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Modal Quantification over Structured Domains

Johan van Benthem Natasha Alechina

January 5, 1993

1 Generalized Quantifiers as Modal Operators

The Tarskian truth condition for the existential quantifier reads as follows:
M,[d/5) = Jze(z,9) « 3d€ D:M,ld/z,d/7] = ¢(z,7)

This may be viewed as a special case of a more general schema, when the
element d is required in addition to stand in some relation R to d - where R
is a finitary relation of ”(in)dependence” structuring the individual domain
D:

M,[d/7] = Oz0(z,9) © 3de D: R(d,d) & M,[d/z,d/7] E ¢(z,7)

This broader idea has emerged in the work of van Lambalgen 1991 on
the generalized quantifiers "many”, "uncountably many” and ”almost all”,
where R stands for an independence relation. But we can think of more
general applications too, with domains being arranged in different levels of
accessibility, or with procedures drawing objects in possible dependencies
upon one another. Ordinary predicate logic then becomes the special case
of flat individual domains admitting of "random access”, whose R is the
universal relation. ‘

This semantics has some clear analogies with Modal Logic, with an ex-
istential generalized quantifier as an existential modality over some domain
with, not a binary, but an arbitrary finitary ”accessibility relation”. As a
consequence, we can apply standard ideas concerning modal completeness
and correspondence to understand this broader concept of quantification.
The purpose of this paper is to show how this works more concretely.

The language of the logic EL(3,<) with a generalized quantifier is the
ordinary language of first-order predicate logic with equality (without func-
tional symbols) plus an existential generalized quantifier &. The notion of a



w.f.f. is extended as follows: if ¢ is a w.f.f., then so is ¢p¢p. A universal dual
of © is defined as usual: Oy =4 —Oz—p. We shall refer to the sublanguage
without ordinary quantifiers as EL(<).

M = (D,R,V) is a model for EL(3,<) if D and V are an ordinary
domain and interpretation for first-order logic, and R is a binary relation
between d € D and finite sequences d from D. For many purposes, we can
reduce this to a relation R(d, D) between individual objects and finite sets
Dy of such objects - but we need not make this assumption in general.

Terms (individual variables and constants) are interpreted given M and
a variable assignment function v as follows:

* (@il = v(zi),

¢ [cilmp = V().
The relation M,v = ¢ ("¢ is truein M under assignment v”) is defined as
follows:

o Myv | PPty ta) & < [tilatn - alago € V(EP);

o M,v=—p & M,v - p;

e MvEpAY o M,vE=pand M,v | 9;

e M,v |= Jzyp(z) & there exists a variable assignment v’ which differs
from v at most in its assignment of a value to z (v =, v) such that

M,v' = ¢(2);

o M,v |= Oz9(x,t) & there exists v’ =, v such that R(v'(z), [{]m,,) and
M,v' = ¥(z,?) (= {y1,-.-,Yn,C1,...,Ck}, Where § are all (and just
the) free variables of ¢, and ¢ are all the constants occurring in ).

It is easy to see that

o M,v = Oy9(x,t) < if for all v/ =, v: R(V'(2),[flmp)) = M,V =
¥(z,1).

We say that M |= ¢ iff M,v |= ¢ for all variable assignments v.

Let us define a frame (analogously with modal logic) F = (D, R) as the
underlying structure of a seét of models with all possible interpretations of
the predicate letters and constants. F,v = ¢ if M,v |= ¢ for all models M
on F. The formula ¢ is (globally) valid in F if, for all v, F,v = ¢ (°F = ¢”).

This system resembles first-order logic in many respects, but no standard
property can be taken for granted any more:



Monotonicity is restricted. Let for all variable assignements v M,v =
(z1,z2) — P(z1,23) and for some assignment v M, v = O, (21, 22)
(there exists v/ = z1v such that R(v'(zy),v(z2)) and M, v’ = ¢(z1,2)).
But it does not follow that M,v | O, 9 (z1,z3), because although
M,v" = ¢(z1,3), it is not necessary that R(v'(z1),v(z3)) holds. In-
deed, the general monotonicity rule

T F o(z,f) — ¢(z,5)
YF Omtp(m,t_) - Oz¢(w:§))

with z not free in X, is invalid. We can accept only Restricted
Monotonicity, where ¢ and 1 have the same parameters.

Extensionality is also restricted. Properties which hold for exactly the
same objects, are no longer identical. Consider a property P which
holds for a single object a: Vz(P(z) = z = a). Let R(a,0) and
—R(a,a). Then, ¢, P(z) is true and O,z = a is false.

Substitution therefore should also be restricted: only formulas with the
same parameters can be substituted. We do not have in general that

D,R,V,v = ¢[a/P] & D,R, V[P := [a]M,v];v E .

2 Axiomatics and Completeness
We shall now develop the basic deductive calculus for our modal quantifier
logic.

Definition 1 The minimal logic for EL(3,Q) is a calculus of sequents
¥ k¢ satisfying the usual rules for first-order logic, including all Boolean
principles, as well as the following quantifier rules:

Restricted Monotonicity plus Distribution

Tk (p(:l:,f)——-) \z/"/}z(xfz)

i=1

i=n
TF Omso(x’f) - V Ow¢i(waf)
i=1
where z is not free in ¥, and parameters (free variables and constants)
are exactly those displayed (only © does not necessarily occur free in
;). The convention here is that an empty disjunction is a falsum.



Alphabetic Variants
F Cap(a,t) = O20(2,1)
where z does not occur (free or bound) in ¢(z,1).

Here are some derivations in this system, corresponding to obvious validities
given the above existential truth condition for the quantifier <:
1. F 1L—-1
F Ol — L
F O, L
2. 9@k (@ —L
—(F) F Capp(y) — L
F Cz0(7) — ¢(¥), provided that x is not among the

3. Suppose that - ¢ — 9 with = not free in :
Then:

A T

Yt p— L

Y Opp— L

B AR

whence - Oy — .

4. Application of (3):

F Crp— Opp

F CrCrp— Opop
5. Also,

F oo —dzp

F O — dzp

6. As a final illustration, we prove a useful principle for later reference:
F =0, (¢(2,§) A 7Cztb(z,y)) (where z, z are not among §,  is free
for z in ¥(z,%)):



F9(2,5) A=t (z,§) — ¥(2,9)
= <>z(1,b(z,37) A _‘Otcd’(wag)) - <>z¢(z,37)
= Oz("/’(zag) A _‘Om":b(x,g)) - 0w¢(w’37)

and
Fp(z,§) A =OCe9(z,§) = ~O29(z,7)
= OZ("/"(Z,:U) A _‘Oz"lb(x’ 37)) - —|Qm1/J((l:,g)
(the latter step is as in example (3) above). Therefore,

(o <>z('(/)(z,1,7) A —'Omd’(az7g)) -1
F =0, (¥(2,§) A 2Ctp(z, 7))

Constant Lemma. If a constant d does not occur in %, and z is a new
variable, then

I F e(d)
X F oe(2)

Proof. Induction on the length of derivations. For Restricted Monotonicity
and Distribution: d occurred among the ¢; since z is a new variable, it cannot
become bound in ¢ or v;; so, all variable conditions remain satisfied. For
Alphabetic Variants, a similar argument will work. O

Theorem 1 The minimal logic is complete for universal validity.

Proof. By a standard Henkin construction. The key point, as usual, is to
create a maximally consistent set of formulas ¥ - this time, adding suitable
witnesses for accepted formulas ¢, ¢:

If &, is consistent with C,¢(z,d),

then add a new individual constant d with

L o(d,d),

2. {#(d,d) — ©9(z,d)| for all formulas 1}.



Claim. This extension is consistent.

Proof. Suppose it were inconsistent. Then, by standard reasoning (using
the Constant Lemma), for some fresh variable z and some finite disjunction
of formulas 1);:

Y 90(23J) - V(¢1(Z>J) A _'013"11)’5("37&))'

2

Then also

T b Os0(2,d) — V O, (%i(z,d) A ~O%i(z, d)).

Therefore, since - O p(z,d) = ©,%(z,d) (by Alphabetic Variants), {Zy,
O.p(z,d)} must be consistent with some

Oz(¢i(z)d) A —'om@bi(:c,d))'
But this contradicts the earlier derivability of the formula

ﬁoz(d’(Z:J) A _'<>m¢(m’ d_))

O
Now construct the Henkin model as usual, and set

R(d,d) &g Vo:¢(d,d) € L= Ozp(z,d) €2

This may be compared with the usual introduction of the alternative relation
R in completeness proofs for Modal Logic. To demonstrate the adequacy of
the present Henkin model, all we have to prove is the following decomposi-
tion:

Opp(z,d) € T iff 3d: R(d,d) & ¢(d,d) €T

From left to right, this is guaranteed by the above construction of ¥ (through
the addition of all formulas of the second kind). From right to left, this is a
trivial consequence of the definition of R. O

If we look at the above completeness proof (and earlier examples of deriv-
abilities), we see that no structural contraction rule or ordinary quantifier
rules have been used. This observation (which is quite analogous with the
situation in the minimal modal logic) motivates the following

Conjecture Minimal logic without ordinary quantifiers is decidable.



3 Model Theory

Now, to illustrate the semantical properties of modal quantifiers, we shall
consider an analogue to the basic model-theoretic invariance relation of
modal logic.

Definition 2 A bisimulation B between two models M1 =< Dy,Ry,V7 >
and My =< Dy, R2,Vo > is a family of partial isomorphisms m with the
following properties:

1 7 is a partial bijection with dom(w) C Dy and ran(n) C Dy;
2 If{di,...,dn} C dom(w), then for all predicate letters
<dy,...,dp >E Vi(P") & <m(dy),...,7(dn) >€ V2(P")
(d1,...,d, are not necessarily distinct.)

3a If D C dom(w) and R1(d, D), then there exists an element d' in Do such
that Ra(d',w[D]) and {< d,d' >}U = € B.

3b If D' C ran(r), D' = n[D], and Ry(d',D’), then there ezists an element
d in Dy such that Ry(d,D) and {< d,d >}U meB. !

Invariance Lemma If ¢ is a formula of EL(Q) (that is, without ordinary
quantifiers) with the set of terms TERM (p) C {t1,...,tn}, for allt; (1 <
i <n) [timy v, € dom(m) and [ti]ag,,0, = 7[ti]as 0, then

Mlavl '=(P = M2,”2 l:(p

Proof. By induction on the length of ¢.

e ¢ is a k-place predicate letter. - By clause (2) in the definition of
bisimulation.

o v = (tl = tz). M, vy # t; = to if and only if [tI]Ml,'vl = [t2]M2,'vz'
Since 7 is a function, and [t1]a v, [E2]Mew, € dom(7), T[ti]a e, =
w[t2] My w15 that is, [t1]am,0, = [t2]aM,0,- Backwards: the same argu-
ment, using the fact that 7! is also a (partial) function.

! Alternatively, we could restrict clause 3 to R-successors of the whole domain and
range, while adding a further clause closing B under restrictions.



e ¢ = —): by the inductive hypothesis,
Mlavl l: ";b ~ M2)1J2 ': ¢

and hence
My,v1 =~ & M,z |= .

e ¢ =13 Aa. Again, by the inductive hypothesis,
Mi,vi EY1 & Ma,v i

Mi,vi Ev2 © Ma,va =12

and so,

My,v1 =1 Ay & Mao,va =11 Ao

o ¢ = Outp(x,t). Assume My,v; | O9(z,?). By the semantic truth
definition, there exists an assignment v} which differs from v; at most
in its assignment of value to z, such that R(v}(z), [{]ar v, ) and M1,2} E
¥(x,t). By assumption, {[t1]af 015 - -5 [En] My 00 } C dom(w). By clause
3a, there is d' € Dy with R(d',7[f]r;0,), ie. R(d, [E]a,0,), and
{< d,d' >} U m € B. Put vh =, vg, vh(z) = d'. Then, for the
n' € B which consists of m and the pair < d,d’ >, [z] My, = T[]0
and for all ¢, [ti]p, 0 = '[tilar,,0y- By the inductive hypothesis,
Ms, vy = 4(z,). But then My, vs | Opt(z,f). The same argument
works backwards. a

Claim 1 If ¢ does contain ¥V or 3, bisimulation does not preserve truth.

Proof. Let M; and M5 be as follows:
My =< Dy,R;,Vi >: Dy ={d,d'}, Ri =0, Vi(P) = {< d,d >};
MZ =< DZ,RZ,.VZ >: DZ = {e}, -RZ = @a VZ(P) =0.

Then My, [d/z] = JyP(z,y) and Mo, [e/z] = JyP(z,y). But at the same
time, a bisimulation between these two models exists: B = {< d,e >}. O

Claim 2 Ify is an arbitrary EL(3, ¢) formula withTERM (¢) C {t1,...,ta},
[tilMy 00 € dom(m), [t:]as, 0, = T[ti]asy 0, and the bisimulation has in addi-
tion the property



4 For every d € Dy there ezists d' € Dy such that {< d,d' >} U = € B,
and vice versa

then Ml,’Ul |=(p & Ma, v |=<p .

Proof. First, note that clause (4) does not imply (3), as it may not enforce
the right dependency on R. Now, all inductive steps for the Invariance
Lemma still apply here, and we just have to add the following clause for
ordinary quantifiers:

o ¢ = Jxyp. Let Mj,v; and Msy,ve be as in the Invariance Lemma,
and Mj,v; = Jzep. Then there is an assignment v| =, vy such that
Mi,v] E 9. Let vi(z) = d. By (4), there is an element e in M
such that {< d,e >} U « € B. Define vy =, vy with vh(z) = e.
Since now for all terms t; of ¢, including @, [ti|nr,, ot = 7'[ti]a 0
(7' = {< d,e >} U =), we can conclude by the inductive hypothesis
that My, vh = 1. But then My,vy |= Jz1p. The same argument will
work backwards. O

Continuing the analogy with modal logic, we define a translation of
EL(3, ) formulas into the appropriate first-order logic, which is our orig-
inal base language enriched with a dependence predicate R. The standard
translation ST is defined as follows:

o ST(PM(t1...tn)) :=PP(t1...1,);
o ST(t1 =t2) := (t; = t2);
o ST commutes with classical connectives and quantifiers;
o ST(0ap(w,D)) = Jo(R(w,?) A ST(p(z, ).
Claim 3 If ¢ is a formula of EL(3, ), then
MyovEe & M, vk ST(p),

for the classical model M' = (D, V'), where V' extends V to interpret the
predicate R as Ryy.

Definition 3 The modal formulas (being those formulas which are standard
translations of EL(<®) formulas) are the least set X of first-order formulas
such that



- atomic formulas belong to X,
- if 1 and ¥ are in X, then so are —wpy and 1 A 9o,
- if p(z,t) € X, then Iz (R(x,?) A p(z,t)) is in X too.

Theorem 2 A first-order formula ¢ is equivalent to a modal formula if and
only if it is preserved under bisimulation (with the above properties 1 — 3).

Proof. The direction from left to right follows from Invariance Lemma
above. For the converse, let ¢ be a first-order formula with variables z1, ..., z,,
preserved under bisimulation. We want to prove that it is equivalent to a
modal formula.

Define the set CON So(y) as {a : a is a modal formula, ¢ = « and the

free variables of « are among x1,...,2,}. If we can prove that

(¥)  CONSo(p) ko,

then we are done. For, by compactness, there will be some finite sub-
set aq,...,0,m of CONSo(p) with ai,...,am = ¢. By definition, ¢ =
Qai,...,0n,. So, then ¢ is equivalent to a1 A ... A ay,, which is a conjunction
of standard translations of EL(<{) formulas, i.e. a standard translation of
the conjunction of those formulas.

Now we start proving (*). Assume that for some model M,v = CON So ().
We show that M,v |= ¢. Let us denote the set of all modal formulas true
in M and having free variables among 1,...,z, as Xjs. This is consistent
with ¢ (by the truth of CONS¢(y) in M,v) and therefore there should be
a model N for ¢ UXyy: say, N,v' = o U Xyy1.

Let v(z1) =di,...,v(zp) =dp in M and v'(z1) =df,..., v (z,) =d, in
N. Now, take w-saturated elementary extensions M and N of M and N.
We define a relation of bisimulation between M and A as follows:

(**) B is the family of partial mappings m such that = = {(e1,7(e1)),.-.,
(en,m(en))} if for all modal formulas 9 with at most free variables z1,..., %,
and any two assignments v,v’ with v(z;) = e;, v'(z;) = 7(e;) (1 <1 < n),

MouEY & N Ey

To prove that (*) indeed defines a bisimulation relation, we must check
whether the properties (1)—(3) hold for B. Here, (1) is trivial. Case (2) is
immediate, since atomic formulas are also standard translations of (atomic)
formulas in EL(<)). Next, we check the zigzag clause 3a. Assume that

10



e1,...,ex € dom(n) and R(e,eq,...,ex). We must prove that there exists
¢ in N such that R(e',w(e1),...,m(ex)) and {< e,e’ >} U m € B. Take
the set ¥ of all modal formulas with variables interpreted as e,ej,...,ex
which are true in M under variable assignment v. We need an element
e in N such that all formulas in ¥ are true in A under v' when € is
assigned to the variable which was assigned e in M. By saturation, it
suffices to find such an e’ for each finite subset ¥y of ¥. But these must
exist, because the modal formula ST(C, A ¥o(z,e1,...,ex)) holds in M and
hence ST (O, A\ ¥o(z,m(e1),...,m(ex))) holds in A. The appropriate check
for the converse direction 3b is proved analogously.

We must also show that {< di,d} >,...,< dn,d, >} € B. But this is
so because for all modal formulas 7 with variables interpreted as dy,...,d,
in M,

MuvkEy & N EY

(by the construction of N), and hence
Mooy & N,v E1b.

Finally, since ¢ is invariant under bisimulation and {< dy,d} >,...,
< dn,dl, >} € B, N E ¢(d},...,d,) will now imply M E ¢(ds,...,dns).
Since M is an elementary extension of M, M | ¢(dy,...,d,), that is,
M,v = ¢(z1,...,2,), and we are done. 0O

4 Frame Correspondence

If a formula ¢ of EL(3, <) is valid in a frame F (under an assignment v),
then classically

F,v =VP"...NP"ST(p),

where P, ..., P" are the predicate letters in ¢. If this second-order formula
has a first-order equivalent (containing only R and =), ¢ is called first-order
definable. This means that if ¢ is true in all models over F, then R has the
property defined by ¢, and vice versa. Additional quantifier principles added
to the minimal logic will now express special conditions on the relation R.
One bunch of examples arises if we look at some properties of the standard
existential quantifier 3:

Unrestricted Distribution Oz V) & OppV Oph.

11



In one direction, this gives us unrestricted ”Monotonicity” for <:

Czp = Oulp V).
This corresponds to the frame condition of
Upward Monotonicity R(z,y) — R(x,7,2)

Proof. Suppose that R(z,y). Define the following predicate:

P(u,?) = u=a AN 5=4.
We have R(z,3) A P(z,3), whence ¢, P(z,7) holds. Therefore,
O (P(z,7) V L(2))

(where L(Z2) is any contradiction involving z): i.e., there exists d with
R(d,g,z) and P(d,y)V L(2): the latter must be because P(d,3): i.e. d =z,
and hence R(z,3,z). O

By a similar kind of argument, again making an appropriate substitution
for the two predicates involved, the opposite direction

Ca@Vah) = Oup V Optp
corresponds to the frame condition of
Downward Monotonicity R(z,§,z) — R(z,7)

Together, these reduce the finitary relation R to an essentially unary "re-
striction” to the subdomain of all objects d satisfying the condition R(d).
It would also be of interest to see whether we can stop short of this, with
quantifiers merely reducing the finitary relation R to a compound of binary
ones (as happens in the generalized modal semantics for program operators
proposed in van Benthem 1992).

Remark. Classical analogies may be slightly misleading here. E.g., the
implication
Ol AY) = Ozpp

(cf. O(p A ) — Op) expresses Downward Monotonicity, rather than the
Upward Monotonicity of

Cztp — O V)

12



(cf. Op — O(9 V1)), even though the latter is equivalent with it in standard
modal logic. Thus, it should in fact imply unlimited distribution - as may
be seen using the available distribution in our minimal logic. In the latter
calculus, ”limited distribution” sanctions

L Ou(p(z,9) V§(2,2)) = O2((p(2,9) A T(2) V (¥(2,2) A T(9)))

2. O:((p(z, ) AT(2) V (¥(2,2) AT () =
— O2(p(x, 7)) AT(2) V O (¥(2,2) A T()),

3. from which the unlimited version ¢, (¢ V 9) — Oz V Og9 follows by
the above implication, passing to the appropriate conjuncts.

O

Finally, the above unary relation gets trivialized to universality by the
principle of

Instantiation p— O

This corresponds to the frame condition VzVyR(z,y) (provided that we as-
sume non-empty individual domains, that is). The idea is this: let z,y be
arbitrary, and let P(z,y) hold of just these. We must have that ¢, P(z,y):
i.e., some object d exists with R(d,y) and P(d,y): whence R(z,y). O

Another source of examples is the analysis of various properties of the
standard quantifier 3 which are all lumped together as being ”valid” in
ordinary predicate logic, but which now become distinguishable as different
properties of dependence. To be sure, such differences also become visible
in other more sensitive semantics, such as those for intuitionistic predicate
logic, or the logic of polyadic generalized quantifiers. Indeed, one concrete
interpretation of the above structured domains would be

individuals pairs <world, individual>
dependence (w,z)R(v,y) iff w Cv & y=uz,

reflecting the standard possible worlds semantics for intuitionistic logic. We
continue with one example of this kind:

Prenez operations Ou(p V) & ¢V Opth, where z not free in ¢.

The direction — here turns out universally valid in case 9, ¢ V % have the
same free variables, and hence derivable:

13



ok (pVY) =
a2 O(pVah) = Optp
F (V) = Cup Voo,

Otherwise, it will enforce the earlier Downward Monotonicity: R(z,y,Z2) —
R(z,y). The direction « corresponds to the conjunction of R(z,j) —
R(z,3,Zz) and JzR(z,y). O

A comparison of quantifier axioms and similar modal axioms can also
provide some interesting correspondences. For example, how would one
write a quantifier version of the well-known K4-axiom: as

Czp = OO
or with the more complex decoration
Cgp = OyOqp?
The first one is universally valid, the second one defines
R(z,yz) — R(y, 2)

(in case y is free in ). Another direction is also possible: which quantifier
principles correspond to well known properties of Kripke frames? Well-
known examples are the three defining properties of equivalence relations:

Reflezivity R(z,z)

Transitivity R(y,z) A R(z,y) — R(z,z)

Symmetry R(z,y) — R(y,z)

Fact. These principles are definable in EL(3,<):
o Reflexivity corresponds to Oyx = y;

o Transitivity corresponds to Oy(T(z) A C(T(y) AP(2))) = O(T(xz)A
P(z))

o Symmetry corresponds to VeOyP(z,y) — VyO. P(z,y).

(Proofs will be given in Section 5 below.)
Some negative results concerning definability of first-order properties in
EL(©) can be obtained using frame constructions familiar from modal logic.

14



Definition 4 Let F =< D,R > be a frame and dy,...,d, € D. A subframe
F' =< D',R' > of F is generated by dy,...,d, if

- D' is the smallest subdomain of D containing d1,...,d, which is closed
under accessibility, and

- R' is the restriction of R to D'.

Theorem 3 Let F' be a generated subframe of F, v a valuation restricted
to the elements of D', and ¢ a formula of EL(®). Then

FoEe & FlioEe

(in other words, EL(<)-formulas are invariant for generated subframes).

Proof. For any pair of models M =< F,V > and M' =< F',V > the
identity map from D' to D gives an obvious bisimulation, and we can apply
our invariance results from Section 3. O

Examples (Modal undefinability).

e Jz—R(z,x) is not definable by an FL(<) formula. Consider
F = < {dy,d2},{< dy,d1 >} >,
where it holds, and the generated subframe
F' = <{di},{< di,d1 >} >,
where it fails.

e VaVy(z #y = R(z,y)) is not definable in FL(<). Consider the same
two frames, but now in the opposite direction. a

The language of EL(3, ¢) with ordinary quantifiers added is much more
powerful. For instance, 32— R(z,z) is definable as Jz—~<Cyx = y, and
VaVy(z # y = R(z,y)) as Jy(z # y A P(z,y)) — OyP(z,y). Of course,
a great deal of expressive power is due to the presence of identity in this
language. Here is a more general result demonstrating this.

Theorem 4 Every purely universal R-condition s <,3-definable.
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Proof. (Cf. Proposition 2.4 in de Rijke (1992a)). Consider any R-condition
of the following form:

Vyi...Vy, BOOL(R,=,y1,:..,Yn),

where ”BOOL” is a purely Boolean condition. Introduce a predicate Py, for
every universally quantified variable y;, which holds exactly for y;: 3z Py, (z).
Define a translation * of first-order formulas with R into EL(3, <), such that
* commutes with Boolean connectives and =, where

(R(y,2))" = Ou(Py(u) A T(2)).
Then the EL(3, ©) equivalent of the R-property will be
NzPy () A... APy (z) = (BOOL(R,=,y1,...,¥))"

O
Open problem Are all first-order properties of R 3, O-definable?

We conjecture that the answer to this question is negative. A possible
counterexample is the first-order formula JzVyR(z,y).

There is a more general theory behind these various observations. The
above axioms whose frame correspondences were analysed all had ”Sahlqvist
forms” in a suitably general sense, and the proof method depends on finding
suitable "minimal valuations”. In the next Section, we make this precise.

5 A Sahlqgvist Theorem

Theorem 5 All formulas of the ”Sahlguist form” ¢ — 1, where
1. ¢ 1s constructed from

e atomic formulas, possibly prefized by O, V;

o formulas in which predicate letters occur only negatively
using A,V, g, 3
2. in 1 all predicate letters occur only positively

are first-order definable.
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Proof. First we translate ¢ — 1 into second-order logic:
VP ... VP (ST (p) — ST (%)),

where Pf'...P™ are all the predicates in ¢ — 9. Then we remove all
"empty” quantifiers (those binding variables not occurring in their scope),
and rename bound individual variables in such a way that every quantifier
gets its own variable which is distinct from any free variable occurring in the
formula. Now it is possible to move all existential quantifiers occurring in
positive subformulas of ST'(¢) to a prefix, using the following equivalences:

dzA(z) vV JyB(y) = F=3y(A(z) V B(y))

JzA(z) A B = Jz(A A B)

with the usual provisos on freedom and bondage. ST(¢) has now been
rewritten as
Jzy...3z,¢ .

Since 1) does not contain z1,...,z, free, ST(p) — ST(¢) is equivalent to
Vzi...Vou(o' — ST(¥)).

Next, it would be convenient to get rid of the disjunctions in ¢'. Let
! —
P =d1V g2
V:L'l .. ‘V'a:n(¢1 \% ¢2 - ST(¢))

is equivalent to
Vai...Vau(dr — ST()) AVay ... Vea(d2 — ST(4)).

We can restrict attention to one of these conjuncts (if both components
have a first-order equivalent, then so has their conjunction). So, assume
that there are no disjunctions in the antecedent. Thus, we have a formula

VP! .. NPz .. Ve, (¢ — ST()),

where Pl... P/™ are all the predicates in ¢’ — ST(), and ¢’ is a conjunc-
tion of ”blocks” which are of one of the following forms:

1. standard translations of atomic formulas possibly preceded by univer-
sal and O-quantifiers,

2. R-statements,
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3. formulas in which all predicate letters occur only negatively.

Next we rule out the use of negative formulas. The point is that ¢ —
ST(+) can always be rewritten as an implication whose antecedent does not
contain negative formulas. Let ¢’ = ¢1 A ¢2, where ¢3 is a negative formula.
Then

¢1 A ¢p2 — ST ()

is equivalent to

¢1 — 2 V ST(¢)7

whose consequent contains only positive occurrences of predicate letters.
Let us denote the antecedent obtained (without negative formulas) p*.
We shall now define the notion of a minimal substitution for every predicate
letter in *.
A predicate letter P* can occur in ¢* more than once. Consider an

occurrence P of P in ¢*. First we have to classify the variables of this
occurrence (this is the only part where the present proof becomes different

from the modal case). Let us assume that

- the variables which stand at the places i1,...,%, in this occurrence are
existentially bound or free; let us denote them z1,...,zn,;

- the variables at the places ji,...,j, are universally bound by quantifiers
which correspond to O-quantifiers in the original formula; let us call
them 2z, ..., zx;

- the rest of the variables is bound by ordinary universal quantifiers; let us
call them vq,...v;.

The minimal substitution Sb(P[*) for this occurrence of PP in ¢* will be:
P*(uy,...u,) is the conjunction of

1. w1 =21,...,%m = T,
2. T(v1),..., T(m);

3. R(uay,...,Ua;), Where uq,,...,Uq, are the variables standing at the
places a1, ..., 0y, and in @* for these variables some R-condition (cor-
responding to one of the variables z1,...,z;) hold.

Here, we have to define the notion of an ” R-condition” corresponding to the
variable z;:

18



1. Let O,, be the first (leftmost) generalized quantifier in the sequence
of quantifiers preceding P, and before (z; the ordinary universal
quantifiers V1, ..., Vv; occur. Then the R-condition corresponding to
z1 will be R(z1,v1,...,0s, &),

2. Let O,, be the generalized quantifier following O,, , in our sequence
(with some Vu,, ..., Vv, possibly standing in between):

.05, Vop.. Vo0, ... PP

2

If the condition corresponding to z;—; was R(z;—1,7), then the condi-
tion corresponding to z; is R(zi,vp,...,V, 2i—1, 7).

Finally, we define
Sb(PP,¢*) = \/ Sb(PT")

for all occurrences of P in ¢*. 2
The result of substituting S6(P, ¢*) in Vzi ...Vzn,(¢* — ¢'), which we
shall denote as

Vay.. . Vam(s(p) — s(¥))
is our intended first-order equivalent, which contains no predicate symbols

other than R and =. It is easy to see that it follows from the original
Sahlqvist axiom, being an instantiation of a universal second-order formula

VP! ... NP™Wz;.. VNe,(¢* — ).

We must prove the other direction to have an equivalence.

Assume that Yz ...Vz,,(s(¢) — s()) holds in some frame F under a
variable assignment v. Assume, for some interpretation function V, that ¢*
holds in M =< F,V >. To show that 1)’ holds in the same model, we need
the following two assertions:

Lemma 1 Forall M, v: M,v = ¢* = M,v = s(p)

Lemma 2 Let M,v | ¢*, and let v(z1) = d1,...,9(xm) = dm. Define
V*(PP) as the set of all n-tuples which satisfy Sb(P[*,¢*) under v (that is,
with dy,...,dny assigned to x1,...,2m). Then

V*(P) CV(F).

2Note that we do not need existential quantifiers here to deal with iterations of O, as in
modal logic; instead of R™(z,y), which is short for Jy; (R(z,y1) A ... A IYn—1 R(Yn-1,9)),
we have, for iterated modalities, R(y1,z) A ... A R(Y, Yn—1,--,Y1,2).
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From the first lemma it follows that s(¢) also holds for V' and v; and
hence s(¢) holds. Since 9’ is positive, Lemma 2 (with the Monotonicity
Lemma for classical logic) implies that M,v |=4', as was to be shown.

Proof of lemma 1 ¢* has the form ¥ AT A ©, where ¥ is a conjunction
of R-statements corresponding to the translations of ¢-quantifiers, I' is a
conjunction of atomic formulas, and © a conjunction of universally bound
implications. It is easy to check that the two latter conjuncts turn into
tautologies after substituting Sb(P;, ¢*) for every P; in ¢*. It means that
F s(¢) = ¥, so it follows from any conjunction including ¥.

Proof of lemma 2 (a.) Consider the case when the occurrence of P; is in
T'.. Every V which makes the formula true under v should include at least
one tuple which satisfies the conditions from ¥. Then it contains the tuple
which satisfies Sb(P;). (b.) Let P; be in ©. Then it is of the form

Vyi.. Vyrp(RiA ... ARy — Pi(5,)),

where Rq ... Ry, are the R-conditions corresponding to the generalized quan-
tifiers. If ¢* is true under V' and v, then this subformula is true, too, which
means that V' (P;) includes at least all tuples < dy,...,d, > for which the re-
lation R holds between o, ..., asth members, for each of the k R-conditions.
So, again it contains all tuples which satisfy Sb(P;, ¢*). But if for every oc-
currence of P;, the set of tuples satisfying Sb(P;, ¢*) is a subset of V(B;),
then also their union is in V/(P;). Thus, V*(F) CV(F). O

Examples. Here is how the above Sahlqvist Algorithm works on the earlier
examples of Reflexivity, Transitivity and Symmetry.

e Reflexivity. Consider Oyz = y. Its standard translation is
Jy(R(y,z) Az =y),
which is equivalent to R(z,z).
o Transitivity. The standard translation of
Oy(T(2) A 0=(T(y) A P(2))) = ©:(T(2) A P(2))
gives us

VP[3y(R(y, ) AT (2)A3z(R(z,y)AT (y)AP(2))) = Fu(R(u, 2)AT (z)AP(u))]
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which can be rewritten in accordance with the Sahlqvist Algorithm as
YPYyVz(R(y,z) A R(z,y) A P(z)) — Fu(R(u,z) A P(u)))
The minimal substitution for P(u) is u = z, so we obtain
VyVz(R(y,z) A R(z,y) A z = z — Fu(R(u,z) AN u = 2),
which is a first-order equivalent of transitivity:

VyVz(R(y,z) A R(z,y) — R(z,z))

Symmetry. The formula
VeOyP(z,y) — VyO,P(x,y)
is translated as
VP(V2Vy(R(y, ) — P(z,y)) — VyVz(R(z,y) — P(z,y)))
The minimal substitution for P(u,v) is T(u) A R(v,u):
VaVy(R(y,z) — T(z) A R(y,z)) — VaVy(R(z,y) — T(z) A R(y,z))
The antecedent becomes trivial:
T — Va¥y(R(z,y) — R(y,z))
which can again be written more elegantly as

VaVy(R(z,y) — R(y,z)).

Fact. All purely universal R-conditions can be defined using Sahlquist for-
mulas only.

Proof. We show that the algorithm for defining R-properties in EL(3, <)
described in the Theorem 4 produces Sahlqvist formulas. First, A; 3!z Py, (z)
is a Sahlqvist antecedent: it can be rewritten as

A\35iPy (43) A\ VeV2(Pyi(2) A Py(2) = & = 2)
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In the second conjunct, all predicate letters occur negatively (but when it is
moved to the consequent in accordance with the Sahlqvist Algorithm, those
occurrences become positive).

Next, in the consequent we have (BOOL(R,=,y;))*, where some pred-
icate letters again can occur negatively. Rewrite it as a conjunction of dis-
junctions of "atomic” statements (Oy(Py;(u) A T(2))) and their negations:

®->TA...AT,
The above expression is equivalent to the following conjunction:
(@—=T)A... A (2 T,),

where each of ¥;’s is a disjunction of atomic statements and their negations.
Now move negations of atomic statements to the antecedents:

® — Oy (Py(u) AT(2)) VE becomes A Oy (Py(u)AT(2)) > ¥

As a result, there are no negative occurrences of predicate letters in the
consequents. [

Example (Symmetry Revisited). Here is one more illustration of the pre-
ceding technique. Symmetry can be also defined "locally” using

P(e)A-32'(2' #2 AP(@) AQW) AT (¥ #y A Q(Y)) —
= =04 (P(u) AT(y)) V Ou(Qu) A T(z)) :

The latter formula becomes

P(z) AQ(y) AJu(R(u, y) AP(u)) — 32’ (2’ # 2 AP(2") VIS (¥ #yAQ(Y))V
VIv(R(v,z) A Q(v)),

or

Vu[P(z) AQ(y) AR(u,y) AP(u) — 3z'(a' # 2 AP(2') VI (¥ # yAQ(Y))V
VIv(R(v,z) A Q(v))]-

The minimal substitutions are as follows:

P(z):= z=2zVz=u;
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Q(z):= z=uy.
The resulting formula will be then
Vu((z = zVz = u)Ay = yAR(u, y)A(u = zVu = u) — 3z’ (2’ # zA(z' = z2Va' = v)V
VI (Y #y Ay =y) vV Iv(R(v,z) Av =y));
applying predicate logic gives
Vu(R(u,y) — Jz'(z' #z Az’ =u)V R(y, z))
Vu(R(u,y) AVa'(z' = u — ¢’ =) — R(y,z),
which is equivalent to
| Vu(R(u,y) — R(y,u))
a

6 Limitative Results

If a formula does not have the form described in our Sahlqvist Theorem, it
may lack a first-order equivalent. The proof that a combination O(...V...)
in the antecedent can be fatal, is adapted from the analogous proof for modal
logic (see van Benthem 1983, lemma 10.6).

Lemma 3 O,(0y(P(y)AT(z,2))VP(z)) = Cp(Cy(P(y) AT (2,2)) AP(z))
is not first-order definable.

Proof. Define a class of frames F,, as follows:
e D, ={0,1,...,2n +1};
e R,={<4,0>:1<i<2n+1}U{<t+1,4,0>:1<i<2n,}U{<
1,2n 41,0 >}. :

Here is a picture illustrating this with R(j,7,0) represented as ”there is a
line from 0 to ¢ and an arrow from 7 to j”:
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For every n and V,
Fo,V, [2/0] E D,(0,(P(y) A T(@)) V P(a)) = 02(04(P(y) A T(x)) A P(x))
Indeed, the antecedent is true if

Vz(R(z,z) — Vy(R(y,z,2) = P(y)) V P(z));

that is, if for every 7 with R(7,0) P() is true or P holds for each j with
R(j,7,0). Each such 7 has exactly one ”successor” j with R(j,¢,0) and
"predecessor” k with R(Z,k,0). They form a chain which has by definition
an odd number of members. That is why, if the antecedent is true, then
P should hold for some pair of neighbours in this chain. But then the
consequent is also true:

Jz(R(z,z) A Jy(R(y, z,2) A P(y)) A P(z)).

Now, assume that our formula had a first-order equivalent. For arbi-
trary large n, it is consistent with the following set of first-order sentences
describing the frames F;:

VaVy(R(z,y) — ~R(y,z))

VaVyVz(R(z,y,z) — - R(y,z, z))

A2VyR(y, )

Vy(AzR(z,y, z) A AuR(y,u,z))

—3zy ...z, Jy(R(z2, 1Y) A ... R(T2n, T2n—1,Y) A R(T1,T2n,Y))-

The latter formula forbids "loops” of length less than 2n+1; that is why
it is true in Fj}, for all £ > n.

By compactness, since each finite set of these formulas has a model for
suitably large n, they also have a countable model simultaneously. But in
all countable models with the above properties (which are isomorphic copies
of Z with ternary R interpreted as R(j,%,0) := S(j,¢) and 0 being a fixed
element preceding all other elements: R(z,0) for all ¢ # 0) the formula can
easily be refuted by putting P(3) iff -P(¢ — 1) and -P(: +1). O

The same result holds for the combination O, ... <y in the antecedent
(the proof is analogous to the proof of lemma 10.2 in van Benthem 1983):
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Lemma 4 0,0, (P(y) A T(x, z)) = OO0y (P(y) A T(z,2)) does not have a
first-order equivalent.

Proof. Consider the following class of models:
D={0}U{y, :n € N}U{yn,:neN,i€{0,1}}U{zs:f: N — {0,1}};

R={<yn,0>n€N}U{< yYn;,yn,0>:n € N,i € {0,1}} U {< 2¢,0 >:
f:N—>{0,1}}U{< Yn;(n), 25,0 >:m € N, f: N — {0,1}}

(Here an arrow from a to b describes R(b,a), and the combination of arrows
from a to b and from b to ¢ - R(c,b,a).)
Any model of this class validates the formula in question: assume

M,v =[z/0] = O,04(P(y) A T(z,z2)).

This means that Vz(R(z,0) — Jy(R(y,z,0) A P(y) A T(z,0)) is true, which
implies that Vn3iP(y,,;) holds. Since for every n either yn, or yn, satisfies
P, we can choose f such that P(yf(n)) for every n. Then the consequent
is also true: Jz(R(z,0) A Vy(R(y,z,0) — (P(y) A T(=,0))) (via z = z¢),

whence
F,v=[2/0] E O, 0y (P(y) A T(z,2)) = C.0,(P(y) A T(x, 2))

M is obviously uncountable. Consider any countable elementary sub-
model M’ of F which includes 0, ¥y, Yn,,yn, for all n. If our formula had
a first-order equivalent, it would be true in M’ . But it can be refuted
there: since M' is countable, it does not contain some zs. Put y,, € V(P)
iff ¢ = f(n). Then the antecedent is still true (all elements which had a
successor in P, still have it), but the consequent is false. O

Another limitation to the above result emerges when we try to obtain
its natural generalization towards completeness of Sahlqvist logics. Here is
a striking problem, due to Michiel van Lambalgen.
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Example (Sahlgvist incompleteness).
Counsider the following three axioms:
Al. Oz =g

A2, Oy =y;

A3. Opp(2,7) — Ou(p(z,7) V¥(z,2))

These properties are consistent (think of an interpretation for < like "there
exist at least two”). According to the Sahlgvist theorem, these axioms define
the following properties of R:

R1. JzR(z);

R2. —R(z,z);

R3. R(z,y) — R(z,7,2);
But together R1-R3 imply L:
1. R(z) - R1
2. R(z) — R(z,z) - R3

3. R(z,z) -1,2
4. -R(z,z) R2
5. 1L

7 Further Directions

1. Intuitive Interpretation. The above analysis provides a general and
rather abstract picture of the behaviour of generalized quantifiers with our
relational semantics. The connection between the meaning of quantifiers and
some intuitive interpretation of R remains somewhat unclear. As was men-
tioned in the introduction, R can be viewed as a way to structure domains
in different levels or subdomains, but one might also read R(d,€) as

- d can be constructed using €,

- d is not ”too far” from the e’s,
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- after you have picked up e’s from the domain without replacing them, d
is still available,

etc.

2. Generalized Formats. An important generalization of our quantifier
employs a binary format. One interesting example is a binary plausibility
quantifier (cf. Badaloni & Zanardo 1990):

O (¢(2, 9), 9 (2,9))

to be read as ”¢’s are likely to be %’s”. A connection with the interpreta-
tion of R could be as follows: R, (d,é€) iff d is -typical with respect to &.
Different notions of typicality would correspond to different conditions on
R.

3. Generalized Frames. The match between R-properties and qeneralized
quantifier principles is not ideal, as we have seen with the above frame-
incomplete logic. In van Lambalgen 1991, one may find grounds for employ-
ing a restricted version of correspondence, where only definable valuations
are allowed which do not refer to the relation R, but only, say, to predicates
definable via formulas of the FL(3, ¢)-language with the same parameters.
There are precedents for such a move in standard modal logic, where ”gen-
eral frames” have been used with only restricted ranges for valuations (cf.
Kracht 1993 for a modal correspondence theory ove the latter structures).
Another possible change in format would be to retain the old models, but
to change the truth definition for generalized quantifiers that we have em-
ployed so far. Various interesting options of this kind exist.

4. Proof Theory. The general proof theory of the above framework remains
to be explored. For instance, one would like to describe the lattice of pos-
sible axiom systems for generalized quantifiers. In particular, can one find
a completeness version of the above Sahlqvist Theorem, perhaps using ad-
ditional modal inference rules to circumvent the above incompleteness (cf.
Venema 1992).
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