of all continuous dcpo’s, can also be obtained from Rel in a system-
atical way as follows. First we take the Karoubi envelope C(Rel) of Rel, and we
notice that the finite powerset constructor on Rel can be lifted to a comonad struc-
ture ! on K(Rel) (corresponding to the lower powerdomain constructor). Next we
consider the category of coalgebras of !, which turns out to be isomorphic to the
category Cinf. As a corollary it follows that Con is equivalent to the category of
coalgebras of !.

If we recall that the category Set of sets and functions is isomorphic to the
coalgebra category of the powerset comonad on Rel, then the above result can be
summarized informally as follows:

Con &'E
K(Rel) ~ Rel

That is, the category Con is in proportion to C(Rel) like Set is in proportion to
Rel: just like Set is the category of coalgebras of a comonad on Rel, the category
Con is equivalent to the category of coalgebras of a (related) comonad on K(Rel).

An alternative way to view the result proved in this paper is the following one.
In [8] we showed that /C(Rel) is a model of Linear Logic. The Girard translation
[3] of intuitionistic logic into linear logic corresponds category-theoretically to
the construction of the category of free coalgebras with respect to !. Hence, the
result proved in this paper informally means that the application of an extension
of the Girard translation (viz., the construction of the category of all coalgebras)
to IC(Rel) yields the category of continuous dcpo’s.

The rest of this paper is organized as follows. In section 2 we recall the ele-
mentary theory about continuous information systems and comonads. In section
3 we introduce the finite powerset comonad on IC(Rel). In section 4 we prove our
main result (corollary 10) that the category Cinf of information systems is the
category of coalgebras of the finite powerset comonad on K(Rel). In section 5
we show, as an example of the use of corollary 10, how operators on information
systems can be defined in a simple way on Rel, and then lifted to Cinf. We will
see that this method of definition is possible for an operator if it commutes with
the powerdomain constructor. Finally, in section 6, we make some concluding
remarks.



2 Preliminaries

In this section we recall some elementary theory about continuous information
systems [13] and comonads [11].

2.1 Continuous information systems

A continuous information system (in the sense of [13]) is a tuple (A, >4), where
Ais a set and >4C A x A satisfies

Jb(a>ab>ac) & a>ac

We will write > for >4 when A is clear from the context. Note that each preorder
(that is, a set ordered by a reflexive transitive relation) is also a continuous
information system.

Let A, B be continuous information systems. An approrimable mapping from
A to B is a relation R C A X B satisfying the following three requirements:

1. 3a’(a > a') = 3b(aRD)
2. 3a',b'(a > d'RV > b) < aRb
3. a>d & a'Rb; & a' Rby = Jb(aRb & b > by, b,)

Let Cinf denote the category with continuous information systems as objects
and approximable mappings as arrows. Composition in Cinf is just ordinary
relation composition. The identity ¢d4 on a continuous information system A is
the relation >4: A — A. Let Ainf denote the full subcategory of Cinf with as
objects preorders.

In [13] it is shown that Cinf is equivalent to the category of continuous dcpo’s
and continuous functions. Recall that a subset S of a poset is directed iff each
finite subset of S has an upperbound in S. A directed complete poset (dcpo) is a
poset in which each directed subset S has a least upperbound (denoted by V S).
For a dcpo D, the way-below relation < on D is defined as follows

m<<y¢>VdirectedS(_:D(y§\/S:> dy' € S(z < ¢'))

A dcpo D is continuous iff there exists a subset Bp C D (called a basis of D)
such that

1. Bp(z) = {z' € Bp|z' < z} is directed
2. VBp(z) ==



A function f : D — E between dcpo’s D, E is continuous iff it preserves least
upperbounds of directed sets. Let Con denote the category of continuous dcpo’s
and continuous functions.

The equivalence between Cinf and Con can be described briefly as follows. An
tdeal of an information system A is a subset  C A such that

1.z #0
2. ezt >b)bex
3. bl,bZ cxr = 3b€$(b>b1,b2)

Each information system A corresponds to the continuous dcpo of ideals of A
ordered by subset inclusion. The other way round, for a continuous dcpo D, we
have a continuous information system (Bp,>>). For more details we refer the
reader to [13].

The subcategory Ainf of Cinf also corresponds to a category of domains. An
element z of a dcpo D is compact iff ¢ < z. A dcpo D is algebraic iff it is
continuous with a basis of compact elements. Let Alg denote the full subcategory
of Con with as objects the algebraic dcpo’s. The equivalence Cinf ~ Con can be
restricted to an equivalence between Ainf and Alg (or see [5] for a direct proof of
this last equivalence).

2.2 Comonads and coalgebras

Let C be a category. A comonad on C is a tuple (!, 7, 1), where ! : C — Cis a
functor and 7 :! — Idc, p :! —!! are natural transformations satisfying

L. maopa =na)opa =idy
2. maops ="pa)opa

Example 1 Let Rel denote the category with sets as objects and relations R C
A x B as arrows R : A — B. Composition in Rel is defined by a(S o R)c <
db(aRbSc) and the identity by a idy o' < a=ad'.

The powerset constructor on sets gives rise to a comonad on Rel as follows.
The functor P : Rel — Rel is defined on objects A as the powerset P(A), and if
R : A — B is a relation, then P(R) : P(A) — P(B) : zP(R)y < y = {b|Fa €
z(aRb)}. The natural transformation 1 : P — Id has components n4 : P(A) —
A znga & a € z. The natural transformation p : P — PP has components
pa:P(A) - PP(A):zpsS & S = {z}.

Given a comonad ! : C — C, a coalgebra of this comonad is an arrow . : A —!A
in C satisfying



1. paoa=1tdy
2. (a)oa=paoa

Let a: A —!A, §: B —!B be coalgebras. A coalgebra morphism from o to 3 is
an arrow ¢ : A — B in C satisfying

(g)oa=Fo¢

Let cA(C,!) denote the category of coalgebras (with respect to !) and coalgebra
morphisms.

Example 2 Let Set denote the category of sets and functions. It is easy to show
that the coalgebra category cA(Rel, P) with respect to P is isomorphic to Set.

3 The Finite Powerset Constructor as Comonad

As we saw in example 1, the powerset constructor P can be extended to a comonad
on Rel. In [8, 9] we showed that something similar can be done with the finite
powerset constructor P;. However, P can only be extended to a semi-functor on
Rel, that is, a functor which need not preserve identities [6]. Therefore, Py gives
only rise to a semi-comonad structure on Rel (for precise definitions see [8, 9]).
In this paper we are not interested in this semi-comonad structure, but in the
comonad generated by it, which we turn to now.

The canonical way of transforming semi-comonads into comonads is by means
of the Karoubi envelope construction. For a category C, the Karoubi envelope
K(C) of C is the category with as objects the idempotent arrows of C, that is, the
arrows f : A — A such that fo f = f. An arrow ¢ of K(C) between objects
f:A— Aand g: B — Bis an arrow ¢ : A — B of C such that gogo f = ¢.

Example 3 The category K(Rel) has as objects relations R C A X A satisfying
Ro R = R. It follows that the objects of K(Rel) are exactly the continuous
information systems. The arrows R : A — B of K(Rel) are relations R C A x B
satisfying

Ja',b'(a >4 a'RY >p b) & aRb

Note that, although the objects of K(Rel) are continuous information systems, the
arrows need not be approzimable mappings (they are called lower approximable
semimappings in [13]).

Let K.(Rel) denote the full subcategory of K(Rel) with as objects preorders.



A semi-functor F : C — D can be extended to a functor K(F') : £(C) — K(D)
by K(F)(f) = F(f) and K(F)(¢) = F(¢). More general, semi-comonads on a
category C give rise to comonads on the Karoubi envelope K(C). We give an
explicit description of the comonad on KC(Rel) generated by the finite powerset
semi-comonad on Rel.

Definition 4 The comonad (!,n, u) on K(Rel) is defined as follows:

o The functor ! : K(Rel) — K(Rel) assigns to objects A the finite powerset
Ps(A) ordered by X >, Y & VbeY3a€ X(a>4b). fR: A— Bisan
arrow in K(Rel), then R :!A —!B : X!RY & Vb € Y3a € X(aRb).

o The natural transformation n :! — Id has components n4 1A — A :
Xnsa & 3’ € X(a' > a).

o The natural transformation p :! —!! has components py !A -1"A : Xpsa &
Vo' € Uada € X(a > d).

The comonad ! corresponds to the lower or Hoare powerdomain constructor on
the objects of X(Rel) (considered as domains).

4 Information Systems as Coalgebras

In this section we prove our main result (corollary 10) that the category Cinf of
continuous information systems is isomorphic to the category of coalgebras of the
comonad ! on K(Rel). First we show that eachi continuous information system
gives rise to a coalgebra of !.

Definition 5 Let A be a continuous information system. The relation ay C

A x Pg(A) is defined by
aa X © Jd'(a > d > X)
where a' > X denotes that a' is an upperbound of X .

Lemma 6 For a continuous information system A, the relation ay is an arrow
A —1A in K(Rel).

Proof: We show that
3b,Y(a > ba Y > X) & acs X

e (=): Suppose that a > ba,Y > X, then there exists & such that a > b >
b >Y > X. Hence there exists ' such that a > b > X and aayX follows.
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e (<): Suppose that acsX. By definition of ay, we have Ja'(a > o' > X))
and hence, by the properties of the >-relation, there exists b, c such that
a>b>c>ad > X. It follows that a > b > ¢ > {a’} > X, and hence
3b,Y(a > banY > X).

Theorem 7 For a continuous information system A, the arrow ay : A —1A is
a coalgebra with respect to !.

Proof: By lemma 6, the relation a4 is an arrow A —!A in (Rel). We first show
that 7 o ay = id, that is, we show that

IX(aosX & Fbe X(b>c)) ©a>c

e (=): Suppose that aas X & 3b € X (b > ¢). Then there exists a' such that
a>a > X, and hence a > a’ > b > c¢. It follows that a > c.

e (<): Suppose that a > c¢. By the properties of > there exists a', b such that
a>a >b>c Hencea > d > {b} and 3b € {b}(b > ¢). It follows that
there exists X such that aa, X & 3b € X (b > c).

Next we show that ps 0 ay =!(a4) 0 ay, that is, we show that
IX(acaXpaS) € X (acs X! (as)S)

Starting from the left-hand side we have

& IX(Fd(a>d > X) & X >J9)
& Jd(a>d >J9) }
& Jd'(a>d > X) & VY € STbe X' (b>V >Y))

AX(
& dX(d(a>ad > X) & VY € ST € X(ba,Y))
& IX(acs X (ay)S)

which is the right-hand side of the above equivalence. [ ]

The following theorem shows that coalgebra morphisms between coalgebras of
the form a4 coincide with approximable mappings.

Theorem 8 Let A, B be continuous information systems. A relation R C AX B
is a coalgebra morphism a4 — ap iff it is an approzimable mapping A — B.
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Proof: Suppose that R : ay — ap is a coalgebra morphism. Because R is an
arrow in K(Rel), it satisfies requirement (2) in the definition of approximable
mapping. To see that it also satisfies the requirements (1) and (3), consider the
coalgebra morphism equation !(R) o ay = ap o R, that is

31X (aca X!(R)Y) < 3b(aRbagY)

By writing out the definitions of a4, ap, !(R), this is equivalent to the following
expression

3X(Ja"(a>a" > X) & V¥ € Y3a' € X(a'RV)) & Fb(aRb & T (b >V >Y))
By some calculus this can be further simplified to
Ja'Vb' € Y(a > o'RY') & Fb(aRb > Y)
It is easy to see that this is equi;ralent to the conditions (1) and (3) in the defi-
nition of approximable mapping. |
Finally, we show that each coalgebra a of ! is of the form ay,.
Theorem 9 Ifa: A —!A is a coalgebra, then a = ay.

Proof: Suppose that a is a coalgebra, then it satisfies 74 0 @ = id,4, that is, the
following equivalence (*) holds:

3X(aaX & e X(b>c)) e a>c
We will show that « satisfies
aaX < 3b(a > b > X)

e (=): Suppose that aaX. We first show that a > X. As a is an arrow
in IC(Rel), from aaX it follows that there exists X’ such that aaX’' > X.
Hence for all ¢ € X we have aaX' & 3b € X'(b > ¢). Applying (*) yields
Ve € X(a > ¢), that is, a > X. Next we have to show that there exists
b such that a > b > X. But this easily follows from the fact that o is an
arrow in (Rel): aaX implies 3b(a > baX).

e (<): Suppose that 3b(a > b > X). To show that aaX, we use the following
equivalence which is implied by (*):

ac{b} & a>b

Hence from 3b(a > b > X)) follows Ib(aa{b} > X ). Because a is an arrow
in IC(Rel), this implies aaX.



From theorems 7 and 9 it follows that there is a one-one correspondence be-
tween coalgebras of ! and continuous information systems. But then, by theorem
8, we also have that coalgebra morphisms correspond to approximable mappings,
and hence the following corollary holds.

Corollary 10 The category Cinf of continuous information systems is isomor-
phic to the category cA(K(Rel),!) of coalgebras of !.

Corollary 11 The category Con of continuous dcpo’s is equivalent to the category

cA(K(Rel),!) of coalgebras of !.

It is not difficult to see that the subcategory Ainf of Cinf corresponds to the
coalgebra category cA(KC.(Rel),!). Hence the following corollary holds.

Corollary 12 The category Alg of algebraic dcpo’s is equivalent to the category
cA(K.(Rel),!) of coalgebras of !.

5 Operators on Information Systems

In this section, as an example of the use of corollary 10, we show how operators
on continuous information systems can be defined in a simple way on Rel, and
then extended to Cinf.

In general, let C be a category with a comonad (!, 7, ). Let F: C — Cbe a
functor which commutes with ! in the sense that there is a natural transformation
c: F! >!F satisfying

1. NMFAOCyq = F(’I]A)

2. ppaoca =ca)ociao F(pa)
It is easy to see that F' can be extended to a functor F' : c¢A4(C,!) — cA(C,!) by
defining

o F'lla: A —lA)=cqo0 F(A)

o F'(¢) = F(¢9)

In this way various operators can be defined on continuous information sys-
tems. The simplest example of such an operator is ! itself, which commutes with
! by the identity. As a further example, we consider the lifting operation (that is,
the addition of a new bottom element to a poset) more closely. First define the
operator L : Rel — Rel on objects and on arrows by

9



e LA=Aw{l}
e aL(R)b & (b= LV aRb)

where & denotes disjoint union. Note that L does not preserve identities (although
it does preserve composition), and hence is only a semi-functor. However, L can
be extended to a functor KK(L) : K(Rel) — K(Rel) in a canonical way (see section
3). In particular, on objects A € K(Rel) we have

e K(L)(A)=Aw{Ll}
® a>gya @ & (@ =1LVa>,d)
Next define a natural transformation ¢ : X(L)! —!K(L) by
XcesX' & Va € X'(d=1V3Ia€ X(a>d))

(In fact, ¢ can be obtained from a corresponding natural transformation LP; —
P;L on Rel via the Karoubi envelope construction). As it is easy to see that
c satisfies the above requirements, (L) can be extended to a functor X(L)' :
cA(K(Rel),!) — cA(K(Rel),!) on the category of continuous information systems.
In particular, it turns out that (L) = K(L).

The categorical products of C(Rel) can also be transfered to Cinf as follows. In
general, if a category C equipped with a comonad ! has a tensor product ®, then
this tensor product lifts to the category c.A(C,!) of coalgebras (see for example
[1]). Moreover, if C has products that satisfy (4 x B) =!A®!B, then the lifted
tensor product is actually the product in cA(C,!). In our case, the category
KC(Rel) has a tensor product defined by

AQ B = {(a,b)la € A,b € B}
ordered pointwise, and it has a categorical product
A X B ={{a,0)|a € A} U {(b,1)|b € B}
ordered componentwise. As it is also easy to see that the above mentioned iso-

morphism is satisfied, it follows that ® is the product in Cinf.

6 Conclusion

We conclude this paper with a few final remarks.
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e If we replace the category Rel by an associated category and follow the
procedure outlined in this paper, then we get extended categories of infor-
mation systems. For example, if we replace Rel by the category of coherence
spaces and linear maps (see [8]), then the resulting coalgebras are equipped
with a symmetric binary relation ~ that satisfies

a>d &b>b &a~b=>d ~V
This gives rise to continuous dcpo’s with additional structure.

e In section 3 we remarked that the comonad ! is generated from the semi-
comonad Py on Rel. A result corresponding to corollary 10 can be proved
directly for the semi-comonad Py as follows. First we define, for an arbi-
trary semi-comonad T': C — C, the category cA,(C,T) of semi-coalgebras
with respect to 7. It then turns out that, in general, we have ¢4,(C,T) =
cA(K(C), K(T)). Hence by corollary 10 it follows that cA,(Rel, Py) is iso-
morphic to the category Cinf of information systems, and equivalent to the
category Con of continous dcpo’s. Informally, this result can be summarized

as follows:
Con Set

Rel ~° Rel
That is, modulo semi-notions, Con stands to Rel like Set stands to Rel.
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