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Bounded Contraction and Many-Valued
Semantics

Andreja Prijatelj
Department of Mathematics an Computer Science
University of Amsterdam

Abstract

In this paper we consider a Gentzen-style propositional logic with
n-bounded contraction (n > 2), a version of the contraction rule where
n + 1 occurrences of a formula may be contracted to n occurrences.
In particular, we study expansions of the linear models for n-valued
Lukasiewicz logic as models of n-bounded contraction. We present
a new proof of the finite axiomatizability of these logics, with the
resulting axiomatizations in the form of a Gentzen sequent calculus
with additional axioms.

1 Introduction

In this paper we introduce a Gentzen-style propositional logic with n-bounded
contraction (n > 2) and study a specific class of models for these logics.
The n-bounded contraction, briefly n-contraction, is a version of the
contraction rule where n + 1 occurrences of a formula may be contracted
to n occurrences. The restriction on contraction results in splitting of the
usual connectives into additive and multiplicative analogues, well-known
from linear logic, see Girard [1987], denoted as in Troelstra [1992]. This
motivated the choice of connectives and logical rules in the systems presented
in section 2. The presence of weakening in the systems considered results in
interderivability of n-contraction with the so called n-copy contraction rules,
where 2n occurrences of a formula may be contracted to n occurrences. It



will be seen, that the latter rules are convenient to formulate and prove the
central lemmas for establishing completeness theorems in section 4.

In section 3, we present the simplest and most readily understand-
able class of models, suitable for illustrating the effects of substituting n-
contraction (n > 2) for full contraction. In fact, these models are just
expansions of the well-known linear models for the n-valued Lukasiewicz
logics, see Lukasiewicz, Tarski [1930]. We recall, that Lukasiewicz primi-
tive connectives, in our notation, are ~ and —o. (Lukasiewicz implication,
in fact, is a multiplicative connective, i.e. a linear implication.) Moreover,
our models are particular examples of MV-algebras introduced by Chang
[1958]. Let us state the result of Chang, relevant to the topic of this paper:
a given formula A is provable in Ng-valued Lukasiewicz logic extended by
n-contraction if and only if A is valid for the class of models of k-valued
Lukasiewicz logic for every k =2,...,n.

In section 4, we give an axiomatization for each of the classes of finite
models considered below. To prove the corresponding completeness theo-
rems we shall use a generalization of Kalmair method well-known from the
completeness proof of ordinary propositional logic with respect to 2-valued
semantics. The problem of finite axiomatizability of n-valued Lukasiewics
logics has attracted many mathematicians ever since Lukasiewicz, in 1920,
introduced these logics by the well-known matrix method (see Lukasiewicz,
Tarski [1930]). The best-known solutions of that question, are: Lindenbaum
in Lukasiewicz, Tarski [1930], Rosser and Turquette in Many-valued Logics
[1952] and Tokarz in A Method of Axiomatization of Lukasiewicz Logics
[1974]. Two more results by Rosser and Turquette are listed in the litera-
ture, namely Axiom Schemes for M-Valued Propositional Calculi [1945] and
A Note on the Deductive Completeness of M-Valued Propositional Calculi
[1950]. However, the completeness proof given in the former article is some-
what obscure due to a defect in the definition of a notion of an S-sum. On the
other hand, the more elegant axiomatization presented in the latter paper
is not adequate for Lukasiewicz logics, as observed by the authors them-
selves. We emphasize that this observation also follows from the fact, that
full contraction is derivable in the axiomatic systems considered by Rosser
and Turquette. As we shall show below, full contraction is not admissible
in any of many-valued Lukasiewicz logics. Let us conclude our brief sur-
vey with Cignoli (see Lukasiewicz-Moisil Algebras [1991]) and Tuziak [1988]
whose algebraic completeness proofs are based on proper n-valued Moisil
algebras and on the Lindenbaum algebra respectively.

The intuition behind our own method of axiomatization of n-valued



Lukasiewicz logics shares an underlying basic idea with some of the pub-
lications mentioned above, namely that of encoding in a formula a certain
"truth-value” (see Rosser, Turquette [1945] and [1952]). However, here we
consider different primitive connectives and introduce a new construction of
such a formula. Moreover, due to presence of bounded contraction in our
systems we can present a simpler proof yielding different, more perspicuous
axiomatization in a Gentzen-style formulation. In fact, the initially given
Gentzen system for each of our logics is extended by the axiom-schemes
which encode point-wise definitions of the operations in models correspond-
ing to + and U respectively. Moreover, an additional axiom-scheme is an
n-valued analogue of the 2-valued classic:] tautology PV ~P.

In section 5, we consider the intersection of all the systems that are
complete for the respective classes of finite models. We show that the in-
tersection is complete for the class of linear models based on Q([0,1] and
that it is finitely axiomatizable.



2 Systems with Bounded Contraction

The system with n-contraction, PL,, for any natural number n > 2, is given
by the following axioms and rules.

Axiom scheme
A=A
Logical rules

left and right negation rules

I I'=A4A I'NA= A R
I''~A= A I'= ~AA
o left and right disjunction rules
U A=A I''B= A
IAUB = A
I' = A4;,A .
RU T A, U, A for 1 =1,2
o left and right par rules
It ', A= A; I'2,B= A I' = A,B,A R+
I'1,T9,A+B = A1,y I'= A+ B,A
Structural rules
e left and right weakening rules
I'= A '= A
W Ta=x T—=a4a W
~ e left and right n-contraction rules
A — A I = A+ A
LCn r,AM = A = A A RCa

where A®) = A A ... A, ie. k copies of formula A.

4



e cut rule
I\1=>A,A1 FQ,A=>A2

T I',To = Ay,A,

Throughout the above rules I', A, T'1,T'2, A1, Ay denote finite multisets of
formulas.

Comment: Due to the restriction on contraction rules the sequent 4 +
B => AU B is not derivable in PL, for any n > 2. In other words, the
usual propositional logic connective V has been split into the additive and

multiplicative one, i.e. U and + respectively. The following connectives can
be defined

e ANNB:=~(~AU~B)
¢ AxB :=~(~A+~B)
e A~ B:=~AUB
e A oB:=~A+B

The respective rules for each of these connectives, being the same as in
classical linear logic, are derivable in PL,, for n > 2. We shall also use those
connectives and the corresponding rules.

Consider now another posible restriction on contraction rules, namely
for given natural number n > 2

T, AM A" = A I => A, A A
AW = A I = AM A

We shall call these rules left and right n-copy contraction respectively. In the
presence of weakening these rules are interderivable with the original ones.
Thus, we shall, in what follows, use n-copy contraction or n-contraction as
convenient to show some meta-properties of the system PL,.

To start with

Fact 1 The cut rule can not be eliminated from the system PL,, for any
n > 2.



Proof: The following is a counter-example for cut-elimination in the system
PL,. Consider the sequent

u,z —ou, (z—ou) — ((z—ou) — ((z—ou) —oz)) ==,

where u, z,x are atomic formulas.

It is easy to check that this sequent does not have a cut-free derivation
in PL;. On the other hand, witness the derivation of the same sequent
obtained, as follows:

First, applying the left rule for —o to

z—ou—>z-—ou and z=—=x

yields: ‘
z—ou, (z—ou)—oz=>z.

Further, applying twice the left rule for —o to the last obtained sequent and
to the axiom
zZ—oUu=>z-—ou

gives:

(z = u)® (z o u) — ((z — u) — ((z — u) — z)) =>z.
Next, using left 2-contraction rule results in:

(z = u)? (z = u) — ((z = u) — ((z — u) — z)) => z.

And finally, applying cut rule to the latter sequent and to the, clearly, PLo-
derivable sequent
U= z —ou,

yields:
U,z —ou, (z—ou) —o ((z—ou)—o((z—ou) o)) ==z

However, the reader is invited to check, that for any n > 2 the sequent
given below provides a counter-example for cut-elimination in PL,,:

u,(z =), (z ou) o ((z—ou) o —(z—ou) oz)...) =z,

where (z — u) occurs (n + 1)-times in the indicated subformula of the
antecedent.

¢



3 Many-valued Semantics

‘We now. give a particular many-valued semantics for the systems considered
in section 2 .

Given a natural number n > 2, we shall define a model for PL,, called
M, (v), as follows.

1. Take the following set of values:
Sp={k/n|k=0,1,...,n —1,n}.

A valuation function v assigns to each propositional letter an element
of S,.

2. Extend v to arbitrary PL,-formula inductively, as follows:
v(~A) =1 - v(A4)

v(A U B) = max{v(4),v(B)}
v(A + B) = min{v(4) + v(B),1}
v(A M B) = min{v(4),v(B)}
v(A * B) = max{v(4) +v(B) — 1,0}
v(A ~» B) = max{l — v(4),v(B)}
v(A — B) = min{1 — v(4) +v(B), 1}.

3. v is extended to any PL,-sequent Ay,...,A, = By,..., B; putting:
’U(Al,...,Am:>Bl,...,Bj) =’U(NA1+'-'+NAm+Bl+-"+Bj).

We shall say that a given sequent I' = A is true in the model M, (v)
if and only if v(I' = A) = 1. Moreover, a sequent I' = A is n-valid
if and only if v(I' = A) = 1 for all valuation functions v, i.e. if the
sequent under consideration is true in every model M, (v). The class
of all models M, (v) will be denoted by M,,.

Remark: Note that v(AUB) = v(~(~A+B)+B). Moreover, v(Aj1,...,An =
Bi,...,Bj) =1if and only if v(A; -+ % Ap,) < v(By+ -+ Bj).



Proposition 2 (Soundness) Given a natural number n > 2 and a PL,-
sequentI' = A, if PL, F T = A, then I = A is n-valid.

Proof: By induction on the length of a derivation.
As an example, we will consider the case where the last applied rule
within a given derivation is right n-copy contraction:

D= A AW A
I = A" A

First, observe that v(4; + - -+ + A,,) = min{v(41) + - - - + v(4n), 1}
Hence, we get v(A; +---+ A,,) = 1if and only if v(A;) +---+v(Ap) > 1.
Now, by induction hypothesis the following holds for all v:

P

2(1 —v(v)) + 2nv(4) + iv(@-) >1,

i=1 j=1

where I' = v1,...,7 and A = 61,...,6;.
And we are going to show that, then also:

P T
Z(l - (%)) + nv(4) + Zv(éj) > 1, for all v.
i=1 j=1

In fact, one only has to observe, that for a given v:

e either v(A4) = 0, then the two considered inequalities coincide and we
are done;

e or v(A) > 1/n, thus, nv(4) > 1, and a fortiori Y2 (1 — v(y)) +
nv(A) + 37 1 v(6;) > 1.

Since v was arbitrary, our claim is justified.

Lemma 3 Given a natural numbern > 2, neither left nor right (n—1)-copy
contraction is admissible in PL,.

Proof: Let Ap denote a PL,-formula P M~(n—1)P, where P is a propo-
sitional letter and (n — 1)P = P+ --- + P with (n — 1) copies of P.



Note that:
_J 1/n ifw(P)=1/n
v(4p) = { 0 otherwise

Further, consider (~Ap)”™, where X™ = X % --- x X with n copies of X.
Clearly,

0 ifv(P)=1/n
1 otherwise

v((~4p)") = {

And finally, the following sequent presents a counter-example for admis-
sibility of right (n — 1)-copy contraction rule:

= AT ALY (wap)m

More precisely, observe that the given sequent is n-valid. But, clearly,
v(P) = 1/n is a refutation valuation for n-validity of the sequent

= AT (~ap)™,

obtained by applying the right (n — 1)-copy contraction rule to the sequent
above.

Similarly, one can find a counter-example for admissibility of the left
(n — 1)-copy contraction rule.

%



4 Axiomatic Completeness for Finite Models

In this section, our intention is to find an axiomatization of all n-valid PL,,-
sequents, for any n > 2. We shall start with the case n = 2.

Consider the system PLy extended by the following

axiom-schemes

(i) 2(BN~B)N(~C)? = 2((BUC)N~(BUC))
2(BM~B)N2(CN~C)=2((BUC)N~(BUC))

(i) 2(BMN~B)*2(CMN~C) = B+C
2(B M ~B) % (~C)2 = 2((B + C) N ~(B + C))

(iii) == P2U(2(P N ~P))2U (~P)2, for P atomic

where 2X = X + X and X2 = X x X for any PLy-formula X. This system
will be referred to as CPLs,.

We are going to prove that CPL; is complete for the considered class
of models M>. Later on, it will become clear to the reader that the axiom
schemes stated in (i) and (ii) are, in fact, forced by the proof of lemma 5
and the axiom scheme in (iii) by the proof of lemma 6. For that purpose,
we have to elaborate first the necessary prerequisites.

Definition 4 Let FPLs denote the set of all PLa formulas and Va the set
of all extended valuations on FPLy. We define a function [., .] : FPLy X
Vo — FPLy, as follows:

~A ifv(4) =0
[4,0v] = ¢ 2(AN~A) ifv(d)=1/2 A€ FPLy,v € V5.
A ifo(d) =1

Lemma 5 Given A € FPLy containing ezactly Py, ..., Py, distinct propo-
sitional letters and given v € V3 , then

CPL; F [Py, 0], ... [P, v]D = [4,].

10



Proof: By induction on the complexity of A.
We shall here consider only one typical case for the connective +. Assume
A =B+ C, and v(B) = v(C) = 1/2. By induction hypothesis we have:

CPL, - [Ry,0]®,...,[Ry,0]? — 2(B 11 ~B)

and
CPL;y F [Q1,v]?, ..., [@n,v]® = 2(C 1 ~C).

And from that by the right rule for %:
CPL; + [Ry,9]®, ..., [Ri, 4], [Q1,4]?, ..., [Qn,v]® = 2(BN~B)x2(CN~C)

If{Ri,...,Re}{Q1,...,Qxn} # 0, then a number of left 2-copy contraction
rule is to be applied, yielding:

CPLy F [P1,0]?),. .. [Pn,v]® = 2(BN~B) x2(C N ~C)

where P, ..., P, are precisely all distinct propositional letters occurring in
B and C, hence in A.

Finally, an application of the rule cut to the last obtained sequent and
to the CPLy axiom 2(B M ~B) % 2(C N ~C) = B + C yields:

CPL: F [Pl’v](z)a S [Pm, U](z) = B+ C,

what was to be shown, since v(B + C) =1 for the given v.

Lemma 6 Given a PLy-formula A, if v(A) =1 for all v € V3, then

CPL, - = A.

Proof: Assume that A € FPL, contains exactly Py,..., Py, distinct propo-
sitional letters and that v(A) = 1 for all v € V5. Take, now, arbitrary
v, 0" v" € V, such that +'(P) = 1, v"(P) = 1/2, v"'(P;) = 0 and
v =v"=v" =von {P,,...,Py}. Bylemma 5 we get:

CPL;, + Pl(z),[Pz,v]@),--.,[Pm,v](z) — A,
CPLy - (2(P N NPI))(2), (P2, v](Z), ey [Pm,,v](2) — 4

11



and
CPLy (Npl)(2),'[p2,v](2), ...,[Pm,v](z) — 4.

Next, applying left rules for x and Ll respectively yields:
CPLz b P7 U (2(Py N ~Py))? U (~P1)%, [Py, 0] P, [P, 0] ®) = A

Finally, an application of cut rule to the last obtained sequent and to the
axiom:
= P2 U (2(PLN~Pp))*U (~P)?

yields:
CPLy - [Py, v]?), ... [P, v]® => 4,

where, clearly, v is arbitrary and the number of propositional letters in the
antecedent of the sequent is reduced to (m—1). Repeating the above strategy
gives:

CPL;F = A4,

what was to be proved.

‘We need one more
Fact 7 CPLy - Ay,..., Ay = Bi,..., By, if and only if
CPLyF = ~A1+ -+ ~Ap+Bi+ -+ Bp,.

Finally, we are well equipped to prove the main

Proposition 8 (Completeness) If a PLy-sequent I' = A is 2-valid,
then CPLy FT'=— A.

Proof: Assume a PLj-sequent Aq,...,4; = Bjy,..., B, to be 2-valid,
ie. v(~A1+---+~Ap+Bi1+---+By) =1forall v € V. Then, by lemma
6 we get:

CPLy+ = ~A;+ -+ ~Ag+ Bi + - + B,
Using fact 7 yields: CPLqy - A4,..., 4y = By,..., B,, and we are done.
¢
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In what follows, we are going to generalize the results just obtained. In
other words, we shall below present an axiomatization of all n-valid PL,,-
sequents for an arbitrary natural number n > 2.

We first introduce

Definition 9 Given a natural number n > 2, let A be a PL,,- formula. We
shall define a PL,-formula (k: n)A fork =1,...,(n—1) with the property:

1 ifv(4)=k/n
0 otherwise

v({k:n)A) = {
where v € V,.
The construction of (k : n)A is given inductively as follows:
(a) forn =2 put (1:2)A=2(AN~A).

(b) Assume, now, that (k : i)A has already been defined for all i =
2,...,(n—1) andk=1,...,(: —1).

o Put(l:n)A=n(AN~(n—-1)A4) and (n—1) : n)4A = (1 : n)~A.

e Assume, further, that (m : n)A has already been defined for all
m=1,(n-1),2,(n-2),...,(k—=1),(n—(k—1)), where k < [n/2].
Now define

_ (1 :my4)k if n=mk
<k‘n>A—{((n——l):n)(mA) fn=mk+1,1<1<(k-1)

Remark: It is a matter of patient, but straightforward, checking to see that
the above construction is well-defined. Note however, that other possible
constructions of PL,-formula with the distinguished property would yield
equivalent formulations of the axiomatization in question.

Consider now the system PL, extended by the following
axiom-schemes:
(i) for0<k<m<n:

(k:n)BN{(m:n)C = (m:n)(BUC)

13



(i) for 0 <m < n:

(~B)"N{m:n)C = (m:n)(BUC)

(iil) for 0 < k,m < n:
(k:n)Bx(m:n)C = ((k+m):n)(B+C), ifk+m<n
(k:n)Bx(m:n)C=B+C, ifk+m>n
(iv) for 0 <m < n:

(~B)" % (m : n)C = (m:n)(B+C)

(v) for P atomic formula:
= U}_{((k : n)P)" U P™ U (~P)"

The system just introduced will _be called CPL,.

Remark: The axiom-schemes given above are, again, forced by the proofs
of lemmas analogous to those for the case n = 2. Moreover, to match the in-
tuition given in the introduction, consider the axiom-schemes in (iii). Note,
that the considered sequents are trivially true in all the models M, (v) ex-
cept for those where v(B) = k/n and v(C) = m/n. But, clearly in these
cases, the valuation of the formula in succedent is 1 by definition. Hence,
the axiom-schemes in (iii) correspond to the following statements:

if v(B) = k/n and v(C) = m/n, then v(B+C) = (k+m)/n, when k+m < n
and v(B + C) = 1, otherwise.

In order to show that CPL,, for any n > 2, is indeed an axiomatization of
all n-valid PL,-sequents, we proceed as follows.

Definition 10 Given a natural number n > 2, we define a function (., .|, :
FPL, xV, — FPL, by:

~A ifv(4) =0
[4,v], =< (v(A)n:n)A otherwise A€ FPL,,v€V,.
A ifv(d) =1

14



We state the central

Lemma 11 Given A € FPL, ¢ontaining ezactly Py, ..., Py distinct propo-
sitional letters and given v € V,,, for some n > 2, then:

CPL, - [P, o], ..., [Pn,v]M) = [4,]a.
Proof: By induction on the complexity of A.
&

Remark: The rest of the story, omitted here, proceeds similarly to the case
n = 2, establishing the following

Proposition 12 (Completeness) Let n > 2. If a PL,-sequent I' = A
s n-valid, then CPL, F ' = A.

5 Axiomatic Completeness for Infinite Models

In this section, we consider the intersection of the systems CPL,, forn > 2,
denoted by ;25 CPL,. We emphasize that (5=, CPL, refers to the set
of theorems, i.e. to the sequents derivable in every system CPL,, for n > 2.
First, we are going to show soundness and completeness of (,_, CPL, with
respect to the class of infinite models, based on the set of rational numbers
Q on the interval [0,1]. Models based on Q()[0,1] are defined in the same
way as the finite models in section 3, only that the set of values, S, is
now Q([0,1]. Moreover, if a given sequent is true in every model based on

QN[0,1] we shall say that this sequent is Q ([0, 1]- valid.
Proposition 13 A given sequent I' => A is a theorem of (;—, CPL, if
and only if T = A is Q([0,1]-valid.

Proof:
(1) soundness

15



Assume that a sequent I' = A is a theorem of >, CPL, . We want to
prove that v(I' => A) =1 for every valuation v based on Q (1[0, 1].
Observe first, that there are only finitely many propositional letters in
I' = A, say: P1,...,P;. Consider a valuation v based on Q([0,1] such
that v(P;) = ki/my;, for i = 1,...,5. Let m > 2 be the least common
multiple of {m1,...,m;}. Then, for every ¢ = 1,...,5 there is some s;
such that v(P;) = s;/m. Now, we can see that v|{P1,...,P;} is in fact the
restriction of some valuation v,, € V,,,. Since I' = A is by assumption a
theorem of CPL,,, for all m > 2, and moreover, soundness, see proposition

2, implies m-validity, we get:
(I = A)=v, (Il = A)=1.

And this was to be proved, after having realized that the remaining case for
m =1 is trivial.

(ii) completeness

Suppose that v(I' = A) = 1 for any v based on Q[0,1]. Given ar-
bitrary n > 2, clearly any v € V,, is also a valuation based on @ [0,1],
hence v(I' => A) =1 for all v € V,,. This means that the sequent under
consideration is n-valid and by completeness, see proposition 12, we get:
CPL, - T' = A. Since n was arbitrary, it follows that ' = A is a
theorem of (), ~o CPL,,.

This completes the proof.

It is a routine of universal algebra to provide the following by-product

Fact 14 A given sequent I' = A s Q([0, 1]-valid if and only if T = A
15 valid for the class of models [[;20 Mp.

A natural question, which arises at this point, is whether there exists
a finite axiomatization of ()L, CPL,. The answer is positive. Clearly,
the maximal deductive subsystem contained in every PL,, and thus, also
in every CPL,, for n > 2, will be taken as the base of the axiomatiza-
tion in question. Since there are no contraction rules left in the considered

subsystem, we shall call it PL.
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Moreover, we claim that the system PL extended by the axiom-scheme:
~(~A+B)+B = AU B,

presents an axiomatization of ;25 CPL,. We shall refer to this system as
CPL.

In what follows, we reduce the proof of this assertion to the well-known
result of Wajsberg (see Lukasiewicz, Tarski [1930]) who presented a Hilbert-
style axiomatization of Ng-valued Lukasiewicz logic in the language < ~, —>,
using our notation. (An algebraic proof of the considered axiomatization,
based on linearly ordered MV-algebras, was obtained by Chang in [1959].)

Wajsberg’s axiomatization is as follows:
axiom-schemes:

1. Ao (B—oA4)

[N

(A= B) = ((B—C)—(4-0))

3. (A —B)— B) — ((B—A) — A)

4. (~A — ~B) — (B — A)

with the single rule of inference, modus ponens.

We shall refer to the above deductive system as HW.

From now on, we shall think of HW as a one-sided sequent calculus with
axioms given by 1-4 and modus ponens having the form:

= A = A o B
= B

Further, we shall show that omitting the logical rules for the connective
U from PL, but adding to the resulting system the axiom-scheme:

~(~A+ B) + B = ~(~B + A) + 4,

yields a Gentzen-style formulation of HW, called GW.
In other words, we want to show that GW is complete for the same class
of models as HW, i.e. for models based on Q@ ([0,1]. Witness the next

17



Proposition 15 The system GW s complete for the class of models based
on @N[0,1].

Proof: Our proof will be based on the following simple observations:
(i) HW is a subsystem of GW;
(i) GW is sound with respect to models based on @ ([0, 1];

(i) in GW a given sequent A1, Ao, ..., 4y = Bi,...,Bn_1, By, is prov-
ably equivalent with

= A; - (4 = (... (Ax = (~By = (...(~Bp-1 — Bp)...).

Assume now, that a given sequent A;, Aa,..., Ay = By,...,Bpm_1,Bn is
QN[0,1]-valid. Then, from (iii) and (ii) it follows, that also the sequent
= A; — (42,— (... (4x = (~By = (...(~Bp—1 — Bp)...) is Qﬂ[ﬂ, 1]-
valid. Thus, by completeness, the latter sequent is derivable in HW and
hence, also in GW by (i). Finally, due to (iii), we get:

GW F A1, As,..., Ay => B1,...,Bm_1,Bm ,

what was to be proved.

%
To continue with:
Lemma 16 GW is a subsystem of CPL.
Proof: It is easy to see that:
CPLtF ~(~A+ B)+ B = ~(~B+ 4) + A.
¢

Definition 17 A mapping s from CPL-formulas into GW -formulas is given
mnductively, as follows:

(i) s(P) := P , for any propositional letter P

18



(i) s(~A) = ~s(4)
(#1i) s(AU B) := ~(~s(A) + s(B)) + s(B)
(iv) s(A+ B) := s(A) + s(B)

Lemma 18 A given CPL-formula A is equivalent to s(A) in the following
sense: CPLF A = s(A) and CPL | s(4) = A.

Proof: By induction on the complexity of A.
To illustrate the proof we shall work out the crucial case:

CPLFs(CUuD)= CUD.
First, by induction hypothesis we have:
CPLF s(C)=C

and
CPL}| s(D) = D.

Applying twice RLI we get:
CPLF s(C)=CUD

and

CPL+| s(D) = CUD.
And from that by LU:

CPL+}F s(C)Us(D) = CUD.
Finally, an application of CUT to the CPL-axiom
~(~s(C) + s(D)) + s(D) = s(C) U s(D)
and to the last obtained sequent above yields:
~(~s(C)+ s(D))+s(D)= CUD.

Since s(C U D) = ~(~s(C) + s(D)) + s(D) by definition, we are done.
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Finally, we are prepared to prove the claim mentioned earlier, and now
stated by

Proposition 19 A given PL,-sequentT' => A ts a theorem of ;o CPL,,
ifand only if CPLFT = A.

Proof: First, assume that a sequent Ay,...,A,, = Bi,..., B, is a the-
orem of (|72, CPL,. Thus, by soundness, see proposition 13, the given
sequent is Q ([0, 1]-valid. Using the fact that v(AUB) = v(~(~A+ B)+ B)
for all v based on Q()[0,1], we know that the sequent

s(A1),...,5(Am) = s(B1),...,s(Bn)
remains Q (1[0, 1]-valid. Hence, by proposition 15,
GW I s(41),...,5(4m) = s(B1),...,5(Bn)-
And therefore, by lemma 16, also
CPL F s(41),...,5(Am) = s(B1),...,s(B,)-

Due to lemma 18, we can now successively apply CUT to the last obtained
sequent and to one of the CPL-theorems 4; = s(4;) and s(B;) = B;
foralli=1,...,m and j =1,...,n, which yields:

CPL‘ 4i,...,Am = Bi,...,Bn.

One direction of the proposition has thus been verified.
The other direction is left to the reader.

6 Conclusion

The time has come to offer the reader a final discussion. First, observe,
that our last proposition has been established essentially due to the fact that
AUB and ~(~A+ B)+ B coincide in the proposed models. This, moreover,
shows that U can be defined in terms of + and ~ within the systems that
are complete for the indicated class of models. Thus, the above introduced
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systems CPL,, n > 2 and CPL, in fact, present Gentzen-style formulation
of logics eqivalent with finite and Ro-valued Lukasiewicz logics respectively.
And as far as we know, only Grishin in [1976] accomplished a similar task
for the 4-valued Lukasiewicz logic. It might be interesting to recall that
Grishin’s axiomatization includes restricted contraction rules, as well. In
particular, in his system, but in our notation, only the formulas in one of
the following forms: X3, (X +X2)2 or X + X2+2(~X)? may be contracted.

Let us mention a particular perspicuity of Gentzen-style formulation
for the considered logics. In Lukasiewicz, Tarski [1930], the authors es-
pecially emphasized that the introduced systems, nowadays referred to as
Lukasiewicz logics, are only proper subsystems of propositional logic. From
the corresponding Gentzen-style formulations, however, it becomes evident
that this is due to the lack of full contraction.
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