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The Conjoinability Relation
in Lambek Calculus and Linear Logic

Mati Pentus*

Department of Mathematical Logic
Faculty of Mechanics and Mathematics
Moscow State University
119899, Moscow, Russia

Abstract

In 1958 J. Lambek introduced a calculus L of syntactic types and defined an
equivalence relation on types: “xz = y means that there exists a sequence
t=21,...,ep, =y (n>1), such that z; —» ;41 or z;4; > z; (1 <i<n)”. He
pointed out that z = y if and only if there is join z such that z — z and y — z.

This paper gives an effective characterization of this equivalence for the
Lambek calculi L and LP, and for the multiplicative fragments of Girard’s and
Yetter’s linear logics. Moreover, for the non-directed Lambek calculus LP and the
multiplicative fragment of Girard’s linear logic, we present linear time algorithms
deciding whether two types are equal, and finding a join for them if they are.

Introduction

In [4] Joachim Lambek introduced a calculus L for deriving reduction laws of syntactic
types, and studied an equivalence relation on types defined as follows:
a ~b iff thereis a natural number n and there exist types c;,...,c, such that a = ¢,
b=c, and Vi <n ¢; = ¢iy1 or cjy1 = ¢;. He also proved that this notion coincides
with another one which was later called conjoinability. In [1] J. van Benthem pointed out
that the question of decidability of this relation was still open in 1991.

In this paper we shall show that the equivalence of types a and b can be charac-
terized in terms of some decidable invariants earlier introduced as necessary conditions
for derivability of a sequent a = b. These invariants are primitive type counts #, in

*The author was sponsored by project NF 102/62-356 (‘Structural and Semantic Parallels in Natural
Languages and Programming Languages’), funded by the Netherlands Organization for the Advancement
of Research (N.W.0.).



the non-directed calculus LP and the “geometric invariant” or “balance” in the directed
calculus L [1].

Since LP and L are fragments of the ordinary linear logic LL [2] and the cyclic
linear logic CLL [6] respectively, we shall also study similar equivalence relation in both
these logics. Let MLL and MCLL denote the multiplicative fragments of LL and CLL.
Characterization of the equivalence in these fragments involves a new invariant defined
by

bp =0, h(asd) =fa+1d, flat)=1-ta,

where « and ( )* denote the linear conjunction and negation.
Main results of this paper are the following:

e a~binL iff the sequent a = bis balanced (Section 4.1).

a~bin LP iff #,a = #,b for all literals p (Section 4.2).
e a~bin MLL iff {a =1hband #pa = #,b for all literals p (Section 4.3).
e a~bin MCLL iff Ka = hb and the sequent a = b is balanced (Section 4.3).

o if b~ cin LP, then there exists a type d such that LP+b = d, LP} ¢ = d, and
|d|<3(]b]|+]|cl|)+2 (Section 5.1).

if b~ cin MLL, then there exists a formula d such that LP+b = d, LP ¢ = d,
and | d|<3(]b|+ ]| c]) (Section 5.2).

Here | d | denotes the total number of occurrences of literals in the formula d.
Earlier proofs of the first four of these results have been presented in [5] and [3]. In
this paper we give new and shorter proofs.

1 Preliminaries

1.1 Lambek calculus

In [4, p. 165] J. Lambek introduced a formal system for deriving reduction laws of
syntactic types. We shall consider this system (denoted here by L) and some variants of
it.

The language of the Lambek calculus includes a non-empty denumerable set Atomof
literals for primitive types, and three binary connectives , \, /, called product, left im-
plication and right implication. For the purpose of readability we shall omit parentheses
whenever product occurs in the scope of a connective \ or /. For example, pes/ger means
(p+s)/(ger)-

Let p,q,r,... stand for elements of Atom. The letters from the beginning of the
alphabet a, b, c, ... denote types® built from literals with the help of product, left implica-
tion, and right implication. Let capitals X,Y, Z, ... range over finite sequences of types,

IThroughout this paper we shall use the terms “type” and “formula” as synonyms.
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possibly empty sequences. The concatenation of sequences X and Y will be denoted by
X, Y.
First, we introduce the Gentzen style sequent calculus L*. Sequents are of the form
X = bwhere bis a type and X is a sequence of types. The order of types in X is essential.
The only axiom scheme is b = b , where b is any type. Rules of inference are the
following:

X=a Y, ,b,Z=c a,X = b
(\=) — (=)
Y, X, ,ad\b,Z=c¢ X = a\b
X=a Y, ,b,Z=c X,a=0b
(/=) —(=/)
Y,bla, X, Z=>c ' X = b/a
X,a,b,Y=>c X=>a Y=0
(+=) (=)
X,ab,Y =c X, Y = ad

X=a YaZ=050

(CUT)
Y,X,Z = b

We write L* - X = b for “the sequent X = b is derivable in L* 7.
T
Given a formal system 7', we shall write a =¥b if Thrta=>band TFb=a. It
T
appears that if b = ¢ then replacing an instance of type b in a sequent by type ¢ does not

L L
have any effect on derivability in T'. In particular (asb)sc = as(bec) and (a\b)/c = a\(b/c)
for any types a, b and c¢. So, we can omit parentheses in types (aeb)sc and (a\b)/c.
Adding to L* the permutation rule

X,a,0,Y = ¢
—(P)
X,b,a,Y = ¢

*

we obtain the non-directed Lambek calculus L*P. In L*P we have b\c L%P ¢/b for any
types b and ¢, whence left and right implications fall into one connective, which is often
denoted by b—-c.

The original calculi L and LP are obtained from L* and L*P respectively, by adding
the constraint that all sequents must have non-empty antecedents. In other words, in L
and LP the rules ( = \) and ( = /) may be applied only if the sequence X is not empty.

Evidently the following inclusions hold:

L CcLP
N N
L*cL*P



Now we shall define a notion of duality, which often allows to cut by half proofs about

derivability in Lambek calculi.

dual (p) = »p
dual (asb) = dual (b)e dual (a)
dual (a\b) = dual (b)/ dual (a)
dual (a/b) = dual (b)\ dual (a)
dual (a4,...,a, = b) = dual (a,),..., dual (a;) = dual (b)

In any of the calculi considered here, a sequent is derivable if and only if its dual is

derivable.

1.2 Multiplicative fragments of ordinary and cyclic linear log-

ics

First we introduce M LL — the multipliéative fragment of ordinary (commutative) linear
logic. We shall denote linear negation by ( )*, linear implication by —o, linear conjunction

and disjunction by « and +, and corresponding units by 1 and 0.
The formulas of linear logic are defined as follows:

e 0 and 1 are formulas,
e if p € Atom, then p and p* are formulas,

o if @ and b are formulas, then a«b and a+b are also formulas.

We introduce linear implication and negation as abbreviations defined as:

a—ob = (a)t+b

(1)t = o0

0t = 1

()t = p

(@bt = (a) s(3)*
(@t} = (o)+(t)
(a—0b)t = as(b)*

Derivable objects of linear logic are sequents = ay;...
formulas. We shall interpret = ay;...;a, as aj+--- +a,.

;a,, where a; , ...

, Qp are



The axiom scheme is = a';a. The inference rules of M LL are the following:

iX;a;b;Y() = X;a =>b;Y()
+ .
= X;a+b; Y = X;ab; Y
= X;a =a ;Y = X;a;0,Y
(CUT) —(P)
= XY = X;ba;Y

Now we shall consider MCLL — the multiplicative fragment of the cyclic (non-
commutative) linear logic presented by Yetter in [6]. The connectives are the same as
in MLL except that in MCLL there are two linear implications \ and / instead of —o.

The formulas are defined in the same way as in M LL, but the abbreviations are
different.

a\b = (a)'+b

bla = bi(a)*
(Wt =0
0t = 1
)t =
(aJ))J' = b'L-i—CLJ'
(a+b)t = breat
(a\b): = bt
(b/a)t = ab*

Again, the axiom scheme is = a’;a. The inference rules of MCLL are the following:

=>X;a;b;Y() = X;a ﬁb;Y()
+ [
= X;a+b; Y = X;ab;Y
= X;a =a;Y = XY
(CUT) — (ROT)
= X;Y =Y; X

Obviously MCLL C MLL.

It is convenient to have in linear logics a notion of entailment similar to a = b in
Lambek calculi. We shall write MLLFa = biff MLLF+ = a*;b,and MCLLFa = b
if MCLL+F = at;b.

Again, if b = ¢, then the formulas b and ¢ may be replaced by each other. Immedi-
ate verification shows that as(bec) = (asb)ec and a+(b+c) = (a+b)+c. Hence we may omit



parentheses in these expressions. We shall also omit parentheses in a+(bec), but not in
(a+b)ec.
The phenomenon of duality is present in linear logics as well.

dual (p) = p
dual (p*) = p*
dual (aed) = dual (b)s dual (a)
dual (a+b) = dual (b)+ dual (a)
dual (= a1; ... ; a,) = = dual(a,); ... ; dual(ay)

Cut-elimination holds in all the calculi considered in this paper (cf. [4] [1] [6]).
Remark. We note that MCLL is a conservative extension of L* and M LL is a conser-
vative extension of L*P. This is easily proved with the help of cut-elimination and the
invariant fj, which will be introduced in Section 2.4.

2 Soundness results

In this section we extend the definitions of balance and primitive type counts from Lambek
calculi (cf. [1]) to the case of linear logic. We present balance in group-theoretic terms.
A numerical model, called the count of negations, is introduced. Both ordinary and
cyclic linear logics are sound with respect to this additional invariant.
All the lemmas in this section are proved by straightforward induction. We omit the
proofs of most of them.

2.1 Balance in Lambek calculus

Let FG stand for the free group generated by literals from Atom. We shall denote
the unit of FG by A. There is a mapping from the Lambek calculus formulas to FG,
associating to each formula b its algebraic interpretation [b], defined in the natural way:

[r]
[a-8]
[a\3]
[6/4]

p
[a] - [o]

[~ - []
[8] - [a]~*

111

Definition. A Lambek calculus sequent ay,...,a, = bis balanced iff
[ai] - - [an] =5 [8], where &5 denotes the equality in the free group FG.

It is easy to see that this definition of balance is equivalent to the one given in [1].



Example 1 The sequent p/q,q = p is balanced, since [(p/q)+q] = pg~'q, [p] = p, and
-1 FG
Pe 9 =D

Lemma 1 (cf. [1]) If L* F X = b then X = b is balanced.

PRrROOF. Induction on derivations. We omit the trivial cases of axioms and the rule (« = ).

CASE (= +): If [X] = [a] and [Y] 5 [b] then [X][Y] =5 [a][0].

Case ( = \): Multiplying the equality [a][X] £ [6] by [a]~* on the left, one obtains
[X] % [a]~2[t] as desired.

Case (\ =): If[X] % [a] then [X][a] ! Z¥ A.

In turn, [Y][8][Z] = [c] entails [Y][X][a]2[8][Z] Z¥ [<].

CASE (= /)and (/ = ): These rules are treated similarly to their duals ( = \) and

=) m

2.2 Balance in linear logic

The formulas of linear logic are mapped into F'G as follows:

[1] = A

[o] = A

[Pl = p

[a'] = [d™

[ad] = [a] -[0]
fat+d] = [a] - [9]

[a\e] = [a]7*-[t]

[b/a] = [b]-[a]™

Definition. A sequent of the cyclic linear logic = a; ; ... ; a, is balanced iff

[ad] - ... [an] Z5 A.
Lemma 2 (i) If MCLLF = X then .= X is balanced.
(i) In particular, if MCLL F a = b then [a] = [3].

2.3 Primitive type counts

Definition. For any literal p € Atom, the p-count (#,) is the following mapping from
types to integer numbers.

#pp;‘ 1



#,9 = 0 ,if p and g are distinct literals
#olaed) = #pa+F#,0
#p(a\b) = #,b— #pa
#p(b/a) = #,0—#pa

Lemma 3 (cf. [1]) IfL*Pt ay,...,a, = b
then #pa1 + « - + #,0, = F#,b for any p € Atom .

Definition. For linear logic we define the p-count as follows:

#,0 = 0
#,1 = 0
#pp = 1
#,9 = 0 ,if p and g are distinct literals

#plat) = —#pa

#o(ad) = #pa+ b

#o(atd) = #Hpa+ #,b

#,(a—0b) = #,b—F#,a
Lemma 4 (i) If MLLF = a;; ... ; an

then $##,ay + -+ + #,a, = 0 for any p € Atom .
(ii) In particular, if MLL F a = b then #,a = #,b for any p € Atom .

2.4 The count of negations

Definition. The count of negations is the following mapping | from formulas of linear
logic to integer numbers.

bp = 0
hpl = 1
i1t = 0
0 = 1
f(asb) = faib
hla+b) = fa+ho—1



The following equalities are easy consequences of the definitions of the linear negation
and implications.

hat) = 1-ta
H(a—ob) = hb—1la
b(a\d) = 1b—tfa
t(a/b) = ba—gb
Lemma 5 (i) f MLLF = a1 ; ... ; a, thenfi(ai+---+a,) = 0.

(ii) In particular, if MLL - a = b then fa = jb.

3 Equivalent formulas

Definition. Given a formal system T, we say that two formulas a and b are equivalent

in theory T (we write a L b) iff there is a natural number n and there exist formulas
c1,...,Cy such that a = ¢y, b = ¢,, and

TkFe = ciyy or Theyyy = ¢ forany ¢ <.

Remark. In other words, L is the reflexive, symmetric, transitive closure of the rela-
T T
tion <, where a < b means that the sequent a = b is derivable in the theory T'.

Definition. We say that type c is a join for a set of formulas {a;,...,a,} in a theory T
if TFa; = cfor any 7 < n.

Definition. (cf. [1]) Two formulas a and b are conjoinable in a theory T iff there is a
join for {a,b} in T.

Example 2 Let ¢ and d be any types of the Lambek calculus. Then c\c and d/d are
conjoinable in the pure Lambek calculus L.

The following derivations show that c\ce«d/d is a consequent of both c\c and d/d in
L.

c=>c d:>d(2>.) : c=c d:>d(:>.)
c,dzc-d(:}/) d=d c, d= cd (=)
c=c ¢ = cd/d (o) c,d/d,d=>c.d(:>/)
c,c\c=>Cod/d(:>\) c,d/d:>c-d/d(:>\)

c\c = c\ed/d d/d = c\cvd/d



The next two lemmas, belonging to J. Lambek [4], show that conjoinability in L
coincides with the equivalence relation £,

Lemma 6 (Diamond property) Leta and b be any types of L. Then the following two
assertions are equivalent.

(i) There exists a type ¢ such that L:-a = cand L+ b = ¢, i.e. a and b are conjoinable
in L.

(ii) There exists a type d such that L+-d = a and L+ d = b.

In other words, we can find any of the types c or d, indicated on the figure, if the other
three types are given.

PROOF. We give a proof slightly shorter than in [4].
CASE (i) — (ii) : We put d = (a/c)sce(c\b).

b=>c¢c a=a

(/=)
\=)

(=)

c=>c afc, b=a

afc,c,c\b=>a
(a/c)ecs(c\b) = a

The sequent (a/c)sce(c\b) = b is derived dually.
CASE (ii) — (i) : We put ¢ = (d/a)\d/(b\d).

d=b d=d

=)

(/ =)
d/a,a,b\déd(é\)

a, b\d = (d/a)\d (=
a = (d/a)\d/(b\d)
The sequent b = (d/a)\d/(b\d) is derived similarly. M

a=a d,bd=d

Lemma 7 Two types a and b are equivalent if and only if the assertion (i) (and conse-
quently also (ii)) from the previous lemma holds.

10



ProOOF. The ‘if’ part is obvious. To prove the ‘only if’ part, we assume that there are n
types es,...,e, such that ¢; = e;11 or e;;; = e; for any ¢ < n. Now the assertion (i)
of Lemma 6 follows from (ii) — (i) and

€ = €41 €41 = €42

(CUT)
€ = €12

by induction on n. W

Corollary 8 A finite set of types has a join in L if and only if the types are pairwise
conjoinable in L.

Lemma 9 The relation % is a congruence on types.

Proor. Follows immediately from the admissibility of the rules

a=b a=b a=5b
acc = bec  c\a=>c\b b\c=a\c

Corollary 10 (Replacement property of the equivalence) Let c; be a type, con-

taining a subtype d, and let ¢, come from cq by replacing one occurrence of d by a type b.
If d ~ b, then cq ~ cy.

4 Completeness of the equivalence with respect to
group interpretations

In this section we prove that the notion of equivalence of two types in the directed Lambek
calculus coincides with the balance, and in the undirected Lambek calculus it coincides
with the equality of primitive type counts. Similar characterization of equivalence in
linear logics involves in addition the count of negations.

4.1 Pure Lambek calculus

Theorem 1 For any types a and b, the following three clauses are equivalent.
G) a&b
(i) a K b

(iii) [a] = 2]

11



Proor. (i) — (ii)
Follows from L C L*.

(i) — (iii)
Let I* F ¢ = cand L* F b = ¢. By Lemma 1 this entails [a] = [¢] and [b] =5 [¢]. Hence
[a] = [5].

(iil) — (i)
We prove that if [a] & [b] then [a]. = [b]., where [ ].. denotes the equivalence class of a
type with respect to the relation L.

First, we note that all types of the form c¢\c and d/d belong to one equivalence class,
which we shall denote by 1. (cf. Example 2).

Now we verify that the equivalence classes form a group with unit 1. and operators

el - [ = [eed] , [e]T = [e\e/d]n.

The associativity law is obvious. The property [c|~ - 1. = [¢|~ is evident from
L F co(c\¢) = c. Similarly, [c]Z! - [c] = 1. follows from L F (c\c/c)sc = c\c. The dual
laws hold also. Hence the classes [c]. form a group.

Let us consider the mapping [p] — [p]. from the generators of the free group FG into
the group of the congruence classes of types. We extend this mapping to a homomor-
phism h. All that we need is to prove that, for any type ¢, h maps [¢c] to [c].. This is
done by induction on the construction of the type c.

Case 1: h([ed]) = R([c]) - R([d]) = [c]~ - [d]~ = [ced]~
Cask 2: h([c\d]) = A([c] ™" - [d]) = [c]Z* - [d]
It is sufficient to prove that [c]' - [d].. = [c\d].. We have

(e\(e/e))ed & (c\(d/d))-d = ((c\d)/d)-d.

Evidently L F ((c\d)/d)sd = c\d. Hence (c\c/c)«d % c\d.
CAsE 3: Similarly to the previous case, we verify that h([c/d]) = [¢/d].. W

4.2 Lambek calculus with permutation

Theorem 2 For any types a and b, the following three clauses are equivalent.
(i) a ¥ b

(i) a b

(iii) #pa = #,b for any p € Atom.

PROOF. We note that “#,a = #,b for any p € Atom” means that [a] and [b] are equal
in the free Abelian group generated by Atom. Now the theorem is proved by a trivial
modification of the proof of Theorem 1. M

12



Remark. If we extend the language of the calculus L* with the constant 1, add the

axiom => 1 and the rule
X,Y=a

(1=)

X,1,Y=a

we obtain the calculus Ly. In the similar way, LPy is obtained from L*P. Theorem 1
and Theorem 2 hold also in calculi Ly and LPq respectively, if we extend the definitions

of [ ] and #, by
[1]=A and #,1=0.

4.3 Linear logics
In the full linear logic any two formulas a and b are trivially equivalent, because
a=a®db and b= adb ,

where a @ b stands for the non-linear (additive) disjunction, sometimes also denoted by
a LUb. The situation is different in the multiplicative fragment.

Theorem 3 Let a and b be any two formulas of MCLL. Then a M b if and only if

ha = i and [a] Z£ [8].

Proor. The ‘if’ part is an easy consequence of soundness with respect to fj and balance
(cf. Lemma 5 (ii) and Lemma 2 (ii)).

To prove the ‘only if’ part we introduce a new group G, generated by elements of
Atomtogether with 0, and satisfying the identity 0-c = c- 0 for any ¢ € G. Let A stand
for the group unit of G. By [ ]¢ we denote the following mapping from the set of formulas
of linear logic to the group G.

[1le = A

[0]c = ©

[ple = »p

[c'le = [&*-0
[edle = [e-[dle
[e+dle = [cle-[dle-07"
[\dle = [dg'-[dle
[e/dle = [de-[d]&

Obviously, [a]¢ £ [b] if and only if ha = b and [a] 29 ).

Similarly to Theorem 1, we prove that if [a]g £ [b]¢ then [a]. = [8]., where [].
denotes now the equivalence class with respect to the relation MZFE,

To extend the mapping [p]g — [p]~ to a homomorphism we need two facts in addition

to what has already been proved in Theorem 1.

13




(1) [0] - [c]~ = [c]~ - [0]~
Evidently MCLL I~ cect = 0 and MCLL |- ctec = 0.

MCLL MCLL MCLL
Hence 0sc <7 (coct)oc X7 co(ctec) TR €00.

(2) le\e/c]~ - [0]. = [c*]~

This follows from

(e\e/e)(erct) MR ((\)fe)ec)ect M (c\)uct MRFF ot

Theorem 4 Let a and b be any two formulas of MLL. Then a MEL if and only if

la = b and #,a = #,b for any p € Atom.

PrOOF. We note that ha = b and #,a = #,b for any p € Atom if and only if [a]¢
and [b]e are equal in the free Abelian group. Hence the theorem is proved by a trivial
modification of the proof of Theorem 3. M

Remark. If we leave out the units 1 and 0 we obtain the constant-free fragments of
MCLL and MLL. Theorems 3 and 4 hold also for these fragments.

4.4 Complete description of derivability invariants

Theorem 5 Let A be an arbitrary set. Suppose that a mapping ¢ from formulas to A
is a M LL-derivability invariant, i.e., #(a) = ¢(b) whenever MLL t- a = b. Then ¢(b) is
actually a function of #,b and jb.

PrROOF. We have to show that, if §a = b and #,a = #,b for any p € Atom, then
#(a) = ¢(b). This is an immediate consequence of the ‘if’ part of Theorem 4 and the
definition of equivalent formulas. W

Example 3 Let #,(b) denote the number of occurrences of the connective « in a formula b.
Similarly, let #,(b) count the occurrences of the connective +. It is easy to verify that
P(b) = #4(b) — #4(b) is a derivability invariant for the calculus MLL.

According to Theorem 5, the function ¢ must be definable with the help of #, and .
Really, straightforward induction shows that

gb)= D #p(b)+2-4(b) - L.

pcAtom
Remark. Similar complete sets of derivability invariants in other calculi are
1. [] for L and L*,
2. #, for LP and L*P,
3. [] and | for MCLL.
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5 Linear length joins

In this section we prove that in the Lambek calculus with permutation and in the ordinary
linear logic any pair of equivalent formulas a ~ b has a linear length join ¢ such that a = ¢

and b = c.
We define the length of a formula b (denoted by | b |) as the total number of occurrences
of literals and constants 0 and 1.

5.1 Lambek calculus with permutation LP

First we introduce special counts for positive and negative occurrences of literals.

#;"p = 1
#;‘q = 0, where p and g are distinct literals
#,9 = 0, wherep and q are any literals (possibly coinciding)
#H(ad) = #a+ 4
#,(ad) = FHoa+#b
#;'(a—>b) = # a+ #;b
#, (a—b) = #;;a +#,0

Evidently #,a = #;'a — #, a for any type a and any literal p.

Let ¢ be a fixed literal. Our aim is to show that any pair of equivalent types has a
join of the form (cye...scioq)—q, where, for any ¢ <1, ¢; is either go(¢—p) or p.g—q for
some literal p.

Lemma 11 Let a be any formula of LP containing only literals py,...,p,. Let #;i a=k;
and #,.a = m;. Then

(i) LPF (g-(g—p))*, ..., (g:(g—pn))*, (p1eg—@)™, ..., (Preg—q)™ = a,
(ii) LP + a,(g(g—p1))™,...,(g(g—=p.))™, (P1eg—9)", ..., (Prg—q)*,q¢ = q.

Here b denotes b, . .. ,b.
~———
k times

Proo¥F. Induction on the construction of the formula a.
CASE 1: a=p;
(i)

q9=9q9. pPi=D;

(= =)
(«=)

g, q—p;i = Pi

q+(g—p;) = s

15



(i)

Di = Pi q9=49
(=)
iy 4 = Pie =
pi, 9= Piq q q (= =)
Pi, 4, Pi'd—q = ¢
(P)
_ Pi, Picq—q, 9= ¢
CASE 2: a = bec
By induction hypothesis there are LP-derivable sequents
X=b , bYgeg=>q , Z=c , cWqg=>qg
of the special form given in the formulation of the lemma.
(i)
X=b Z=c
(=)
X, Z = b
(i)
b,Y, qg= c, W, qg=>
q q q q (CUT)

b)c’Y7W7q:>q

(-« =)
b'C,Y7W>q$q

CASE 3: a = b—c
Obviously there exists 7 < n such that #;ic > 0. Therefore we may write the induction
hypothesis as

X=0b ) b>Y7q:>q ) q'(q_)pi)az:}c ) c,VV,q:>q.

(1)

b,Y ,qg=>q q—p = q—p;

(=)

b,Y, q, g—pi = q(qg—pi) q(g—pi), Z > ¢

(CUT)
b,Y,q,q—>p,-,Z:>c

(=)
b7Y7q‘(Q'—)pi)7 Z=c

(=-)
Y ) Q‘(q—')p‘l) ) Z = b—c

X=b c¢c,W,q=>q

(= =)

X,b—>c,W,q=>q(P)

b—e, X, W, qg=4q
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Lemma 12 Ifk' —k=m'—m > 0 and

LPF X, (g(g—p))*, (prg—q)™ = ¢
then ,
LPF X, (g:(g—p)* , (pg—q)™ = ¢

ProOF. Induction on k' — k.
For the induction step we verify that LP - ¢+(g—p) , peg—¢q, X = ¢
whenever LP - X = q.

p=>p q=4q
(=)
P, 4= Dq qﬁq(_):”
X =q P, q, Pg—q =g (=)

X, q—p, q, pg—qg=q

(P)
(+=)

X,4q, 9—p, pg—q =4

X, q(g—p) , pg—q=g¢

Theorem 6 If two types a and b are equivalent in LP then there is a type c such that
LPta=¢ LPFb=c and |c|<3|a|+3]|b]|+2.

ProOOF. We put

¢ = (g+(q—=p1))™ie ... +(g(q=Pn)) ™o (Prog—q) 1o . . o(Preg— @) og g,

where k] = max(#}a, #;b) and m; = max(#,,a, #,.b).
Evidently #,,a = #,,b implies #;.b — #] a = #,.b — #,.a. Hence

ki — #h.a=m; —$,a>0.

Now LP I a = ¢ follows from Lemma 11 (ii) by applying Lemma 12 n times. Similarly
LPFb=c

Since
n

D (#pa+#ya)=lal,

=1

we have
n

S (ki+mi)<|a|+|b| andthus [c|<3|a|+3]|b|+2.
=1
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5.2 Linear logic MLL

Theorem 7 For any pair of equivalent M LL-formulas b and c, there is a formula d such
that
MLL+b=d, MLLtc=4d, and |d|<3(|b]|+]|c].

SKETCH OF THE PROOF.
Let k; denote the number of positive occurrences of p; in the formula b, and k} stand for
the number of negative occurrences. By [ and I’ we denote the numbers of occurrences of
0 in b and c respectively (we assume that 0 and 1 have no negative occurrences). We put

d = Z(pi.0+ e +pioq+Pil.0+ . +pi‘|'.(1)+ 9-0—}- v +OuQ+l+ . +1,

: V" v

ki+k, times m;+m) times I+1' times j times

where j =1+ Y ;(m; + m}) +1+1' — jb. Here j is selected so that §jd = b.
The necessary entailments b = d and ¢ = d are verified by straightforward induction
on the construction of formulas b and c. W

6 Product-free fragments of Lambek calculus

Let Fm(\, /) stand for the set of all types in the language of two implications. In this
section we show that a pair of types has a join in Fm(\, /,+) if and only if it has a join
from Fm(\, /). We also note that the diamond property for product-free fragment is
different from the one in full the Lambek calculus.

6.1 Product-free joins
Theorem 8 (i) Theorem 1 holds for L(\,/) and L*(\, /).

(ii) Theorem 2 holds for LP(—) and L*P(—).

Here L(\, /) denotes the fragment of L without product. Similarly for L*(\, /), LP(—)
and L*P(—).
PROOF. All the cases are similar. We give a proof for L(\, /) only. It suffices to prove that,
ifa,b € Fm(\, /) and [a] = [¢] in the free group, then in Fm(\, /) there is a join for a and
b. Using Theorem 1 we get a join ¢ € Fm(\, /,+). Lemma 13 gives a type ¢ € Fm(\, /)
such that L+ a = ¢ and LF b = . Cut-elimination in the Lambek calculus involves
that L is conservative over L(\, /). Hence, a ~ bin L(\,/). W

Lemma 13 Let c € Fm(\,/,.). Then:

(i) 3¢ € Fm(\,/) such that LFc= ¢,
(ii) 3X c Fm(\,/) such that LF X = c.
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ProoF. Induction on construction of type c.

CASE c = p: We take ¢ = p and X = p.

CASEc=uash: Leta=a,b=0b,Y = a, Z =0,

where o',V € Fm(\,/) and Y, Z C Fm(\, /).

We put Z = X,Y and ¢ = p/(b'\(a'\p)) for some p € Atom.

a=>d p=>p

b=0b a,d\p=p (=)
‘ A=)
a,b,b\(d\p)=p (=)
a,b#P/(b’\(a’\P))(.i) Y =a Z:>b(j.)
asb = p/(¥'\(a'\p)) Y,Z = ab

CasEc=a\b: Leta=d, b=V, a,...,6, = a, bi,...,bm = b
for some o', ¥, d;,b; € Fm(\, /).
We put ¢’ = a,\(...\(@:\¥')...) and X = a'\b; , by, ...,bm.

G1,...,0, >a b=V

\=)

~ ~ -

al)ﬂ')&n)a’\bib,(j\) a:>a' bla"'abm:>b

(=) (7

a\b = an\(-..\(@\0)...)

CASE ¢ = b/a: Similar to the previous case. M

6.2 Diamond property

Surprisingly, the product-free fragment of the Lambek calculus does not possess the dia-
mond property (cf. Lemma 6). Instead of this a slightly different lemma holds.

Lemma 14 Letay,...,a, € Fm(\,/). Then the following two assertions are equivalent.
(i) 3b € Fm(\, /) such that L(\,/) F a; = b for any i < n,
(i) there is a sequence X consisting of n product-free types such that

L(\,/)F X = a; forany i <n.

Remark. For any n, there exist equivalent types ay,...,a, € Fm(\,/) such that the
sequence X in Lemma 14 cannot contain less than n types. Take for example n = 2,

a; = p/(p\(p\p)) and as = ¢/(p\(p\9))-

Obviously L(\,/) F p,p = a; and L(\,/) F p,p = a,. Nevertheless, there is no product-
free type d such that L(\,/) Fd = a; and L(\,/) F d = as.
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