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Abstract. We calculate the provability logic of a special form of the Feferman
provability predicate together with the usual provability predicate of Peano Arith-
metic. In other words, we construct a bimodal system with the intended inter-
pretation of the expression O¢ being as usual the formalization of “¢ is provable
in PA” and the new modal operator A standing, when applied to ¢, for “there
exists an z s.t. IX; is consistent and proves ¢”. The new system is called LF.
We construct a Kripke semantics for LF and prove the arithmetical completeness
theorem for this system. A small number of other issues concerning the Feferman
predicate, such as uniqueness of gddelsentences for A, is also considered.

0. Introduction

The Feferman provability predicate for reflexive recursively axiomatized theories
emerged for the first time in Feferman’s paper [2]. Starting with a reflexive theory,
Peano Arithmetic PA being the conventional example, one chooses a sequence of finitely
axiomatized theories (PA[n)ne, with PA[n+1 extending PA[n, and PA = {J,,¢, PA[n.

Outside modal-logical contexts, let us write A for the Feferman predicate reserv-
ing the shorthand O for the usual provability predicate. A is then defined as the
formalization of

“there exists an 2 € w s.t. PA[z is consistent and PA[z |- ¢”.

The sequence (PA[n)ne. is called the base sequence for this A.

The reflexivity property of PA translates as saying that for all n € w PA proves
that PA[n is consistent. This was first established by Mostowski [13] and is crucial for
practically all applications of A.

The first use of A was to illustrate the relevance of the Hilbert-Bernays derivability
conditions to Godel’s Second Incompleteness Theorem. The close connection of A to



relative interpretability became apparent in Feferman [2], Orey [15] and Héjek [5]. The
celebrated fixed point of Lindstrém [8, Theorem B] and Svejdar [21, Lemma 4.5] also
makes implicit use of A.

In Montagna [11], Visser [22] and Smoryniski [19] A is treated as an object rather
than just as a tool of study. Such also is the approach of the present paper. Motivation
is discussed in the second of the three aforementioned papers. This shift of A’s status
necessitates a closer look at its definition. For most applications the exact content
of the theories PA[n is fairly unimportant (see Orey [15], Lindstrém [8], Svejdar [21],
Montagna [12] or Berarducci [1]). One is therefore usually contented with the traditional
choice

PA[n = the theory axiomatized by the axioms of PA of godelnumber < n

The relation of PA[n to PA[n+1 becomes then dependent on tiny intimate de-
tails of godelnumbering of sentences and thus the only feasibly available properties of
(PA[n)pew turn out to be the ones that we have already mentioned.

Smorynski [19] provides an example of a property of A whose proof and, as we shall
see in Section 5, whose validity is dependent on the exact choice of (PA[n),e,. He also
shows that a more specific choice

PA[n =12,

(see Paris & Kirby [16], Sieg [17] or Kaye [6, Chapter 10]) can make questions about A
much more malleable thus providing a better controllable A. The key property of the
theories IY,, is

0.1. Facr (IX;). For all n € w the theory 1X, 1 proves uniform 11, y-reflection for
1%, that is ’

I¥, 41 | for every II,;o-sentence 7, if IX, |- 7 then 7 is true’ ]

While the fact itself is widely known (see Leivant [7] or Ono [14]), its formalizability
in I3 has, as far as I know, never been explicitly stated, but it is not difficult to trace
down the proofs of Sieg [17, Corollary 4.4] or Kaye [6, Exercise 10.8]. As an immediate
corollary we have

0.2. FacT (IX;). For all m,n € w PA proves uniform Il -reflection for 1¥,. ]

The property of PA expressed by Fact 0.2 is known under the name of essential reflea-
1wity.

Although the A based on (IX,)new is not, strictly speaking, a Feferman predicate
for I is, most likely, not finitely axiomatizable, this discrepancy need not deter us for,
provably in PA, it is only the tail of the sequence (PA[n),¢, that matters as far as A
is concerned.

A number of other sequences of theories is known to enjoy properties similar to
Fact 0.1 but we shall not strive for more generality. In this paper we stick almost ex-
clusively with the definition of A based on (IX,)new and construct the joint provability



logic of 0 and A. The peculiarity of A in provability-logical context is that the modal
operator corresponding to this predicate asks for a Kripke semantics encorporating a
non-transitive relation S between nodes of a Kripke frame, for Ap — AAp is not gen-
erally valid. This is the situation encountered in Visser [22] where the author treats a
provability predicate akin to A. The property of Visser’s provability predicate relied on
to overcome the difficulties caused by the failure of transitivity is completeness, which
means that in the absence of transitivity every node enjoys a unique S-successor.

Our circumstances are slightly different. We show that lack of transitivity can be
effectively compensated by reflection (Fact 0.1) and in fact reflection keeps this lack to
a minimum by providing a new modal principle approaching transitivity.

In Section 1 we introduce, acquire some experience with derivations in, and relate
to formalized provability the modal system LF whose Kripke semantics is dealt with in
Section 2. Section 3 proves the arithmetical completeness theorem for LF. Finally, in
Sections 4 and 5 we answer two earlier questions concerning A.

The extended Introduction should not lead the reader to hope for particularly de-
tailed proofs. While the author takes, in matters of exposition, full advantage of his
privileged position on a giant’s shoulders, the reader may occasionally need to refresh
his/her knowledge of some background material, for which purpose (Solovay [20] or
Smorynski [18, Part I]) and Visser [22] should be highly beneficial. Those are also the
sources that the reader will whenever possible be referred to for an omitted (part of a)
proof.

The present paper has been inspired by the joint effect of Visser [22] and Smoryn-
ski [19]. The author would like to thank Dick de Jongh, Rineke Verbrugge and Albert
Visser, who extradited a collection of parasites from an earlier draft of the present paper
and suggested a large number of improvements and simplifications. Conversations with
these people also led the author to produce some of the material that he considered
appropriate to include here.

1. LF

1.1. DEFINITION. The language of the system LF is the propositional language with
two unary modal operators [0 and A. Formulae in this language will be referred to as
(OA-)formulae. Shorthand for =A-is V. The operator O abides by the laws of the
logic L (cf. Solovay [20, L=G], Smorynski [18, L=PRL] or Visser [22, L=(L1)~(L4)])
and here are the axiom schemas for A:

(F1) Alp —¥) = (Ap — Ad)
(F2) Op — OAg
(F3) Op — Ap
(F4) Op < (ApvOL)
(F5) VT
(S) Ly — A((AY =)V Ap)



The only new rule is the A-necessitation rule £

AV

The nearest relative of LF in the literature is the system BMF of Visser [22].

The axiom schema (F1) together with the A-necessitation rule yield the substitution
property for LF: the results of substituting two LF-equivalent OA-formulas for the
same propositional variable in another OA-formula are LF-equivalent. We shall use
this property throughout this and the next Section without special notice.

Note that (S) is a weakened analogue of the transitivity schema Oy — OOp. In LF
the operator A also enjoys a weak analogue of Lob’s schema O(0g — ¢) — Oy which,
for a change, follows now from weak transitivity (in fact, the weakened versions are
interderivable):

1.2. PROPOSITION. For {t;}ics a finite collection of OA-formulas and ¢ an arbitrary
OA-formula one has

Lr b A((BLA MG = 8)) V By —p) = B

iel
PRrOOF. First we prove LF |- A(OLV Ap —. @) — Agp.
(1) LF - AOLV Ap —. ¢) — A(Ap — @) (by A-necessitation and (F1))
(2) LF |- AOLVAp —. @) — A(OL — @)

(3) LF | A(-OLAOp —. Ap) (by (F4))
(4) LF | AQOLVAp —. ) — A(COLAOp —. @) (by (1) and (3))
(%) — A@p = ) (by (2) and (4))
— 0O(0e — o) (by (F4))
— Op (by Léb’s axiom)
— AT (by (F3))
AN (by (5)) q.ed.

Second, one shows LF |- A((Ay — %) V Ap —. ) — Agp for any formula 3.
(6) LF | A((Ay — ) vV Ay) (by propositional logic and A-necessitation)
(1) LE | A((AY = ¥) VAp —. 0) — A(Dp — )



(8) LF |- A((Al/) — YY)V Ap —. <p) — A((At,b — ) — <p)
Ay =P VA(LE =) =)
(by (S))

~ (@ = pvaEaiss—n-9))
(by (6))

— A((AY — )V Ap)

— A(pV Ap) (by (8))

— Ap (by (7)) qed.

Finally, suppose that 0A-formulas x and ¢ are s.t. for any formula 7 one has LF |-
A(x VAT —. 1) — At and LF | A6V AT —. 7) — A7. The Proposition will
clearly be subject to a straightforward inductive proof once we establish that LF |-
A((x A8)V Ap —. ) — Ap for ¢ arbitrary. Here is the derivation:

(9) LE | AGVAp —. ) — Ap (by IH)
(10) LF | A(xVA@BV Ap —. @) —. (0V Ap —. ) — A(BV Ap —. @) (by TH)
LF | A((XAO)V Dp — @) — A((x VAp) A(BV Ap) —. ¢)
(by propositional logic)
— A(X.V DNp —. (8V Dp —. 0))
= A(XVA@BYAp —. ) = (6V Ap —. @)

(by (9))
= ABV Ap —. p) (by (10))
— Ap (by (9)) qed. =

The following Proposition will enable a slight shortcut in the Kripke model devel-
opments of the next Section.

1.3. PROPOSITION. For {¥;}icr a finite collection of OA-formulas one has
LF | v(:u A N (D — 4,,.))
i€l

PrOOF. We shall prove that the negation of this formula implies L in LF, that is
LF | A-(OLA Mier (Dt — P;)) — L

LF |- A—-(I:U_/\ M (A — 1/),~)) ~ A((m/\iep(\l(mpi — 1/),-)) VAL —. _L)

iel

(by (F5))
— AL (by Proposition 1.2)
— L (by (F5)) qed =



Next we formally define the provability interpretation of LF'.

1.4. DEFINITION. A function ° assigning arithmetic sentences to OA-formulas is a
gf-interpretation if

(1) ° distributes over propositional connectives,
(i) (Og)° is the formalization of “¢° is provable in PA” and

(iil) (Ag)° is ‘there exists an  s.t. PA[z is consistent and PA[z |- ¢°’ (recall that
we have agreed that PA[z = IZ, unless otherwise specified).

1.5. PROPOSITION. For any gf-interpretation °, LF |- ¢ implies PA |- ¢°.

ProoF. The correctness of all elements of LF with respect to gf-interpretations for
arbitrary Feferman predicates, except for the schema (S), is verified in Montagna [11]
and Visser [22]. (S) is the only axiom which depends on our convention PA[n = IX,.
We therefore only check (S): Ap — A((Ay — ¥)VAgp). Suppose ¢° € II,. Reason
in PA:
Assume (Ap)°.

Case 1. PA is consistent.

In this case (Ap)° is a synonym for (0p)° and we have (OA¢)°® by (F2)°
whence (O((Ay — %) V Ap))° trivially follows. Since PA is consistent, this is
the same as (A((Ay — ¢) V A(p))o as required.

Case 2. PA is inconsistent.

Let u be the maximal z s.t. IX, is consistent. (Note that by Fact 0.2,
t+ 1> n) We then have IS, |- ¢° and we shall prove (A — 9) V Dp)°
inside IX,:

Case 2.1. I¥; is consistent.
This is easy: IZ; |- ¢° and therefore (Ap)°.

Case 2.2. 1¥; is inconsistent.

By Fact 0.1 the theory IX;_; is consistent and hence for any arith-
metical sentence v one has Ay iff I¥;_1 | 4. But then we have
(Ay — 9)° by Fact 0.1, for %° is a II,- and hence a Il;4i-sentence
and provability in I¥;_; testifies to the truth of such sentences.

Thus in either case ((Ay — )V Acp)o.
Thus in either case (A((Ay — %)V Aga))o q-e.d. x

To close the Section we present yet another derivation in LF. The topic comes from
Smorynski [19] where the author shows PA-provable uniqueness of A-gédelsentences, 1.e.
fixed points of the form v « —A# for the Feferman predicate based on (IXs )new. Rely-
ing on Proposition 1.5 we are now able to give a purely modal proof of a formalization
of this result. Qur proof appears to be different from that of Smorynski.



1.6. PROPOSITION.
LF |- O(p « —~Ap) AO(q «— ~Aq) — O(p < q)

Proor. . We shall only prove one half of the implication, namely we simplify the
succedent to CO(p — q).

(1) LF |-O(~g — Ag) — O(~¢ = A((Ap — p) V Aq) ) (by (S))

LF |- O(—g < Aq) — I:l(—lq — A-:Aq) (by (F2))
(2) — A(Ap — p)) (by (1))
(3) LF |-0O(-p — Ap) — OA(=Ap — p) (by (F2))

LF | O(-p < Ap) AQ(~g = Ag) —. O(=g — A(Ap — p) A A(=Ap — p))
(by (2) and (3))
—. O(=¢ — Ap)
—. O(=g — —p)
—. 0O(p — q) n

1.7. EXERCISE. Show that all A-gddelsentences are provably in PA equivalent to the
sentence

Ve (IS, F I8, F L — 1%, | 1) .

We shall return to the subject of gddelsentences in Section 5.

2. Models for LF

2.1. DEFINITION. A marshmallow frame is a tuple W = (W, R, S) where W is a
nonempty finite set, and R and S are binary relations on W s.t.

(i) R is transitive and irreflexive,
(i) RCS,
(i) RoSCR,
(iv) SoRCHR,

(v) ¥z Syandz R zthen z Ry,
(vi) fzSySzthenzSzorySy,

(vii)) For each z thereis an ys.t. z S y.



We refer to property (v) as skew-transitivity. For W a marshmallow frame we define

Tw ={a€W|aRbfornobe W}
’DWZ{GEWlaSa}

and agree to always omit the subscripts. In this notation we have

2.2. LEMMA. (a) Ifz € W — T then (x Ry iffz S y).
(b)y Ife Sy andxz €T theny € T as well.
(¢)DCT.

(d) For all z € W thereisany € W st.z Sy € D.

ProoF. (a) follows from (ii) and (v) of Definition 2.1.
(b) Immediate from (iv) of Definition 2.1.
(¢) follows from (a) and (i) of Definition 2.1.

(d) Consider an z € W. Suppose that y € D held for no y € W s.t. £ S y. Then by
iterating (vii) of Definition 2.1 we could get an infinite sequence = zo S z1 S z2...
By induction on j one shows using skew-transitivity that z S z; S z; for all z < j.
On the other hand, W is finite so we have 2 S #; = &; for some 7 < j which is a
contradiction for one then has z S z; € D. n

2.3. DEFINITION. A marshmallow model is a pair W = (W, ||-), where W =
(W, R, S)is a marshmallow frame and || is a forcing relation (cf. Visser [22]) between
elements of W and OA-formulae, R and S being the accessibility relations for O and A
respectively. One writes W |- ¢ ifa |- o foralla e W.

2.4. PROPOSITION. For any OA-formula ¢ and any marshmallow model W, if LF |- ¢
then W ||- ¢. .

Our aim is to reverse the implicai:ion of Proposition 2.4. In doing so we shall follow
faithfully closely the presentation of Visser [22, 5.3] where lolly-models, of which our
marshmallow models are strongly reminiscent, are handled.

2.5. DEFINITION. A finite set o of OA-formulas is aedequate if
(i) OL€a,
(ii) « is closed under subformulas,
(i) If ¢ € a is not of the form —¢) then = € o,
(iv) Op € aiff Ap € a,
(v) If Ap, Ay € o then (A — ) V Ap € a.



Clearly, any finite set of O0A-formulas is a subset of an adequate set.

2.6. DEFINITION. Let o be adequate and define W, to be the set of all sets w of
OA-formulas satisfying

(1) If ¢,—p € a then p € w or ~p € w,
(i) If ¢ € w— o then @ is of the form A and both ¢ and AA are in w,

(ili) LF does not refute the conjunction of any finite subset of w.

The set W, of Definition 2.6 is finite, for if w € W, then formulas from w that are
outside & come in chunks, each one of which can be traced down to a different formula
in . Moreover,

2.7. LEMMA. Each set of OA-formulas satisfying (ii) and (iii) of Definition 2.6 has a
superset in W,.

ProoF. Starting with such a set, keep on adding appropriate elements of ¢ until (i)
is also satisfied. L]

2.8. DEFINITION. Let o be adequate. We define relations R, and S, on W,. Put

v Ry w iff (for any formula ¢, if Op € v then ¢, Ap, Alp,... € w)

and there exists a formula Oy € w — v

Recall that in marshmallow frames the set T of R-topmost elements is defined exclusively
in terms of the relation R (cf. Definition 2.1). Even though we do not yet know whether
we are dealing with a marshmallow frame, we shall still have that definition of 1" in
mind. Let
vSow iff vR,w or
(v,w €T, (¢ € w whenever Ap € v)
and (for any ¥, x, if Ay €vNaand Ax ewNa

then At € w or x € w))

2.9. LEMMA. For an adequate set « the frame W, = (Wy, Ra, Sa) is a marshmallow
frame.

Proor. We shall only prove clauses (vi) and (vii) of Definition 2.1 of marshmallow
frames, referring the reader to Visser [22] for the rest (or rather the beginning) of the
proof as well as for the fact that

for any w € Wy, weT iff OLew.

Clause (vi) comes first. Suppose u S, v So w and not v Sq v. We stipulate that all
the three elements u, v and w are in T for otherwise the claim can be derived from the



properties of marshmallow frames considered to be already established for W,. The
failure of v S, v means that we can fix a formula Ay € vNa s.t. ¥ & v. Let us check
u S w. Suppose Ap € u so that by u Sy v one has ¢ € v. If Ap € o then recall that
we also have A € vNa so ¥ € v or Ap € v must hold. The first is not the case,
therefore Ap € v. If Ap ¢ o then AAp € u and hence Ay € v all the same. Since
v S w, there holds ¢ € w and if, in addition, Ay € @ and Ax € wNa then Ap € w
or x € w q.ed.

We turn now to clause (vii). Let v € W,. We look for a w € W,. We only consider
the case v € T so that 0L € v for if v € T then there is a 2 € W, with v R, 2z implying
v Sy z. Consider the set

wo = {0L}U{¢|Apev}U{Ay >y |AY€a}

No conjunction of any finite subset of w, is refuted in LF for otherwise for a certain
finite d C {¢ | Ap € v} one has

LFEFOLA N\ e—= N (By =)

Aped AYEa

FOLA A Ap— A N (Ay —1) (by A-necessitation and (F3))
Aped INZT

FOLA N Ae— L (by Proposition 1.3)
Ap€Ed

which would deny v membership in W,. Furthermore, we show that w, satisfies (ii) of
Definition 2.6: Suppose Ay € w, — a. Then AAp € v — a, hence Ap, AAAp € v,
hence ¢, AAp € w,. There is therefore by Lemma 2.7 a set w with w, C w € Wa,.
Moreover, since 0L € w, C w, one has w € 7. Finally, one has ¥ € w whenever
Ay € wNa because {AY -9 |AYp €a} Cw. Sov S, w. n

2.10. DEFINITION. The marshmallow model W, = (W, ||-) is defined by putting

wlFp iff pew

for propositional variables p € @ and w € W,,.

2.11. LEMMA. For ¢ € @ and w € W, one hasw ||~ ¢ iff p € w.

ProoF. The Lemma is proved by induction on the structure of . See Visser [22] for
the induction step in the O case. We turn to A under the assumption w € T'.

(if): Suppose Ay € wNa. Then for all v with w S, v one has ¢ € v, that is, by
IH, v || ¢ and hence w |- Ap.

(only if): Suppose Ay € a — w. Consider the set

uo = {—p}U{0L}U{y | Ap ew}
U{(AX—AX)VAHIAxea, Nbcwna}

We show that u, is consistent with LF. Suppose it is not. Then for some finite set
d C {v | Ay € d} there holds
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LEFOLA A oA AN (Ax—=x)VAG) —. ¢
e s,

FOLa N AvA A A((Ax—x) VAL —. D

Ayped Ax€a
Afcwna
‘ (by A-necessitation and (F3))
FOLA N AvA N A8— Ay (by (S))
aved INIILP

Thus A¢ could not escape being in w contrary to assumptions. Therefore u, is consis-
tent and, as in the proof of Lemma 2.9, it is seen that u, satisfies (ii) of Definition 2.6.
Hence there exists an u with u, C u € W,. We leave it to the reader to check w Sy u
so that w |- A¢ because, by TH, u [}~ ¢. "

2.12. TuEoREM. LF |- ¢ iff for any marshmallow model W one has W ||~ ¢.

ProoF. (only if) is Proposition 2.4.

(if): Suppose LF |/ ¢. Let then o be an adequate set containing —¢. By Proposi-
tion 2.7 there exists a w € W, with ~¢ € w. Hence by Lemma 2.11 we have w ||~ ¢
and so Wy ||~ ¢ as required. .

2.13. EXERCISE (de Jongh). Consider the logic F on O-free OA-formulas axiomatized
by (F1), (F5), (S) and A-necessitation.

(a) Consider marshmallows (W, S), S being a binary relation on a finite nonempty
W and satisfying (vi) and (vii) of Definition 2.1. Prove F to be complete w.r.t. marsh-
mallows.

(b) Show that LF is conservative over F.

HINT. (a) Weed the proof of Theorem 2.12.

(b) Observe that any marshmallow can be represented as the set 7' of an appropriate
marshmallow model. "

3. A Solovay function

In this Section we prove the arithmetical completeness theorem for LF. As usual, we
shall do so by constructing a suitable Solovay function (cf. Solovay [20], Smoryriski [18,
Chapter 3] or Visser [22]) climbing up a Kripke frame, namely one of the marshmallow
frames constructed in the previous Section. We describe the construction of a Solovay
function for an almost arbitrary marshmallow frame W = (W, R, S) which however
will have to satisfy the following two conditions:

(i) W has a bottom node, that is there is a node 0 € W s.t. 0 R a or 0 = a for all
a € W and

11



(i1) There is a node a € W distinct from 0.

Note that by appending a new bottom node R- and S-below any given marshmallow
model one obtains another one satisfying both (i) and (ii).

The construction of the Solovay function F' : w — W proceeds parallel to that of
an auxiliary function G : w — w U {oo} which stores some information relevant for F’s
locomotion. The two bear a close relationship to the pair appearing in Visser [23,
section 10] that are, in turn, a variation on the Solovay function of Berarducci [1].

To make things work smoothly we have to require that the formalization of proofs
in arithmetic is reasonable and uniform so that the following is known to I¥;:

(i) If z happens to be a proof in PA of a sentence ¢ then z is not a proof in PA of
any sentence distinct from ¢,

(i1) If z is a PA-proof of ¢ then & also is a proof of the same sentence in I¥, for
some ¥,

(i) If « is a proof of ¢ in IX, then z is also a proof of ¢ in PA as well as in IX, for
all z > y,

v ¢ 1s provable 1n then there are arbitrarily large -proois ot ¢.
1 Ifei ble in I3, th h bi ily large IX, fs of ¢

3.1. DEFINITION (IX;). Define primitive recursive functions ' and G by simultaneous
recursion:
F(0)=0;, G(0)=o00
The value of F(z + 1) and G(z + 1) is defined by cases
Case A. F(z) Ra and z is a PA-proof of L # a.

Fz+1)=a; Gz+1)= {22}, yet s Byproofor L7 e gtl?efwfse

Case B. F(z) Sb¢ D, F(z) € T and z is an IXg(,)-proof of L # b.
Flz+1)=b; G(z+1)=G(z)

Case C. F(z) Sce D, F(z) €T and z is an I¥g(,)-proof of L # c.
Flz+1)=¢ Glz+1)=G(x)—1

Case D. None of Cases A—C is the case.
Flz+1)=F(z); Gz+1)=0G(z)

Finally, L # d is the formula expressing that d is not the limit value of F'.

The mute point of this definition is what happens if G(z) = 0 and instructions of
Case C tell G to decrease still lower. One way to get around this is to stipulate that
I¥_; is a theory that proves no theorems whatsoever. This however would unnecessarily
overcomplicate our definition. Another way is to leave the matter up in the air but to
take account of the fact, to be shortly seen, that for every z the theory IX, proves
that G can not decrease below z — 1. In this case some of the lemmas stated below
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will require I¥, instead of the indicated IZ; to formalize, but this does not affect the
validity of our results.

3.2. LEMMA (The Limit Lemma) (I¥;). Both F and G are eventually constant.

ProoF. It is easily established by induction on the argument that the function G is
monotonously decreasing and hence reaches a limit value.

Were F to stay forever nomadic, it would sooner or later reach T wherefrom, by
Lemma 2.2(b) it can not go back. Moreover, one can, just as in Lemma 2.2(d) prove that
it would have to infinitely often come to nodes in D, each time decreasing, according
to Case C, the value of G by one. This clearly contradicts the fact that G has a limit.
Thus F reaches a limit as well. n

3.3. DermNITION (IX;). The Limit Lemma allows one to define the following two
e-terms (that is, these are definitions of names rather than of values):

= lim F(z); U= mlim G(z)

r—o00

Let us further agree for the remainder of the paper that IX, = PA.

3.4. LEMMA (IZ1). () IfL = a # 0 then PA |\, L = b.
(b) If L = a then for any b with a R b PA is consistent with L = b.

ProOF. (a) In the case that a ¢ T the old proof (cf. Solovay [20] or Smorynski [18,
Chapter 3]) goes through for F' can only leave a by an R-arrow whereafter it is only
allowed to go along R- and S-arrows. Fortunately, we have both Ro R C R and
RoSCR.
Suppose now a € T so that we have to show that PA is inconsistent. Let z be such

that G(z) < oo and IXg(s) |- L # a. Reason in PA:

By the Limit Lemma, there is a b s.t. L = b. Moreover, after ' had reached

T, the function G could only decrease and therefore the proof of L # & that

brought F' to b is a proof in IX, with y < G(z) and hence in I¥g(;). But if

L # b is proved in I¥g/(,) then L should by Fact 0.2 be actually unequal to b.
Thus PA is indeed inconsistent.

(b) is proved exactly as before (cf. Solovay [20] or Smoryriski [18]). .

3.5. LEMMA (IX). pu is the largest z s.t. IX, is consistent. Therefore for any arith-
metical sentence v one has Ay iff I, |- 7.

ProoF. If L ¢ T then by Lemma 3.4 the whole of PA (= IX,, =IX,) is consistent.
Assume L € T which implies s < co. We have to show that IX, is consistent
whereas IX, 1 is not.
Suppose IZ,, were not consistent. By clause (vii) of Definition 2.1 there is a b s.t.
L Sb. We then have IX, |- L #b. If b ¢ D then b # L and by Case B the function ¥
would have to walk away from its limit every time an I¥,-proof of L # b occurs. Ifb € D
then on encountering an IX,-proof of L # b the function GG would, by Case C, have to
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decrease below its limit. Thus IX, has to be consistent and, moreover, consistent with
L=5b.
To show that IX, 11 is inconsistent reason in I¥X,41:
By the Limit Lemma, there is an @ s.t. L = a. Since the function G can only
decrease, the proof of L # a that brings F to a is an I¥;-proof. But then, since
L # a is a Ily-sentence, L can not, by Fact 0.1, be equal to a. A contradiction.
IX, 41 is therefore inconsistent q.e.d. ' ]

3.6. LEMMA (IX,). Suppose L=a € T.

(a) 18y |- Wasy L = b-
(b) Ifa S b then IX,, is consistent with L = b.

ProOF. (a) Suppose L = a € T. Consider a node ¢ s.t. a # ¢ and ¢ does not satisfy

a S c. Reason in IX,:
To get to ¢ the function F' has to leave a and after that, by skew-transitivity,
arrive at and leave a node in D. This by Case C of Definition 3.1 involves
a decrease in the value of G and therefore the proof that brings F to c is an
I¥;_1-proof of L # c. Reflecting on that we get L # c.

Furthermore, in the case that a ¢ D, we must have had an I¥,-proof of L # a to get

to a in the first place.

Thus for every node ¢ that is not S-accessible from a we have I¥, |- L # ¢. The
claim follows.

(b) See the first part of the proof of Lemma 3.5. n

3.7. LEMMA (IX4). (a) If L = a # 0 then A\ 5, L = b.
(b)IfL=aSbthenVL=>0.

ProoF. For L & T this reduces to Lemma 3.4. For L € T use Lemmas 3.5-6. "
3.8. LEMMA. L = 0 is true and for any a € W, the sentence L = a is consistent with
PA.

Proor. Consult Solovay [20] or Smoryriski [18] or use Lemma 3.4. u

3.9. THEOREM. LF |- ¢ iff for any gf-interpretation °, PA |- ¢°.

ProoF. We have already proved (only if) in Proposition 1.5.

(if) is proved in the standard manner (cf. Solovay [20] or Smoryniski [18]): Suppose
LF [£ ¢. Then by Theorem 2.12 we have a marshmallow model W = (W, R, S, |I-)
with W |- ¢. Append a new bottom 0 to W and apply Definition 3.1 to the result.
Define a gf-interpretation ° by putting

pP’= W L=a
Waall-p
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for propositional variables p occurring in ¢. Use Lemmas 3.4 and 3.7 to show by
induction on the structure of ¢ that

PARL#0—(¢" < L ¢)

so that if W 3 a ||~ ¢ then PA |- ¢° would imply PA |- L # a contradicting Lemma 3.8.
Conclude PA £ ¢°. "

Theorem 3.9 is very useful for constructing gf-interpretations under which a partic-
ular OA-formula is not provable. As usual it is accompanied by a similar result which
allows to construct gf-interpretations ° rendering a OA-formula ¢ provable by ensuring
that (Og)° is true. '

3.10. DEFINITION. For ¢ a OA-formula define the formula R(p) to be
SO0LAN{O¢ VAY —. ¢ | Oy or Ay is a subformula of ¢ }

3.11. PROPOSITION. Suppose ¢ is a OA-formula and the bottom 0 of a marshmallow
model W forces R(yp). Then there exists a gf-interpretation ° s.t. (¢° is true if and only

if 01 ).

CoMMENT. This Proposition enjoys a proof similar to that of Theorem 3.9 for assuming
R(yp) is forced at the bottom 0 of a marshmallow model we can drop the antecedent
L # 0 in the key inductive step PA |- L # 0 — (L | Op — OL ||~ ¢) of Theorem 3.9.
(Consult Solovay [20] or Smoryniski [18, Chapter 3] for a similar situation.) x

3.12. REMARK. Theorem 3.9 and Proposition 3.11 can be adapted to the logic F
on O-free formulas and marshmallows W = (W, S) of Exercise 2.13. In this case the
requirements (i) and (ii) on the marshmallow frames handled in our construction can
be replaced by the single condition

(iif) Thereis anode 0 € Wst.0SaforalaecW.

Nodes 0 that satisfy this property are called centers and marshmallows of this kind are
centered. Any marshmallow can clearly be made centered by adding a center without
disturbing the forcing relation at the old nodes.

For a centered marshmallow with a center 0 the construction of the Solovay function
can be visualized as follows: Make the marshmallow into a marshmallow frame by
adjoining a new R-bottom Ogr below the whole of the marshmallow. After that apply
Definition 3.1 to the resulting frame and then glue Og to 0.

The nice point about this construction is that here we get more satisfactory com-
mutation in that one can prove I¥; - L = 0 — VL = 0 and hence drop the syntactical

precondition that 0 forces a certain formula in the analogue of Proposition 3.11.

3.13. EXERCISE. Consider logics LF“ and F“, where LF“ is obtained from LF by
adding the schema Oy — ¢ and the logic F* results from F by adding the schema
Ap —. ¢ A ADAp with the usual restriction that whatever is derived with the help of
the new schemas is in both cases subject neither to O- nor to A-necessitation.
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(a) Prove that LF* |- F“ and that LF“ is conservative over F¥.

(b) Prove that for any OA-formula ¢ one has LF* |- ¢ iff w | ¢° for any gf-
interpretation ° (and hence the same holds for F¥ and O-free ¢).

HINT. (a) Show that F“ is complete w.r.t. centers of centered marshmallows.

(b) Use Proposition 3.11. .

The last exploit in this Section of the Solovay function F introduced in Definition 3.1
is to illustrate that the validity of the axiom (S) w.r.t. gf-interpretations might actually
fail under a choice of (PA[n)new, the base sequence for A, different from (IX,, )new. Let
con T denote the sentence expressing the consistency of a finitely axiomatized theory T
and consider the following sequence:

_ 1By if n is even
PA[n = { IE(n-1)/2 + conI¥(,_1y/2 otherwise

We write A" for the Feferman predicate based on this sequence of theories. We shall
show that (S) and, indeed, its consequence, the modal schema V(Ag — ¢), are not
valid for A*.

First we need to know more about the limits of the functions 7 and G of Defini-
tion 3.1.

3.14. LEMMA (IX;). Suppose L € T — D.
(a) I¥, | L € D < —~conlxy.
(b) If there is a node b with a S b ¢ D then IX, is consistent with conIX.

(¢) I8, +conIZg |- Wospgp L = b

ProoF. (a) Let L =a ¢ D and reason in IX,:
If L = b € D then G must have decreased its value when getting to & and
therefore p < ji. By Lemma 3.5 the theory IX; is then inconsistent.
Conversely, if L ¢ D then either Case C takes place while F' travels from a
to L in which case I¥;_1 | L # L which, by reflection, is absurd, or Case C
does not occur during this period implying p = z. By Lemma 3.5 it follows that
the theory I¥; is consistent.

(b) By Lemma 3.6(b) IX, is consistent with L = 4. By (a) of the present Lemma it
therefore has to be consistent with conIX;.

(¢) Immediate from Lemma 3.6(a) and clause (a) of the present Lemma. .

3.15. ProrosiTioN. There exists an arithmetical sentence v s.t.
PA £ V(A" y — )

Proor. Consider the functions F' and G operating on the following marshmallow
frame:
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10 O
S U S
R,S
R,S R,S
O
0
Observe:

I3, - L=2—-L#3A(IZ, } L=23) (by Lemma 3.6(a))
— L#3ANAN"L=3 (by Lemma 3.5)

1 FL=1—con(IX, +conlEz) A(IX¥, + conl¥; | L =2)
(by Lemma 3.14(b) and (c))

—ANL=2
This combines to give
I L=1—-A(L#£3ANA"L=23)
and therefore by Lemma 3.8
PAY V(A L=3—L=3)

Thus putting ¥ to be L = 3 we are done. n

4. Some fixed points

Many qualitative and quantitative aspects of fixed points of arithmetical formu-
lae corresponding to modal OA-formulae under interpretations similar to our gf-in-
terpretation are discussed in Visser [22]. In this Section we first observe that Theo-
rem 3.11 affords a corollary classifying the quantitative behaviour of fixed points of
gf-interpretations of OA-formulae.

4.1. PropPoSITION. Let ¢(p) be a OA-formula where no propositional variable other
than p occurs and s.t. every occurrence of that variable takes place within the scope of
a modal operator. Then we have either
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(i) The arithmetical sentence v satisfying
PA |-y < ¢°(7)
is PA-provably unique, i.e.

PA |- O(n1 < ¢°(m)) AO(72 < ¢°(72)) = 011 = 72)
for all arithmetical sentences v, and s, or

(ii) There exist infinitely many inequivalent fixed points of ¢°(x).

PROOF-SKETCH. Suppose (i) is not the case. Then by Theorem 3.9 we have

LF |£ O(p < ¢(p)) AD(g < ©(g)) — O(p < q)

Therefore by Theorem 2.12 there exists a marshmallow model W = (W, R, S, ||-) whose
bottom 0 forces O(p < ¢(p)) AD(g < ¢(g)) but not O(p < ¢). Note that we must
then have a node a € T'C W which does not force p < ¢ for otherwise by induction
on R-depth of elements of W it could be shown that p + ¢ is forced everywhere.
We isolate the subset T of W in the form of a marshmallow (cf. Exercise 2.13) with
a forcing relation T = (T, S[T, ||-[T) (here [ stands for restriction) and construct a
marshmallow model Vn which consists of two copies of 7 with N new linearly R-ordered
nodes appended R-below those two copies. The exact value of N € w will be specified
later. We define the forcing of a new propositional variable » in the two copies of 7 so
as to coincide with the forcing of p in the first copy and with that of ¢ in the second.
Further define forcing at the new nodes of the propositional variables p, ¢ and » by
R-downward induction in the unique way that makes p < ¢(p), ¢ < ¢(g) and r < ©(r)
forced everywhere in Viy. An easy application of the pigeon-hole principle shows that
we can choose the value of N so that

R(D(p = ¢(9)) AD(g = (@) AD(r < ¢(r)) —
~.0(p = q) VO < r)VO(g = 7))

is forced at the bottom of V. We then apply Proposition 3.11 to obtain a gf-interpre-
tation ° under which the formulas

O(p < #(p)), O(g < ¢(g)) and O(r— e(r))
are true and the formulas
Op«g), Op<—r) and O(g < 7)

are false so that we have obtained three fixed points of ¢°(z) that are not provably
equivalent in PA.

The reader will easily see how to generalize this proof to obtain arbitrarily finitely
many PA-inequivalent fixed points of ¢°(z). "

Next we address fixed points of a particular OA-formula, namely sentences ¥ satis-
fying
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PA}—-7<—>A7

These are called A-henkinsentences. The two such fixed points that surrender most
promptly to an eager quest are 1 and T which shows that the modal formula Ap falls
into the second category of Proposition 4.1. Note that both sentences L and T are Xj.
In fact, any A-henkinsentence produced by a direct application of our Proposition 3.11
will be ©;. Visser [22] asks whether this is characteristic of all A-henkinsentences.

We shall show that this is not the case, namely we exhibit a A-henkinsentence which
is not provably equivalent to any ¥; sentence. The A-henkinsentence that we construct
is actually an oreysentence, that is a sentence v s.t. the theories PA ++ and PA+ -y are
relatively interpretable in one another, or, equivalently, both are interpretable in PA.
This may be viewed as somewhat unexpected since oreysentences originally used to
be constructed as fixed points of the formula —~Ap rather than Ap (see Svejdar [21]
and Lindstrém [8]). To deduce the non-Yi-ness of an oreysentence we lean on the
following

4.2. Fact (Orey [15], Héjek [5] and Guaspari [3]; see Berarducci [1] for a concise
presentation). For arithmetical sentences v and é the following are equivalent:

(1) PA + v is relatively interpretable in PA + 6,
(ii) For every n € w, PA |- 6§ — con (IX, +7),
(i) Every model of PA + 6 has an endextension modelling PA + 7. n

(This Fact also serves as an excuse for not giving the definition of relative interpretability
here.)

Note that for v an oreysentence one can by iteratedly applying (i) = (iii) construct
an infinite sequence (M; )¢, of models of PA s.t. M;;, is an endextension of M; and
M1 | v iff M; £ 7. Thus v exhibits a mutability alien not just to X3 sentences, but
also to any boolean combination of those (see Manevitz & Stavi [10] for more details).

4.3. PROPOSITION. There exists an oreysentence which also is a /A-henkinsentence.

ProoF. We shall construct the promised orey- and A-henkinsentence by means of

another Solovay function. These functions have traditionally only been used to obtain

results of mind-sweeping generality, such as exemplified by our Theorem 3.9, and re-

sorting to this method to construct just one individual sentence almost amounts to a

breach of the code of honour. Nevertheless, I believe that this format might help the

reader to better visualize the proof thus enhancing the digestability of the argument.
The scene is set by the following Kripke frame:
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The new name @ for the auxiliary relation suggests that it should be treated in
a way different from the one the relation S of marshmallow frames was treated in in
Section 3.

We define the two relevant functions:

f0)=0; g(0)=00
Case A. 0= f(z) Ra and z is a PA-proof of £ # a.
flz+1)=a; g(z+1)=any ys.t. zisanIX,-proof of £ # a
Case B. f(z) @ b, and x is an 15 (y)_1-proof of £ # b.
fle+1)=b g(a+1)=g(z)
Case C. f(z) # 0 and z is a proof in I¥ (g of L.
fle+1)=f(z); g(z+1)=g()-1
Case D. None of the previous cases apply.
f@+1)=f(z); g(z+1)=g(z)

The sentence £ # d expresses, as before, that d is not the limit value of f.

First note that g is a decreasing function. Second, two occurrences of Case B at the
same value of g guarantee at least one occurrence of Case C, and hence a decrease in
the value of g. Therefore IX; proves that both g and f reach their limit values. Call
the e-terms naming these limits M and £ respectively.

Claim 1 (1X;). If £ =1 then IZy |- £ = 1.

Assume £ = 1. Reason in IXy;:
If f moves out of 1 and reaches a limit value a, then this can only be due to a
proof in IX;_; of £ # a which can not exist since £ = a. Hence £ = 1.

Claim 2 (IX,). IXys is consistent.
If £ = 0 the IZ; = PA is clearly consistent. If £ # 0 then the claim is immediate

on inspection of Case C.
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Claim 3 (IX,). If £ # 0 then IX 41 is inconsistent.
If g arrives at M by Case C this is clear. If it does so by Case A then this can, as
usual, be established by reflection for I¥pr41 knows that I¥ 5 |- £ # £.

So,

1) I He=1—-Al=1 (by Claims 1 and 2)
(2) I F4=2—-A0=2 (symmetric to (1))
(3) IS FA=1—AL#2

O£ 2

S l#0

— L=1VLe=2

—f=1 (by (2) and (3))

Thus £ = 1 is indeed a A-henkinsentence. Now we establish that it is an oreysentence
as well. Consider an n € w. Reason in PA:

By Fact 0.2 and Claim 3 there holds n < M and hence, assuming £ = 1, a proof
in IX,, of £ # 2 would by Case B move f to 2 and decrease g below its limit.
Therefore :

(4) PALb£=1—con(IX,+£=2)
—con(IX, +£# 1)
On the other hand,
PARE£1—£=0VE=2
—.con(PA+£=1)Veon(IX, +£=1) (symmetric to (4))
—con(IX, +£=1)

Thus by (ii) = (i) of Fact 4.2, £ = 1 is an oreysentence and satisfies the statement of
the Proposition (£ = 2 would have done just as well). n

4.4. REMARK. Proposition 4.3 also holds for Feferman predicates other than the one
based on (IX,)new. One only has to modify the construction so as to ensure that in
Case B PA[g(z) can reflect on the proof z.

5. More godelsentences

In this Section we shall produce one more example highlighting the sensitivity of
the provability-logical behaviour of the Feferman predicate to the choice of the base
sequence of theories. With Proposition 3.15 we have already experienced the fragility
of the axiom schema (S) and Proposition 1.3 in this respect.
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Here we assault Proposition 1.6 which asserted the provable uniqueness of A-godel-
sentences for Feferman predicates satisfying (S). In other words, we set out to produce
a sequence of theories whose Feferman predicate possesses inequivalent godelsenten-
ces. The uniqueness question for godelsentences of Feferman predicates was raised by
Montagna [11]. Smoryniski [19] discovered uniqueness of godelsentences of A’s based on
(IZ,)new and similar sequences. The same paper also ponders the question whether this
uniqueness might fail under a weirder choice of the base sequence. By settling this we
show that the situation is not unlike that with Rosser predicates: Guaspari & Solovay [4]
show that provable uniqueness of godelsentences of this predicates (=rossersentences)
depends on otherwise insignificant details of gédelnumbering of proofs.

Oddly enough, our main tool for this task are the Solovay function F' together
with its accomplice G launched in Definition 3.1 that were originally called to life to
prove the completeness theorem for the provability logic of a A with provably unique
godelsentences.

Consider the predicate /A’ whose base sequence is (IEn+1(IEn))n cw where the the-
ory IX,+1(IX,) is defined by the requirement that

I, 1(I5) by iff IS, F IS, b7

for all sentences y. While the reader will easily recognize the theory IX,1(IX,) as
proving exactly the same theorems as I3, we shall see that gddelsentences are confused
by this disguise to the point of losing their unique identity.

The next three lemmas investigate the interrelations of A’ with the construction of
Definition 3.1 and 3.3 and in what follows we adopt some of the notation from Section 3.

5.1. LEMMA (IZ4). If g < oo then p is the largest z s.t. IX,(IX;_4) Is consistent.
Therefore for any arithmetical sentence v one has A'y iff 1X,(IZ5-1) |- 7.

ProoF. By Lemma 3.5 I¥,4; is inconsistent and hence so is IX,1(IXz). In the
other direction, if I¥, |- I¥;_1 |- L, then one by reflection has IX, |- L which would
contradict Lemma 3.5. n

5.2. LEMMA (IX,). Suppose L=a €T.
(a) IZ,(IZ5-1) | Wa(sus2)b L=b.
(b) If a S b then IX,(IXz_1) is consistent with L = b.
(c) Ifa 5% b then 1S ,(1X;_1) Is consistent with L = b.

ProoF. (a) Take a node b which does not satisfy a (S U S?) b. Reason in IX,:
Since L # a,
(recall that there is an IX,-proof of L # a since in real life L is equal to a)
the function F will have to abandon a for a different node which we shall call c.
Reason in IX;_1: )
Were F to reach the node b it would, after fleeing a, be compelled to
arrive at and leave two nodes in D, b being at least that far away. There-
fore a hypothetical proof of L # b that finally transports F' to b is a proof
in I¥5_5 reflecting whereupon we get L # b.
This way we have shown IX, |- I¥;-1 |- L # b’ which proves the claim.
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(b) If for a node b s.t. a S b we had IE, |- I¥;_1 |- L # b°, we could conclude
IZ, | L # b by reflection, which contradicts Lemma 3.6(b).

(¢c) Let ¢ be a node s.t. @ S ¢ S b. Suppose for a contradiction that I%, |-
‘I¥;z-1 | L # &’ and reason in IX,:

Recall that by Fact 0.1 the theory I¥;_; is consistent. Therefore by Lemma 3.5

p>p—1andsol¥, | L#b. By Lemma 3.6(b) we can not then have L = c.

But I¥, | L # c contradicts Lemma 3.6(b) g.e.d. .

5.3. LEMMA (IX,). (a) Ifl = a # 0 then A Wagsusayp L = b.

(b) If L =a (SUS?) b then V'L =b.

ProoF. If L ¢ T then PA is consistent and A’ is the same as 0. Lemma 3.4 settles
this case. For L € T use Lemmas 5.1-2. .

5.4. ProPosITION. There exists a base sequence of subtheories of PA s.t. the Feferman
predicate based on it possesses inequivalent gédelsentences.

ProoF. Consider the predicate A’ studied in Lemmas 5.1-3. Let us apply Lemma 5.3
to the marshmallow frame obtained from the marshmallow depicted below by adjoining
an R-bottom 0.

C;/Ol

e
b4

An easy verification using that lemma shows that
() By L=1<-AL=1

and, in perfect symmetry,
(2) IS, L=3<-AL=3

So L, =1 and L = 3 are A’-godelsentences that are clearly inequivalent.

We would however be cheating were we to declare the sequence (I%,11(IZ5)) .,
and the predicate A’ to be a solution to our problem. For while it is easily seen that each
theory in this sequence extends its predecessor and the union of the sequence is equal
to PA, the question, as addressed from within PA, whether the theories IX,+1(I2,) are
finitely axiomatizable appears to be much more complicated. Rather than go into that
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we shall indicate how to modify the sequence so as to obtain one of finitely axiomatized
theories which would still preserve the pluralistic effect on godelsentences. Here we use
an adaptation of a technique of Lindstrém [9] for constructing a finite axiomatization
of bounded-complexity consequences of a theory.

For brevity, denote the earlier constructed sentences L = 1 and L = 3 by 4o and 7
respectively. Consider the following fixed point equation on the formula §(z):

I, |- Ve (g(m) vy (N (e by &) = %) — %) —

0<i<1

= N (o1 |5 18 1) — w)))

0<i<1

where T Iy 6 stands for the formula expressing that é has a T-proof of godelnumber
< y. One can mimick the proof of Lindstrom [9, Lemma 2, Case 1] to the effect that
for 0 < ¢ < 1 and any n the theory IX, + £(n) proves v; if and only if IX,;1(IX,) does.
Moreover, this proof is straightforwardly formalizable so that for both ¢’s we get

(3) IZ; | Vz (I | €(2) = i) © [Zeq1 | I | %))

Furthermore, we show that one can do with the formula I¥;4; V () in the place of
&(z) as well.

I3 |- Ve (I3; | &(2) = 1) = Dot | 120 1)) (by (3))
— 18041 F %) (by reflection)
=I5, b I8eq1 F %)
— (15 | 1o 41 — 7))
(4) — (1% | ISo41 VE(Z) = 7))

The other direction IZ; | Vz (IS, | IZ,41 VE(2) — %) — (IZ: | &(z) — %)) is
immediate.
We now claim that the sequence of theories (IS, +(IXn41VE(n))) cw

the Feferman predicate A based on this sequence satisfy all requirements of the present
Proposition. First, each theory is finitely axiomatized and

together with

so that the sequence monotonously increases in strength and exhausts the whole of PA.
Next note that since IXg | (0 A 71), we have

1% | Vz (—-con (IS5 + (IS241 VE(@))) < I5p + (I8z41 VER) F 70 A 71)
o 1801 (I5,) 70 A 71) (by (3))
(5) & ~con %, 41(1%,))

so that I3, 11(IX,) and IZ, + (IX,41 V €(n)) are provably equiconsistent.
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Finally, we demonstrate that the 4;’s we have constructed are A—gédelsentences as
well as A’- ones:

I b =y = Ay (by (1) and (2))
= 3z (con (IZe41(1%)) A (Ba41(I5:) b 7))

3z (con (1% + (et VE®)) A (1% + (Bey1 VEE) b 7,~))
(by (3), (4) and (5))
o A'Yi

Thus g and v; are inequivalent A—gédelsentences q.e.d. ]

Another fact of a distinctly similar flavour that contrasts Proposition 1.6 is the
following

5.5. EXERCISE (Visser). Show that there are infinitely many inequivalent sentences 7y
satisfying

for the Feferman predicate A based on (IX,,)new- ]
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