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Models of the untyped A-calculus in
semi cartesian closed categories

by
Raymond Hoofman p Harold Schellinx*
Department of Mathematics and Computer Science

University of Amsterdam

Abstract

We show sound- and completeness of two classes of category-theoretical
models for the untyped AB-calculus, classes that are distinguished from (but
closely related to) the traditional class of categorical models consisting of
reflexive objects in cartesian closed categories.

1 Introduction

In this note we introduce two classes of category-theoretical models for the un-
typed lambda calculus and show their sound- and completeness with respect to
the AB-calculus (i.e. untyped lambda calculus without 7-rule).

Recall that the traditional class of categorical models for the untyped lambda-
calculus is that of reflerive objects in cartesian closed categories, where an
object is called reflexive iff it has its own function-space as retract. Sound-
and completeness of the AB3-calculus for this class are well-known (see e.g. Koy-
mans(1984)).

Here we will relax the requirements imposed by this class, and work in cate-
gories having only a semi cartesian closed structure. Intuitively, semi cartesian
closed categories can be seen as non-extensional versions of cartesian closed cat-
egories, i.e. the n-rule need not hold and pairing need not be surjective. Gener-
alizing the notion of reflexive object to this new context (section 2) is somewhat
subtle: in semi cartesian closed categories reflexive objects need not have their
own (semi-)exponent as retract, although an object with that property always
gives rise to a reflexive object (but in general the reverse does not hold).

The obvious interpretation of the AB-calculus on reflexive objects in semi
cartesian closed categories is sound, as will be shown in section 3, using an easy
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adaptation of the argument in Barendregt(1984). Completeness is immediate,
as this class contains the traditional one as a subclass.

In Hoofman and Schellinx(1991) we considered the class of iso-objects in
weak cartesian closed categories, where a weak cartesian closed category is a
semi cartesian closed one, but with surjective pairing, and an iso-object is an
object isomorphic to its own exponent. As we argued there, this class provides us
with a fully uniform definition of models for the untyped lambda calculus: just
like models of the exztensional A@n-calculus are iso-objects in cartesian closed
categories (see e.g. Lambek and Scott(1987); they “live in an eztensional envi-
ronment”), we take models of the non-eztensional AS3-calculus to be iso-objects
living in a non-extensional environment, viz., in a weak cartesian closed category.

The soundness of the interpretation of the A3-calculus on objects in this class
follows from the fact that they have their own semi-exponent as retract, and thus
give rise to reflezive objects. For completeness we have to do just a little bit more
work: we show that each reflexive object yields an iso-object in a weak cartesian
closed category on which the interpretation of the AB3-calculus is identical to that
on the original one. In fact, we will show completeness with respect to the class
of so-called mighty objects in weak cartesian closed categories, objects that in
fact are identical to their own (semi-)exponent (section 4). Thus we illustrate
that ultimately this paper should be seen as an exercise in “the shifting of one’s
point of view”, the opportunity for which is provided by the existence of several
non-isomorphic semi(weak) cartesian closed structures on a given category.

The results of this note extend Martini(1992), which shows soundness of A3
for the class of objects in weak cartesian closed categories that have their own
exponent as retract.

2 Reflexive, iso- and mighty objects

We recall the notion of semi cartesian closed category (see Hayashi(1985) and
Hoofman(1993)) and introduce the concept of reflezive object in categories that
are semi cartesian closed.

A semi-terminal object in a category C is an object 1 in C together with
arrows t, : A — 1 (for all objects A in C) such that ¢; o f = ¢,, for all
f:A— B (note that 1 is a terminal object iff ¢, = id).

A semi-product of objects A, B in Cis an object A X B together with arrows
m:AXB—o A :AxB—->B,<f,g>C—AxB (forall f:C — A4,g:
C — B) such that

l.ro< fig>=f

2. o< f,g>=¢g



3. <f,g> oh=<foh,goh>.

(so A x B is a product of 4, B iff < 7,7’ > =1d.)

Let C be a category with a semi-terminal object 1 and semi-products AXB. A
semi-ezponent of objects A, B in Cis an object A = B in C together with arrows
ev:(A=B)xA—- Bandcur(f):C —> (A= B) (forall f: C x A — B)
such that

1. evo<cur(f)og,h>= fo<g,h>
2. cur(fo< gom,7 >)=cur(f)ogyg.

(A semi-exponent is an exponent iff it also satisfies cur(ev) = id.)

A semi cartesian closed category (semi-CCC) C then is a category with
a semi-terminal object, semi-products and semi-exponents. A weak cartesian
closed category (wCCC) is a semi-CCC in which the semi-terminal object and
the semi-products are in fact a terminal object and products. A cartesian closed
category (CCC) is a wCCC in which the semi-exponents are exponents.

2.1. EXAMPLE. Let Pow denote the category with as objects powersets P(A)
and as arrows continuous (i.e. directed lub! preserving) functions. The category
Pow has finite products: P(0) is terminal and P(4) x P(B) := P(AW B) (where
AW B stands for the disjoint union of 4 and B). Furthermore, semi-exponents
can be defined on Pow by (P(4) = P(B)) := P(A<* x B) (with A<“ the set
of all finite subsets of A4), ev(F,z) = {b|3(X,b) € F.X C z}, cur(f)(z) =
{(X,b)|b € f(z¥X)}. One easily shows that this defines a weak cartesian closed
structure (see Hoofman and Schellinx(1991)). But Pow is not cartesian closed.
This is due to the fact that it is a full subcategory of the categorie DCPO of
directed complete partial orders: if Pow were cartesian closed, then any exponent
(P(A) = P(B)) would be isomorphic to the complete lattice [P(4) — P(B)] of
continuous mappings from P(A4) to P(B) (see e.g. Jung(1989), lemma 1.21); but
the lattice of continuous mappings between the powersets of two one-element
sets has precisely three elements, so it can not be (isomorphic to) an object in
Pow.

As the example shows, the notion of wCCC (semi-CCC) is strictly weaker
than that of CCC. Moreover, semi-cartesian closed structures on a category C
are not unique up to isomorphism as in the case of cartesian closed structures:
there can be many non-isomorphic semi-exponents of objects A, B € C.
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2.2. EXAMPLE. Let s be some (non-empty) set. Put

P(A) =5 P(B) := P((A<“ x B) Us).

Define curs(f) : P(4) — (P(B) =>s P(C)), for f : P(A) x P(B) — P(C) by:
curs(f)(z) := {(X,b) | b € f(zW X)} Us. One easily verifies that curs(f) and
=>s, together with the finite products and ev from the previous example, forms
an alternative weak cartesian closed structure on Pow.

2.3. DEFINITION. A reflezive object in a semi-CCC C is given by an object U
together with two arrows F : U — (U = U) and G : (U = U) — U such that
F oG = cur(ev). Le. U is a reflexive object iff the following diagram commutes:

>

U cur(ev)

S

Recall that for an object 4 in C we say that B is a retract of A iff there are
F:A4— Band G: B — A such that F o G = id. It follows that U is reflexive
ina CCCiff U = U is a retract of U. In a semi-CCC a retract U = U of an
object U always gives rise to a reflexive object:

U=U

U=U

O

2.4. PROPOSITION. If U = U is a retract of U in C through F,G, then
(U,cur(ev) o F,G) is a reflexive object. a

However, given a fixed semi cartesian closed structure on a category C, not
all reflexive objects U in C can be obtained in this way from a retract , as will
be clear from the next

2.5. EXAMPLE. Let D4 denote Engeler’s graph model for the untyped lambda-
calculus, with atomset A (see e.g. Schellinx(1991)). So we have D4 = P(Uy),
where Uy is the smallest set containing A, that satisfies X € Uj“’ &uelUy=>
(X,u) € Uy. The powerset D4 is a reflexive object in the category Pow with
respect to the semi-exponent =g from example 2.2. This is witnessed by the



functions F : Dy — (D4 =s Dy) : 2 — ((x — A) Us) and G : (D4 =
D,4) —» Dy : 2 — T —s (where T denotes {(X,b) | A(Y,b) € z.Y C X}) which
satisfy F' o G = curs(ev). Moreover, it is clear that if A is countable and s is
uncountable, then D4 =5 D4 can not be a retract of D4 (as D4 =5 Dy4 is of
higher cardinality than D4).

2.6. DEFINITION. Let C be semi cartesian closed. An object U in C such that
U = (U = U) is said to be an iso-object. If in fact U is the same as U = U,
then we will call the object U mighty. O

Clearly a mighty object is always an iso-object, while an iso-object always
has its own exponent as retract, and hence gives rise to a reflexive object.

3 Interpreting A on reflexive objects in semi carte-
sian closed categories

Let (U, F,G) be a reflexive object in a semi-CCC. We are going to interpret
the untyped lambda-calculus on the reflexive object U, or, more precisely, in
Hom(1 — U) (i.e. the collection of all maps f : 1 — U, also denoted by |U]|, and
sometimes referred to as the collection of points of U).

Using ev and F, we define for g,h: A — U:

g-,h=evyyo< Fog,h>.

Writing - for -, in particular, we get an applicative structure (|U], ).

We recall some definitions from Koymans(1984):

3.1. DEFINITION.

1. For any n > 0 the n-fold semi-product U™ is defined by:

-U%=1;
SUMl=U" x U.
2. Let A = z1,...,z, be a sequence of distinct variables. The canonical

projections, pmA‘, : U™ — U, are given by

!

oA = pa\mom ifi#n
i T otherwise.

(Here A\z, stands for the sequence A minus its last element.)



3. For any object A and fi,...,fn: A > U, we define (f1,...,fn), : A > U"
by

(a = t,
<f1)'“’fn+1>,4 <<f1>~--)fn>,4,.fn+1>~

4. Let T' = y1,...,ym with {T'} C {A} (where {I'} denotes the set having
as elements the variables in the sequence I'). We define a mapping II2 :

U > U™ by IIA = yAl,...,pﬁm)m. O

One can interpret the untyped A-calculus on the reflexive object U in a semi-
CCC just as in a CCC. We follow Barendregt(1984), chapter 5, section 5:

3.2. DEFINITION. Given a A-term M with its free variables among {A}, induc-
tively define the interpretation [M], : U™ — U by:

L [zida =p2;
2. [PQ]a = [P]a un [Qa;
3. [Az.P]5 = Gocur([P],,)-

We take the usual precautions regarding names of variables, e.g. in the last
case ¢ € {A}. O

In order to prove adequacy of this interpretation, also in the case of a semi-
CCC, it suffices to check that the arguments in Barendregt(1984) do not use
properties that are not generally valid in a semi-CCC, or, when they do, can be
replaced by appropriate ‘semi’-arguments. Also, we have to take into account
the definition of reflexive object in a semi-CCC. Let us start with a list of
properties regarding the notions introduced above:

3.3. LEMMA. The following equalities hold in any semi-CCC:

1L {f1,-- s fadgoh=(fioh,...,faoh)p;
2. po, o (f1,- s fn) g = i

3. 0% 0 (f1,-- s fo) g = (i) a5

4. p} oIIf = pi;

5. M5 o II& = II5;



6. Ip? =< MR om,n’ >
7. Ip* =TIA o .
ProOF: Straightforward. O

The arguments in Barendregt(1984) use but one more equality which is miss-
ing here: in general in a semi-CCC it will not be true that II3 = id,. (*).
However the use of this property turns out to be inessential, as one can slightlty
modify the arguments and avoid it.

3.4. LEMMA. The following hold in any semi-CCC:
1. Let {A} D {T'} D FV(M). Then [M], = [M] o TIA.
2. Let {A} = {&} DFV(M), N fitin Z and T D FV(N). Then
[MZ := Nl = [M]4 © (IN]p)-
3. Let A D FV(Az.M),T D FV((Az.M)N) and {T'} D {A}. Then
[M[z := Nl = [M]a 0 < TR, [N > .
ProOOF: Both 1 and 2 are shown by induction on the structure of M, while 3 is a

corollary to 2. Barendregt(1984) uses a non-semi property (namely < 7,7’ >=
id) in the argument for 2 in case M = Ay.P. However, one can do without:

[(Ay.P)[# := Nl = [w.P[&y=N ,y]]h:

= Gocur([P[Zy:=N,yllp,)

(indhyp) = Gocur([P],, o ([Nl vlr,))
= Gocur([Pla, o < ([Nlp,),n' >)

(byl) = Gocur([Pls,o < ([NlpoILY),x’ >)
(by3.3,7) = Gocur([P]y, o< ([[]_\}]]F oIk o 7), 7' >)
(byland3.3,1) = Gocur([P]s,o < ([N]p)om 7" >)

= Gocur([P],,) o ([Nlp)
= PwPlyo([Nl). ©

The adequacy of reflexive objects in a semi-CCC for the interpretation of the
A-calculus then follows:



3.5. PROPOSITION. Let M,N be two lambda-terms, and {A} D FV(MN).
Then
AFM=N = [M],=[N]a-

ProOOF: By induction on the length of proof of M = N. The crucial case is
that of the (-axiom, and it is here that the reflexivity of U plays a role. The
argument in Barendregt(1984) for the cartesian closed cases uses the property
(¥) (i-e. T3 = id). The following shows that its use is not necessary:

[(Az.P)Qly = (Gocur([P]y,))- [Qla
= evo< FoGocur([P],,),[Q]a >
(byrefl) = evo <cur(ev)ocur([P],,), [Q]a >

= evo<cur([P],,),[Q]s > -

But we have by 3.4,1 and 3.3,6 that

|[P]]A,:c = I[P]]A,z ° Hﬁ::
= I[P]]A,:co < Hﬁ om,w >.

So we get

[(A2.P)Q]p = evo<cur([P],, o< Ma om,7' >),[Qla >
= evo<cur([P],,) o II4, [Ql, >

= [Pla.o< 3,[Qls >
= [Plz:=Q]]n, by3.4,3 a.

We then obtain the following:

3.6. THEOREM. Any reflexive object U in a semi cartesian closed category
determines a A-algebra (|U|,-,[])- a

3.7. REMARK. Let us define U’ to be the collection of all z € |U| such that
z = g oty. Clearly U’ is closed under application: if z,y € U’, then z -y =
(xoty)-(yot1) =(z-y)ots.

Then observe that by 3.4,1 each closed lambda-term M in fact is interpreted
as an element [M], of U’. If ¢, = id (i.e. if the semi-terminal object is terminal),
then U’ = |U|. In general, however, (U',-) will be a proper substructure of

(1U1,-)-



3.8. REMARK. We define the interpretation of the AB-calculus on objects in
semi cartesian closed categories that have their own semi-exponent as retract as
the interpretation on the corresponding reflexive object. The reader will observe
that (due to the fact that evo < Fog,h >= evo < cur(ev)o F og,h >) this is
equivalent to the obvious direct definition.

It is quite possible that a given object in a category C is reflexive with respect
to distinct semi cartesian closed structures on C, as we already saw in example
2.5, where we gave non-standard readings of Engeler’s graphmodel D4 as a
reflexive object with respect to semi cartesian closed structures on Pow. The
reader might verify however, that the interpretation on the object in all these
cases is the same as in the ‘standard’ semi cartesian closed structure on Pow,
that of example 2.1. Consequently in all cases the A-theory associated will be
the same.

It is however clear that the interpretation of the untyped AB-calculus as given
above depends essentially on the semi cartesian closed structure at hand, as well
as on the functions witnessing reflexivity. One therefore would expect that in
general changing the structure and/or the witnessing functions will change the
corresponding A-theory. Indeed this is so. For an example we again take a look
at a non-standard reading of Engeler’s D 4 as a reflexive object in Pow. As semi
cartesian closed structure we take that of example 2.2, with the atom-set A as
the non-empty set s. As witnessing function for reflexivity we take F' : z — TUA,
and G the identity mapping. The model thus obtained corresponds to what is
called D in Longo(1983). By the results of this same paper the theory of D}
differs from that of D 4. Detailed verification is left to the zealous reader.

4 Blankets and completeness

4.1. DEFINITION. Let C be semi cartesian closed. A blanket on C is a family
E = (E, 3|4, B € C) of objects of C together with arrows 7, , : E, ; — (4 =
B)and s, ; : (A= B) — E, ; (where = denotes the semi-exponent in C), such
that r, pos, p =cur(ev). O

Intuitively, £, , can be thought of as providing an alternative for the semi-
exponent A = B (see lemma 4.3).

4.2. EXaAMPLE. Let C be semi cartesian closed with reflexive object U. We can
define a blanket on C by

E,5=

’

U fA=B=U
A = B otherwise



(take 7 = F,s = G in the first, r = s = cur(ev) in the second case).

As we saw above, in general semi cartesian closed structures on a category
are not unique. In fact, the following shows that a blanket on a semi cartesian
closed category gives rise to an alternative semi cartesian closed structure on
the same category.

4.3. LEMMA. Let E be a blanket on a category C having a semi cartesian closed
structure containing (=,ev,cur). One obtains an alternative semi cartesian
closed structure on C, by keeping the same finite semi-products, and defining
(=',ev/,cur’) by

! o—
(A='B) = E,,
! i !
ev,p = evygolrugomm >
/
cur = s, g ocur.

PROOF: One easily checks that the defining equations hold for (=',ev’,cur’).
For example,

evo<cur'(f)omn > = evo<romn >o<socur(f)oma >
= evo<rosocur(f)ow, 7 >
= evo < cur(ev)ocur(f)omn' >
= evo<cur(f)om,n >

= f. O

4.4. REMARK. Note that the alternative structure defined does not change the
nature of the (semi-)products and the (semi-)terminal object in C: if originally
we have real products and/or a real terminal object, then the same will be the
case in the alternative structure. So if C happened to be weak cartesian closed,
then a blanket defines an alternative weak cartesian closed structure on C; a
non-trivial blanket on a CCC will result in a weak cartesian closed structure.

4.5. PROPOSITION. Reflexive objects in semi cartesian closed categories give
rise to mighty objects in semi cartesian closed categories. Moreover, the reflexive
object and the generated mighty object are identical as A-algebras.

PROOF: Let U be a reflexive object in a semi cartesian closed category C. Define
a blanket on C as in example 4.2, and apply lemma 4.3 to find a semi cartesian
closed structure on C in which U = (U =' U).

10



Let (|U],-,[]) be the original A-algebra, and (|U|,,[]’) the A-algebra given
by the generated object. First we note that f x, g = f -, g, for all objects A,
and all f,g: A — U:
fx,9 = ev;wo <idyo f,g>
ev, o< f,g>
= evy,o<Fomn >o0< f,g>
= evyy,0<Fof,g>
= f ‘a9
In particular we find that -, = *y, L o =%
To finish the proof, we show by induction on the complexity of M, that for

all lambda-terms M and all A D FV(M), we have [M], = [M],.
For the basis of the induction, we observe that for all A and all  we obviously

have [e]y = p2 = [z].
We proceed as follows:
[MNTy = [MJaA*[NT,
(ind.hyp.) = [M], *[Na]
= [M], - [Na]
= [MN]u;

[Ae.MT,
(ind.hyp.)

idy o cur'([[M]]'A,m)
cur'([M], )

Go cur(l[M]lA’z)
[Az.M] 4. O

In fact we can show something slightly stronger:

4.6. THEOREM. Reflexive objects in semi cartesian closed categories give rise
to mighty objects in weak cartesian closed categories. Moreover, the reflexive
object and the generated mighty object are identical as A-algebras.

ProOOF: Let C be semi cartesian closed with reflexive object (U, F,G). Write
F’ for cur(ev) o F, and G’ for G o cur(ev). The Karoubi envelope K(C) of C
(see e.g. Hoofman and Schellinx(1991)) is cartesian closed, with reflexive object
(idy, F',G'). If 1 is the semi-terminal object in C, then ¢, is the terminal object
in the Karoubi envelope. The A-algebra determined by the reflexive object in
K(C) has as its domain of interpretation Hom(t, ,id;). This consists of all those
f € |U| such that fot, = f.

11



Further we observe that
evo < cur(ev)oFog,h >= ev< Fog,h>,
and

Gocur(ev)ocur(f) = Gocur(evo < cur(f)omn’ >)
= Gocur(fo<mn >)
= Gocur(f)

Therefore, using remark 3.7, the A-algebra determined by the reflexive object in
K(C) is just the A-algebra determined by U in C. By the previous proposition
and remark 4.4, there is a weak cartesian closed structure on /C(C) where id,, =
(¢d,, = id,;) and which again gives the same A-algebra. O

It was shown by Koymans (see Barendregt(1984), chapter 5, section 5) that
every A-algebra can be obtained from a reflexive object U in a category C with
cartesian closed structure. The above results enable us to rephrase this as follows:

4.7. THEOREM. A mighty object U in a weak cartesian closed category de-
termines a A-algebra. Conversely each A-algebra can be obtained from such an
object.

PROOF: Soundness is clear from proposition 2.4, theorem 3.6 and remark 3.8:
take the A-algebra determined by the reflexive object (U,cur(ev),id). Con-
versely, for completeness, let some A-algebra be given. By Koymans’s result it
can be obtained from a reflexive object U in a category C with cartesian closed
structure. By theorem 4.6, U is mighty in a weak cartesian closed structure on
C. Moreover, it remains unchanged as a A-algebra. a

12



References

BARENDREGT, H. P. (1984). The Lambda Calculus. Its Syntaz and Semantics.
North-Holland. Studies in Logic and the Foundations of Mathematics 103.

HavasHi, S. (1985). Adjunction of semifunctors: categorical structures in non-
extensional lambda-calculus. Theoretical Computer Science, 41:95-104.

HoorMAN, R. (1993). The theory of semi-functors. To appear in Mathematical
Structures in Computer Science.

HoorMAN, R. AND ScHELLINX, H. (1991). Collapsing graph models by pre-
orders. In Pitt, D. H., Curien, P.-L., Abramsky, S., Pitts, A. M., Poigné,
A., and Rydeheard, D. E., editors, Category Theory and Computer Sci-
ence, pages 53-73. Springer Verlag. Lecture Notes in Computer Science
530, Proceedings of the CTCS, Paris, September 1991.

Jung, A. (1989). Cartesian closed categories of domains. Mathematisch Cen-
trum, Amsterdam. CWI Tract 66.

KoymMmaNs, C. P. J. (1984). Models of the lambda calculus. Mathematisch
Centrum, Amsterdam. CWI Tract 9.

LAMBEK, J. AND ScotT, P. S. (1987). Introduction to Higher Order Cate-
gorical Logic. Cambridge University Press. Cambridge studies in advanced
mathematics 7.

LonNGo, G. (1983). Set-theoretical models of A-calculus: theories, expansions,
isomorphism. Annals of Pure and Applied Logic, 24:153-188.

MARTINI, S. (1992). Categorical models for non-extensional A-calculi and com-
binatory logic. Mathematical Structures in Computer Science, 2:327-357.

SCHELLINX, H. (1991). Isomorphisms and nonisomorphisms of graph models.
Journal of Symbolic Logic, 56(1):227-249.

13



The ILLC Prepublication Series

CT-91-09 Ming Li, Paul M.B. Vitanyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vit4nyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith S Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics
CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Pr of Intermediate Propositional Logics »
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional

Logics
X-91-03 V. Yu. Shavrukov Suglal ebras of Diagonalizable Algebras of Theories containing Arithmetic
X-91-04 K.N. Ignatiev Pamaf' Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev %x Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical

eories

X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael aschev Canonical Formulas for K4. Part I: Basic Results

X-91-12 Herman Hendriks Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en
Michael Moortgat

X-91-13 Max I. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete

X-91-14 Max I. Kanovich The Horn Fragment of Li If.fic is NP-Complete

X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised
version

X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set The

X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Lo:fic: an Analysis from a standard point of view

1 Aug. 1991, Dept. of Phil., Utrecht University

X-91-19 Papers presented at the Provability Int tability Arithmetic Conference, 24-
1992 * Romual Report 1991
Logic, Semantics and Philosophy of Langauge

LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures

LP-92-03 Szabolcs Mikulds The Completeness of the Lambek Calculus with respect to Relational Semantics
LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic

LP-92-05 David I. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Cogxgle:gity of Attribute Value Grammar

LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of Dynamic Modal Logic

LP-92-09 Johan van Benthem tifiers in tﬁg world of Types

LP-92-10 Maarten de Rijke eeting Some Neighbours (a dynamic modal logic meets theories of change and
knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic

LP-92-12 Heinrich Wansing Sequent Caluli for Normal Modal Propositional Logics

LP-92-13 Dag Westerstihl Iterated Quantifiers

LP-92-14 Jeroen Groenendijk, Martin Stokhof Interrogatives and Adverbs of Quantification
Mathematical Logic and Foundations

ML-92-01 A.S, Troelstra Comparing the theory of Representations and Constructive Mathematics
ML-92-02 Dmitrij P. Skvortsov, Valentin B. Sherl’lretmarndi oz imal Kripke-type Semantics for Modal and Superintuitionistic
cate Logics
ML-92-03 Zoran Markovié¢ On the Structgt}re of Kripke Models of Heyting Arithmetic
ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I
ML.-92-05 Domenico Zambella Shavrukov ’Isgheorem on the Subalgebras of Diagonalizable Algebras for Theories
containin; + EXP
ML-92-06 D.M. Gabbay, Valentin B. Shehtman ‘}Ingd%ciidibﬂity of Modal and Intermediate First-Order Logics with Two Individual
ariables
ML-92-07 Harold Schellinx How to Broaden your Horizon
ML.-92-08 Raymond Hoofman Information Systems as Coalgebras
ML-92-09 A.S. Troelstra Realizability
ML-92-10 V.Yu. Shavrukov A Smart Child of Peano’s

Comgution and Complexity Theory
CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures .

X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of X,
conservativi

X-92-03 Willem Groeneveld ic Sezantics and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meanin,

X-92-05 Erik de Haas, Peter van Emde Boas  Object Oriented Application Flow (gaphs and their Semantics, revised version
1993

Mathematical Logic and Foundations

ML-93-01 Maciej Kandulski Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains . .
ML-93-03 Mati Pentus The Conjoinablity Relation in Lambek Calculus and Linear Logic
ML-93-04 Andreja Prijatelj Bounded Contraction and Many-Valued Semantics

ML-93-05 Raymond Hoofman, Harold Schellinx Models of the Untyped A-calculus in Semi Cartesian Closed Categories
Compution and Complexity Theory . .

CT-93-01 Marianne Kalsbeek The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
Other Prepublications

X-93-01 Paul Dekker Existential Disclosure, revised version



