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1 Introduction

This paper is devoted to the problem of establishing the generative power of categorial
grammars (CGs) based on the nonassociative and commutative Lambek calculus with
product (NCL). Investigations concerning generative power of CGs, which date from
the paper of Bar-Hillel et al. [2], are stimulated by two factors. The first of them is the
problem of the generative power of CGs based on the Lambek calculus [19]. This question
posed in [2] resulted in a series of papers characterizing classes of languages generated by
CGs based on subsystems of the Lambek calculus (see [6, 7,9, 17, 18, 28]) and was recently
solved by Pentus [25]. On the other hand, in order to describe in a better way some
phenomena of natural languages the shape of type reduction systems in CGs was modified
so as to obtain more flexible versions of the formalism; the reader will find a detailed
description of this and other relevant problems in [5]. Modifications included, among
others, a relaxation of the structure of antecedents of reduction formulas. Those changes
used to be introduced via endowing a type reduction system with structural rules of
permutation, contraction and monotonicity performed as it is the case in Gentzen systems
LJ and LK [14]. The introduction of structural rules implies changes in the formal
status of antecedents of formulas: if in the case of basic Lambek calculus (associative
and noncommutative) antecedents can be viewed as finite sequences of types then for a
commutative calculus the proper model for an antecedent is that of a multiset, if we work
with a nonassociative calculus then antecedents are bracketed strings of types (trees) and
if a calculus is both commutative and nonassociative then antecedents can be considered
as mobiles, see [22]. Generative power of categorial grammars enriched with structural
rules of permutation and contraction was studied by van Benthem in [3] and [4] . Let us
observe that affixing permutation to the Lambek calculus results in a rather undesired
effect: one must accept sentences with a completely free word order. Although there is
some linguistic evidence in favour of such general relaxation, see for example [1], but still
this global effect caused by permutation seems to be too strong from the point of view
of a linguist. As a way out of this situation one can considered nonassociative calculi
[20]: by the presence of the permutation they admit commutativity only within phrase
structures. A local, restricted introduction of structural rules can also be performed by
means of structural modalities, see [12] and [23]. This method is similar to the procedure
of retrieving structural rules in Linear Logic, cf. [27].
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In this paper we prove that the class of languages generated by CGs based on NCL
coincides with the class of CF-languages of finite degree whose rules are closed with
respect to permutation (CF-languages). To establish the inclusion of the class of NCL-
languages in the class of CF-languages we employ the notion of normal form of derivation
which already proved useful in investigations concerning generative power of categorial
grammars, see [7] and [17]. The proof of the converse inclusion makes use of an algebraic
characterization of phrase languages generated by classical (Ajdukiewicz) CGs and CF-
grammars, see [7] and [26].

The presented work is a unified version of two articles submitted to Mathematical
Logic Quarterly, formerly Zeitschrift fir Mathematische Logik und Grundlagen der Math-
ematik. A part of this paper is a result of the author’s stay in the Institute of Language,
Logic and Information at the University of Amsterdam as a TEMPUS guest in May and
June 1992. The author would like to thank the staff of the Institute for hospitality and
stimulating atmosphere of work.

2 The nonassociative and commutative Lambek cal-
culus NCL

Let Pr be an infinite but countable set of primitive types and let /, \ and - denote three
binary operations called left division, right division and product respectively. The set
TP, of types (with product) is the smallest set containing Pr and closed with respect to
/, \ and - . By Tp we denote the product-free part of TP. We call z/y or y\z (resp.
z-y) a functorial (resp. product) type. The symbol ¢(z) is used to denote the complezity
of type z, i.e. the number of occurrences of /, \ and - in z. The set sub(z) of subtypes
of z is defined by the following induction: (i) z € sub(z), (i) if z = y/z or z = z\y or
T =7y-z, then y € sub(z) and z € sub(z). For A C TP we put sub(A) = Ueasub(z).
By the set of bracketed strings of types we mean the smallest set defined inductively as
follows: (i) TP € BSTP, (ii) if X € BSTP and Y € BSTP then (X,Y) € BSTP. The
product-free part of BSTP will be denoted by BSTp.

The nonassociative Ajdukiewicz calculus (with product) NA is a formal system whose
formulas are of the form X — x, where x € BSTP and € TP. NA has one axiom scheme

(A0) z — z , where z € TP,

and the following rules of inference:

X—ozly Yoy - X—-y\r Yoy
(#) (X,Y) -« (A) Y, X) - =
X—oz Y-ou
(PR) (X,)Y)—>z-y

The nonassociative and commutative Ajdukiewicz calculus (with product) NCA arises
from NA by adding the following (structural) rule of permutation:



(Perm) M, where X,Y € BSTP, z € TP.
(Y, X) -z
As Fnca z/y — y\z and Fnca y\z — z/y, there is no need to differentiate between
types z/y and y\z in NCA. We will use the slash / to denote the only division in this
system. NCA however admits an equivalent axiomatization consisting of (A0), (A), (PR)
as well as two additional rules of inference:

(A%) X—-zly Yoy (PR) X—ozxz You
Y, X)— =z Y, X)—>z-y
In order to define the nonassociative and commutative Lambek calculus (with prod-
uct) NCL we need a certain auxiliary system Ax. Formulas in Ax are of the shape z — y,

where z,y € TP and it admits the following axiom schemata and rules of inference for
all z,y,z € TP:

(A0) z—>=z

(A1) (z/y)-y—= (A1) y-(z/y) — =
(A2) z—(z-y)/y (A2) z—(y-2)/y
(A3) z—y/(y/z) (Ad) z-y—y-z
(R1) z/z — y/z (RL) zly — z/x
(R2) wi:yz (RZ) z-i:z-y

To simplify the notation we write x — y € Ax instead of Fxx * — y. The calculus NCL
amounts to the system NCA enriched with the following compound rule:

© ==

X -y
Product-free versions of all introduced calculi, which employ types from Tp instead of
TP and make use of no product axioms and rules, will be denoted NA®, NCA® and
NCLP respectively.

, ifz—y€Axand z #y.

Let ¢ — y € Ax. We call ¢ — y an E-formula (resp. R—formula or O-formula) if
c(z) < c(y) (resp. c(z) > c(y) or ¢(z) = ¢(y)). To emphasis the fact that we deal with

an E- (resp. R- or O-) formula from Ax we write z 5 y € Ax (resp. Lt y € Ax or
z >y € Ax).

The following Lemma is a counterpart of the result obtained for the nonassociative
and noncommutative calculi (see [7] and [17]):

Lemma 1. Ifz E y € Ax and y Rze Ax, where z # y, then there exists § € TP
such that ¢(y) < c(y) and z > 7 € Ax and § — z € Ax.

Proof. By induction on ¢(z) as in [7] or [17]. O

From now on we will use a certain notational convention: Instead of the sequence z; —
T2 €E AX, 29 > 23 € AX, ..., 21 = T, € Axwewill writezy 5 29 523> - > 1, €



Ax and call zy — 29 — 23 — - -+ — z,, a sequence derivable in Ax. We reserve the letters
S,T,U, ... for denoting derivable sequences. If S is a derivable sequence different from
the axiom (AQ), then by I(.S) we denote the length of S, defined as the number of arrows
in S. Thus, all axioms, except for (A0), have the length 1. Additionally, for a sequence
T being an instance of (A0) we put {(T) = 0. The notation employing indices E, R or O
above the arrow in a formula can in a natural way be extended to the case of derivable
sequences. For every derivable sequence 1 — --- — z, the string I1 I, ... I,,_; is called

the indez of this sequence, if for every ¢ € {1,...,n — 1} we have z; L z;y1 € Ax. The
interest of Lemma 1 is that it allows to transform a sequence x — y — z of index ER
into a sequence £ — 7 — z of any but ER index.

Lemma 2.
(i) If z1/y1 9 To/ys 5.5 Tn/Yn € AX, then z; A T 5.5 z, € Ax and
0 0 0
Un = Yn_1 — -+ — Y1 € AX.
(ii) If z1 -1 ng-yz—g---gmn‘yn € Ax, then :1:12)1)2 9 ... gvn € Ax and

o} o) 0 . :
Y1 — 29 — -+ — z, € Ax, where for 2 <1 < n either v; = x; and z; = y; or v; = y; and
Z; = X4,

Proof. By induction on n. O

The indicated in Lemma 2 sequences whose initial types are z; and y; will be called
the constituents of the sequence z1/y; S ...5 Tn/yn and zp - Yy 5.9 Ty * Yn,
respectively. By the reduced form of a sequence S we mean the sequence obtained from
S by dropping all instances of (A0) in .S. This definition does not apply to formulas which
consist entirely of the axiom (AO0). In this case, by the reduced formofz » 2z —» --- -«
we mean the sequence (formula) z — z. A sequence of O-formulas is said to be reduced
if all formulas occurring in this sequence are different from (A0).

Lemma 3. Let S be a derivable sequence of the form z1/y; S ... 5 T [Yn oOT

Ty Y1 S .S, Yn and let T and U be the reduced forms of the constituents of S.
Then we have:

() 1(S) > UT) +1(V),
(ii) if the sequence S is reduced, then 1(S) = I(S) + {(U).
Proof. We employ Lemma 2. O
Lemma 4. If z E Yy S Bve Ax, where © # v, then there exists a derivable

sequence of one of the indices ER, OER, ERO such that its initial and terminal types are
x and y respectively.

Proof. The detailed inductive proof of the lemma is rather long, we have to consider
all cases according to the inductive definition of formulas in Ax. Thus, for the sake
of brevity we disregard parts of the proof which are dual or similar to those presented
previously. First observe that if y — z is an instance of (A0), then y = z and we can put
x — y — v as the desired string of index ER. Thus, in our induction we omit this case.

A Letz 5y = (A2). Theny = (z-y')/y’ and y S, 2 must arise by (R1) or (R1').



A.l. Assumey > z = (z-y")/]y S Z'[y and z -y’ S 2 € Ax. Then z 5 v must
arise by (R1) or (R1').

A1l Z/y R v'/y" and 2’ B o € Ax. Then our sequence is of the form z E
(z-y)/y S, 'y i v'/y" and we have three possibilities:

All(a)z -y =2 =z -y — y -z Thenz E (z-y)/y 9, (y'-z)/y LY v'[y’ can
be replaced by z 5 (y-2)/y it vy’

All(b)z -y > 2 =2 -y — z-y" and ¢ A y” € Ax. Then we can replace
25 (Y)Y D (e y") [y Sy by e S (e y")y" S fy" Sy

All(c)z -y - 2 =z-y - 2 -y and 2 S 2’ € Ax. Then instead of z =
(e-y)/y' > (') [y = o'fy weput & 52’ S (a'-y') [y’ > v'[y".

A12. 2 )y 5 2 /y" and y" S y' € Ax. Thenz 5 (z-y")/y’ S 2 fy' B 2'/y" can be
replaced by z 5 (z-y)/y i (z-y)/y" 9, 2'[y".

A2. Assume y > z = (z-y")/y S (z-y")/y" and y" S 4" € Ax. Then the formula
z 3 v must arise by (R1) or (R1").

A21. 2B 0= (z-9')/y" 55 v'[y" and £-y' 5 v € Ax. Then instead of the sequence
25 (@ y)/y S (e y)/y" S 'y weput T S (z-y') [y’ > v'[y >0 [y",

A22. z B v =@ vy B (@-¢y)/v and v' B y” € Ax. Then instead of
25 (2 y)fy' S (@y)/y" S (y)[v' weput z B (z-y")[y" 5 (z-y") /v > (z-y)/v".

B. If £ — y = (A2'), then the proof is dual to A.
C.Let z 5 y = (A3). Then y =y'/(y'/z) and y S, 2 must arise by (R1) or (R1).

C.1. Assume y S = y'/(y' /) S, y"/(y'/x) and y' 9 y” € Ax. Then the formula
z & v must arise by (R1) or (R1").

Cll. z3 v=y"(y/z) D v'/(y/z) and y" B o' € Ax. Then instead of z
v/('[2) S 9"y [2) B o[y [) we put = B y"/(y" [z) B o' (y"[2) > [ (y/'[2)-

C12 25 0= y"/(y'[x) 5 y" /v’ and v’ Ey 5 y'/x € Ax. Then instead of
Sy (' f2) Sy ' f2) Sy we put e Sy (y'f2) Sy o Dy

C.2. Assumey > z = y'/(y'/z) > y'/2' and 2/ > y'/z € Ax. Then the formula
z 5 v must arise by (R1) or (R1').

C21. z 5 v = y'/2 LY v'[2z" and y’ B o' € Ax. Then instead of the sequence
e By (y[e) Sy )2 B2 weput z B y/(y'[e) D o' (y'[z) S v/

€22 28 v= y'/2 i y'/v" and v’ E 2" € Ax. Thus we have two possibilities:

C.2.2.(a) 2 A y'/z = 2"]z 9, y'/z and 2" Sy € Ax. Then instead of z =



y'/(y'/x) S, y' /(2" ) it y' /v’ we put z E 2"[(2"[x) it 2o S y'[v'.

C.2.2.(b) 2 S oylz =y D y'/z and ¢ S 2’ € Ax. Then instead of z 5
v'/(y' /) o y'/(y'/2") R y'[v' we put z o nE y'[y'[2") Ri% y' /v

D. z & y arises by (R1). Thus z E y=1a'/u E y'/u and z’ E 4" € Ax. Then the
formula y > z must arise by (R1) or (R1").

D.1. Assumey S = y'[u A Z'[uand y’ S, 2/ € Ax. Then the formula z =5 v must
arise by (R1) or (R1').

D11 z B v= Z'[u B v'/u and 2’ B v € Ax. For 2’ 5 y' S 2By we employ
the inductive assumption and divide the resulting sequence of one of the indices ER,

OER or ERO by u.

D12 z 3 v = 2 [u L Z/v' and v B u € Ax. Then instead of the sequence
duDyiudZud v weput ' fu Dy juy oS 2 .

D.2. Assumey > z = y'/u A y'/z' and 2’ S, u € Ax. Then the formula z = v
must arise by (R1) or (R1').

D21. z 5 v = y'/2' Lt v'/z' and y/ B o € Ax. Then instead of the sequence
z'[u E v'/u 9, y'/2' B v /2 we put z'fu > z'[2 E y'/2 i v'/Z.

D22 z 5 v = y'/2 Lt y'/v' and o' E 2/ € Ax. Then instead of the sequence
giuByuSy)2 Sy weput 2'fuS a2 Sy L y' /v

E. If 2 5 y arises by (R1’), then we proceed as in D.

F.z B y arises by (R2). Thus z E y=2a - u E y' - u and 2’ LN y' € Ax. The

formula y S may be either the axiom (A4) or the result of an application of the rule

(R2) or (R2).

F.1. Assume y 9 .= Yy -u LA y'. Then we have the following four subcases for
the formula z 3 v:

F.1.1. z 5 v = (Al). Then u = v/y’ and 2’ - (v/y’) By w/y) > /)y Lo
can be replaced by z’- (v/y') E y' - (v/y") B .

F12 z5 0= (A1’"). Then the argument is similar to that presented in F.1.1.

F.1.3. zgv=u-y'ﬁ>v-y' and u %5 v € Ax. Then instead of the sequence
ZEIUE) 1., 9 r RO : v E o R _, O

. Y u—-u-y >v-y wecan writez' -u =y -u—>9y-v-o0v-y.

Fl4. 285 v=u-y 5 u-v'. Then we proceed as in F.1.3.

F.2. Assume y 9 .= y - u S 2 u and y S 2 € Ax. Asin F.1. we have the
following four subcases:

F21. z8v= (A1). Then 2’ = v/u. If ¢ Sou=y"uS v/u and y" S v e Ax,

then instead of z’-u = (y"/u)-u 5 (v/u)-u > v we can put z’-u LA (y"/u)-u By Sy,



Iy S v/u=v/y"> v/u and u > y” € Ax, then we repeat the preceding argument.
F.2.2. z 5 v = (Al'). We proceed as in F.2.1.

F23. 28 v=zu v-u and 2 B v € Ax. We employ the inductive assumption
for the sequence z’ 5 y' S 2 B v and get a sequence of the index ER, OER or ERO
which must be multiplied by u to substitute for z’ - u E v -u SuB o

R R R .
F24. 2z 5 v =2 -u— 2-v and u - v’ € Ax. Then instead of the sequence
/ E ! o ! R ! ! ! E li R ! IO ! /
g u—=y u>2 - u—>z2 v wecanput ' u—yusy v S 2yl

F.3. Assumey S = Yy -u 9 y' - z'. We proceed as in F.2.

G. Iz 5 y arises by (R2'), then the proof is similar to that presented in F. O

To simplify the notation we write O™ to denote a group of n consecutive indices O
occurring in the index of a certain sequence.

Lemma5. Letzy — -+ — 43, wheren > 1 and 1 # 43, be a derivable sequence
of the index EO™R and let no formula in this sequence be an instance of (A0). Then
there exists a sequence y — -+ — z € Ax whose indez is either OF, where k < n +2, or

O*EO'RO™, where k + 1+ m < n and k + m # 0, such that z; = y and T,43 = 2.

Proof. We must take in consideration all forms of formulas being the initial and
terminal parts of this sequence. According to the assumption of the lemma the sequence

0 o) . . . . )
Ty — -+ — Tnpyo is reduced. Moreover, it is of one of the following forms: either
o} 0 o} o
zhlalh = oo e =zl o/, or Ty - xh > .- > xl o xn . Throughout the proof,

instead of the constituents of the above sequence we will employ their reduced forms, but
using the same notation as the initial and terminal types of a sequence and its reduced
form are the same. It allows us to make use of Lemma 3 when necessary.

A x, LA zy = (A2). Then the sequence z, S5...5 Zn4+o must consist of functorial
types.

Al. Topr S 2aps =v/u S z/u and v > z € Ax. Then we have z 5 (z-y)/y A

-gv/ugz/ue Ax,andletz-y —» .- > v and u — -+ — y be the reduced forms
of the constituents of the O"—part of our sequence.

A.1.1. If u # y, then instead of the initial sequence we can put the sequence z E
(z-y)/y 5.5 v/y i z[y 5 ... 9 z/u and, by Lemma 3, reduce the number of
O—formulas between the E-formula and the R—formula. (After this remark about the
way in which we use Lemma 3 we will perform further similar transformations without
any comments.)

A.1.2. If u = y, then we have to consider the following four subcases:

A1.2.(a) v Eg z=(Al). Thenz 5 (z-y)/y > - 2 (/) - V) )y B z/y €

Ax. fz & ... z[v' € Ax and y A = Ax, then we replace our sequence
byz > - S z[v' 9.8 z/y', provided y # v', and by z 5.8 z/v', provided
y=v.Ifzx 9 ... 2 v € Ax and Y 5.5 z[v' € Ax, then the initial sequence can



be replaced by z % -+ % v 5 (v - (2/v")/(z/v") L z)(zJv") > -+ 2 2]y, provided
z#v,and by z 5 (z - (z/z))/(z]z) i z/(z/z) S .5 2/y, provided z = v'.

A1.2.(b) Ifv B= (A1), then we proceed as in A.1.2.(a).

Al12.(c) v Bo=v-t8 2.t andv' B 2 € Ax. This case is similar to A.1.2.(a)
and is left to the reader.

A1.2.(d) v Bz=t-v Bt .2 and v D 2 € Ax. In this case we proceed as in
A.1.2.(c).

R R E . .
A2, zp42 = Tpyz = uf/z = ufv and v > z € Ax. In this case we proceed in a

similar way as in A.1.

B. 21 5 2, = (A2'). The proof is dual to that presented in A.

C. 21 5y = (A3). The proof is similar to that presented in A.

D. z; By = z/u E y/u and z LN y € Ax. There are two possibilities:

D.1. xn+25xn+3=v/t5>z/t and v 55 2 € Ax. Let y—(z»-ug)v andt > ... S
be the reduced forms of the constituents of y/u 9.9 v/t.

D.1.1. If t # u, then we replace the sequence z/u L2 y/u 95 ... 9 v/t i z/t by
E 0 0 R 0 0
z/u > ylu>--Svfuszfus oS 2/t

D.1.2. If t = u, then we make use of the inductive assumption for the sequence

z 5 y S ... % v B 2 and divide the resulting string by wu.

D.2. Tppz -5 Tnys = t/z LY t/v and v 5 z € Ax. This case is similar to D.1 and is
left to the reader.

E. z; 5 2, = u/x Lit u/y and y B 2 € Ax. In this case we proceed similar as in D.
F. .’L'lg.’Eg:.’I}’aE)y'(l and:c—F#yEAx.

F.1. xn+25>:vn+3: (A1). Thenx-agy-ag-ng(z/v)-vgze Ax. We have
two possibilities:

F.1.1. y 5.9 z[/v € Ax and a S ... % veAx Ifa # v, we replace our sequence
byz-a> - Sz.05y.05...5 (z/v)mE)z. If a = v, then we must consider all
admissible forms of z 5 y:

F.1.1.(a) z Ey= (A2). Then instead of z - a 5 ((z-t)/t)-a 5.8 (z/a)-a Ly

o o o (0}
weputz-a—> -S>zt > > 2.

F.1.1.(b) For z 5 y being (A2') or (A3) we proceed as in F.1.1.(a).

lo

F.1.1.(c) z L y can not arise by (R2) or (R2'), because we would have y'-b S ..

z[a or b-y' 5.5 z/a, which is impossible.

F.1.1.(d) z By = z'[b 5 y'/b and 2’ E 4 € Ax. Then instead of the sequence



('/b)-a 5 (y/b)- ¢S -2 (z/a)-a B 2z, in whichy’ S - S zanda S - b,

we put (z'/b) - a 5 (/b)) -a 5.5 (y'/b) b8y S ... 2 2 provided y' # 2, and
(2'/b)-a S-S (2'/b) - b D ', provided y' = 2.

F.1.1.(e) If Ey= b/x’' E b/y' and y' R 2' € Az, then we proceed as in F.1.1.(d).

F.1.2. y S ...%veAxanda S-S z/v € Ax. In this case the proof is similar
to that in F.1.1 and is left to the reader.

F.2. @40 it Tny3 = (A1l’). In this case we proceed as in F.1.

R R R R R
F.3. Tpys D Tpysa =0 U > 2-U O Tpyg = Tpyz = U v > u -2 and v — z € Ax.
These cases are similar to the cases D.1 and D.2 and are left to the reader.

G. If 4 E x4 results from (R2'), then we follow the method presented in F. O

It is easily seen that the assumption in Lemma 5 saying that no formula in the
sequence may be an instance of (A0) is not essential as the reduced form of any sequence
of the index EO™R can be considered instead of the sequence itself. The point of Lemma
5 is that for a given EO"R-sequence we can either get rid of the E-formula and the
R—formula from this sequence or we can reduce the number of O’s between E- and
R-formula. Thus Lemma 4 and Lemma 5 give us

Corollary. Given a derivable sequence x; — -+ — x,43 of the index EO"R there
exists a derivable sequence y — --- — z whose index is either OF where k < n + 2, or
O™ERO', where m + 1 < n, such that ©; =y and T,43 = 2.

Proof. By induction on n. O

If z — y is a derivable E- (resp. R— or O-) formula, then an instance of the rule (C)
employing z — y is called an E- (resp. R~ or O-) instance of (C). We call a derivation
D of X — y in NCL seminormal if all E-instances of (C) follow R-instances of (C) as
well as the rules (A), (A’), (PR) and (PR’). We refer to a derivation D of X — y in
NCL as to normal if it is seminormal and additionally if all R-instances of (C) precede

(A), (A"), (PR) and (PR') and no O-rule is placed between (A), (A’), (PR) and (PR’).

Theorem 1. If FnoL X — z, then any derivation D of X — x can effectively be
transformed to a seminormal derivation.

Proof. We show how to transform to the desired form a derivation in which a
sequence of the index EO™ (n > 0) precedes one of the rules (A), (A’), (PR), (PR') or
an R-instance of (C).

1. A sequence S of the index EO™ (n > 0) precedes (A):

(a) S precedes the functorial premise of (A). If n = 0 we proceed as in the noncommu-

tative case (see [17]). Therefore, we assume that n > 0. Then the part of the derivation
D of the form



F) X —ufv
O) X—>u1/vl

N—r

(
(
(0
(

A) X = up /v, Y -,
(X,Y) - u,
can be transformed to
_)@n_ (0)
— Up
_ 7 Un=1 (0)
X - ufv
(A) X — uy/vy Y - un
(O) (Xa Y) — U
(O) (X,Y) — U3
(0) :
(X,Y) > u,
where v, 5...58 v; and uq 9..5 u, are reduced forms of the constituents of the

sequence S. This transformation reduces the case n > 0 to the case n = 0.

(b) S precedes the argument premise of (A). If n = 0 we proceed as in the noncom-
mutative case. Let n > 0. Then instead of the derivation

— e ®)
S o
(0)
(A) X — z/uy Y - u,
(X,Y) -«
we put

X - z/u,

(O) X — x/un—l

) ———— — =N @
(A) —>x/u2 — Uy
(X,Y)—=z

Therefore we can treat this reduction as in case n = 0.

2. If a sequence of the index EO™ precedes (A’), we can apply the same reasoning as
in 1.

3. A sequence S of the index EO™ precedes (PR). It is sufficient to consider only the
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case in which S appears before the left premise of (PR) as the argument for the right
premise is similar. In the case n = 0 we imitate the proof for the noncommutative version
(see [17]). Let n > 0. Then the fragment of a derivation

(E) X — T
(0) X — z,
(0)
(PR) X -z, Y -y
(X7 Y) — TpY
can be replaced by
(PR) X -z Y -y
(E) (X,Y)—> 21y
(0) :
(X,Y) = 2y

4. For the rule (PR’) the argument is similar to that of 3.

5. Let a sequence S of the index EO™ precedes an R-instance of the rule (C). If n =0
then we employ Lemma 1 to obtain a sequence of any but ER index. Let n > 0. Then,
by Corollary , S can be transformed to a sequence of the index OF, where k < n + 2, or
of the index O™ERO', where m + [ < n, with the same initial and terminal types. In the
first case we have nothing to do, and in the second case it suffices to apply Lemma 1 as
in the case n = 0. O

Theorem 2. IfbncL X — z, then any derivation D of X — x can effectively be
transformed to a normal form.

Proof. Let D be a derivation of X — z in NCL. By Theorem 1 there exists a
seminormal derivation D; of X — z in NCL. We have to show that every part of Dy in
which a sequence of the index O"R follows one of the rules (A), (A’), (PR) or (PR’) can
be modified in such a way that the R-instance of the rule (C) will change its position
according to the definition of normal derivation.

1. Let a sequence of the index O"R follows the rule (A). Then the derivation

(A) X —z/y Y -y
(0) (X,Y) >z
(0) (X,Y) - 4
(0) '
(0) (X,Y) >z,
(X,Y) -z

11



. . 0 o 0 R
in whichz =5 z; > --- = z, — z € Ax can be replaced by

(0) X—oaly

(0) X - x/y

(0) X — 23y

0) ————

(R) X — z,/y

(A) X — z/y Y -y
(X,Y) > =

2. The proof for the rule (A’) is similar to that in 1.

3. Assume that a sequence of the index O"R follows the rule (PR). If n = 0, then we
can change the derivation as in the noncommutative case. If n > 0 we must modify the
following derivation:

(PR) X -z Y oy
(O) (Xa Y) — 21
(0) :
() — &Y=
(X,Y)— =z
Asz-y S ... % 2, € Ax thus z, must be a product type, say z, = zl - 2%, and according
to Lemma 2, either 2 > -+ S 2l € Axand y > -+ S 22 € Axorz > -+ 3 22 € Ax
and y 5.5 z! € Ax. Hence the above derivation can be replaced by
(0) —X=z =4 (o)
0) ——— (0
(PR) X — 2z Y — 22
(R) (X,Y) — 2, - 22
(X,Y) —> =
or by
(0) —X=2 =4 (o)
0) — — (0
(PR)) X — 22 Y — 2}
(R) (X,Y) -zl .22
(X,Y) -z

12



In this way we reduce our problem to the case in which an R-instance of (C) is placed
directly after (PR) or (PR’). This situation however can be treated as in the noncom-
mutative calculus.

Finally, let us notice that transformations employed in this proof can be used in order
to get rid of those O-instances of (C) which are placed between the rules (A), (A’), (PR)
or (PR'). O

3 Phrase languages and CF-grammars

Let V be a finite vocabulary. The set BS(V) of phrase structures over V is defined as the
smallest one such that: (i) V C BS(V), (ii) if Ay,...,A, € BS(V), then (4;...4,) €
BS(V). We will denote by | A | the sequence arising from a phrase structure A by deleting
all brackets. Any subset L of BS(V) will be referred to as a phrase language over V.

The set BS(V) provided with operations f,(A1,...A,) = (A1...4,), n=2,3,4,...
can be considered as an absolutely free algebra over the set of generators V. By a
congruence in [BS(V)]* we mean an equivalence relation ~ preserving operations f;, i.e.
a relation satisfying the condition:

if Ay ~ By, ..., An ~ By, then (A;...A,) ~ (By...B).

If ~ is a congruence in [BS(V)]> and L C BS(V) then we call ~ a congruence on L if
and only if for all A, B € L the following condition is fulfilled:

if A~ B,then (A€ L - Bel).

The largest with respect to inclusion congruence on a phrase language L, to be denoted
INTy, is called the intersubstitutability relation for L. We refer to the index of the relation
INTy, as to the index of L and denote this number by ind(L).

Given a phrase structure A = (A;...A,) we refer to Ay,...,A,as to the direct
substructures of A. The set sub(A) of substructures of A is defined in a natural way: (i)
A € sub(A), (ii) if B € sub(A) and C is a direct substructure of A, then C' € sub(A). The
size of A € BS(V), to be denoted s(A), is the maximum number of direct substructures
in any element of sub(A). For L C BS(V) we put s(L) =sup{s(A) : A € L} and call
s(L) the size of L.

By a path in A € BS(V) we mean a sequence Ao, Ay,...,A, such that for all
1 < 72 < n, A; is a direct substructure of A;_;. Structures Ay and A, are called
the initial and final term of Ao, A1,..., A,, respectively, and the number n is referred
to as the length of this path. The external degree of A € BS(V), denoted by deg®(A) is
defined to be the minimal length of paths in A whose initial term is A itself and whose
final term is an element from V. We put

deg(A) = max{deg®(B) : B € sub(A)}

and for L C BS(V)

deg(L) = sup{deg(A): A € L}
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and call those numbers the degree of A and the degree of L respectively.

We admit a standard definition of a (A—free) CF-grammar as an ordered quadruple
(V,U,s, Py in which symbols V, U, s, P denote, respectively, the set of terminals,
nonterminals, the initial symbol and the set of production rules. We adopt the notation
a v+ by...b, for elements of P. A production rule a + b;...b, is called a permutation
variant of a — ¢1...¢c, if for all ¢ € {1,...,n} we have b; = ¢;; for some permutation
(J1y--+5Jn) of (1,...,n). In case of a binary rule, i.e. when n = 2 we use the term
‘transposition variant’ instead of ‘permutation variant’. A set of production rules is closed
with respect to permutation if along with a certain rule it also contains all permutation
variants of this rule. A CF-grammar (resp. CF-language) is called closed with respect
to permutation if such is its set of production rules (resp. a CF-grammar generating
this language). The definition of a grammar and of a language closed with respect to
transposition is similar.

Every CF-grammar induces in a natural way a bracketing on elements of the (string)
language it generates. This bracketing is fully determined by the production rules of
a grammar: each production rule transforms an element of a nonterminal vocabulary
into a phrase staying on the right side of the rule. Thus, along with a (string) language
L(G) C V*, a CF-grammar G generates also a phrase language BL(G) C BS(V) and
L(G) = {| A|: A € BL(G)}. The following theorem provides a necessary and sufficient
condition for a phrase language L to be generated by a CF-grammar (see [26]):

Theorem 3. A phrase language L is generated by a CF—grammar if and only if s(L)
and deg(L) are finite.

We close the section with an important for our further considerations notion of CF-
grammar: A CF-grammar G is called a CF-grammarif: (i) G is closed with respect to
permutation, (ii) deg(BL(G)) is finite.

4 Categorial grammars and their languages

Any calculus of syntactic types, as, for example, one of the described in Section 2, can
play the role of a type reduction system in a categorial grammar. In what follows we give
only most important definitions and results which we use later on, the reader is referred
to [10] and [5] as to most comprehensive sources.

A categorial grammar over a type reduction system TRS is an ordered quadruple
G = (Va, Ig, sq,TRS), where Vi is an nonempty vocabulary of G, sg is a distinguished
primitive type understood as a type of properly built sentences, I¢ C Vo xTP is a finite
relation called the initial type assignment of G. Ig can in a natural way be extended
to a relation Fg C BS(Vz)x BSTP. By the string (resp. phrase) language L(G) (resp.
BL(G)) generated by a categorial grammar G over TRS we mean the set

L(G)={] A|: (3X € BSTP)((A,X) € Fg & Frrs X — s¢)}
(resp. BL(G) = {A: (3X € BSTP)((A, X) € Fg & Frrs X — s6)}).
As L(G) = {| A |: A € BL(G)} thus if two CGs generate the same phrase languages
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then they also generate the same string languages; the converse implication however does
not hold. If there is no special reason we call string languages generated by CGs simply
languages. A categorial grammar in which TRS = NA (resp. NCA, NCL) will be referred
to as an NA—(resp. NCA-, NCL-)grammar. We adopt this convention for product-free
calculi as well.

Phrase languages generated by CGs defined as above are of size < 2, this is a conse-
quence of the definition of syntactic calculi where only at most binary phrase structures
on left-hand sides of formulas are admitted.

The following theorem establishes the equivalence of NA—- and NA®—grammars within
the scope of phrase languages, thus within the scope of string languages as well (see [18]
where this result is given in a stronger form).

Theorem 4. NA- and NA®- grammars generate the same class of phrase languages.

For z being a product-free type, let the order of z, to be denoted by o(z), be
non-negative integer defined inductively as follows: (i) o(z) = 0, for = € Pr, (ii) o(z/y)

o(y\z) = max{o(z), o(y) + 1}. By the order of a product-free categorial grammar G we
mean the number

o(GQ) = sup{o(z) : (Fv € V5)((v,z) € 1)}

The following theorem was proved in [8] (in a stronger case of functorial languages):

a

Theorem 5. Any phrase language generated by an NA®— grammar is also generated
by an NA®- grammar G such that o(G) < 1.

The next theorem provides a characterization of phrase languages generated by NA°-
grammars (see [7] where this result covers a stronger case of functorial languages)

Theorem 6. A phrase language L is generated by an NA®— grammar if and only if
both ind(L) and deg(L) are finite.

5 The inclusion of the class of NCL-languages in
the class of CF-languages

The existence of normal form for derivations in NLC provided by Theorem 2 enables us
to construct for every NCL-grammar an NCA-grammar generating the same language.
Below we give this construction omitting however the proof of the equality of languages
as the aggument is similar to that presented for noncommutative calculi, see [7] and [17].

Let Gi = (Vg, I, S6,, NCL) be an NCL-grammar. We construct an NCA-
grammar Gy = (Vi,,Ig,,S¢,, NCA) as follows: Vg, = Vig,,86, = sa,, and for z €
TP and v € Vg, let (v,2) € Ig, if and only if there exist types zi,...,z, such that
(v,21) € Iy, @, = T, Ty — ... — T, € Ax and every formula in this sequence is either
R- or O-formula.
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Lemma 6. L(G,) = L(G,).

Having reduced NCL-grammars to NCA—grammars in the way which preserves gen-
erated languages we can make the next step: construct a CF-grammar which gener-
ates the same (phrase) language as a given NCA—grammar. The details of this con-
struction are as follows: For an NCA-grammar G = (Vg,Ig,sqg, NCA) we define
a CF-grammar G in the following way: Vg = Vg,s¢ = s¢ and Ug = sub({z €
TP: (Fv € Vg)((v,z) € Ig}). The set Py of production rules contains all rules of
one of the shapes: (i) z — v where z € TP, v € Vi, and (v,z) € Ig, or (ii) z — z/y vy,
z—yzfy,z-y—zy, -y yz, forall z,y € Us. We have

Lemma 7. BL(G) = BL(G).

The proof of this lemma is essentially the same as in the noncommutative calculus
NA, see [17].

The following lemma is a straightforward consequence of Lemma 7 and the presented
construction:

Lemma 8. For every NCA-grammar G one finds a closed with respect to transpo-
sition CF- grammar G such that BL(G) = BL(G).

Lemma 9. Let G be an NCA—-grammar. If G is a CF-grammar constructed as
above, then deg(BL(G)) < Ng

Proof. By Lemma 7, BL(G) = BL(G), thus it is sufficient to show the finiteness
of BL(G). Let G = (Vg, Ig,sg, NCA) and let NCA denotes the calculus obtained from
NCA by dropping the rules (A’) and (PR’), thus employing only (A) and (PR). We put
G = (Vg,Ig,sGg, NCA) and immediately get BL(G) C BL(G). Observe that BL(G)
arises from BL(G) by adding all phrase structures obtained by transpositions of direct
substructures in substructures of elements of BL(G). However, the degree of any phrase
structure B obtained by transpositions from a given structure A is the same as the
degree of the structure A itself. Thus deg(BL(G)) = deg(BL(G)) and we will show that
deg(BL(G)) is finite. In order to do it we prove that for some phrase language Lo such
that BL(G) C Lo we have deg(Lo) < Ro. We put the calculus NA instead of NCA in
the definition of G and denote the obtained grammar by Go. Let Lo = BL(Gy). Every
formula derivable in NCA is also derivable in NA, thus we get the inclusion BL(G) C Lo.
By Theorem 4, the language Lo being generated by an NA-grammar is also generated
by an NA®-grammar. Consequently, according to Theorem 6, the number deg(Lo) is
finite. Thus we have deg(BL(G)) = deg(BL(G)) = deg(BL(G)) < deg(Lo) < Ro. O

Lemmas 6,7 and 9 give

Theorem 7. For every NCL- grammar G one finds an CF- grammar G such that
L(G) = L(G), i.e. the class of languages generated by NCL- grammars is included in the
class of languages generated by CF- grammars.
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6 The equivalence of CF—grammars and NLC-gram-
mars.

Lemma 10. For every CF—grammarG one can find a CF-grammar G’ such that BL(G)
= BL(G') and all the rules of production in G' are of one of the forms: a — by ...b, or
a +— v, where a,by,...,b, are nonterminals and v is a terminal in G'.

Proof. This lemma usually constitutes a part of the proof of the Chomsky normal
form theorem, see for example [15]. The equality BL(G) = BL(G’) is a consequence of
the fact that the employed in the proof procedures of getting rid of unit productions
(i.e. of productions of the form a +— b) as well as of productions containing terminals on

right-hand sides do not affect the phrase structure of elements of the generated language.
O

Lemma 11. Let G = (Vg,Ug, sg, Pg) be a CF-grammar. There exist then a closed

with respect to transposition CF-grammar G' in Chomsky normal form such that L(G)
= L(G’) and deg(BL(G’) < No.

Proof. According to Lemma 10 we can assume that P; = P;UP;, where P; consists
of productions of the form @ + b;...b,,n > 2 and P; consists of productions of the
form a — v, where a,by,...,b, € Ug and v € V;. We show that every set of production
rules which comprises all permutation variants of a given production rule can be replaced
by a closed with respect to transposition set of binary rules. Let R = a + b;...b, € P;.
If n = 2, then there is nothing to show as, according to our assumptions, both a + b;b,
and a +— byb; are in P; and they constitute the desired set of binary rules. For n > 3
we replace R by a set F) consisting of the rules a — bycy, ¢1 — bacy, ..., Chz > bp_1by
as we usually do in the construction of the Chomsky normal form for CF-grammar
(c1y...,Cn_z are new nonterminals). Then we add to Fj} all transposition variants of its
elements and denote the set obtained in this way by Fgr. Observe that for generation
of a language over Vy; only those strings derivable from a are essential which consist

of nonterminals by,...,b, but not ¢,...,c,—2. However, due to the form of the rules
in Fg, every string derivable from a by means of those rules which consist exclusively
of nonterminals by, ...,b, must contain all of them, additionally, along with a sequence

by ...b,, some of its permutations can also be derived from a by means of productions
from Fg. Thus, Fr is a substitute for the rule R as well as for some of its permutation
variants. The described procedure can be performed for all permutation variants of R
(all new nonterminals must differ one from another in order to avoid an interaction of
rules). The set of all binary rules obtained in this way for R and all its permutation
variants will be denoted by Fper(r). This set produces the same strings as the rule R
and its permutation variants and no other strings. Fpe,m(r) is also closed with respect
to transposition. We define Py = Pg, Pgi = U{Fpermr) : R € Pg}, Pg = Py U Py
sgr = 8g, Vg = Vg, and let Ug: consists of all nonterminals from Ug as well as of all new
nonterminals introduced in the process of constructing the sets Fpe,m(r) for all R's. We

put G’ = (Vgr, Ugs, sgr, Pgr). The set P=gl produces precisely the same strings over Ug:
as Pg over Ug and consequently, as Pg/ = Pg, we have L(G’) = L(G).
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Now we show that deg(BL(G")) < No. The replacement of a rule a — by ...b,, n >3
by a set of binary rules introduces a (binary) phrase structure on b;...b, and conse-
quently makes the phrase structure of elements of BL(G’) finer than that we have in
BL(G). As a result, the length of paths leading from any substructure of an element
of BL(G’) to an atom (terminal) can increase. However, for any A € BL(G) and A’ €
BL(G") such that | A | = | A’ | we have deg(A’) < deg(A)-(s(BL(G)) — 1) < deg(A)-
s(BL(G)). But s(BL(G)) is finite (it is the maximal length of strings on the right-hand
sides of production rules from Pg) and deg(BL(G)) is finite as well (G is a CF-grammar).
Therefore deg(BL(G)) = sup{deg(A’) : A’ € BL(G')} < sup{deg(A)-s(BL(G)) : A €
BL(G) & | A |=| A’ |} = s(BL(G)sup{deg(4) : A € BL(G)} = deg(BL(G))s(BL(G)) <
No. O

Lemma 12. IfG is a CF- grammar in Chomsky normal form, then BL(G) = BL(G)
for some NCA®— grammar G of order < 1.

Proof. By Theorem 3, ind(BL(G)) < No and s(BL(G)) < No (the second inequality
is not important because in our case we have s(BL(G)) < 2). Since deg(BL(G)) <
Ro, by Theorem 6 we conclude that BL(G) = BL(Gy), for some NA®-grammar G =
(Vao, IGos SGos NA®). According to Theorem 5 we can assume that o(Go) < 1. If we
add to the rules of NA® the rule of permutation (Perm), then we get the product-free
version NCA® of NCA. Let G = (Vg,, Ig,, 5G,,NCA®). We haveo(G) < 1 and, as NCA®
is stronger than NA®, BL(G) = BL(Go) C BL(G). The converse inclusion follows from
the fact that G is closed with respect to transposition, consequently the language BL(G)
(and BL(G)y)) is closed with respect to transpositions of its substructures. Thus adding
the rule (Perm) to NA© i.e. employing NCA© as a type reduction system instead of NA®
will not lead us beyond the language generated by Gy. O

Lemma 13. For every NCA®- grammar Gy of the order < 1 there exists an NCL-
grammar Gy such that BL(G) = BL(G,).

Proof. We adopt a standard argument presented for example in [7] or in [18] but
suited here to the case of commutative calculi. The axiomatization of NCA® we use
consists of the axiom scheme (A0) and the rules (A) and (A’). Given an NCA®-grammar
G = (Vg g, sa, NCAO) we put G; = (Vg, Ig,s6, NCL) and claim that BL(G) =
BL(G41). In order to obtain this equality it is sufficient to prove that Fy,,0 X — sg if
and only if Fnc, X — s unless all types on X are product-free and of order < 1. It is
obvious that every formula derivable in NCA® is also derivable in NCL because NCA®
is a subsystem of NCL. To prove the converse implication let us assume Fncr, X — sg.
By Theorem 2 the formula X — sg possesses a normal derivation D in NCL. Since
sg € Pr, no E-instances of (C)-rule occur in D. For every type z in X any R-instance
of (C)-rule would employ such a formula z — y from Ax that ¢(z) > ¢(y). This formula
can not be obtained by means of the rules (R2) or (R2') because of the presence of the
product sign - in their conclusions. For axioms (Al), (Al’), (A2), (A2') as well as for
formulas in Ax which arise from them by an application of rules (R1) or (R1’), one sees
that this side of a formula which is of greater complexity contains also a product sign.
The formula z — y can not be obtained from (A4) by any rule from Ax as well, otherwise
we would have ¢(z) = ¢(y). The only remaining possibility of constructing z — y is that
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using (A3) and the rules (R1) or (R1’). For any z,t € Tp we have however o(z/(z/t))
= max(o(z), o(t) + 2), and thus o(z/(z/t)) > 2. Consequently, this side of the formula
x — y which is of greater complexity would have the order > 2, but for x — y being an
R-formula this is impossible as o(G) < 1. We conclude that no R—formulas are employed
in D, thus D is a derivation in NCA. But the rules (PR) and (PR’) can not be applied
in D, otherwise for some types z,t a product type z - y would be a subtype of a type in
X. As aresult D is a derivation in NCA® and Fyepo X = sg. O

Theorem 8. For any CF- grammar G there exists an NCL- grammar G such that
L(G) = L(9).

Proof. We conclude from Lemma 10 and Lemma 11 that for the grammar G one can
construct a CF-grammar G’ in Chomsky normal form, closed with respect to transpo-
sition and such that L(G) = L(G’) and deg(BL(G’)) < Ro. Employing Lemma 12 we find
for G’ an NCA®-grammar G; such that o(G;) < 1 and BL(G’) = BL(G}). By Lemma
13 we can find for G; an NCL-grammar G such that BL(G;) = BL(G). Accordingly,
as L(G') = L(G1) = L(G), G is the grammar fulfilling the thesis. O

Theorem 9. NLC- grammars and CF- grammars generate the same class of (string)
languages.

Proof. This is a consequence of Theorem 7 and Theorem 9. O

Note. It is not known however, whether the finiteness of the degree in the definition
of CF-grammars is an essential restriction. So far we do not know if the question whether
for every CF-grammar G one can construct an CF-grammar G’ such that BL(G) =
BL(G’) and deg(BL(G’)) < Ny has a positive or negative answer.
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