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Abstract

We look at bimodal logics interpreted by cartesian products of topological spaces
and discuss the validity of certain bimodal formulae in products of so-called cardinal
spaces. This solves an open problem of van Benthem et al.
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Introduction

Topological interpretations of modal logics have been introduced by McKinsey
and Tarski [2] long before the advent of Kripke semantics. The authors of [1]
have introduced an interpretation of bimodal logics on cartesian products of
topological spaces: you have a modal language with two modalities, 21 and
22, and interpret them as interior operators on horizontal and vertical sections
of the cartesian product of two topological spaces. It is clear that both the 21

fragment and the 22 fragment satisfy the axioms of S4.

In [1, § 2], there is a list of results on validity of mixed formulas, in particular
the mixed formulas

• ♦1♦2 p→ ♦2♦1 p (left commutativity, com←),



• ♦2♦1 p→ ♦1♦2 p (right commutativity, com→), and
• ♦122 p→ 22♦1 p (Church-Rosser, chr).

Theorem 1 (van Benthem, Bezhanishvili, ten Cate, Sarenac) For first-
countable spaces X and Y, the following equivalences hold:

• X is Alexandroff ⇐⇒ X,Y |= com←,
• Y is Alexandroff ⇐⇒ X,Y |= com→, and
• at least one of X and Y is Alexandroff ⇐⇒ X,Y |= chr.

Moreover, in each of the equivalences, the forward direction (“⇒”) holds for
all topological spaces. 1

Question 2 (van Benthem, Bezhanishvili, ten Cate, Sarenac) Do the
backwards directions (“⇐”) of the equivalences in Theorem 1 hold for arbitrary
topological spaces X and Y?

In this note, we answer Question 2 negatively.

Definitions

Let X = 〈X, τX〉 and Y = 〈Y, τY 〉 be topological spaces. If A ⊆ X×Y , x∗ ∈ X
and y∗ ∈ Y , we can look at vertical sections Ax∗ := {y ∈ Y ; 〈x∗, y〉 ∈
A} and horizontal sections Ay∗ := {x ∈ X ; 〈x, y∗〉 ∈ A}. Vertical and
horizontal sections are subsets of Y and X, respectively, and hence we can
look at their closures and interiors in the spaces Y and X. We define the
horizontal (vertical) closure (interior) of A as follows: 2

〈x, y〉 ∈ hcl(A) :⇐⇒ x ∈ clτX (Ay),

〈x, y〉 ∈ hint(A) :⇐⇒ x ∈ intτX (Ay),

〈x, y〉 ∈ vcl(A) :⇐⇒ y ∈ clτY (A
x),

〈x, y〉 ∈ vint(A) :⇐⇒ y ∈ intτY (A
x).

Now look at the modal language with two modalities 21 and 22. The cartesian
product interpretation of 21 and 22 is given by the following recursion 3 :
suppose we have already defined the meaning of X,Y, x, y |= ϕ for all x ∈ X

1 Corollary 6.11, Proposition 6.14, Proposition 6.1, and Proposition 6.9 of [1].
2 Note that these operations are closure and interior in the topology discreteX ⊗ τY

and τX ⊗ discreteY , respectively.
3 For details, see [1].
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and y ∈ Y , then we let

X,Y, x, y |= 21 ϕ ⇐⇒ 〈x, y〉 ∈ hint({〈v, w〉 ; X,Y, v, w |= ϕ}), and

X,Y, x, y |= 22 ϕ ⇐⇒ 〈x, y〉 ∈ vint({〈v, w〉 ; X,Y, v, w |= ϕ}).

The derived modalities ♦1 = ¬21¬ and ♦2 = ¬22¬ then correspond to
horizontal and vertical closure. As usual, we write

X,Y |= ϕ

if the formula ϕ holds at all points. Consequently, for topological spacesX and
Y, the mentioned bimodal formulae transform into the following topological
statements

com→ ; ∀A ⊆ X × Y ( hcl(vcl(A)) ⊆ vcl(hcl(A)) ),

com← ; ∀A ⊆ X × Y ( vcl(hcl(A)) ⊆ hcl(vcl(A)) ), and

chr ; ∀A ⊆ X × Y ( hcl(vint(A)) ⊆ vint(hcl(A)),

respectively. Note that chr is symmetric:

X,Y |= chr ⇐⇒ X,Y |= ♦122 p→ 22♦1 p

⇐⇒ Y,X |= ♦221 p→ 21♦2 p

⇐⇒ Y,X |= ¬22♦1 ¬p→ ¬♦122 ¬p

⇐⇒ Y,X |= ♦122 ¬p→ 22♦1 ¬p

⇐⇒ Y,X |= chr.

We call a topological space Alexandroff if arbitrary intersections of open
sets are open. Examples are the discrete or the indiscrete topologies.

As mentioned in the introduction, we are looking for non-Alexandroff spaces
that validate the bimodal formulae com→, com←, and/or chr.

For this, we define the cardinal space of cardinality κ, denoted by cardκ as
follows: The underlying set of the space is κ ∪ {∞} where ∞ /∈ κ. The open
neighbourhood base for each α ∈ κ is {{α}}, the open neighbourhood base
for ∞ is

{{ξ ; α < ξ < κ} ∪ {∞} ; α ∈ κ}.

The topology of cardκ is the discrete topology on κ and a point at infinity
that is infinitely far away (can be reached only by sequences cofinal in κ).
An alternative way of viewing these spaces is as the ordinal topology on the
ordinal κ+ 1 with all limit points below κ removed.

Note that for infinite cardinals κ, the cardinal space cardκ is not Alexandroff,
and for uncountable cardinals κ, it is not first-countable.
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Bimodal formulae in products of cardinal spaces

If µ ≤ ν are ordinals, and γ ∈ ν, we can form the Cantor Normal Form of γ
to the base µ:

γ = µαn · γn + µαn−1 · γn−1 + . . .+ µα1 · γ1 + γ0.

We write Sµ(γ) := γ0 and call it the scalar term of γ to the base µ.

Lemma 3 If µ ≤ ν are cardinals, γ < µ and β < ν, then there is some
β < η < ν such that Sµ(η) ≥ γ.

Proof. Let ξ := Sµ(β). If ξ ≥ γ, then η := β + 1 does the job. Otherwise,
there is a unique 0 < σ < µ such that γ = ξ + σ. Let η := β + σ. q.e.d.

Theorem 4 Let κ and λ be cardinals. Then the following are equivalent:

(i) cardκ, cardλ |= ♦1♦2 p→ ♦2♦1 p, and
(ii) λ < cf κ.

Proof. “(i)⇒(ii)”. Suppose cf κ ≤ λ. We’ll construct a subset of cardκ ×
cardλ that constitutes a counterexample to com→. Let A = {αγ ; γ < cf κ} ⊆
κ be an increasing enumeration of a cofinal subset of κ. We define a subset of
κ× λ as follows:

〈αγ, β〉 ∈ X :⇐⇒ γ ≤ Scf κ(β).

Note that Scf κ(β) < cf κ, so if you fix an element β ∈ λ and look at the hori-
zontal section Xβ = {α ; 〈α, β〉 ∈ X}, then each of these sets has cardinality
less than cf κ. In particular, none of these can be cofinal in κ (?).

Moreover, if you fix αγ ∈ A and look at the vertical section

Xαγ = {β ; 〈αγ, β〉 ∈ X},

then this set is cofinal in λ (??) by the following argument: Take an arbitrary
β < λ. By Lemma 3 applied to cf κ ≤ λ, we find β < η < λ such that
Scf κ(η) ≥ γ. But that means that 〈αγ, η〉 ∈ X, so β < η ∈ Xαγ .

By (?), the horizontal closure of X is X itself: none of the elements of the form
〈∞, β〉 are reached by horizontal sections of X. By (??), the vertical closure
of X is X ∪A×{∞}. Of course, since A is cofinal in κ, the horizontal closure
of A× {∞} includes the point 〈∞,∞〉.

But then

vcl(hcl(X)) = X ∪ A× {∞}, yet

hcl(vcl(X)) = X ∪ A× {∞} ∪ {〈∞,∞〉}.
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But this means that

cardκ, cardλ 6|= ♦1♦2 p→ ♦2♦1 p.

“(ii)⇒(i)”. Assume that λ < cf κ. We have to show that cardκ, cardλ |=
♦1♦2 p→ ♦2♦1 p, so we have to show for every subset X of the product that
hcl(vcl(X)) ⊆ vcl(hcl(X)). Note that the only point for which the order of
horizontal and vertical closures matters is the point 〈∞,∞〉, so the we are
done if we can show that

〈∞,∞〉 ∈ hcl(vcl(X)) implies 〈∞,∞〉 ∈ vcl(hcl(X)).

Without loss of generality, X ⊆ κ× λ.

If 〈∞,∞〉 ∈ hcl(vcl(X)), there is a cofinal set C ⊆ κ of cardinality cf κ such
that for all γ ∈ C, we have

〈γ,∞〉 ∈ vcl(X).

This in turn means that for each such γ, the vertical sectionXγ = {β ; 〈γ, β〉 ∈
X} must be cofinal in λ. In other words, if you fix η ∈ λ, then

X∗>η := {〈α, β〉 ∈ X ; β > η} ∩ (κ× C)

must have cardinality at least cf κ.

For each β ∈ λ, let

Pβ := {〈α, β〉 ∈ X ; α ∈ C}.

The family {Pβ ; η < β < λ} is a partition of X∗>η into at most λ many pieces.
Consequently, by the pigeon hole principle, there must be a β∗ > η such that
Pβ∗ has cf κ many elements. But since Pβ∗ ⊆ Xβ∗ and C was cofinal in κ, this
means that 〈∞, β∗〉 ∈ hcl(X).

Since η was arbitrary, we just showed that the set of such β∗ is cofinal in λ,
and thus 〈∞,∞〉 ∈ vcl(hcl(X)). This was the claim. q.e.d.

Corollary 5 For ℵ0 ≤ λ < cf κ, cardκ and cardλ are non-Alexandroff spaces
such that com← holds in cardκ×cardλ. In particular, this is true in cardℵ1×
cardℵ0. Also, com→ holds in cardℵ0 × cardℵ1.

Theorem 6 Let κ and λ be cardinals. Then the following are equivalent:

(i) cardκ, cardλ |= ♦122 p→ 22♦1 p, and
(ii) cf λ 6= cf κ.
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Proof. “(i)⇒(ii)”. Suppose that ϑ := cf κ = cf λ. Let A = {αγ ; γ < ϑ} ⊆ κ
and B = {βγ ; γ < ϑ} ⊆ λ be increasing enumerations of cofinal subsets.
Define

X := {〈αγ, β〉 ; β ≥ βγ, γ < ϑ} ∪ {〈αγ ,∞〉 ; γ < ϑ}.

Then for each γ < ϑ, {∞} ∪ {β ; βγ ≤ β < λ} ⊆ Xαγ which is an open
neighbourhood of∞ in cardλ. Consequently, 〈αγ,∞〉 ∈ vint(X). Since A was
cofinal in κ, this means that 〈∞,∞〉 ∈ hcl(vint(X)).

Yet, for each β ∈ λ there is an upper bound for Xβ: if βγ ≤ β < βγ+1, then

Xβ ⊆ {α ∈ κ ; 0 ≤ α < αγ+1}.

That means that hcl(X) doesn’t contain any element of the form 〈∞, β〉, and
so 〈∞,∞〉 /∈ vint(hcl(X)).

“(ii)⇒(i)”. The symmetry of chr makes sure that we only have to check the
case cf κ < cf λ.

To start, let us notice that for subsets X of cardκ × cardλ, we always have
that

hcl(vint(X))\{〈∞,∞〉} ⊆ vint(hcl(X)),

since the elements of κ× λ are not affected by any of the interior and closure
operations. Thus, we only have to show

〈∞,∞〉 ∈ hcl(vint(X)) implies 〈∞,∞〉 ∈ vint(hcl(X)).

Fix X such that 〈∞,∞〉 ∈ hcl(vint(X)). This means that there is some cofinal
set A = {αγ ; γ < cf κ} ⊆ κ such that A × {∞} ⊆ vint(X), so for each γ,
there is some βγ < λ such that

{∞} ∪ {β ; βγ ≤ β < λ} ⊆ Xαγ .

The set {βγ ; γ < cf κ} has cardinality cf κ < cf λ, so β∗ := sup{βγ ; γ <
cf κ} < λ. But then for every β > β∗, we have that A ⊆ Xβ, and so 〈∞, β〉 ∈
hcl(X). This means that {∞}∪{β ; β∗ < β} is an cardλ-open neighbourhood
contained in (hcl(X))∞, so 〈∞,∞〉 ∈ vint(hcl(X)). q.e.d.

Corollary 7 For ℵ0 ≤ cf κ < cf λ, cardκ and cardλ are non-Alexandroff
spaces such that chr holds in cardκ × cardλ. In particular, this is true in
cardℵ0 × cardℵ1.

Corollaries 5 and 7 together answer Question 2 negatively:

cardℵ0 , cardℵ1 |= chr& com→&¬com←, and

cardℵ1 , cardℵ0 |= chr& com←&¬com→.
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