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1 Numerical realizability

1.1. Introduction

There is not just one single notion of realizability, but a whole family of notions, which of
course resemble each other in certain respects. This section is devoted to a fairly detailed
discussion of the earliest and most basic notion of realizability, S.C. Kleene’s realizability
by numbers. In later sections we discuss more briefly variations of the basic notion. We
do not aim at an exhaustive description of all possible proof-theoretic applications of
realizability, but rather aim at presenting illustrative examples. Most of the sections are
followed by “Notes”, containing suggestions for further reading, some historical comments,

*Author’s address: Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muider-
gracht 24, 1018TV AMSTERDAM (NL), anne@fwi.uva.nl. J. van Oosten has commented on earlier drafts
of this paper, and moreover provided a sketch for section 8 which has been used in composing the final
version. The paper is a draft for a chapter in the “Handbook of Proof Theory)'edited by S. Buss; comments
(errata, omissions, bibliographical information) welcome.



etc. The historical comments concern mainly the period after 1972, since the history up
till 1972 is fairly completely documented in Troelstra (1973a).

Realizability by numbers was introduced by Kleene (1945) as a semantics for intuition-
istic arithmetic, by defining for arithmetical sentences A a notion “the number n realizes
A”, intended to capture some essential aspects of the intuitionistic meaning of A. Here
n is not a term of the arithmetical formalism, but an element of the natural numbers IN.
The definition is by induction on the complexity of A:

e n realizes t = s iff t = s holds;

e n realizes A A B iff pon realizes A and pin realizes B;

e n realizes AV B iff pon = 0 and pin realizes A or pon = 1 and p;in realizes B,
e n realizes A — B iff for all m realizing B, nem is defined and realizes B;

e n realizes —A if for no m, m realizes A;

e n realizes Jy A iff pin realizes Aly/pon].

e n realizes Yy A iff nem is defined and realizes A[y/mi], for all m.

Here p; and po are the inverses of some standard primitive recursive pairing function
p coding IN? onto IN, and m is the standard term S™0 (numeral) in the language of
intuitionistic arithmetic corresponding to m; e is partial recursive function application,
i.e. nem is the result of applying the function with code n to m. (Later on we also use
m, i, ... for numerals.)

The definition may be extended to formulas with free variables by stipulating that n
realizes A if n realizes the universal closure of A.

Reading “there is a number realizing A” as “A is constructively true”, we see that a
realizing number provides witnesses for the constructive truth of existential quantifiers and
disjunctions, and in implications carries this type of information from premise to conclusion
by means of partial recursive operators. In short, realizing numbers “hereditarily” encode
information about the realization of existential quantifiers and disjunctions.

Realizability, as an interpretation of “constructively true” is reminiscent of the well-
known Brouwer-Heyting-Kolmogorov explanation (BHK for short) of the intuitionistic
meaning of the logical connectives. BHK explains “p proves A” for compound A in terms
of the provability of the components of A. For prime formulas the notion of proof is
supposed to be given. Examples of the clauses of BHK are:

e p proves A — B iff p is a construction transforming any proof ¢ of A into a proof
p(c) of B;

e p proves A A B iff p = (po,p1) and po proves A, p; proves B;

e p proves AV B iff p = (po,p1) with po € {0,1}, and p; proves A if pg = 0, p; proves
B if po # 0.

Realizability is corresponds to BHK if (a) we limit concentrate on (numerical) information
concerning the realizations of existential quantifiers and the choices for disjunctions, and
(b) the constructions considered for V, — are encoded by (partial) recursive operations.
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Realizability gives a classically meaningful definition of intuitionistic truth; the set of
realizable statements is closed under deduction and must be consistent, since 1=0 cannot
be realizable. It is to be noted that decidedly non-classical principles are realizable, for
example

—Vz[dyTzzy V Vy-Tzzy]

is easily seen to be realizable. (T is Kleene’s T-predicate, which is assumed to be available
in our language; T'zyz is primitive recursive in z, y, z and expresses that the algorithm with
code x applied to argument y yields a computation with code z; U is a primitive recursive
function extracting from a computation code z the result Uz.) For =4 is realizable iff no
number realizes A, and realizability of Va[JyTzzy V Vy—Tzzy| requires a total recursive
function deciding JyTzzy, which does not exist (more about this below). In this way
realizability shows how in constructive mathematics principles may be incorporated which
cause it to diverge from the corresponding classical theory, instead of just being included
in the classical theory.

Some notational habits adopted in this paper are: dropping of distinguishing sub-
and superscripts where the context permits; saving on parentheses, e.g. for a binary
predicate R applied to x,y we often write Rxy instead of R(z,y) (this habit has just been
demonstrated above). For literal identity of expressions £, £’ modulo renaming of bound
variables we use =: £ = £'.

1.2. Formalizing realizability in HA

In order to exploit realizability proof-theoretically, we have to formalize it. Let us first
discuss its formalization in ordinary intuitionistic first-order arithmetic HA (“Heyting’s
Arithmetic”), based on intuitionistic predicate logic with equality, and containing symbols
for all primitive recursive functions, with their recursion equations as axioms.

z,Y,2,... are numerical variables, S is successor. We use the notation A for the term
S™0; such terms are called numerals. pg,p1 bind stronger than infix binary operations,
i.e. pot+ sis (pot) + s. For primitive recursive predicates R, Rt; ...t, may be treated as
a prime formula since the formalism contains a symbol for the characteristic function x g.

Now we are ready for a formalized definition of “z realizes A” in HA.

DEFINITION. By recursion on the complexity of A we define zrnA, z ¢ FV(4), “z
numerically realizes A” :

zrn(t=3s5) = (t=s)

zxn(AAB) := (pozznd) A (p1zrnB),

zrn(A — B) :=Vy(yrn A — J2(Tzyz A Uz rn B)),

zrnVy A = VyIz(Tzyz AUzzrn A),

zrndy A = pizrn Aly/poz].

Note that FV(zrnA) C {z} UFV(4). O

REMARKS. (i) We have omitted clauses for negation and disjunction, since in arithmetic
we can take "4: =4 —-1=0,AVB:=3z(((x =0 - 4A) A (z # 0 — B)). If we spell
out zrn (A V B) on the basis of this definition, we find

zrn(AV B) := (poz =0 — pizrn A) A (pox # 0 — pizrn B),



which is equivalent to
zxn(AV B) := (poz =0ApizznA)V (poz # 0 A pizn B).

The definition of realizability permits slight variations, e.g. for the first clause we might
have taken

zrn'(t=s):=(x=tAt=s).

However, it is routine to see that this variant rn'-realizability is equivalent to rn-realizability
in the following sense: for each formula A there are two partial recursive functions ¢4 and
14 such that

FzrnA — ¢s(z)rn’ A
Fazrn'A — Y4s(z)nA.

(If in the future we shall call two versions of a realizability notion equivalent, it will always
be in this or a similar sense.) In terms of partial recursive function application « and the
definedness predicate | (t| means “t is defined”), we can write more succinctly:

zrn(A — B) :=Vy(yrn A — zey| A zeyrn B),
zrnVy A = Vy(zey| A zeyzn B).

where t| expresses that ¢ is defined (cf. next subsection). Of course, the partial operation
o and the definedness predicate | are not part of the language, but expressions containing
them may be treated as abbreviations, using the following equivalences:

t1=t2<—>3:c(t1=:v/\t2=m),
tiets = ¢ & Jyzu(ty =y Ata = 2 ATyzu AUu = z),
t] & Jz(t = 2).

(t1,t2 terms containing e, z,y,2,u not free in t;,t;). However, note that the logical
complexity of A(t), where ¢t is an expression containing e, depends on the complexity
of t! For metamathematical investigations it is therefore more convenient to formalize
realizability in a conservative extension HA* of HA in which we can treat “»” as a
primitive. Since ordinary logic deals with total functions only, we first need to extend our
logic to the (intuitionistic) logic of partial terms LPT, or intuitionistic E*-logic, in the
terminology of Troelstra and van Dalen (1988, 2.2.3).

1.3. Intuitionistic predicate logic with partial terms

Variables are supposed to range over the objects of the domain considered, so always
denote; arbitrary terms need not denote, so we need a predicate E, expressing definedness;
Et reads “t denotes” or “t is defined”. Instead of Et we shall write t], in the notation
commonly used in recursion theory.

If we also have equality in our logic, and read ¢t = s as “¢ and s are both defined and
equal”, we can express Et =t| as t = ¢.



The following axiomatization is a convenient (but not canonical) choice for arguments
proceeding by induction on the length of proofs:

L1 A— A,

L2 A, A— B= B,

L3 A—-B B—-(C=A4-C,

L4 AANB— A, ANB — B,

L5 A—-B,A-C=A—-BAC,
L6 A— AVB, B— AV B,

L7 A—-C,B—-C=AVB-—-C,
L8 AANB—-C=A4A—- (B—-C),

L9 A—-(B—-C)=AANB—C,
L10 11— A,

L11 B—A=B—-VzA (zx ¢ FV(4)),
L12 Ve ANt] — Alz/t],

L13 Alz/t] At] — Tz A,

L14 A—>B=3cA— B (z ¢FV(4))

where t| := t = t. For equality we have (F function symbol, R relation symbol of the
language):

EQ Vey(z=y—y=2), Veyz(za=yAy=2z—>z=72),
Viy(Z =y A FE| — FZ = Fy), VI§(RTAZT =9 — RY)

Basic predicates and functions of the language are assumed to be strict:
STR F(tl,---,tn)l_’til, R(tl,...,tn) — 1]

Note that this logic reduces to ordinary first-order intuitionistic logic if all functions are
total, i.e. VZ(f&Z|), since then t| for all terms ¢.
For the notion “equally defined and equal if defined” introduced by

t~s:=(t]Vs])ot=s,
we can prove the replacement schema for arbitrary formulas 4

t~sAAlz/t] - Alz/s].

1.4. Conservativeness of defined functions

Relative to the logic of partial terms, the following conservative extension result is easily
proved. Let I' be a theory based on LPT, such that

I'FA@Z,y) NAZ,z2) >y ==
Then we may introduce a symbol ¢4 for a partial function with axiom
Ax(4)  A(@,y) © y= ().

The conservativeness of this addition can be proved in a straightforward syntactic way;
the easiest method, however, uses completeness for Kripke models, see Troelstra and van

Dalen (1988, 2.7).



If T' is axiomatized by axioms and axiom schemata, the conservative extension result
still holds in the form: “I'"* + Ax(¢4) is conservative over I'”, where I'* consists of the
same axioms as I' plus all substitution instances of the axiom schemata w.r.t. the extended
language. (The result may fail however if the schemata are conditional, i.e. if the predicates
which may be substituted in the schemata are subject to syntactic restrictions, such as in

ECTy below.)

1.5. Formalizing elementary recursion theory in HA*

HA* is now the conservative extension of HA, formulated in the intuitionistic logic of
partial terms, with a primitive binary partial operation e of partial recursive function
application.

Note that strictness entails in particular tet'| — t| A#'| for the application operation.
Of course we have to require totality for the primitive recursive functions; it suffices to
demand 0}, Sz|. In all other case the primitive recursive functions satisfy equations with
=, defining them in terms of functions introduced before (e.g. z+0 = z, z+Sy = S(z+y)).
By induction one can then prove Fz;...z,| for each primitive recursive function symbol
F.

A smooth formalization of elementary recursion theory in HA* can be given by using
Kleene’s index method in combination with the theory of elementary inductive definitions
in arithmetic (Troelstra and van Dalen 1988, 3.6, 3.7). In particular we obtain the smn-
theorem, the recursion theorem (Kleene’s fixed-point theorem), the Kleene normal form
theorem, etc. Moreover, by the normal form theorem, every partial recursive function is
definable by a term of the language of HA*.

NOTATION. Iftis a term in the language of HA™, then Az.t is a canonically chosen code
number for ¢ as a partial recursive function of z, uniformly in the other free variables; by
the smn-theorem we may therefore assume Az.t to be primitive recursive in FV(t) \ {z}.
O

We note the following

LEMMA. In HA* the X9-formulas of HA are equivalent to prime formulas of the form
t =t for suitable t.
ProOF. Systematically using the equivalences mentioned above transforms any formula
t = s of HA* into a X{-formula of HA. Conversely, let a X9-formula be given; by the
normal form results of recursion theory, we can write this in the form 32T'(#, (%), z) for a
numeral 7; this is equivalent to 7ie(Z) = fie(Z). O

We are now ready to formalize z rn A directly in HA*.



1.6. Formalizing rn-realizability in HA*
DEFINITION. zrn A is defined by induction on the complexity of 4, = € FV(A4).

zrn P := P Az for P prime,
zrn(AAB) :=pozrnAApizrnB,
zxn(A — B):=Vy(yrn A — zeyrn B) Az,
zrnVyA  :=Vy(zeyrn4),

zrndy A = pi1zrn Aly/poz].

We also define a combination of realizability with truth, z rnt A; the clauses are the same
as for rn, the clause for implication excepted, which now reads:

zrnt (A — B) :=Vy(yrnt — zeyrnt B)Az| A (A — B). O

REMARKS. (i) trn A is 3-free (i.e. does not contain 3J) for all A. Note that, by our
definition of V in terms of the other operators, 3-free implies V-free.

(ii) The clauses “Ax|” have been added for the cases of prime formulas and implica-
tions, in order to guarantee the truth of part (i) of the following lemma.

(iii) For negations we have zrn—A « Vy(-yrnA), and zrn——-4 < Vy(-yrn-4) <
Vy—Vz-(zrn A) < ——3z(zxn 4).
The following lemmas are easily proved by induction on A.

LEMMA. (Definedness of realizing terms; Substitution Property) For R € {rn,rnt}

(i) FtRA — t],
(i) (zrA)[y/t] =z r(Aly/t]) (x ¢ FV(A) UFV(¢),y # z).

LEMMA. HA*Ftrnt A — A. ,

A similar lemma holds for all combinations of realizability with truth (i.e. realizabilities
with t in their mnemonic code) we shall encounter in the sequel; we shall not bother to
state it explicitly in the future. We can readily prove that realizability is sound for HA*:

1.7. THEOREM. (Soundness theorem)
HA*FA=HA"+-trnAAtrnt A

for a suitable term t.
PrOOF. The proof proceeds by induction the length of derivations; that is to say, we
have to find realizing terms for the axioms, and for the rules we must show how to find

~ arealizing term for the conclusion from realizing terms for the premises. We check some
cases.

L5. Assume trn(A — B), t'tn (A — C), and let z rn A; then p(tez,t'sz)xn (B A C),
so Az.p(tex,t'sz)zn(A — BAC).

L14. Assumetrn (A — B),z ¢ FV(B), and let yrn 3z A, then p1y rn A[z/poy], hence

tlz/poy]+(P1y) In B, so Ay.t[z/poy]e(P1y) rn (3z A — B).
Of the non-logical axioms, only induction requires attention. Suppose

zrn (Afy/0] AVy(A — Aly/Sy]))-



Then

pozrnAly/0], zrnA — (pi1z)eyezrn Aly/Sy].
So let t be such that

te0 =~ pox, te(Sy) = (P12)eye(tey).

The existence of ¢ follows either by an application of the recursion theorem, or is immediate
if closure under recursion has been built directly into the definition of recursive function.
It is now easy to prove by induction that t realizes induction for 4. O

A statement weaker than soundness is H A = + Jz(zrn A); we might call this weak
soundness. We can also prove a stronger version of soundness:

1.8. THEOREM. (Strong Soundness Theorem)
HA*+- A= HA"+farmAA#fArnt A for some numeral #.
ProoF. Let HA* | A4; from the soundness theorem we find a term ¢ such that
trn A, hence t|.

t],i.e. t =t 1is equivalent to a X¢-formula of HA, say Jz(s = 0), and HA proves only true
»9-formulas, from which we see that ¢ = i must be provable in HA* for some numeral 7.
Similarly for rnt. O

1.9. REMARK. If one formalizes the proof of the soundness theorem, it is easy to see that
there are primitive recursive functions 1, ¢ such that

HA - Prf(z,"A") — Prf(¢(z), Sub("y zn A7, y,9(z)))
where “Prf” is the formalized proof-predicate of HA*, "¢7is the godelnumber of expression
€, and Sub("B",z,"s") is the godelnumber of B(z/s].
In fact, the whole implication is provable even in primitive recursive arithmetic. But
the statement expressing a formalized version of the strong completeness theorem:

Pif(z, A7) — Prf(¢(z), "$(z) rn A7)
(for suitable provably recursive ¢,) is not provable in HA (see 1.16).

1.10. LEMMA. (Self-realizing formulas) For 3-free formulas, canonical realizers exist, that
is to say for each 3-free A we have in HA*

(i) F3z(znA) — A,
(ii) F A — t4rn A for some term t4 with FV(t4) C FV(4).

(iii) A formula A is provably equivalent to its own realizability, i.e. A « Jz(xrnA)), iff
A is provably equivalent to an existentially quantified 3-free formula.

(iv) Realizability is idempotent, i.e. Jz(zrnIy(yrnA)) <« Jz(zxrn A); in fact, even
Jz(zxn(A < Jy(yrn A)) holds.

PROOF. Take t,—y :=0, t4ap := p(tA,IfB), tvza = Az.t4, tap := Az.tg (z & FV(tp)),
and prove (i) and (ii) by simultaneous induction on A. (iii) and (iv) are immediate
corollaries. O



REMARK. An observation of practical usefulness is the following. For any definable pred-
icate with canonical realizers (i.e. a predicate definable by an 3-free formula) we obtain an
equivalent realizability if we read restricted quantifiers Vz(A(z) — ...) and Jz(A(z)A...)
as quantifiers Vz€A, 3x€A over a new domain with realizability clauses copied from nu-
merical quantification, i.e.

zrnVy€A.B :=VycA(zeyznB) Az,
zrndy€A.B := piz rn Bz /poz] A A(poz).

In short, we may simply forget about the canonical realizers.

1.11. Axiomatizing provable realizability

As we have seen already in the introduction, realizability validates more than what is
provable in HA; in fact, we can formally prove in HA* that

CT, Vady A(z,y) — Fz2Va(A(z, 2ez) A zex])

is realizable (CTy is certainly not provable in HA, since it is in fact refutable in classical
arithmetic).

We now ask ourselves: is there a reasonably simple axiomatization (by a few axiom
schemata say) of the formulas provably realizable in HA ? The answer is yes, the provably
realizable formulas can be axiomatized by a generalization of CTy, namely “Eztended
Church’s Thesis”:

ECTy Vz(Az — Jy Bzy) — I2Vz(Az — zex| A B(z, zez)) (A I-free).
LEMMA. Each instance of ECTy is HA*-realizable.
PRrROOF. Suppose

urnVz(Az — JyBzy)

Then Vzv(vrnAz — wuewevrnJyBzy), and since A is I-free, in particular Vz(Az —
uezst 4 rn JyBzy), so Ve (Az — pi(uswets) rn B(z, po(uexety)). Then it is straightforward
to see that

P(Az.po(uszets), Azv.p(0, p1(uszety)))

realizes the conclusion. O

REMARK. The condition “A I-free” in ECTy cannot be dropped: applying unrestricted
ECTo to Az := 32TzxzV ~32Taxxz, Bry := (y = 0 A IzTzz2) V (y = 1 A ~F2Txzz)
yields a contradiction. In fact, this example can be used to show that even unrestricted
ECTy! fails (ECTy! is like ECTy except that Jy in the premiss is replaced by 3ly).



THEOREM. (Characterization Theorem for rn-realizability)
(i) HA* + ECTo - A & Jz(z R A) for R € {rn,rnt},
(i) HA* + ECTo - A & HA* F fixn A for some numeral fi.

PROOF. (i) is proved by a straightforward induction on A. The crucial caseis A = B « C;;
then B — C < (Jz(zxnB) — Jy(yznC)) (by the induction hypothesis) « Vz(zxnB —
Jy(yznC)) (by pure logic) « FzVz(zzn B — zez rnC) (by ECTy, since z rn B is 3-free)
= Jz(zxn (B — 0)).

(). The direction => follows from the strong soundness theorem plus the lemma; <
is an immediate consequence of (i). O

Curiosity prompts us to ask which formulas are classically provably realizable, i.e.
provably realizable in first-order Peano Arithmetic PA, which is just HA with classical
logic. The answer is contained in the following

ProrosiTION. PAF 3z(zrnAd) & HA + M+ ECTy - ——A.

ProOF. Let PA I Jz(zxnA), and let B be a negative formula (i.e. a formula in the
A,V,—-fragment) such that HA + M + zrn A < B(z). Then PA + —Vz-(zrnA4),
and since PA is conservative over HA for negative formulas (in consequence of Godel’s
negative translation), also HA + —Vz—B,i.e. HA+M F —=—3z(z rn A), and thus it follows
that HA + M + ECTy - =—A. The converse is simpler. O

1.12. Extensions of HA*

For suitable sets I' of extra axioms, we may replace HA* in the soundness and character-
ization theorem by HA* +I'. Weak soundness and the characterization theorem require
forall AeT

(1) HA*+T'F Jz(zzn A).
Soundness requires for all A € T
(2) HA*+T+tFtrnA for some term ¢.

and Strong Soundness requires (2) and in addition: HA*+T proves only true ©{-formulas.

EXAMPLES

(a) For I' any set of 3-free formulas soundness and the characterization theorem
extend. If HA* + T proves only true }-formulas, strong soundness holds. The next two
examples permit characterization and strong soundness.

(b) Let < be a definable recursive well-ordering of IN, provably total and linear in
HA?*; for T' we take all instances of transfinite induction over <:

TI(<) Vy(Vz<y A — A[z/y]) — Vz A.
(c) T is the set of instances of Markov’s schema:

M Ve(AV -A) A—-—Jz A — Tz A.

10



In fact, in the presence of CTy, which is valid under realizability, I' may be replaced by a
single axiom: ‘

Vey(——3zTzyz — IzTxyz).
It is also worth noting that in the presence of M, we can use the following variant of ECTy
which is equivalent to ECTy:
ECTj Vz(-A — JyBzy) — J2Vz (A — zex| A B(z, zey)).

(d) An extension of another kind is obtained if we enrich the language with constants
for inductively defined predicates, e.g. the tree predicate Tr. Intuitively, Tr is the least
set containing the (code of the) single-node tree (i.e. () € Tr), and with every recursive
sequence of tree codes ne0,nel,...,nem,... in Tr, Tr also contains a code for the infinite
tree having the trees with codes nem as immediate subtrees, namely p(1,n). Thus if

A(X,z) := (z =0) V (poz = 1 A Vm(pizem € X))
we have
A(Tr,z) — z € Tr,
Ve (A(Ay.B,z) — Bly/z]) — Yz € Tr.Bly/z]
for all B in the language extended with the new primitive predicate Tr. Then we can
extend rn-realizability simply by putting
zrn(t € Tr) :=t € Tr.
Let us check that the soundness theorem extends. A(Tr,z) is equivalent to an J-free

formula, so its realizability implies its truth, and z € Tr follows. As to the schema,
assume

urnVe(A(Ay.B,z) — Bly/z]), or

urnVz(z = 0 — B(0)) A (pox = 1 A VyB(pizey) — Bz).
So

Po(us0)+(0,0) rn B(0),

P1(uez)eov rn B(z) if pox = 1 and vrn (poz = 1 A VyB(p1zey).
Assume Vy(es(p1zey) zn B(p1z+y)), poz = 1. Then

v = (), Ay.es(p1zey)) rn (pox = 1 A VyB(pizey)).
Therefore

P1(uez)e(0, Ay.co(p1zey)) rn B(z) if poz = 1 and Vy(es(p1zey) rn B(p1zey)).
Now we construct by the recursion theorem an e such that

po(’lLoO)oO ifz= 0,
€l =~ pl(uw)o(O,Ay.eo(plwoy)) if Por = 1,

undefined otherwise.
We then prove by induction on Tr that Vo € Tr(eex rn B(x)). This is straightforward.
This example is capable of considerable generalization, namely to arithmetic enriched
with constants for predicates introduced by iterated inductive definitions of higher level;
see e.g. Buchholz, Feferman, Pohlers and Sieg (1981, IV, section 6).

The examples just mentioned also permit extension of rnt-realizability.

 We end the section with some applications of rn- and rnt-realizability.
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1.13. ProPOSITION. (Consistency and inconsistency results)
(i) HA* + ECTy is consistent relative to HA* (and hence also relative to PA).

(ii) —Vz(AV-A), ~(Vz-~B — ——VzB) are consistent with HA* for certain arithmetical
A,B.

(iii) The schema “Independence of Premise”
P (wA — 32B) — (32(-4 — B)

is not derivable in HA* 4+ CTy + M; in fact, HA*+IP +CTg+M*F 1 =0.

PRrROOF. (i) Immediate from the characterization theorem.

(i) is a corollary of the realizability of CTy: take A = FtTxxy, B = JyTzzy V
=JdyTzxy.

(iii) By M, -—3JyTzzy — JzTzxz; apply IP to obtain Vedz(-—JyTzzy — Trzz),
then by CTy there is a total recursive F such that -—3yTzzy — T(z,z,Fz), and this
would make JyTzzy recursive in z. O
We next give an example of a conservative extension result.

1.14. DEFINITION. CC(zxn) (the rn-Conservative Class) is the class of formulas A such
that whenever B — C is a subformula of A, then B is I-free. O

LEMMA. For A € CC(rn) = F Jz(zxnd) — A.

PrRoOF. By induction on the structure of A. Consider the case A = B — C; then B

is 3-free, so there is a tp such that - B — tprnB. Assume B and zxrn(B — C), then

zetp|l A zetprnC, hence by the induction hypothesis C; therefore (zxn(B — C)) —

(B—C). O

The lemma in combination with the characterization theorem yields

ProprosiTION. HA* 4+ ECTy is conservative over HA* w.r.t. formulas in CC(zn):
(HA* 4+ ECTy) N CC(zn) = HA* N CC(zn).

The following proposition follows from rnt-realizability.
1.15. PROPOSITION. (Derived rules) In HA*

(i) For sentencest AV B = F A or + B (Disjunction property DP),

(ii) For sentences - 3z A = + A[z/n] for some numeral 7 (Numerical Explicit Defin-
ability EDN),

(iii) Extended Church’s Rule: for 3-free A

ECR FVz(A — JyBzy) = F JzVz(A — zex| A B(z,zex)).
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ProOF. (i) follows from (ii) (actually, (i) and (ii) are equivalent, see Friedman (1975)).
As to (ii), let - Jz A, then by the strong soundness for rnt-realizability - m rnt 3z A for
some numeral 7, so - pym rant A[z/pem], and hence - A[z/pom).

(iii) Assume - Vz(A — JyBzy), then for a suitable ¢ - t rnt Vo (A — JyBzy), i.e.

F VzVz(zxnt A — pi(texez) rnt B(z, po(texez)).
Since t4 rnt A,
F ViI)(A — pl(tomotA) IM_B((B,po(towotA))),
and therefore - Vz(A — B(x,po(texets)). So we can take z = Az.po(tezety). O
1.16. REMARK. The DP cannot be formalized in any consistent extension of HA itself

(Myhill (1973a), Friedman (1977a)). We sketch Myhill’s argument (the result of Friedman
is even stronger). Assume that there is a provably recursive function f satisfying

F Prf(z,"AV B") — ((fe =0AP("A7)) V ((fz = 1 APr("B7))).

So f = {n}, and F VzIyThzy. Let F enumerate all primitive recursive functions, i.e.
An.F(i,n) is the i-th primitive recursive function. Put

D(n) := neF(n,n) # 0,

then - Vn(DnV—Dn) (i.e. Prf(k,"Vn(DnV-Dn)") for a specific k), from which we can find
a particular primitive recursive An.F(m,n) such that - Prf(F (m,n)," DAV ~Da"). Then
D — neF (i, m) # 0 — Prf(F(m,m,"DmV-Dm7) A Pr("—Dm"), hence ~Dm follows,
since HA* is consistent. If we start assuming —D7n, we similarly obtain a contradiction.

From this we see that DP cannot be proved in HA* itself; for if DP were provable in
HA?, then a function f as above would be given by

f(z) := the least y s.t.(z does not prove a closed disjunction and y = 0)
or (for some closed "AV B, Prf(z,"AV B™) A poy = 0 A Prf(p1y,"47))
or (for some closed "AV B7, Prf(z,"AV B7) A p1y = 1 A Prf(p1y,"B7)).

This in turn implies that the strong soundness theorem is not formalizable in HA*, since
strong soundness for rn-realizability immediately implies EDN for HA* + ECT,.
1.17. Notes

Slash relations and g-realizability. Already in Kleene (1945), a modification of nu-
merical realizability was considered, namely I' F-realizability; let us use “R” as a short
designation for this kind of realizability. The clauses for V, A and for prime formulas are
as for ordinary realizability; the clauses for V, 3, — become:

e nRAVB iff ppn =0, pinR A and A or pon # 0, pynR B and B;
e nrRIA iff pynR A[z/pon] and Alz/pon];
e nR(A— B) iff for all m,if mRA and I' - A4, then nem is defined and nemR B.
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Kleene (1952, Example 2 on page 510) used this notion to obtain a version of Church’s
thesis. Later Kleene (1962) observed that by dropping the realizability part and retaining
only the provability part, one obtained an inductively defined property of formulas which
could be used to obtain quite simple proofs of (generalizations of) the disjunction- and
existence properties for logic and arithmetic. For easy reference, let us define I'|/4 (“T
slashes A”) for arithmetic, treating V,— as defined, and putting I'| - A4 as short for “T'|A
and '+ A4”:

P iff ' - P for prime sentences P,
I'|/AAB iffT|A and T|B,

T|A — BiffT| - A = I|B,

I'|3zA iff T'| F A[z/R] for some numeral 7,
I'\VeA iff T'|A[z/7] for all numerals 7.

T'|A for a formula A is defined as I'|B for some universal closure B of A. (For predicate
logic, clauses for V, L have to be added.)

“|” is sometimes called a realizability, but we think it better to reserve the term re-
alizability for notions where realizing objects appear explicitly. Since the “|” in “T'|4”
has nothing to do with division, we think that the term “divides” for | is also not advis-
able. Therefore we call the notions derived from, or similar to Kleene’s I'|A simply slash
relations or slashes.

In one respect I'|A is not well behaved; it is not closed under deduction, since it
may happen that I'|4, but not I'|/AV A. Aczel (1968) gave a simple modification which
overcomes this defect: the deducibility requirements in the clauses for V,3 are dropped,
and for implication and universal quantification we require instead

T|A - Biff (T|/A=T|B) and T - 4 — B,
I'|VeAz iff T' - Vo Az and T'|A[z /7] for all 7.

Now I'|A = T' I A holds for all A4, and the modified slash yields the same applications as
the original one. In fact, one easily proves by formula induction that I'| - A in the sense of
Kleene iff I'| 4 in the sense of Aczel. The Aczel slash also has an appealing model-theoretic
interpretation; see e.g. Troelstra and van Dalen (1988, 13.7).

It is also worth noting that C|C is both necessary and sufficient for the validity of
the rule “For all A, - C — JzA =+ C — A[z/n] for some 7" (Kleene (1962), Troelstra
(1973a, 3.1.8)).

Slash operators in many variants have been widely used for obtaining metamathemat-
ical results for formalisms based on intuitionistic logic.

The slash as defined above applies to sentences only, but the use of partial reflec-
tion principles in combination with formalized versions of the slash relation, restricted to
formulas of bounded complexity, may be used to deal with free numerical variables, see
Troelstra (1973a, 3.1.16).

Suitable slash relations for systems beyond arithmetic may be defined by considering
conservative extensions with extra “witnessing constants” for existential statements. The
explicit definability property for numbers EDN can then be proved by proving soundness
of slash for the extended system (a typical example is Moschovakis (1981).

Friedman (1973) describes the extension of the Kleene slash to higher-order logic. In
Scedrov and Scott (1982) it is shown that this extension of the slash is in fact equivalent
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to a categorical construction on the free topos due to P. Freyd (see Lambek and Scott
(1986)).

Friedman and Scedrov (1983) uses slash relations and numerical realizability combined
with truth to obtain the explicit set-existence property (explicit definability property for
sets) for intuitionistic second-order arithmetic HAS (cf. 7.1) and intuitionistic set theory
plus countable choice or relativized dependent choice.

Friedman and Scedrov (1986) use a slash relation to establish a very interesting result:
there is a particular numbertheoretic property A(n) such that if HAproves transfinite
induction for a primitive recursive binary relation < w.r.t. 4, then < is well-founded
with ordinal less than eg. If transfinite induction is proved for < w.r.t. A for the theory
HA™" obtained by adding transfinite induction for all recursive-wellorderings, then < is
well-founded. (The corresponding result is false for PA.)

Of the many papers discussing or making use of slash relations we further mention:
Beeson (1975, 1976b, 1977a), Beeson and Scedrov (1984), Dragalin(1980, 1988), Friedman
(1977a), Krol’ (1977), Moschovakis (1967), Myhill(1973b, 1975), Robinson(1965).

Friedman and Scedrov (1984) use rn-realizability and g-realizability to obtain consis-
tency with Church’s thesis, the disjunction property and the numerical existence property
for set theories based on intuitonistic logic, with axioms asserting the existence of very
large cardinals, thereby demonstrating that the metamathematical properties just men-
tioned, often regarded as a test for the constructive character of a system, are not affected
by assumptions concerning large cardinals.

Since in soundness theorems for formalized realizability we prove deducibility instead
of just truth, one can replace deducibility in the definition of F-realizability by truth; let
us use “q” for this realizability. The clauses for 3, — then become:

tqA — B:=Vy(yqANA— zeyqB) ANz,
zqdyA = por qA[y/poz] A Aly/poz].

Such a g-variant was used in Kleene (1969) to obtain derived rules for intuitionistic analysis
with function variables. g-realizability is also not closed under deducibility (think of
an instance A of CTy unI)rovable in HA; then A is g-realizable, but A V A is not).
Grayson (1981a) observed that an Aczel-style modification could also be used instead of
g-realizability; this corresponds to our rnt-realizability.

Shanin’s algorithm. In a number of papers Shanin presented a systematic way of
making the constructive meaning of arithmetical formulas explicit. His method is logically
equivalent to rn-realizability, as shown by Kleene (1960). On the one hand Shanin’s
algorithm is more complicated than realizability, on the other hand it has the advantage
of being the identity on 3-free formulas.
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2 Abstract realizability and function realizability

2.1. After the leisurely introduction to numerical realizability in the preceding section,
we now turn to variations and generalizations. In order to distinguish easily the various
concepts of realizability, we shall use a certain mnemonic code:

signifies “realizability”,

signifies “numerical” or “by numbers”,
signifies “by functions”,

signifies “modified”,

signifies “combined with truth”,
signifies “Lifschitz variant of”,
signifies “extensional”.

o |- It B I+ B IR

Thus “rft” refers to “realizability by functions combined with truth” etc. Strictly speak-
ing, the r is redundant in many of these mnemonic codes.

A simple generalization of numerical realizability is realizability with a different set
of realizing objects and/or different application operator; abstractly, the realizing objects
with application have to form a combinatory algebra. We shall first sketch an abstract
version of numerical realizability, namely realizability in a combinatory algebra with in-
duction, then consider the interesting special case of function realizability.

2.2. DEFINITION. (The theory APP) The language is single-sorted, based on LPT. The
only non-logical predicate is N (natural numbers). There is an application operation ¢ and
constants

0 (zero), S (successor), P (predecessor), p, Po, P1 (pairing with inverses),
k, s (combinators), d (numerical definition by cases).

(We have used the same symbols for pairing and inverses as in the case of HA*, even if
their is a slight difference in syntax: p(t,t') in HA* corresponds to (pt)t in APP.) For
tiety we simply write (t1¢2), and we use association to the left, i.e. #1t5...%, is short for

(. .. ((t]_tz)tg) . tn).
Azioms for the constants:
N0, Nz — N(Sz), Nz — N(Pz),
P(St) ~t, PO =0, 0 # St,
kz|, kty ~ t, szy|, stt't" ~ tt"(¢'t"),
pwyl, pOzl’ lejn pg(pt-’lﬁ) =1, pl(pxt) =1,
t1l Atal ANEANE A (¢ # ) — dirtott’ = t1) A dtatatt = ta.
Observe that by the general LPT-axioms we have tt'| — t|At'|. Finally we have induction:
Alz /0] AVz € N(A — Alz/Sz]) >V eN.A O

The combinators k,s permit us to have A-abstraction defined by induction on the con-
struction of terms:

Az.t := kt for t a constant or variable # z,
Az.z := skKk,
Az tt' = s(Az.t)(Az.t').
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For this definition

FV(\et) = FV(¢) \ {z},
(Az.t)t' = t[z/t'] if t’ free for z in t,
Az.t] for all ¢.

It is not true that!
(1) if z g FV('),y # = then Az:(t[y/t]) = (Az.t)[y/t],
but we do have, for ¢ FV(t'),y £z

() (A2 t)[y/tDt" = tlz/t"|[y/t] = tly/t'][e/t"].
Property (1) can be guaranteed by an alternative definition of abstraction:

Nz.z := skk,
Nzt :=ktif ¢ ¢ FV(t),
Nz tt .= s(Nz.t)(Nz.t') if z € FV(tt),

but then we loose the property that Az.t| for all £. A recursor and a minimum operator
may be defined with help of a fixed point operator (see e.g. Troelstra and van Dalen (1988,
9.3)) which permits us to define in APP all partial recursive functions. It follows that
HA can be embedded into APP in a natural and straightforward way.

REMARK. Partial combinatory algebras are structures (X,s,k,s), k # s, satisfying the
relevant axioms above; in such structures we can always define terms forming a copy of
IN, and appropriate S, P, p, po, P1, and we might simply have postulated induction for this
particular copy of IN. However, in describing models we it is more convenient not to be
tied to a specific representation of IN relative to the combinators.

2.3. The model of the partial recursive operations PRO

The basic combinatory algebra is
(IN, o, Azy.z, Azyz.Toze(ye2));

where e is partial recursive function application for IN. 0, S, P get their usual interpretation

(more precisely, we choose codes Az.Sz, Az. Pz etc.; for d take Auvzy[u-sg|z—y|+v(1-|z—

yDl-

_ In HA* we can prove PRO to be a model of APP, in the sense that APP - 4 =
HA* + [A]pro. Here and in the sequel we use “interpretation brackets”: given some

model M, we use [t]ar1, [A]am to indicate the interpretation of term ¢, formula A in the

model M. Thus [A]r means the same as M = A.

!This was overlooked in the proofs in Troelstra and van Dalen (1988, section 9.3), but is easily remedied
by the use of (2).
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2.4. DEFINITION. (Abstract realizability) xx A in APP is defined by

zr P = P A z] for P prime,
zr(AAB) = (pozrA)A(pizzB),
zr(A— B):=Vy(yr A — zeyrB) Az,
zrVyA  =Vy(zeyrA),

zriyA :=pi1zrAly/pozx]. O

REMARK. zrVy € N.A becomes literally Vyz(zz (y € N) — (zeyez)r A)). It is easy to
see that realizability with a special clause for the relativized quantifier

zr'Vy € N.A := Vy € N(zeyr' A)

is in fact equivalent.

The J-free formulas play the same role in APP as they do in HA*, i.e. 3-free formulas
have canonical realizing terms, their realizability coincides with their truth, and equiva-
lence of realizability with truth for a formula A means that A is equivalent to a formula
dzB, B J-free. the schema characterizing r-realizability is an Ezxtended Aziom of Choice

EAC Va(Az — JyBzy) — J2Vz(Az — zez| A B(z, 2ez)) (A is I-free)

etc. etc.

We may specialize r-realizability to PRO-r-realizability by interpreting APP in PRO.
It is then not difficult to show that the resulting realizability of HA (as embedded in the
obvious way into APP) becomes equivalent to rn-realizability ((Renardel de Lavalette
1984)).

2.5. The model of the partial continuous operations PCO

This is defined similarly to PRO, but is based on the domain INN of all numerical functions,
with an application operation | defined by:

a(B) =z := Fy(a(By) == +1) AVY < y(a(By') =0),
a|f =y :=Ve(a(M.B((z)*n)) =yz Aa{)=0

Pairing operations with their decodings on functions may be defined e.g. componentwise:

p(a,B) = Az.p(az, fz), po(a) := Az.po(az), p1(e) := Az.p1(az).

For this application operation we can develop a recursion theory with recursion theorem
and smn-theorem in a conservative extension EL* of EL, by reducing the theory to the
theory of operations recursive in function parameters. EL* has the application operation
| as a primitive, see Troelstra and van Dalen (1988, 3.7). We spell out a definition of
realizability for this application which is not literally what one obtains by interpreting
- r-realizability in PCO, but equivalent to it:
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2.6. DEFINITION. (Realizability by functions) With each formula A of EL* we associate
arf A (a ¢ FV(A)) as follows:

arf(t=s) :=(t=s)ANal,
arf (AAB) := (poarfA) A (piazxfB),
arf(A— B):=Vp(Brf A — a|Bxf B) Aal,

arfVz A = Vz(a|An.z rf A),
arfVa A = Vp(a|Bzt 4),
arf3z A :=piart Alz/(poa)0],
arfdB A = prazf A[B/poa]. O

rft-realizability is defined by modifying rf-realizability as before. O
Now the theory runs to a large extent parallel to numerical realizability. The role of
ECT), is taken over by the following schema of Generalized Continuity:

GC Va(A — 3BB(a, B)) — IWVa(A — vy|al A B(a,v|a)) (A I-free)

where 3-free in EL* is defined as before; in EL, 3-free formulas correspond to the class of
formulas constructed from ¢ = s, Jz(¢ = s), a(t = s) by means of —,A,V.

2.7. PrRoPOSITION. (Examples of applications) For EL* we have

(i) F Va(A — 3BB(a,B)) = F IyVa(4 — v]al A B(a,v]a)) (Generalized Continuity
Rule GCR).

(i) For JaAa closed, - Ja Aa =+ A({Ai}) A Ym(fiem]), ie. if - Ja A(a), there is a
total recursive function f such that - A(f).

(iii) CC(xf) NEL* = CC(xf) N (EL* + GC), where the conservativity class CC(zf) for
rf-realizability is defined in complete analogy to CC(zn).

PROOF of (ii). The strong soundness theorem yields in this case a particular function
term ¢ such that - ¢ rft o Aa, hence - p1¢p rft Ala/po¢], and thus F Ala/pod] A podl;
Po(¢) is a closed function term in the language of EL which may be written as {f}. ({R}
is short for Az.(fiez).) O

2.8. Examples of extensions

Bar Induction for Decidable predicates is an induction principle

BIp Vadz P(az) AVn(PnV -Pn) AVn(Pn — Qn)A
Yn(vm(Q(n x (m)) — Qn) — Q()

An equivalent principle is BI! with Yadz P(az) AVn(PnV —Pn) replaced by Va3z! P(ax).
BIp implies the Fan theorem for Decidable predicates

FANp Va<p3z A(az) AVn(An V —An) — F2Va<pIe<z A(ax)

where a < 8 := Vz(az < fBz). Since rf-realizability validates continuity principles, in fact
the stronger

FAN Vadz A(a,z) — zVa<pIz<z A(a, )
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holds.

In the soundness and characterization theorems EL* may be replaced by EL*+T', where
for example I" can be the set of all instances of one or more of the following schemata: M,
TI(<), FANp, Blp.

2.9. Notes

Kleene (1965b) contains the first formalization of rf-realizability. In this paper Kleene
shows a.o. that formulas such that all their subformulas in the scope of an universal
function quantifier are 3-free are true iff rf-realizable (provable clasically).

Barendregt (1973) used an abstract version of realizability to show consistency of an
axiom of choice with combinatory logic. Staples(1973, 1974) used realizability with com-
binators for higher-order logic and set theory. Abstract realizability for theories including
APP was introduced by Feferman(1975, 1979).

Of the researches using abstract versions of realizability we further mention Bee-
son(1977b, 1979b, 1980, 1985), Renardel(1984, 1990).

3 Modified realizability

In the case of numerical and function realizability, we started with the concrete and ended
with the abstract version.

For modified realizability on the other hand, it is advantageous to start with the
abstract setting, and afterwards to specialize to more concrete versions. The abstract
setting of modified realizability is not a type-free theory such as APP, sketched above,
but a system HAY of finite-type arithmetic.

3.1. Description of HAY

The set of finite type symbols T is generated by the clauses 0 € 7 (type of the natural
numbers); if 0,7 € 7 then (¢ x 7) € 7T (formation of product types) and (¢ — 7) €
T (formation of function types). We use o,0’,...,7,7',...,p,p,... for arbitrary type
symbols.

As an alternative for (o — 1) we write (07); 1 is short for (00), n + 1 for (n0). Outer
parentheses in type symbols are usually omitted. Further saving on parentheses is obtained
by the convention of association to the right, i.e. ogo10203 abbreviates (o¢(01(0203)));
01 X 02 X -+ X 0, abbreviates (---((c1 X 02) X 03) -+ X 0p).

The language of HA® is a many-sorted language with variables (z7,y?,27,...) of all
types; for each o € T there is a primitive equality =, and there are some constants listed
below, and an application operation App, , from o0 — 7 and o to 7. For arbitrary terms
we use t,t',t",...,s,5',5"”,.... In order to indicate that t is a term of type o we write
t€oort’. Ift € o —7,t €0, then App, . (t,t') € 7. For App, (t,t') we simply write
(t') or even tt'; we save on parentheses by association to the left: ¢;...t, is short for
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(- - ((t1t2)ts) - - - tn). As constants we have for all o,7,p € T:

0 € 0 (zero), S € 00 (successor),

p”" €ot(o x 1), Py € (6 x 7)o, p]” € (¢ x 7)7, (pairing and unpairing)
k%" € oto, sP%7 € (poT)(po)pr (combinators),

r’ € 0(000)00 (recursor).

Here again we use the same symbols (k, s, p,po, p1) for operations closely analogous to the
operations denoted by the same symbols in APP. We shall drop type sub- en superscripts
wherever it is safe to do so; types are always assumed to be “fitting” (i.e. if t#' is written
then t € o7, t' € o for suitable o, 7).

The logical basis of HA® is many-sorted intuitionistic predicate logic with equality;
the constants satisfy the following equations:

po(pzy) =z, p1(pzy) =y, p(Poz)(P12) =z,
kry =z, szyz =z2(yz), rey0 ==z, roy(Sz) = y(rryz)z.

Finally, we have 0 # Sz, Sz = Sy — z = y, and full induction. (Actually, Sz = Sy —
z = y is redundant, since we can define a predecessor function P such that P(St) = z.)

There is defined A-abstraction, as in for APP; we can use the second recipe mentioned
in 2.2, with Az.t = kt for all ¢ not containing . HA is embedded in HA" in the obvious
way.

3.2. The systems 'l HAY, E-HAY

I-HAY, intensional finite-type arithmetic is a strengthening of HA“ obtained by including
an equality functional e, € 000 for all o € 7, satisfying

exy <1, ezy=0ez =y,

so equality is decidable at all types.
On the other hand, eztensional finite-type arithmetic E-HAY is obtained from HAY
by adding extensionality axioms for all types o:

Vel (yz = zz) oy = 2.
This permits us to define equality of type o in terms of =g, via

Y =¢r 2z 1= V27 (yz =, zz),
Y =oxr Z 1= PoY =¢ Poz A P1Y =r P12.

Therefore we may assume E-HA® to be formulated in a language which contains only =¢
as primitive equality, so that prime formulas are always decidable.

3.3. Models of HAY

A model of HA® is given by a type structure (M,, ~;)sc1, With M, a set, ~, an equiv-
alence relation on M., plus suitable interpretations of App, r and the various constants.

(i) FTS, the Full Type Structure. Take IN for My, for M, take the set of all functions
from M, to M, for M, , take M, x M,; this is the full type structure; ~, at each type
is set-theoretic equality, and it is obvious how to interpret App and the constants.
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(ii) HRO, the Hereditarily Recursive Operations. Put

HRO, :=1N,
HRO,r := {z : poz € HRO, A p1z € HRO,},
HRO,, :={z: Ve € HRO,(zez € HRO,)}.

App is interpreted as partial recursive application (i.e. as o), =, as equality between
numbers (as elements of HRO, ),

[0] := 0, [S] := Az.Sz, [k] := Azy.z, [s] := Azyz.z2(yz),

[p] := Azy.p(2,y), [Po] := Az.poz, [pPi1] := Az.p1y,
[r] := a suitable code for a recursor, [e] := Azy.sg|z — y|.

The existence of a suitable code for a recursor either follows directly from the definition of
recursive function, or by an application of the recursion theorem yielding a solution 7 to
re(z,y,0) = 0, re(z,y,S2) ~ ye(re(z,y, 2), 2), as in Troelstra and van Dalen (1988, 3.7.5).
The result is a model of I-HAY.

(iii) HEO, the model of the Hereditarily Effective Operations. We define a partial
equivalence relation ~, between natural numbers for each o € 7 by

T~y =T =Y,

T ~oxr = (PoT ~o PoY) A (P12 ~r P1Y),
T oy Y i =V22 (2 g 2 o ez vy Yor! Aoz ~p o2 Nyoz ~pyez)

where
z € HEO, := 2z ~y 2.

For the rest, the definition of interpretations of 0, 5,k,s, p, po, P1, T proceeds as before,
we interpret =, as ~,, and we obtain a model of E-HAY.

3.4. DEFINITION. (Modified realizability) We define z° mr A, for formulas of HAY, by
induction on the complexity of A as follows. The type o of z is determined by the
structure of A.

Omr(t=s5) :=(t=s),

zmr (AA B) :=pozmr A A pizmr B,

znr (A — B):=Vy(ymr A — yzmnr B),

zmrVz A :=Vz(zzmr A),

zmrdz A :=pizmr Alz/p1z].

We also consider mrt-realizability, which is similar to rnt -realizability. All clauses are the
same as for mr, the implication clause excepted, which now reads

emrt (A — B) := Vy(ynrt A - zymrt B)A (A — B). O
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REMARK. In the usual definition (cf. Troelstra (1973a, 3.4.2)), one realizes with sequences
- of terms t, of length and types depending on the structure of A. The attractive feature of
this definition is that 3-free formulas are literally self-realizing: for I-free 4, tmr A := A,
so £ is empty.

For our definition above, the choice of type 0 for the realizing objects of prime formulas
is somewhat arbitrary; a more canonical choice might have been obtained by (conserva-
tively) adding a singleton type to HA“ and letting the single element of this type realize
t = s iff true.

A concrete version of mr-realizability is obtained by interpreting HAY in a model
M; this yields M-mr-realizability. The difference between Kleene’s realizability and mr-
realizability becomes clear by comparing rn-realizability and HRO-mr-modified realizabil-
ity of statements of the form

Vy—-Vz-Tzyz — B

For rn, this requires a realizer ¢ which must be applicable to the canonical realizer Ay.0
of Vy—Vz—Tzyz if this is true. On the other hand, in the case of HRO-mr-realizability
teAy.0 must be defined, whether Vy—Vz—-Tzyz is true or not. In other words, in modified
realizability, realizing objects for implications have a larger domain of definition than what
is required by “pure” realizability.

Soundness now takes the form

3.5. THEOREM. (Soundness)

HAFA = HAYFtmr AAtmrt A for some termt.

PROOF. By a straightforward induction on the length of derivations. 0.

As noted above, for 3-free formulas there are canonical realizers, and truth and realiz-
ability coincide for 3-free formulas. Therefore the 3-free formulas of HA“ play the same
role w.r.t. mr-realizability as the 3-free formulas of HA* w.r.t. rn-realizability.

For an axiomatization we need the following

3.6. LEMMA. For each instance F of one of the following schemata

IP.¢ (A—32°B) - Jy’(A— B) (y ¢ FV(A4), A I-free),
AC VeIyTA(z,y) — I27Vz7 A(z, zz),

there is a term t such that - tmr F.

3.7. THEOREM. (Axiomatization of modified realizability)

HA® + AC+ 1P A Jz(zmr A)
HAY + AC+1IP4+- A< HAYFtmr A for somet.
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3.8. THEOREM. (Applications of modified realizability) Let H € {HAY, I-HAY E-HA"“},
and let H' be H or H with IP; and/ or AC added. Then

1. H' is consistent.

Ht+AVB=Ht AorH + B (for AV B closed).

H' 3274 = H' | A[z/t°] for a suitable term t.

H' - Vz73y " A(z,y) = H' + 32°"Vz° A(z, za) (Rule of choice ACR).

AT T B

H' (A — 32°B) = H'+ 32°(A — B) where A is 3-free (IPRes-rule).

3.9. Concrete forms of modified realizability

The proof-theoretic applications of mr-realizability obtained by specifiying a model for
HA® have in fact two “levels of freedom”: (a) the choice of a model M, definable in a
language L say, and (b) the theory formulated in £ which is available for proving facts
about M, i.e. the metatheory for M.

By “M definable in £” we do not mean that M is globally definable in £, but only
that locally, for each A of HA®, we can express [A]a by a formula of £. Thus choosing
HRO for M is the first level of freedom, and choosing some theory I' in the language of
HA* for proving facts about HRO is the second level of freedom.

An interesting example of this occurs in connection with two models of HA“ which are
similar to HRO and HEO respectively, but based on partial continuous function application
| instead of partial recursive application e.

The Intensional Continuous Functionals ICF are an analogue of HRO; we give the
intuitively simplest definition (which does not mean the technically slickest) of the types:

ICFy =N,

ICF()() =IN — ]N,

10,0 = {a : VBEICE, (a(8)1)} (v # 0),

ICFq, := {a : Yz(An.a((z) *xn) € ICF,)} (¢ # 0),
ICF,, := {a : VBEICF, (|8 € ICF,)} (o, 7 # 0).

Application is then defined in the obvious way: Appso(a, ) := a(B), Appos(a,n) =
Am.a((n) * m), Apps.,(a, B) := a|B, etc. Equality at type o is interpreted by equality of
numbers (for o = 0) or functions (for o # 0).

The Eztensional Continuous Functionals ECF are related to ICF in the same way as
HEO is related to HRO: one defines a hereditary equivalence relation based on | instead
of . ECF concides with Kleene’s countable functionals or Kreisels continuous functionals.

Both ICF and ECF are locally definable in the language of EL*, and for soundness of
ICF-mr and ECF-mr relative to EL* nothing more is needed. But additional axioms added
to EL* may result in different properties of the models, and hence of M-mr-realizability.
Two mutually incompatible additional axioms we can add to EL* are FANp and

cT VadzVy(az = zey).

CT states that the function variables in EL* range over the total recursive functions; the
incompatibility of CT with FANp follows from Kleene’s wellknown example of a primitive
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recursive tree wellfounded w.r.t. all total recursive functions but not w.r.t. all functions,
since the depth of the tree is unbounded (cf. Troelstra and van Dalen (1988, 4.7.6)).

Assuming FANp, we can show that ICF and ECF contain a Fan Functional ¢, satis-
fying the axiom for a Modulus of Uniform Continuity

MUC V22V VasyVB<y(@(uczy) = Bbuczy) — 2o = 2P).

If we add MUC to HA®, we can mr-interpret FANp. If, on the other hand, we use EL*+CT
as our metatheory for ICF-mr, we can realize a statement positively contradicting MUC.
See Troelstra (1973a, 2.6.4, 2.6.6, 3.4.16, 3.4.19).

As an example of an application of a concrete version of mr-realizability we can show
e.g. the consistency of HA® + IP* + AC + WC-N + FANp + EXT} g, where WC-N is the
schema VYodn A(a,n) — Yadn,mVB(am = fm — A(B,n)), and EXT; ¢ is VaBz%(a = B
— 2z2a = 22f3). (Use ICF-mr-realizability with EL* + FANp as metatheory.)

NoTATION. Henceforth we write mrn, mrf for HRO-mr and ICF-mr-realizability respec-
tively. 0.

3.10. Notes

Modified realizability was first formulated by Kreisel (1962b), a concrete version equivalent
to our ICF-mr-realizability was used in Kleene and Vesley (1965).

Harnik (1992) and Cook and Urquhart (1991) apply mrt-realizability to bounded arith-
metic and related systems, improving on earlier results obtained by Buss (1986) by means
of numerical realizability.

Moschovakis (1971) showed consistency of a weak version of Church’s thesis, using
(what amounts to) modified realizability w.r.t. the recursive elements of ICF. See also
Troelstra (1973a, 3.4.15), where the idea of Moschovakis is used to obtain the consistency
of Ya——3zVyIz(Tzyz A ax = Uz) with intuitionistic analysis.

Some further examples of papers using or discussing modified realizability are Dra-
galin(1968), Diller(1980), Grayson(1981b, 1982), Plisko(1990) (cf. also 9.4), van Oosten(1990).

4 Derivation of the Fan Rule

This section is devoted to an “indirect application” of modified realizability: it is shown
how closure under the rule of choice ACR, obtained from mrt-realizability, may be com-
bined with the (intrinsically interesting) notion of “majorizable functional” to obtain clo-
sure under the Fan Rule.

We can define the so-called majorizable functionals relative to any finite-type structure.
They are introduced via a relation of majorization, defined as follows.

4.1. DEFINITION. t*maj,t, for t*,t € o, is defined by induction on o:

t*majot :=t* >t,
t* maj, -t :=pot* maj, pot A p1t* maj, pit,
t*maj ot =Vy'y(y* maj, y — t*y* maj, ty,t*y).
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Furthermore we put
t € Maj := 3t* maj ,t.

LEMMA. t*majt = t*majt*.
ProoF. Induction on the type of ¢.

4.2. DEFINITION. For each t € 0o we define t* € 0o by induction on the structure of o.

t+t0 = t0, t7(S2) = max{t*z,¢(Sz)} for o =0,
tt = An.Ay((An.tny)Tn)] for o = 0109,
tt = An.p((An.po(tn)) Tn) ((An.p1(tn))Tn) for o = o1 x o3.

LEMMA. IfVn®(FnmajGn), then F* majG*,G.
Proor. We use induction on o. Let Fn,Gn € o.
Case (i) 0 = 0. Almost immediate.

Case (i1) 0 = 0102. The assumption yields

s*majs = Fns* majFns,Gns
for all n € IN. By the induction hypothesis we have
(1) (An.Fns*)t maj (An.Fns)t, (An.Fns), (An.Gns)*, (An.Gns),

Now by definition of F*,Gt and beta-conversion:

(An.Fns*)tk=F*ks*
(An.Fns)*k =FTks
(An.Gns)*k =G ks

If n > m, we obtain from (1)
Ftns*majFtns, Ftms, Fms, Ftns*majGTms, Gms.

and from this Ft*nmaj F*m, Fm,Gtm,Gm. Since n > m, it follows that F* majG*,G.
Case (iii) 0 = 01 X 03. We are given Vn(FnmajGn), so

Vn(pi(Fn) majp;(Gn)) (i € {0,1}).
So we have
Vn((An.pi(Fn))nmaj (An.p;i(Gn))n)
and hence by the induction hypothesis
(An.pi(Fn))* maj (An.p;(Gn))™, An.p;(Gn).
From this we obtain for n > m, : € {0,1}
(An.pi(Fn))*nmaj (An.p;(Fn))*m, (An.p;(Gn)) Tm, (An.p;(Gn))m,
Pi(F*n) majp;(Ftm), ps(G*m),p;(Gm)

and therefore hence F* majG™*,G.
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4.3. PROPOSITION. Let all free variables in t € T be of type 0 or 1; then there is a term
t* € 7 with FV(t*) C FV(t), such that HA“ I t* majt*,t.
PRrOOF. For each constant or variable of type 0 or 1 of HA® (c” say) we show that there
is a ¢* € T with ¢*maj, c.

(a) OmaJO S majS are immediate;

(b) £ majzP; for y' define y* by recursion as yt;

(c) kmajk, smajs, pmajp, pomajpo, P1maj P1j

(d) If r is the recursor with rOts =t etc., take r* :=r.

4.4. THEOREM. (Fan Rule) Let A be a formula of HAY containing only variables of
types 0 or 1 free, then - VYo < fInA(a,n) = F ImVa < fIn < m A(a,n), where
a < B :=VYm(an < fn).

Proor. Let HAY - Va < f A(a, Ff3) for a suitable term F € (1)0. F is majorizable,
so there is an F* such that F* majF*, F which means in particular that Va3(8 > a —
F*B > Fa) and hence HA“ - Va < 83n < F*8 A(a,n). O

4.5. Notes

The notions of majorization and majorizable functional were introduced by Howard (1973).
The present version is a modification due to Bezem (1986, 1989), called strong majorization
by him; we have added a clause for product types.

Kohlenbach (1990) introduced a version of Bezem’s definition with a special clause
for types of the form ¢0; however, in the presence of product types we found it more
convenient to stick to Bezem’s definition.

The proof of the Fan Rule presented here is due to Kohlenbach (1991). For other
proofs, see e.g. Troelstra (1977c), Beeson (1985), Troelstra and van Dalen (1988, 9.7.23).

27



5 Lifschitz realizability

This type of realizability was invented by Lifschitz (1979) to show that Church’s Thesis
with Uniqueness

CTy! Vzdly A(z,y) — J2Vz(zez| A A(z, zex))

does not imply CTy in HA*. The idea to achieve this, is to use as realizer for an existential
formula not a single instantiation for the quantifier, but a finite inhabited set of possible
instantiations, such that in general there is no recursive procedure for selecting elements
of such inhabited sets, although for singletons there is such a procedure. The sets we use
are given by

Ve :={y : y < p1& AVn—T(poz,y,n)}.

If we know that V, is a singleton, say {y : 0 = 0}, we can find y recursively in z as follows:
we start computing pozez for all values of z < p;z; as soon as we have found terminating
computations for p;xz arguments, we know that the remaining argument < p;z is the
required y.

5.1. DEFINITION. The clauses for rln-realizability are identical to the clauses for rn-
realizability, except for the existential quantifier:

zrlndy A := Inh(V;) AVy € V;(p1y rln Aly/poy])

where “Inh(W)” means that 3z(z € W). O

In this form the notion appears as a modification of numerical realizability. There is
also a Lifschitz’s analogue of function realizability. In that case the sets of realizers for
the existential quantifiers take the form

Vo := {7 : v < pra A Vn(poa(Bn) = 0)}.

The V, are not finite, but compact. There is no general method for finding an element in
inhabited V,, which is continuous in &, but there is a method for V,’s which are singletons.
There is no interesting “abstract” version of Lifschitz realizability.

5.2. DEFINITION. rlf-realizability is defined as rf-realizability, except for the clauses for
the existential quantifiers, which become:

arlf 384 := Inh(V,) A Vy € Vo(p17£lf A[B/Po7]),
arlf3zA = Inh(V,) A Vy € Vo(p1yrlf Ale/(pey)0]). O

5.3. Summary of results for rin-realizability

DEFINITION. In HA* the bounded £3-formulas are formulas of the form 3z < t—(s = §');
the BX3-negative formulas are the formulas constructed from prime formulas s = s’ and
BX)-formulas by means of V, A, —. O

Corresponding classes in HA are defined as follows. A formula of the form Jz<yVz A
with A primitive recursive is called a bounded X3 -formula (BZ9-formula); the BX3-negative
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formulas are the formulas constructed from XJ-formulas and BX)-formulas by means of
V, A, —.
N.B. Although the class of BE3-formulas in HA* is somewhat wider than the correspond-
ing class in HA, the BX}-negative formulas for HA* and HA are the same modulo
logical equivalence. To see this, observe that (a) a II3-formula in HA can be written as
-s = s in HA*, and (b) 3z < t—(s = §') in HA* is equivalent to a formula of the form
Jy(t = y) AVz(t = z — Jz<z.A(z)), with A primitive recursive, which is BX}-negative in
HA modulo logical equivalence.

In the case of numerical Lifschitz realizability, we cannot take as our basis theory
HA*, but need instead an extension HA', which is HA* + M + CBXY; here CBXY, the
Cancellation of double negations in Bounded £3-formulas is:

CBX) -=A4 — A (for A in BXY);
Soundness now holds w.r.t. HA', i.e. for all sentences A

HA'FA = HA'F-arlnd

for a suitable numeral 7. The following properties of the V,, are crucial in the proof of the
soundness theorem:

(i) for some total recursive fo, Vzy(y € Vi, (;) < y = ), i.e. indices of singleton V;’s
may be found recursively in their (unique) elements.

(i) There is a partial recursive f; such that for any operation with code z, total on
Vy, the image of V;, under z is Vy, (5 4)-

(iii) There is a total recursive f such that Vy,,y = U{V; : z € V,}.

(iv) There is a partial recursive f3 such that HA' F Vz(Inh(V,)A Vy€V, (yrln A) —
fs(z) rln A).

With respect to the class of self-realizing formulas, we note an interesting deviation
from the notions of realizability considered hitherto: these are not just the 3-free formulas,
but the wider class of BX}-negative formulas. Now we can axiomatize rln-realizability
relative to HA' by means of the following scheme:

ECTy, Ve(Az — JyBry) — Iz2Vz(Az — zez| AInh(Vie,) A VUEV, 4, Bau)

(A BXJ-negative). An interesting special case of ECTy, is ECTy! which can be formulated
as

Vz(Az — Jly Bay) — 32Vz(Az — zez| A B(z,zez) (A BX3-negative),

with the help of the following

LEMMA. There is a partial recursive f5 such that

HA'FVz(Vzy(z =y >y € V,) — f5(2) € V3).
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5.4. PROPOSITION. (Applications)
(i) HA' + ECTy, is consistent;
(i) HA* + ECTL! i/ CTy;

(iii) HA' is closed under the rule ECRy, and a fortiori under the rule ECRy! (as ECTy,
and ECTy! but with main — replaced by = etc). Since HA' also satisfies the rules
DP and EDN, we can formulate the rule ECRy! even more strongly as: for A in
BXY,

Vaz(Az — 3lyBay) = F Vz(Az — fiez| A B(z, nez)
for a suitable numeral 7.

5.5. Summary of results for r1f- and rlft-realizability

The basis theory is now an extension of EL*, namely EL' = EL* + Mqr + KLqr, where
Mgqr is Markov’s principle for quantifierfree formulas, and Kénig’s Lemma for quantifier-
free formulas is the schema

KLqr VzIn(lth(n) = z An<a A An — 3B<aV¥n A(Bn)

(A quantifier-free; n<a := Vy<lth(n)((n), < ay); Ja<¢ := Ja(a < ¢ A ...)). The
analogue in EL' of the BXJ-negative formulas are the BX}-negative formulas (a BX}-
formula is a formula of the form Ja<¢—s = t (a Bounded £} formula); the class of
BX1-negative formulas is obtained from formulas BX}-formulas and prime formulas by
means of —, A, V). O

As a typical result we obtain that GC! (i.e.the special case of GC with uniqueness for
the existential quantifier) does not imply GC, not even the special case of WC-N.

5.6. Notes

Khakhanyan (1980b) defined Lifschitz’ realizability for certain set theories and uses it to
obtain independence of CTy from CTy! for these theories. Other relevant papers are van
Oosten(1990, 1991a, 1991b). As to van Oosten (1991b), see 8.31

It is possible to combine Lifschitz realizability with modified realizability for HRO, as
shown in van Oosten (1991a).

It is not known whether for some or all results perhaps weaker theories than HA', EL/
will suffice.

6 Extensional realizability

It is also possible to combine the idea of realizability with extensionality, by defining not
just a notion of the form “z realizes A”; but a relation between realizing objects: “z and
y equally realize A”. The definition below has been written out for HA* and partial
recursive application, but also makes sense in the abstract setting of APP, if we read
everywhere re for rne.
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6.1. DEFINITION. We define “c = 2’ rne 4” (z,2' ¢ FV(4), = # y), by induction on the
complexity of A:

z =z’ rne P =(z=2'APAz|AZ'|) (P prime),
z = z'rne (AA B) := (poz = poz’ rne A) A (p1z = p12’ rne B),
¢=za'rne(4— B) :=z|Az'| AVyy'(y=y'rne A —

zeoy = zoy' rne B A z’ey = z'ey’ rne B A zey = z'ey rne B),

z=2z'rneVy A = Vy(zey = z’ey rne A),

z=z'rnedyAd = (poz =poz') A (P1z = p1z’ ne A[y/poz])
and we put

zrne A := z =z rneA.

As always, rnet-realizability is obtained by adding “A (4 — B)” in the implication clause.
O

REMARK. The definition may also be formulated as a simultaneous inductive definition
of “z extensionally realizes A” and “z and y are equivalent realizers for A”, but this is
more cumbersome.

It is straightforward to prove soundness.

The 3-free formulas play the same role as in rn-realizability. On the other hand, no
simple axiomatization of the provably rne-realizable formulas is known.

For proofs of the following facts we refer to van Oosten (1990).

6.2. The difference between ordinary realizability and extensional realizability is demon-
strated by the fact that the following instance of ECTy is not rne-realizable:

Vz[VzIy(-—FuTzeu — Tzzy) — FoVz(vez A (-—FuTzzu — T(z,z,vez))]

On the other hand it is not hard to verify that the following “Weak Eztended Church’s
Thesis” is provably rne-realizable:

6.3. PROPOSITION. In HA we can rne-realize:
WECTo Vz(A — 3y Bzy) —» ——32Vz(A4 — zez| A B(z, zez))

for J-free A.
A nice application of rnet-realizability is the following refinement of ECR.

6.4. PROPOSITION. Assume for 3-free B that in HA*
F Vz(Ve3dy Bzzy — Ju Czu)
then for some

F Vz(fiez] A Vv, v (Va(vexr = v'ez A B(z,z,vez)) —
Tlezev = Mezev) A C(z,iezev))
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6.5. Notes

Extensional realizability appears for the first time explicitly in some unpublished notes by
Grayson (1981c), and implicitly in Pitts (1981).

Renardel de Lavalette (1984) and Beeson(1979b, 1985) use an abstract version of ex-
tensional realizability in combination with forcing, to prove that MLg (the arithmetical
fragment of the extensional version of Martin-Lof’s type theory) is conservative over HA.
ML, includes E-HA® + AC as a subtheory. See also Eggerz (1987). The proofs by
Renardel and Beeson extend earlier work of Goodman (1978)2.

There is a close similarity between “c = z’'rne A” and “z = 2’ € A” in the type-
theories of Martin-Lof (1982, 1984), so it is not surprising that an interpretation akin to
extensional realizability can be used to model (parts of) Martin-Lof’s extensional type
theories, cf. Beeson (1982). See also 9.3.

7 Realizability for second-order arithmetic

7.1. The system HAS

HAS (Heyting Arithmetic of Second order) is a two-sorted extension of HA with quanti-
fiers over P(IN), the powerset of IN. So the language of HA is extended with set variables
X,Y,Z, and corresponding (second-order) quantifiers VX, 3Y; atomic formulas are now
of the form t = s or Xt (also written ¢t € X) for individual terms ¢, s and set variable X.

Instead of formally introducing set-terms Az.B (B any formula) we can formulate the
axiom for second-order V as

VX.A — A[X/)\z.B]

where A[X/Az.B] is obtained from A by replacing every occurrence of Xt by Blz/t].
Alternatively, we restrict the V2-axiom to

VX.A - A[X/Y]

while adding the axiom schema of full comprehension

CA AXVz(Xz — A) (X € FV(A4)).

Moreover, we require sets to respect equality
VXzy(XzAe =y — Xy).

HAS" is related to HAS in the same way as HA* to HA.

7.2. Realizability for HAS*

It is quite easy to extend rn-realizability from HA* to HAS* by “brute force”; we assign
to each set variable X a new set variable X*, representing the “realizability predicate”
and then add the following clauses to rn-realizability for HA*:

zrnXt :=X*(z,t) (x| is automatic by strictness)
zrnVX A :=VX*(zrnA),
zrndX A:=3X*(zzxnA).

*We do not know whether the treatment in Beeson (1979b) is really equivalent to the one in Beeson
(1985).
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Here Y (t,t') for any set variable Y abbreviates Y (p(¢,t')). (Nothing prevents us from
taking X* = X, but in discussions this is sometimes inconvenient and confusing.)

7.3. REMARK. In a second-order context, 1,3 and A are definable in terms of — and V,
_ in particular

VA = VZOVY (A — 29) — 20,
AANB:=VYZ°(((A— (B — 2)) — 2),
L =vZzZ

where Z° ranges over propositions. (Strictly speaking, we do not have variables over
propositions, only over sets, but the addition of proposition variables is conservative, since
one may render (Q Z%)A(Z°) as (Q X)A(X°) for Q € {V,3}.) Using this definition of 3,
the clause for realizing 3X.A is in fact redundant, and we obtain an equivalent notion of
realizability. A virtually immediate consequence of soundness for rn-realizability for HAS
is the consistency of HAS with Church’s thesis and the so-called Uniformity principle

UP VX 3y A(X,y) — VX A(X, y).

7.4. ProposITION. HAS* + ECTy + UP + M is consistent.
Here ECTy is formulated as for HA*, except that A is restricted to 3-free formulas of
HA?*, while B is arbitrary.

7.5. rnt-realizability for HAS*

Extension of rnt-realizability to HAS* is similar to the extension of rn-realizability, but
we have to be slightly more careful: we want to keep track of realizability and truth, so
we want to associate with an arbitrary set X an arbitrary ¥ together with its realizability
set Z. It is convenient to encode Y and Z into a single set X*; we put

X*:={n:X*@2n)}, X*:={n: X*2n+1)}

representing the two components of truth and realizability respectively. The new clauses
in the definition of rnt-realizability now become

zrnt Xt = X*(t) A X*(z,1),
zrntVX A = VX*(zznt A),
zrntIX 4 :=3X*(zzn 4),

zrnt (4 — B) :=Vy(yrnt A — zeyrnt B) A (A — B)*,

where C* is obtained from C by replacing all occurrences of Yt by Y*!(¢). It is readily
verified that for all A with second-order variables contained in {X1, Xa,...X,}

FAX. X /XS X o A
= mr_ntA — A*

and we find that soundness holds. An interesting corollary is
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7.6. PROPOSITION. HAS" is closed under the Uniformity Rule
UR FVX3y A(X,y) & F YWX A(X,y)
and satisfies DP and EDN.

7.7. Second-order extensions of other types of realizability

The preceding two examples reveal something of a pattern for the extension to second-
order languages. The pattern will become still clearer when we study the extension to
higher-order logic in the next section, but let us already now indicate what has to be done
to extend extensional and modified realizability.

In the case of extensional realizability, set variables should get assigned variables rang-
ing over partial equivalence relations over IN. (A partial equivalence relation satisfies
symmetry and transitivity, but not necessarily reflexivity). Second-order quantification is
treated in the “uniform” way, just as for ordinary realizability.

In the case of modified realizability, there is no immediate generalization of the abstract
version for HA®, but we can generalize HRO-mr-realizability; we shall abbreviate this as
mrn-realizability (“modified realizability for numbers”).

In this case we need to assign to each formula not only a set of realizers, but also
a set of “potential realizers”, which determine the domain of definition in the case of
implication. (In the case of HRO-mrn-realizability restricted to HA“, the sets of potential
realizers are always of the form HRO,.) In particular, we must assign to set variable X two
variables X' (representing the realizing numbers) and X9 (representing the set of potential
realizers). We then define for each formula A the predicates zmrn A (“c HRO-modified
realizes A”) and A? (the set of potential realizers). Some typical clauses for the potential
realizers: (t = 5)¢ := N, (4 — B)! := {z : VycAl(aey € B}, (vX.4)9 .= vxdad,
and for the realizability zmrn Xt := z'€ X4 A X*(z,t), zmrn(4 —» B) :==z € (4 —
B) AVy(ymrn A — zeymrn B), zmrnVX. A4 := VXdX’(wgl;gA).

The reader will have no difficulty in supplying the remaining ones, keeping in mind
that this is to be an extension of HRO-mr-realizability. However, in verifying soundness,
it turns out that there is on important extra property required of the A%: there should
always be a fixed number in the sets of potential realizers, so that operations defined over
the A% must be defined at least somewhere. If we let the variables X ¢ range over inhabited
sets containing 0, and if we choose our gédelnumbering of partial recursive operations in
such a way that p(0,0) = 0 and Az.0 = 0, it follows that 0 € A9 for all A.

7.8. Realizability as a truth-value semantics

It is instructive to rewrite rn-realizability for HA* in the form of a valuation in a set of
truth-values. Let X,Y € P(IN); we define

DEFINITION.
XAY ={p(z,y) :c € XANyeY}
X oY ={z:Vz€X(zez €Y)},
XVY ={p(0,z) : 2 € X} U{p(Sz,y) : ze N,y e Y},
XoV:=X-Y)AY - X).
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We associate to each formula A of HA* a set [A] of realizing numbers:

[t=s] :={z:t=s},

[AAB] :=[A]A[B],

[A — B] = [4] — [B],

[VeA] :={z : Vax(zex € [A])},
[Bz4] ={p(y,2) : z € [A[z/y]]}.

The defined set contains the free variables of A as parameters. Furthermore we can put
in keeping with our definition of disjunction

[AV B] = [4]V[B]. O

The elements of P(IN) act as truth-values; all inhabited elements represent “truth” in the
sense of realizability.
If we now want to extend this to HAS, we should put

[Xt] ={z: X*(z,t)},
[vVX.A] := [A(X)].
X

and now [A] contains for any X free in A a parameter X*. (We may do without an explicit
definition for the cases for A, 3 since these are definable in a second-order setting, cf. 7.3.)

Note that numerical and set quantifiers are treated in a completely different way. This
can be remedied in this case in a more or less ad hoc manner: we associate with each
domain D a set-valued function Ep on the elements, giving their “extent”. In the case of
HAS we take

En(n) = {n}, Epm)(X) := {0},
and define for domains D

[Vz € D.A(z)] = ﬂ(Ew' — [A@)])

@'

- where 2’ is the parameter in [A(z)] corresponding to z (i.e. £ = z’ for numerical z, ' = X*
if z' is a set variable X ). (To see that the resulting notion of realizability is equivalent in the
sense of ..., take for the ¢ and ¢: dvoa(y) := Az.d4(z)(yox), Pvea(y) = AP g() (Yor),

dvx.a(y) = Az.904(y) (z not freein ¢4 (y)), Yvx.a(y) := ¥ a(ye0).) Such an ad hoc solution
to enforce uniformity of definition will not be satisfactory in the case of higher-order logic,

to be discussed in the next section.

7.9. Notes

Troelstra (1973b) extended mrn-realizability to HAS. Friedman (1977a) extended realizability
to HAS; here we have recast his definition as rnt-realizability.

The idea of realizability as a truth-value semantics occurred to several researchers
independently, shortly before 1980. The first documented reference to “realizability treated
as a truth-value semantics” seems to be Dragalin (1979), cf. also Dragalin (1988). Other
authors credit W. Powell, or D.S. Scott with the idea.
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8 Realizability for higher-order logic and arithmetic

8.1. Formulation of HAH

Higher-order logic is based on a many-sorted language with a collection of sorts or types;
we use 0,0',...,7,7,... for arbitrary types. There are variables (z7,y7,27,...) for each
type, and an equality symbol =, for each 0. Relation symbols and function symbols
may take arguments of different types. For quantifiers ranging over objects of type o we
sometimes write Ve€o, dz€o instead of Va7, Ja”. »

For intuitionistic and classical higher-order logic there are certain type-forming oper-
ations generating new types with appropriate axioms connecting the types.

DEFINITION. (Azioms and language for higher-order logic) In a many-sorted language for
higher-order logic, the collection of types is closed under x,P,—, i.e.

(i) with each type o there is a power type P(0);
(i1) with each pair of types o, T there is a product type o x 7 and a function type o — 7.

One often includes a type w of truth-values; then P(c) may be identified with o — w.

There is a binary relation €, with arguments of type o,P(c); instead of €,(z,y) we
write ¢ €, y and sometimes y(z) (predicate applied to argument).

For types 0 — 7,0 there is an application operation App, . such that for t€o—,
t' € o, App,,(t,t') is a term of type 7. Usually we write tt' for App(t,t').

For each pair o,7 there are functional constants p®",pg”,p]" such that p takes
arguments of type 0,7 and yields a value of type o X 7, pg,p1 take arguments of type
o X 7 and yield values of type o and T respectively. The pairing axioms are assumed:

PAIR Vzoz1(pi(p(zo,z1) = z;) (1=0,1)
SURJ Vz7*"(p(pox, p1z) = ).

For power-types we require extensionality and comprehension:
EXT VXPOWNZTy (z e X Az =y — y € X),

CA 3XPOzo(z € X & A(z)),

and for function types:

EXTF Yy 7T 27 7T (V2 (yz = 22) — y = 2))

CAF Vz?3ly" A(z,y) — 3277 "Vz A(z, zz).

If the type w is present and P (o) is identified with 0 — w, EXT and CA become special
cases of EXTF and CAF.
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8.2. DeriNITION. HAH, intuitionistic higher-order arithmetic (“Heyting Arithmetic of
Higher order”) is a specialization of higher-order logic based on a single basic type 0 (or
N) for the natural numbers; types are closed under powertype and functiontype formation.

On the basis type 0 an injective function S : 0 — 0 is give, with axioms Sz = Sy —
z =y, 0# Sz, z =0V Jy(z = Sy); the last axiom has the strength of induction in the
presence of higher-order logic. O

REMARKsS. (i) E-HAY is a fragment of HAH based on type 0 and function-type formation
only, with induction postulated for type 0.

(ii) It is well known, that if we consider in HAH any set X with a special element
zg € X and a function f : X — X, then there is a unique function F : N — X such
that FO = zo, F(Sz) = f(Fz). In particular, if f is injective, then the image f[X]U {zo}
is isomorphic to the type N.

8.3. Numerical realizability for many-sorted logic

Since our versions of intuitionistic higher-order logic, and the system HAH are based
on intuitionistic many-sorted predicate logic, we first discuss realizability for many-sorted
logic. Our definition of realizability will be motivated by the truth-functional reformulation
of realizability for HAS in 7.8.

We start with realizability for many-sorted logic without function symbols. Below
2 = P(IN), Q* is the collection of all inhabited subsets of IN. We first introduce Q-sets,
which will serve to interpret the types with their equalities.

8.4. DEFINITION. An Q-set X = (X,=y) is a set X together with a map =x: X2 — Q
such that the following is true (writing t =x t’ for =x(¢,t')):

nmvyyz(m =Y Y=x :E) € 9*7
nz,y,z(x =x YNy=xz—oz =y Z) € O*.

Here A,— on the left have to be understood as defined for elements of 2, as in 7.8. We
write Ext for t =4 t.

The Q-product of two Q-sets X = (X,~) and Y = (Y,~') is the Q-set X x Y =
(X xY,~") where

(z,9) ~" (@, ¢) = (@~ ')Ay~ o).

A product of n factors A7y,..., X, is defined as (X; X -+- X X_1) X &y.
We use calligraphic capitals X,),.., for Q-sets. O

EXAMPLES. (2 itself may be viewed as an Q-set (Q, ) where X < Y is defined as in 7.8.
Another example is N := (IN,=p), where n =y m := {n} N {m} = {n : n =m}.

8.5. DEFINITION. Let X = (X,~) be an Q-set and F : X — Q a map. We put
Strict(F) := ﬂ (Fz — Fz),
zeX

Repl(F) = n (Fx Az ~y — Fy).
z,yeX
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An Q-predicate on X is an F : X — § such that Strict(F') and Repl(F') are inhabited
(belong to 2%). An Q-relation on Xy, ..., X, is an Q-predicate on Xy X -+ X Xy.

If (X xY,~) is the product of the Q-sets (X,=x) and (Y,=y),and F: X xY — Q,
we define

Fun(F) = ) (F(e,y) A F(z,2) -y =y 2)

z,y,2
Total(F') := ﬂ(E:c — UF(:c,y))
z y

An Q-function from X to Yisan F : X xY — Q such that Strict(F), Repl(F), Fun(F),
Total(F') are inhabited. The definition of Q-function for more than one argument is
reduced to this case via products of (-sets. O

8.6. DEFINITION. An interpretation [ ] of a many-sorted relational language assigns

(i) to each type o with equality =, an Q-set ([o], [=,]); for [=;](z,z) we also write
E,x, '

(i) to constants c of type o an element [c] of [o],

(ili) to each n-ary relation symbol R, taking arguments of sorts o1, ...,0, respectively,
an Q-relation [R] on [o1],..., [o]. O

N.B. It is important to observe that for practical purposes the definition of Ez for an
Q-set (X, ~) may be liberalized, it suffices that (,(Ez < z ~ z) € Q*.

REMARK. Ifin the definition above we take for 2 a complete Heyting algebra, and replace
(1 in the conditions above by the meet operator A, and take Q* := {T}, T the top element
of (1, we obtain precisely the interpretation of many-sorted intuitionistic logic in Q-sets,
as described in Fourman and Scott (1979) or Troelstra and van Dalen (1988). There Et
measures the “degree of existence” of ¢.

8.7. DEFINITION. Let X = (X,~) be an Q-set, and let F : X — , then
VeeXF(z) = ﬂ (Exx — Fz), Jz€XF(z) := U (Exz A Fz). O
zeX zeX

NB. Yz € X...”, “dz € X...” indicate elements of Q, but “Vz € X...”, “Gz € X ...”
refer to ordinary quantification.

8.8. DEFINITION. The interpretation of formulas of a many-sorted relational language
may now be given modulo assignments of variables. Let p be an assignment of elements of
[o] to the variables of type o, for all 0. For constants c the interpretation [c] is supposed
to be given; for variables [z] := p(z), and for prime formulas

[t =o 1= [=o1([z], [£]), [R(ts;... ta)] :=[RI([ta]; - -, [taD),
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and for compound formulas according to 7.8, i.e.

[AAB] :=[A]A[B],
[A— B] :=[4] — [B],
[-4]  :=[4] -0,
[Vzeo.A] := (Vze[o])[A],
[Fzeo.4] := Fze[o])[A]-
Instead of using assignments, we may also use a language enriched with constants as names

for each -set used for the interpretation of the types, and define the interpretation only
for sentences.

A sentence A is said to be valid if [A] € Q*. O
N.B. In the sequel we shall sometimes used “mixed” expressions: for an Q-set X = (X, ~)
Ve € XA(@)] == Noex (Bz — [A(2)]), [Fo € XA@)] = Uyex (B A [A()]).

8.9. PROPOSITION. Intuitionistic many-sorted predicate logic is sound for realizability.
PrOOF. The proof is routine. The definition of an interpretation says that for the Q-
relation [R] interpreting relation R of the language the following hold:

1) Nz =yl = [y =<]) € 2,
2,9

(2) N[z =ylAly=2] - [e=2]) €,

T,Y,2
(3) ﬂ (IR](z1,-..,2zn) — Ex1 A ...\ Ez,) € QF,
(4) Q(IIR]](i") Al =g] — [R](%)) € @

where of course [ = y] abbreviates [z1 = y1] A ... A [zn = yn]; similarly we may
abbreviate Ex; A ... A E, as EZ. v

(1) and (2) guarantee the validity of symmetry and transitivity of equality, and (3)
and (4) the validity of strictness and replacement for R. Reflexivity translates into the
trivial N, (Bz — [z = z]) € Q*, so does not need an extra condition. O

The definition of the interpretation of a language with function symbols is reduced
to the case of relational languages, by regarding functions as special relations (a partial
function is a relation which is functional: YZyz(R(Z,y) A R(Z,2) — y = z), and a (total)
function is a relation which is functional and total, i.e. satisfies VZ3yR(&,y)).

8.10. DEFINITION. (Interpretation of function symbols) To each function symbol F :
o1 X -+ X 0y — 0 We assign an Q-function [F] from [o1] X - -+ X [o,] to [¢]. O In full the
conditions read:

Bz — U, IFI(E ) € @,

h ([F1(Z,9) AN[F1(Z,9) — [y = ¢']) € Q.

T,Y,2

For partial functions the first condition may be omitted. O
As to the reason for using relations to interpret functions, see 8.13.
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8.11. DEFINITION. (Interpretation of formulas for languages with function symbols) We
now assume a language with relation symbols and symbols for total functions.

We have to say how to interpret t; = t; and Rt;...t, fo compound terms t¢i,...,%,.

This is done recursively: #; = t, for arbitrary t1,ts is interpreted as Jz(t; = z A t3 = z);
Ft;...t, = z is interpreted as Jz1...z,(t; = A ... At, = ), Fry...2, = T is
interpreted by [F](z1,...,2n,z), and Rt ...t, is interpreted as 3Z(f = & A R(&)). O.
8.12. THEOREM. The interpretation above is sound for many-sorted logic.
PROOF. Almost entirely routine. To see that e.g. all instances of Yz A — A[z/t] are valid,
one should note that the “unwinding” of ¢; = £; and Rt; ...t, mentioned above is precisely
what one does in showing syntactically that the addition of symhols for definable functions
with the appropriate axiom is conservative; the standard proof (e.g. Kleene (1952)) shows
that the “unwinding” translation of VxA — A[z/t] is in fact derivable in the relational
part of the language.

In our case this means that the soundness reduces to the soundness for a relational
language with an extra relation symbol Rp for each function symbol F' in the original
language. 0.

8.13. REMARK. The reason that we have not imposed the stronger requirement that a
function symbol F' : 01X+ -X0, — 0 is to be interpreted by a function [F] : [o1] X - - X [on]
— [o] les in the fact that this sometimes not sufficiently general: the interpretation of
VaIlyR(z,y) says that N, (Ez — U,[R](z,y)) € @*, and N, .([R](z,y) A [R](z,2) —
[y = z]) € QF, but there is no guarantee that we can find a function f such that
N [R](z, fz) € Q*. Cf. the similar situation for the interpretations where 2 is a complete
Heyting algebra; only for sheaves the situation simplifies; see Troelstra and van Dalen
(1988, 1.3.16, chapter 14).

EXAMPLE. Let f be a primitive recursive function with function symbol F' in the lan-
guage of HA. Over the domain N = (IN, [=n]) as defined above we can introduce the
interpretation of F' by the relation

[RF](n,m) := En A [m = fn]

we add En to guarantee the strictness of Rp), so Rp := {p(n, fn) : n € IN}. It is now
routine to see that this yields a realizability for HA (equivalent to) the one defined before.

8.14. REMARK. The modelling of many-sorted logic described above is an interpretation
in a certain category Eff, with as objects the {2-sets, and as morphisms (equivalence classes
of) Q-functions. More precisely, the morphisms from X’ to ) are given by ()-relations on
X x Y such that

Strict(F), Repl(F), Fun(F), Total(F') € QF,
modulo an equivalence =~ defined as

F =~ F' :=[Vzy(Fzy < F'zy)] = ﬂ(Ew A Ey — (Fzy « F'zy)) € Q*.
z,Y
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Composition of morphisms F' : X — Y, G : Y — Z is given by the relational product:
G o F is the relation on X X Z given by
(Go F)(x,2) =3y € Y(F(z,y) A G(y, 2)).

The identity morphism idy : X — X is simply (the equivalence class of) idx(z,y) =
r=xY.

Let Sets be the category of sets and set-theoretic mappings. There are functors A :
Sets — Eff and I' : Eff — Sets which may be described as follows.

A, “the constant-objects functor”, maps a set X to the Q-set (X,~) with z ~ y :=
{n €N : 2z =y}, andif f : X — Y, then Af is represented by the Q-relation Ry,
Rs = (fz ~vy).

I'(X,~) = {z : Ez inhabited}/~, where ~ is the equivalence relation =z ~ z' :=
(z ~ z' inhabited). T is usually called the global-sections functor, since it is naturally
isomorphic tot the functor which assigns to (X, ~) the set of morphisms T — (X,~); T
is the terminal object ({*},=4) with (¥ =, %) = IN.

A preserves finite limits and is full and faithful; I also preserves finite limits, and
T is left-adjoint to A. A is a natural-numbers object in Eff, and Eff is in fact a topos
(see 8.17). For the theory of Eff, with proofs of the facts mentioned above, see Hyland
(1982); the general theory of realizability toposes is treated in Hyland, Johnstone and
Pitts (1980). Other sources of information on Eff are Robinson and Rosolini (1990) and
Hyland, Robinson and Rosolini (1990).

The categorical view provided by Eff suggests the following

8.15. DEFINITION. The Q-sets X = (X,~), Y = (Y,~') are said to be isomorphic if there
are Q-relations F' : X xY — Q,G : Y x X — Q such that Go F, F o G are equivalent
to idy, idy respectively. O

It is easy to see that quantification over isomorphic sets yields equivalent results, in
the following sense:

LEMMA. Let X and Y be isomorphic via F,G. Then
VeeX A(z) = VyeY.A(Gy) = VyeYVzeX (G(y,z) — A(z)),

and similarly for existential quantification.

The proof is routine, relying on the soundness of logic. Important special cases are
(a) any §2-set X = (X,~) is isomorphic to (X',~] X' x X') where X' := {z : z €
X and Ez € Q*}, and (b) the following situation: let X = (X,~) be an Q-set, and let
X' C X such that

Ve X(Ez € Y - 32’ € X'(z ~2) € Q%)

8.16. Products, powersets and exponentials

DEFINITION. The interpretation of a product [o1 X 03] is [o1] x [o2]. The functions
P77, Py, P1 are simply represented by the pairing and unpairing on the relevant Q-sets.
O

In order to interpret higher-order logic, the interpretation of type o and types P(o)
and o — 7 relative to the interpretation of o, 7, and the interpretation of the relation €,
as well as the operator App must be such that extensionality and comprehension are valid.
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DEFINITION. Let X = (X,~) be an Q-set; the Q-powerset of X, P(X), is an 2—set
(X — Q,~) where for F,G of X — Q:

E(F) := Strict(F) A Repl(F),
F ~G :=E(F)NE(G) AN, (Fz < Gz),
z€xy F:=FxAN\EF.

Let X = (X,~),Y = (Y,~') be Q-sets, then the Q-functionset X — Y is (X XY — Q, %)
such that for FFGE X xY — Q

E(F) := Str(F) A Repl(F') A Fun(F) A Total(F')
Fx=G =gy (Ez A By — (Fzy < Gzy)) A EF A EG,
Appy y(F,z,y) := EF A Fzy.

N.B. Here we have availed ourselves of the freedom to define E(F') so as to be equivalent
only to F' =~ F' in the realizability sense, not literally identical. O

REMARK. As noted above,  itself may be viewed as an Q-set (2, ~). It is then not hard
to see that the 2-powerset of a {2-set X is in fact isomorphic to the Q-functionset X — (2.

DEFINITION. In an interpretation of intuitionistic higher-order logic powertypes and ex-
ponentials are interpreted such that [P(c)] is the P[o] and such that [o — 7] is [o] — [7].

[€o] =€[s1, [APPo,r] = APP[o},}-)- O

REMARK. We can easily introduce subtypes of a given type, as follows. Let X = (X, ~)
be an Q-set. Intuitively an Q-predicate over A determines a subset of X'. We may again
make this into an Q-set:

DEFINITION. Let X = (X,~) be an Q-set, and let F' : X —  be an (-predicate; then
the Q-subset of X determined by Fis (X',~) with X' :={z : Fr € Q*}, e~ y:=z ~y.
O

N.B. An equivalent definition would have been obtained by taking X' = X, and z ~ y :=
Fx A Fy Az ~ y. The resulting {2-set is isomorphic to the one defined above.

8.17. PROPOSITION. Extensionality and comprehension are valid.
The proof is routine.

REMARKS. (i) In categorical terms, the preceding facts mean that the category Eff has
products and exponentials (i.e. is cartesian closed), and moreover has a classifying truth-
value object, namely (2, <), and hence is a topos.

The fact that the natural numbers are unique modulo isomorphism in higher-order logic
(8.2) corresponds in categorical terms to the uniqueness of the natural number object in
a topos.

(i) Obviously, the notions needed for the realizability interpretation of HAH can be
formalized in HAH itself. If we assign a level £(c) to types o according to £(0) = {(w) =0,
L(Po) = £(o) + 1, £(c—7) = max({(c) + 1,4(7), £L(ocxT) = max(£(c),£()), then the
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interpretation of a formula of level < n (i.e. all variables are of level < n) is definable by
a formula of level < n.

Our next aim will be to show that for HAS the resulting notion of realizability is in
fact equivalent to realizability as defined in 7.2.

8.18. DEFINITION. An Q-set X = (X,~) is called canonically uniform if (,cx Ez is
inhabited. X is uniform if it is isomorphic to a canonically uniform set.

8.19. LEMMA. For uniform Q-sets X = (X, ~) interpretation of universal and existential
quantifiers may be simplified to

VeeX Fx = ﬂ Fz, Jz€X Fz = U Fgx;
zeX zeX

more precisely, (N (Ex — Fz) < N, Fz) € Q*, (U,(Ez A Fz) < |J, Fz) € Q*.
PROOF. It suffices to prove this for canonically uniform 2-sets, and then it is easy: let
n €, Ez, and let m € (,(Ex — Fz), then Vz(men € Fz), i.e. men € (), Fz, etc. O

8.20. DEFINITION. Let X = (X, ~) be an Q-set. X is canonically separated if
(z ~ y) inhabited =z =y.

X is canonically proto-effective if
Ez N Ey inhabited = z =y.

X is separated [proto-effective] if X is isomorphic to a canonically separated [canonically
proto-effective] Q-set. X is [canonically] effectiveif X is [canonically] separated and [canon-
ically] effective. O

8.21. PROPOSITION. Let X = (X,~) be a uniform and Y = (Y,~') a proto-effective
Q-set. Then the uniformity principle

UP(X,Y) VeeX IyeY A(z,y) — JyeY VzeX A(z,y)
is valid.
Proor. Without loss of generality we may assume ) to be proto-effective. Let n €
Neex Iy € YA(z,y), so n € Uyecy (By A A(z,y)), then V€ XTyeY (pon € Ey), i.e. n €
UyEY Ey A ﬂmGX A(x’ y) .

The following proposition is not needed in what follows but describes the logical sig-
nificance of separatedness:

8.22. PROPOSITION. An Q-set X = (X,~) is separated iff Vz,yeX (-—z~y — x~y) is
valid.

PROOF. It is easy to see that a canonically separated {2-set X satisfies Vz,yeX (——z~y —
z~y). Conversely, assume Vz,yeX (-—z~y — z~y) to be valid. We define for z,y € X:

[z] :={z’ € X : ¢’ ~ = inhabited},
[z] = [y] := {n € IN : & ~ y inhabited},
X' ={[z] : z € X}.
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Then X' = (X', ~) is canonically separated and isomorphic to A via the Q-relations F' on
X x X and G on X x X', defined by

F([z],y) = G(z,[y]) :== {n € N : y ~ z inhabited}.

We have to show that F,G are strict, total, functional and that their composition is the
identity. This is mostly routine. For example, to see that F is functional, observe that
our hypothesis gives the existence of an n such that

1) Vm,m'(m € Ez Am' € By A (3m(m € z ~ y) — nep(m,m’) € (z ~ y)).
The functionality of F amounts to validity of V[z],y,y'(F([z],y) A F([z],¥') =y ~ ¢/, i.e.
(N ) (Bl NByABy AM{n €N : Im(m € z ~ y)}A

(2) [zleX'yy'eX
{ne€N : Im(mez ~y)} -Dy~y) e~
Since z ~ y and z ~ ' inhabited implies y ~ 3’ inhabited, (2) readily follows from (1). O
The following proposition, with a proof due to van Oosten, justifies the terminology
“uniform”.

8.23. PROPOSITION. An w-set X = (X,~) is uniform iff X satisfies UP(X,N).
PROOF. One direction is a consequence of the preceding proposition. The other direction
is proved as follows. Given X, consider the Q-set Y = (¥, ~) defined by

Y :={p(z,n) : n € Exz},
(z,n) ~ (y,m) :={n : n € z~y An =m}.

We shall write (y,n) for p(y,n) in what follows. There is an Q-function G : Y — X given
by

G((z,n),z') := (x ~ ') A {n}.
G is surjective as an Q-function, i.e.
VyeYIzeX.G(y,z),
i.e.

N Eywm) > U BreAC(wn),2) €@,
(ym)ey zeX

Let H : Y — N be the surjective Q-function
H((z,n),m):={n : n=m}.
Then
VeeX FyeY IneN(G(y,z) A H(y,n))
is valid. If we assume UP(X,N), it follows that
AneN VzeX IyeY(G(y,z) A H(y,n))
is valid, which means that for some n € IN

1) N(Ee—- U @~
zeX z'eX,neEx'

is inhabited. Let now Z := (Z,~'), Z := {z€X : n€Ez}, ~' the restriction of ~ to Z.
Clearly F defined by F(z,2') := (z ~ z') is an injection of Z into X; and the formula (1)
states that this injection is also a surjection, hence Z and X" are isomorphic. O
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8.24. PROPOSITION. The Q-powerset of a separated Q-set X = (X,~) is uniform.
PRrOOF. Let X be canonically separated, and let J : X — Q be an element of the Q-
powerset P(X) of X, then Ak.pok realizes Repl(Y); n € Str(Y) meansn € Nyex(z €Y —

By restricting attention to normal ) we can construct uniform realizers for Fy. Let
us call Y normal if

m € Y(z) = pim € Ez.
For normal ), Am.pym € Str(})), and so always
p(Ak.pok, Am.p1m) € E(Y).

To show Q-isomorphism of P(X’) with the subset of normal elements, observe that if we map
arbitrary Y to ®(Y)(z) := {p(n,m) : n € Y(z) Am € Ez}, we have that J =p(x) &(})
is inhabited:

N(zeye—zed)) e

zeX

If n € Str(Y), k € ¢ € Y, then nek € Ez, and p(k,nek) € &(Y)(z), etc. O

8.25. PROPOSITION. For HAS the realizability as defined above is equivalent to rn as
defined in 7.2.

Proor. This result is now obtainable as a corollary to the preceding propositions. As
to the second-order quantifiers, we may restrict attention to the normal elements of the
Q-powerset of N. Let

®'(X) = {p(p(z,9),y) : p(z,y) € X},
®"(X) = {p(=,y) : p(p(=,¥),y) € X}.

®' corresponds as operation on binary relations to ® above, ®” is its inverse.

Let rn be defined as for HA S-formulas as in 7.2 relative to an assignment X — X*
for second-order variables; and let rn' be the realizability notion as defined in this section,
relative to an assignment X — X° of normal binary relations to the second-order variables
(i.e. zxn' Xt :=z € [Xt] := X°(z,t); zxn' A := z € [A]). Then for all formulas 4 of
HAS there are ¢ 4,14 such that

ernA(Xy,..., X,) = barn’ A(Xy,..., X)[X2,..., X /@' XT,..., X7,
ernA(Xy,..., Xp) = darn A(Xy, ..., Xo) X1, ..., X2/3"X2, ..., ®"X2),

where X1,...,X, is a complete list of the second-order variables free in A. O
8.26. LEMMA. For Q-sets X = (X,~), Y = (Y,~'), Y separated, the elements of the
Q-functionset X — ) may be represented by functions f : X — Y.

PROOF. Let F : X X ) — §) be an arbitrary element of the 2-exponent, for which E'F is
inhabited. Then for certain k, k’

k € Neex (Bx — Uyey Fry),
E' € MNeexyyey (Fry A Fay — y ~'y').
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By the second statement, it readily follows in combination with separatedness, that
Fzy inhabited, Fzy' inhabited = y =3/,

and from the first statement that for all z with Ex inhabited, there is a y such that Fzy
is inhabited; so let f be the function defined for z with E'z inhabited, such that F(z, fz)
is inhabited. O

8.27. LEMMA. For separated [effective] Y = (Y,~') the Q-function set (X,~) — (Y,~')
is separated [effective].

PRrROOF. By the preceding lemma we may represent (there is a little checking to do, but
we leave this to the reader) the elements of the exponent by the isomorphic (X —Y, =)
with

(f = g) inhabited = f =g,
f=f:={m:VyeYVne Ey(men € E(fy))},

or combined into a single definition:
frg:={m: f=9gAVyeYVne Ey(men € E(fy))}.

The separatedness has been built into the definition; as to proto-effectiveness, suppose
Ef N Eg inhabited, then for some m

Vy € YVn € Ey(men € E(fy) N E(gy));
by the proto-effectivity of Y it follows that Vy € Y (fy = gy),ie. f=g¢. O

REMARK. The fact that X — ) is separated for separated ) is also easily seen to hold
for logical reasons (cf. 8.22): =—f =g & ~—Vz(fz=gz) - Vz(fz=gz) « f=g.

8.28. PROPOSITION. The structure of functional w-sets generated from N is isomorphic
to HEO as defined in 3.3.

ProoF. Induction on the type structure. O

The following is immediate:

8.29. PROPOSITION. For all function types o generated from type 0 in HAH, the real-
izability interpretation validates a uniformity principle:

vXPO527A(X, 2) — F2oVX TP A(X, ).

8.30. Generalization to other kinds of realizability

In the preceding section we have already indicated how the generalizations of realizabilities
to second-order logic follow a pattern. If we combine this with the “truth-value semantics”
idea introduced in the preceding section and used extensively above, we are led to consider
other choices for 2 and Q*.
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EXAMPLES. (a) If we want to generalize rnt-realizability, we take

o™ = {(X,p) : X CIN,p C {0}},
Q™ :— {(X,P) € Q : X inhabited, 0 € p}.

The crucial operations we have to define are A™¢, —™t O™t
(X,p) ™ (Y,q) = ((XAY,{0:0€pA0Eqg}),
(X,7) - (Y,q) =((X—-Y),{0:0ep—0eg}),
;/neY(Zy,py) = (ner Zy, ner Py)-
N.B. We do not really need to define an operation A™, since in a second-order context

we can define (7.3) something isomorphic!
(b) For modified realizability we can put

Qnm = {(X,Y): X CY CIN,0€ Y},
Qmmr .= {(X,Y) € Q : X inhabited}.

™™ is defined componentwise, and for —™™ we take
(X,Y) =™ (X, 7)== (X - Y) N (X' = V"), X' - ¥')).

(In order to guarantee that 0 always occurs in the second component we must choose our
godelnumbering of the partial recursive functions such that Az.0 = 0.)

8.31. Notes

The proper definition of realizability for higher-order logic emerged from the study of
special toposes (Hyland (1982), Hyland et al. (1980), Pitts (1981), Grayson(1981a, 1981b,
1981c)). Aczel(1980) described a less far-reaching common generalization of Heyting-
valued and realizability semantics. The higher-order extension of rln-realizability is due
to van Oosten (1991b). By means of this extension he shows that the following principle
RP (Richman’s Principle)

vxX4vyd(x CYVXNY =0—-InVz(z € X - z=n))

(where VX ¢, 3Y? are quantifiers ranging over decidable subsets of IN) is false in the “Lif-
schitz topos” and true in Eff, that is to say false in the higher-order extension of Lifschitz
realizability and true in the realizability interpretation for higher-order logic described in
the preceding section.

9 Further work

9.1. Realizability for set-theory

It is also possible to define rn-realizability, or the abstract version r-realizability for the
language of set theory. The definition is straightforward except for the fact that we have
to build in extensionality.
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The problem becomes clear if we try to extend the definition of rn-realizability given in
7.2 to intuitionistic third-order arithmetic HAS® (variables X2,Y?2,...) in which we can
also quantify over PP(IN), and with full impredicative comprehension and extensionality

EXT VX2(Yle X2AY1 =2 - 7' € X?)

where X! = Y1 :=Vz(z € X « z € Y). If we take as clauses z rn X2(Y'!) := X*3(Y*,z),
crnVX2. A(X?) :=VX*?(z rn A(X?), etc., we discover that there is no problem in proving
soundness except for the axiom EXT; this imposes a restriction on the sets over which the
“starred variables” X*? should range.

Some authors, e.g. Beeson (1985), solve the problem in the case of set theory by
first giving a realizability interpretation for a set theory without the extensionality axiom,
combined with an interpretation of the theory with extensionality into set theory without
extensionality. Others such as McCarty (1984b) build the extensionality into the definition
of realizability.

The earliest paper defining realizability for set theory is Tharp (1971). Other papers
using realizability for set theory are: Staples (1974), Friedman and Scedrov(1983, 1984),
McCarty(1984b, 1986), Beeson (1985), and the series of papers by Khakhanyan.

9.2. Comparison with functional interpretations

Another type of interpretation which is in certain respects analogous to (modified) re-
alizability, but in other respects quite different, is the so-called Dialectica interpretation
devised by Godel (1958). There is also a modification due to Diller and Nahm (1974). As
we have seen, modified realizability associates to formulas A of HA“ 3-free formulas of the
form A (z%) (z7 a new variable not free in A), expressing “z” modified-realizes A”. The
Dialectica- and Diller-Nahm- interpretation on the other hand associate with A formulas
Vy"Ap(z?,y") and Vy"Apn(x7,y") respectively, 0,7 depending on the logical structure
of A alone, Ap, Apn quantifier-free; we may read Vy" Ap(z?,y"), Vy"Apn(z7,y7) as “z7
D-interprets A”and “z? DN-interprets A” respectively.

For a soundness proof for the Dialectica interpretation, the prime formulas of the the-
ory considered have to be decidable with a decision function of the appropriate type; for
the Diller-Nahm interpretation this is not necessary. For theories with decidable prime
formulas (e.g. I-HA®) the Diller-Nahm interpretation is equivalent to the Dialectica inter-
pretation. For background information the reader may consult the commentary to Godel
(1958) in Godel (1990), and the relevant chapter elsewhere in this volume.

Stein has constructed a whole sequence of interpretations intermediate between the
DN-interpretation and modified realizability; see the papers by Stein, and Diller (1979).

9.3. Formulas-as-types realizability

In the formulas-as-types paradigm, formulas (representing propositions) are regarded as
determined by (identified with) the set of their proofs. The idea is illustrated by taking a
natural deduction formulation of intuitionistic predicate logic, and writing the deductions
as terms in a typed lambda-calculus.

Normalization of the deductions suggests equations between the terms of such a calcu-
lus (in particular beta-conversion) and “t proves A” for compound A then behaves like an

48



abstract realizability notion. Of particular interest is the realizability obtained by strip-
ping the proof-terms of their types. With combinators instead of lambda-abstraction, such
a realizability is already used in Staples(1973, 1974). Tait (1975) uses this concept for an
elegant version of Girard’s proof of the normalization theorem for second-order intuition-
istic logic. For another version of the proof see Girard, Lafont and Taylor (1988). Mints
(1989) studies campleteness.questions for such realizabilities.

“Formulas-as-types” has also been a leading idea in the formulation of various typed
theories, such as the theories of Martin-Lo6f(1982, 1984), permitting to absorb logical oper-
ations into type-forming operations (implication is subsumed under function-type forma-
tion, universal quantification under formation products of dependent types, etc.). In the
proof-theoretic investigations of Martin-Lo6f’s type theories by de Swaen(1989, 1991, 1992)
realizability plays an important role.

9.4. Completeness questions for realizabilities

Rose (1953) gave an example of a classically valid, but not intuitionistically provable
formula of propositional logic, such that all its arithmetical substitution examples are
(classically) realizable; this result was improved by Kleene (1965b), who showed that the
example also worked for rf- and mrf-realizability (in the latter case the substitution in-
stances were provably realizable even intuitionistically). Moreover, Kleene showed that the
class of formulas of predicate logic which are realizable under substitution is not recursive
(for rn, rf, mrn).

Similar questions have been studied at length in a series of papers by Plisko. A
typical result of this kind is the following. Let R [AR] be the class of all formulas
A(Py,...,Py,) of predicate logic such that all arithmetical substitution instances (i.e. for-
mulas A(Pf, ..., Py) with Pf,... Py arithmetical) are rn-realizable [such that VX; ... X,
A(Xy,...,X,) is rn-realizable as defined for HAS].

Plisko (1983) showed that AR is a complete II}-set, and that AR C R; R is also not
arithmetical as shown in Plisko (1977).

Van Oosten(1991c), adapting a method originally due to de Jongh, gave a semantical
proof of a result earlier established by proof-theoretic means by D. Leivant: if all arith-
metical substitution instances of a formula of predicate logic are provable in HA, the
formula itself is a theorem of intuitionistic predicate logic(“maximality of intuitionistic
arithmetic”). The method uses a realizability in which rn-realizability and Beth-semantics
are combined. His proof also yields the following completeness result for realizability. Let
HA™" be an extension of HA obtained by adding to the language primitive constants e
(application), k, s (combinators), with axioms saying that (IN,e, k,s) is a partial com-
binatory algebra. Define r-realizability for HA™ relative to this combinatory algebra.
Then a predicate formula A is provable in intuitionistic predicate logic iff all arithmetical
instances of A are provably realizable in HA™.

A different sort of completeness result has been obtained by Lauchli (1970). He defined
a modified realizability for predicate logic with a set-theoretic hierarchy as models for the
finite-type functionals. All formula of predicate logic is realizable by an element of this
hierarchy iff it is classically provable; but if we require that the realizing functionals are in-
variant under permutations of the basic domains, we obtain precisely the intuitionistically
provable formulas. Inspection shows that the “modified” aspect of Lauchli’s construc-
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tion is not really relevant. A modern recasting of Lauchli’s result, linking it with the
category-theoretic interpretation of logic, was given by Harnik and Makkai (1992).

9.5. Combining realizability with classical logic

Lifschitz(1982, 1985) considered an extension of classical arithmetic with an additional
predicate K (z), “z is computable”. The result is a combination of classical arithmetic
and realizability. It is to be noted that in the category Eff we can obtain something

similar by considering side by side A and AIN.

9.6. Medvedev’s calculus of finite problems

The calculus of finite problems as formulated by Medvedev, is somewhat reminiscent of,
but actually diverges rather far from recursive realizability. See the papers by Medvedev,
and Maksimova, Shekhtman and Skvortsov (1979).

9.7. Applications to Computer Science

For some examples, see Scedrov (1990), Streicher (1991) (realizability modelling of the
theory of constructions), Smith (1991) (slash relations for type theory) and the papers by
Tatsuta (program synthesis by “realizability-cum-truth”).
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