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J. Zashev

Department of Math. Logic & Applications
Faculty of Mathematics & Informatics
Sofia University, boul. James Bouchier 5
Sofia 1126 , Bulgaria

0.INTRODUCTORY REMARKS

Recently there have been developed several attempts to formulate a natural
generalization of recursion theory in a categorial framework. We present here
another such generalization which seems to be interesting also from purely
categorial point of view and arises in a natural way from a well established
and point-free algebraic generalization of recursion theory - so called

’algebraic recursion theory’ ([11,[7]) .

0.1. Algebraic recursion theory can be explained as an algebraic theory of
least fixed points as follows: Suppose we are given a partially ordered
universal algebra A, i.e. a poset A with several monotonic on each argument
operations in it. From basic operations in A we can construct new monotonic
operations by means of explicit expressions; let us call last operations
’explicitly definable in A’. On other hand we can construct still other
monotonic operations by means of least fixed points or in other words by means
of some (abstract) inductive definitions. Namely, let Vi i( X geeesX Y e ym)
( i = L...m ) be explicitly definable n+m - ary operations in A and suppose

the system of inequalities

= i = 1.,
fi(xl,...,xn,yl,...,ym) v, , i = 1..,m (1)
. m
has least iolutlon (gl(x1,...,xn),...,gm(xl,...,xn)) € A for all
(xl,...,xn) € A" . Then we have new operations g, + we shall call operations

arising in this way inductively definable in A. The algebra A will be called
inductively complete if all systems of the form (1) have least solutions and

all inductively definable operations in A are explicitly definable. Nontrivial

*
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examples of inductively complete algebras arise in recursion theory and
computer science. First example of such algebras of abstract kind - so called
iterative combinatory spaces - was constructed and studied by Skordev [9] and
a nice generalization of recursion theory arose from this. To Skordev is due
also the general question of existence of other interesting kinds of
inductively complete algebras (see [7] where they are called ’fixed-point
complete algebras’) and the proposition of their systematical study. Later on
other kinds of such algebras were introduced by other authors ([11,[91,[10]).

In general, all known nontrivial inductively complete algebras arise as
inductive completion of a suitable poalgebra A in which all systems of the
form (1) have least solutions (the last is |wusually easily verified by some
continuity arguments). Here by an inductive completion of a poalgebra A we
mean an inductively complete enrichment of A with a set B of inductively
definable in A operations. The problem of finding of a (simple) inductive
completion of a given poalgebra A, or more precisely: to find a set B of
inductively definable operations in A s.t. all systems of the form (1) have
least solutions with components explicitly expressible by means of parameters

X peesX basic operations in A and those from B , is what we shall call

1”
below ’the problem of inductive completion of A’ ; it is a slight

modification of the original Skordev’s formulation of the problem.

0.2. The problem of inductive completion of poalgebras has an obvious
generalization for categories: instead of a poset A we take a category C and
instead of basic operations we take a set of (covariant) multiendofunctors in
C (that 1is bi-,tri- and so on endofunctors as well as constant objects,
considered as functors of zero arguments, and wusual endofunctors of one
argument) which we call basic endofunctors. Instead of systems of the form (1)
we consider functors

F: ", P (2)
which are explicitly expressible by ©basic multiendofunctors in an obvious

sense. Taking Jleast fixed points (in the sense of Lambek [3]; see section 1.3

below) of such functors we get new multiendofunctors in C and call them
inductively definable. The problem 1is to find a simple set B of inductively
definable multiendofunctors, s.t. for every functor F of the form (2): (a) the
least fixed point of F exists (the existence part of the problem), and (b)
is explicitly expressible by means of basic multiendofunctors and those from B

(the expressibility part of the problem).



0.3. In present paper we are going to solve the last problem for a special
kind of enriched categories which were called DM-categories in [6].
DM-categories are the categorial analog of operative spaces of Ivanov [1] -
one of the most important algebraic systems for which algebraic recursion
theory is developed. Our choice of this system is motivated rather by a chance
- it seemed at the beginning of present investigations that operative spaces
will be the most simple case to begin with. There are no reasons to expect
that the categorial generalization of algebraic recursion theory in other
algebraic systems like combinatory spaces [7] or cartesian linear combinatory
algebras [11] does not hold. However, strictly speaking, the problem is open

at present for other kinds of enriched categories.

0.4. The present paper is an improved version of our first publication on
DM-categories [6]. The chief improvement is in replacement of the notion of

iteratively closed DM-category by that of iterative DM-category. The last

notion is more general and helps to simplify some examples, (the example in
section 4.3 below). Moreover, it is a generalization of a possible version of
the concept of iterativity for operative spaces [1], while the previous notion
of iteratively closed DM-category was not. But the last notion was helpful in
euristical sense: it helped to discover the right generalization of the
concept of iterativity. We should mention that the version of the concept of
iterativity as generalized by the notion of iterative DM-category is different
from the original version of Ivanov [1] but more convenient for the categorial
case. That is ©because of the existence part of the problem of inductive
completion for categories, which is rather trivial in the wusual case of
posets. A generalization of Ivanov’s concept of iterativity for categories
would require the existence part of the problem to be solved independently but
this is not the case with the notion of iterative DM-category in the present

paper.

0.5. An important question to be answered with respect to the theory of
DM-categories as described above is about the scope of the theory: what is the
variety of models of it, i.e. iterative DM-categories. Various models of the
theory of iterative operative spaces, which are wup to secondary details
mentioned above in 0.4 a special case of iterative DM-categories, were studied
before (see [1],[7]) so the question is rather following one: what we can
expect from properly categorial (not degenerated to preorders) models of the

theory of DM-categories. Such question is to be answered by examples; but for



detailed exposition examples require, as it seems, separate papers. In present
paper we give three examples in a brief exposition, leaving straightforward
constructions and most of the proofs to the reader. The first of those
examples is of rather general character; but it seems, on the ground of the
analogy with the wusual operative spaces ~and theirs connections with other
generalizations of recursion theory, that some examples of that kind could be
interpreted as proper categorial generalizations of some well known
generalizations of the wusual recursion theory like that of Moschovakis. The
other two examples in the present paper suggest connections with proving

correctness of programs.

1.DEFINITIONS.

1.1. DM-categories.

A DM-category is a category ¥ with two bifunctors M:?z——)? and [D:?z——ﬁ ,
three objects LLLR , and six natural isomorphisms «,A,p,1r,i satisfying
conditions (DM1) - (DMS8) below. We shall call M ‘’multiplication functor’ and
we shall write xy for M(x,y) where x and y are objects or arrows in .
Similarly, we shall call D ’cartesian functor’, and we shall write (x,y) for
D(x,y) . Composition of arrows f,g in ¥ will be denoted by fog . Conditions
defining a DM-category are following ones:

(DM1) « is an isomorphism «lp,p,x): (pY)x = @(Yx) natural in @,¥,x ;

IR

(DM2) A is an isomorphism A(g): Ip = ¢ natural in ¢ ;

(DM3) p is an isomorphism p(p): ¢I = ¢ natural in ¢ ;

(DM4) 1 is an isomorphism 1(p,¥): (p, )L = ¢ natural in ¢,y ;

(DM5) r is an isomorphism r(ep,¥): (p,y)JR = Y natural in ¢,¥ ;
(DM6) i is an isomorphism i(e,¥,x): eW,x) = (ey,px) natural in ¢,P,x ;
(DM7) for all ¢,y,x,® € F we have:

., x0)ealoppx,0) = (1 aly,x,9)) oo, yx,0) (o))



(DM8) for all ¢,¥,x,® € F we have:

ilpy,x,0) ol @9, (x,9)) = (&(go,w,x),&up,w,ﬂ))oi(q»,wx,w)o(1¢1(w,x,a)) ,
where « is g—l.

Condition (DM7) is the pentagonal diagram in the definition of a monoidal
category (see [2]); we shall call (DM7) and (DM8) ’coherence axioms’.

For posets & the notion of DM-category coincides with that of operative

space [1l. Properly categorial examples of DM-categories will appear below in

section 4.
1.2. Some notational conventions.

By ¥ in this paper we shall denote always a DM-category; o0, x,€,m etc. will
be objects, and f,g,h,x,y etc. - arrows in ¥. In expressions involving
arrows we shall usually write ¢ for lq’ , so if f:p—y¥ , then fo = f = yYf

k4

and since M is a functor we have

(p’g)e(fy) = fg = (fy’)eo(pg) (1)
for all f € Flp,p') and g € FY¥') . We shall usually omit brackets in
expressions like (1) , so in this sense multiplication 1is treated as binding
stronger then composition o . An expression constructed by means of D, M and

objects of ¥ defines a functor for both objects and arrows uniformly, the

object constants ¢ being interpreted as qu , so in the sequel we shall write
such definitions for objects only. We shall write &,X, ;_),-1-,;,? for
oc_l,A_l, _1, 1_1, g_l, 1_1 respectively and we shall wusually omit expressions

in brackets after oA etc. , so conditions (DM1) - (DM8) can be written

shortly as follows:

ao(fg)h = f(gh)ea (2)
AoIf = fol (3)
Bof[ = foe (4)



lo(f,g)L = fol (5)

ro(f,g)R = gor (6)
iof(g,h) = (fg,fh)oj (7
Xo® = pooxond (8)

fea = (o,@)oiopi (9)

where f e Flp,9’), g € FW,¥’'), h € Flx,x') . Define

(Xo""’xn-l) = (XO’(Xl""(Xn-z’xn—l)”')) R
where XO"”’Xn-—l are objects in ¥ or arrows as well, and for n = 0 let
(XO""’Xn—l) = 1 (respectively (Xo,...,Xn_l) = II ), and for n = 1 let
(Xo,...,Xn_l) = Xo

1.3. Least fixed points.

Let © be a category and let F: € — 6 be an endofunctor. By (F = €) we
shall denote the category of pairs (X;x) s.t. X € € and X € G(F(X),X) ;

arrows f: (X;x) — (Y;y) in (F » 6) are the arrows f: X — Y in & s.t.

fox = yoF(f) . Then Jleast fixed point (1.f.p.) of F is (according to [3]) an

initial object (M;m) of (F = ®) . Following elementary properties of 1.f.p.
partially appear in [3]; we shall wuse them below sometimes without a
reference:

(i) Suppose an endofunctor F(A) in © depends on a parameter A € « ,
where A is a category, i.e. F is a functor from AxE to G, aﬁd
F(A): € — & is the functor defined by F(A)(X) = F(A,X) for X € € and
F(A)f) = F(IA,f) for f e 6(X)Y) . Let (M(A);m(A)) be lLf.p. of F(A) for
all A e 4. Then M is a functor from « to & , where M(a) for a e (A,B)
is determined uniquely by

M(a)em(A) = m(B)oF(a,M(a)) ,

since (M(B);m(B)oF(a,M(B))) € (F(A) > 8) . Moreover



m(A): F(A,M(A)) — M(A)
is an isomorphism natural in A

(ii) If (M;m) and (N;n) are two lLf.p. of F: @ — € , then there is an
isomorphism (M;m) & (N;n) ; if the functor F depends on a parameter A € o« ,
then the last isomorphism is natural in A .

(iii) If n: G 2 F is a natural isomorphism between two endofunctors G
and F in & , then (M;m) is 1.f.p. of F iff (M;meon(M)) is L.f.p. of G .

Now let D be a category and let P: D — € be a functor. Then an object
(M;m) of (F = ) for a given functor F: € — € will be called local least
fixed point (shortly 1.1.f.p.) of F in (D,P) iff for any endofunctor G: D — D
s.t. PoG = FoP , there is unique object (Mm) € (G » D) , st. PM = M
and P(m) = m

We shall use the last notion only in such cases when D is a comma category
(H/Z) where H: € — €’ is a functor and Z € € , and P is the usual
forgetful functor from (H|Z) to & . In those cases it is useful to have a
characterization of LlL.f.p.. in (D,P) like that in Lemma 1 below. Let us
recall that the category (H|Z) consists of pairs (X,x) where x: HX) — Z
is an arrow in €’ and arrows f: (X,x) — (Y,y) in (H|{Z) are the arrows
f:X — Y in & for which x = yoHI(f) .

Lemma 1. Let F be an endofunctor in € and suppose that in notations above
we have a mapping assigning to each object (X,x) € (H|Z) an arrow

x0(X): HF(X) — Z
Then the equalities G(X,x) = (F(X),_&G(X)) and G(f) = F(f) for an arrow
f: (X,x) — (Y,y) in (H|Z) define an endofunctor in (H|Z) iff for every
such arrow we have
Hx0(X) = O (Y)oH(F()) ()
Moreover PoG = FoP and every endofunctor G: (H|Z) — (H|Z) sit. PoG = FoP

is of that kind. An object (M;m) € (F =6) is lLlLf.p. of F in ((H|{2),P)



iff for every mapping (X,x) §G(X) satisfying (1) there is unique
arrow u: HM) — Z s.t.
uoH(m) = uG(M) .

Proof. Straightforward.o
In notations of the last Lemma, we shall use to write §G for gG(X) below.

Lemma 2. If H: € — € is the identity functor, then M;m) € (F > 6) is
lL.f.p. of F: € — € if M;m) is LlL.f.p. of F in ((H|Z),P) for all Z € G .

Proof. Easy from definitions: let (M;m) be Llf.p. of F in ((H}Z),P) for
all Z € € and let f: F(Z) — Z ©be an arrow in ©; define an endofunctor

G: (H|lZ) — (H]Z) by G(X,x) = (F(X),foF(x)) for objects and G(f) = F(f)

for arrows; using Lemma 1 we see that G is an endofunctor for which PG = FoP,
and by Lemma 1 again it follows that there is unique w M — Z s.t.
uom = foF(m) i.e. (M;m) is Lf.p. of F .o The reverse of Lemma 2 also holds

and is included in Lemma 4 below.

Lemma 3. If two functors H & — G’ and H’': 6 — 6’ are naturally
isomorphic then for all Z € & : M;m) is lLlf.p. of F in ((HJZ),P) iff
(M;m) is Ll.f.p. of F in ((H' |2Z),P) .

Proof. Left to the reader.o

Lemma 4. Let (M;m) be L.f.p. of a functor F: € — € and a functor
H: € — 6’ has a right adjoint H*: 6 — & . Then (M;m) is LlL.f.p. of
F in ((H|{Z),P) for all Z € &’

Proof. Let G: (H|Z) — (H|Z) be an endofunctor s.t. PoG = FoP . Then by

Lemma 1 G(X,x) = (F(X),gG) and (1) holds. Let Z* = H*(Z) . Then there is

an universal arrow z: H(Z*) — Z , ie (Z*z) is a terminal object of
(H/Z) . From ZG: H(F(Z*)) — Z it follows that there is unique arrow
f: F(Z*) — Z* , s.t. _z_G = zoH(f) . Since (M;m) is l1Lf.p. of F , there is

unique w: M — Z* s.t. wom = foF(w) . Then defining u = zoH(w): HM) — Z

we have:



uC = ZCeHF(W)) = zoH(f)oH(F(w)) = zoH(w)oH(m) = ueH(m)

Conversely - suppose that v: HM) — Z and VG = voH(m) . Since the arrow 2z
is wuniversal, there is unique g M — Z* , st. v = 2zoH(g) . We shall show
that g = w whence it will follow that v = u and by Lemma 1 the proof will
be completed. Since (M;m) is l.f.p., m is an isomorphism. Let g’=f oF(g)om_l
Then

zoH(g’) = zoH(f)oH(F(g))oH(m 1) = zCoH(F(g))oH(m 1) = (zoH(g)) oH(m )

= vOeHm™) = veH(m)eH(m ™) = v

Thence by the uniquity of g we have g = g’ i.e. gom = foF(g) and by the

uniquity of the arrow w we have w = g .o
1.4. Iteration and iterative DM-categories.

Let F be a DM-category. A normal functor (for ¥) will be called a functor

H ¥ — ?N of the form H(E) = AieN.go(Evi) , where N is an arbitrary finite
or countable set, and vi € ?o for all i € N , where ?0 is the set of all
objects of ¥ , produced from {I,L,R} by means of the multiplication functor.
Every pair of the form ((H[§),P) , where H: ¥ — ?N is a normal functor, ¥
is an object of ?N and P: (H|y) — ¥ is the usual forgetful functor, will be
called a normal projection over ¥. A standart endofunctor will be called any
endofunctor TI': § — F of the form T(£) = (I,§)p and the object ¢ in this
case will be called parameter of I' . If I is a standard endofunctor with
parameter ¢ then an object (u;m) € (' = ¥) 1ie an arrow m: I'(u) — p  will
be called iteration of ¢ , iff (u;m) is LlLf.p.. of I in every normal
projection over ¥. If  (u;m) is iteration of ¢ then by Lemmas 1.3.2 and 1.3.3
it is 1.f.p. of the standard endofunctor with parameter ¢ and therefore it is
unique up to isomorphism in (' = &) . The category ¥ will be called jterative

iff for every object ¢ of ¥ there is an iteration of ¢ . If &F is iterative,



then by 1.3.(i1) and 1.3.(ii) there is an endofunctor 01 in ¥ s.t. for every )
€ ¥ the pair (0(p);ilp)) for suitable arrow i(g) is an iteration of ¢ , and
the functor 0 is unique up to natural isomorphism. We shall fix [ to denote
such an endofunctor in ¥ , when ¥ is an iterative DM-category. The functor 1

will be called ’iteration functor’; by 1.3.(i) we have an isomorphism

IR

(I, 1) = 0(p)
which is natural in ¢ .

Theorem 1. If ¥ is a DM-category in which every standard endofunctor has
l.f.p. and every normal functor for ¥ has right adjoint, then ¥ is iterative.

Proof. Immediately from Lemma 1.3.4.0

DM-categories satisfying conditions of Theorem 1 were <called in [6]

iteratively closed DM-categories. @The last theorem shows that iteratively
closed DM-categories are special case of iterative DM-categories and therefore
the results of the present paper extend those of [6].

Theorem 2. Let ¥ be a DM-category in which there is an initial object O

s.t. ¢O

IR

(0]

IR

OL

R

OR for all ¢ € ¥ , and all direct limits of sequences of
the form <p0 — @ 1 — .. exist in ¥ and commute with folloiwng functors:
M(E) = € , MP(€) = €p and P = (L&)  for all ¢ € F . Then ¥ is
iterative.

Proof. Let ' be a standard endofunctor in ¥. Define v, = r’*(o) and g

= l"n(go) where g, is the unique arrow O — %_. . Then we have a sequence

1
€o g1
% (&1
and let its direct limit in F be (p, An.gn) ie. g: v — B, g .°8 = g
for all n and for every sequence of arrows hn: L, B in ¥F , s.t. hn+1°gn

= hn for all n, there is unique h: p — B , s.t. hn = hogn for all n. By
the conditions of the theorem the last limit commutes with I' and since F(z’n)

= Y41 there is unique m: TI'(u) — p  s.t.

Ehep = MeTlE) S
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for all n, and this arrow is isomorphic. To show that (u;m) is Ll.f.p. of T
in ((H{¥),P) for arbitrary normal projection ((H/¥),P) over ¥ suppose that
G: (H|{y) — (H|Y) is an endofunctor s.t. PeG = ToP . By Lemma 1.3.1 G has
the form
G
G(&;x) = (T(&€);x )
and 1.3.(1) holds. By the definition of a normal functor and the conditions of
the theorem it follows that the object  H(O) is initial in the category ?N
where H: ¥ — ?N . Then there is unique arrow u: H(O) — ¢ and define by
induction u = u G . Then we have u: H(y ) — ¢ and by induction on n we
n+1l n n n

can see that for all n

u +1°H(gn) =u

n n

Indeed, for n =20 this is obvious since H(O) is an initial object, and by
the induction hypothesis:
G G
u =u = (un+1oH(gn)) =u o oH(l"(gn)) = un+2oH(gn+l)
But from the conditions of the theorem and the definition of a normal functor
it follows that (H(uw),An.H(g )) is a limit of the sequence
H(go) H(gl)

H(Wo) _— H('Jl) —_— .

Therefore there is unique arrow wH(u) — ¥ s.t. u = uoH(én) for all n

We shall show that u is the unique arrow for which uG = ueH(m) and by Lemma

1.3.1 the proof will be completed. Indeed, for all n we have:

u_ = uCeH(m 1)oH(g )
n n
For n = 0 this is immediate since  H(O) is an initial object, and by (1)
and 1.3.(1):
G . =1, = G = = (wen(cs NG — o G _
u~ oH(m )oH(gn+1) =u H(I‘(gn)) = (u H(gn)) =u-=u
Thence by the uniquity of the arrow u we have u = uGoH(m-l) i.e. uG = uoH(m).

If v: H(w — § satisfies VG voeH(m) then by induction on n we have: u

= VOH(én) for all n whence v u . Indeed, for n = 0 this is obvious, and

by the induction hypothesis:

11



= G — o o G = GO o = o o o - o o
u =u - = (v H(gn)) =v H(F(gn)) voH(m l"(gn)) v H(gn+1) .o

1.5. Terms and values.

Let c be a list of symbols called parameter symbols, and let we

o 11
have an infinite list of variables denoted usually by &«,y,4 etc. The symbols
LL,R will be called basic constants, and parameter symbols and basic
constants together will be called constants. Define terms inductively as
follows:

a) all constants and variables are terms; they are called simple terms;

b) if t and s are terms then (ts) and (t,s) are terms.
If X is a set of variables then by Term(X) we shall denote the set of all

terms whose variables belong to X, and Term will be the set of all terms.

Let ¥ be a DM-category and suppose we have an interpretation assigning to

each parameter symbol c, an object (called a parameter) L of F . This
interpretation will be fixed throughout the paper. Let x = a:o,...,a:n_l be a
list of distinct variables. Then each term t € Term({x}) defines a functor

[ac.tl: " — F called value of t in an obvious way, namely:
D if t is a variable @, i<n , then D&.tl(€) = &, ;
2) if t is a parameter symbol c, » i<l , then [hi.t](g) =7,
3)if tis I, L or R then [A(E.t](g) is I, L or R respectively;

4) if t

(sr) then [AZ.tl(€) = [AZ.S)E)Az.rl(E) ;

5) if t = (s,r) then [AZ.tI(€) = (IAz.s)(E),[Az.TE)) ;

where E is an arbitrary object of 9n, and for arrows the definition of the

functor [Ax.t] is the same replacing 'yi,I,L,R with 1 ,1.,1,1

v.”TL’'R
1
respectively.
Sometimes we shall write t t. ...t for (...t .t )...t )t , where
01 n 01 n-1"n
t,...,t are terms.
0 n

12



1.6. Coherence properties.

A formal expression of one of the following two forms

(a) t(sr) — (ts)r

(i) t(s,r) — (ts,tr) ,
where t,s,r are terms, will be called a contraction. As usual the notion of
contraction gives rise to a reduction notion: we shall write tos for ’s is
obtained by replacing of an occurrence in t of the left hand side of a
contraction with the corresponding occurrence of the right hand side of the
same contraction” and w#— for the reflexive transitive closure of the relation
— . A term t will be called normal, iff tos is impossible for any s ; s
will be called normal form of t iff tw¥-s and s is normal.

Lemma 1. For every term t there is unique normal form tb of t.

Proof. Indeed, for any term t let 1h(t) be the length of t and define a

number &(t) by induction on t as follows:

(i) if t is simple, then &8(t) = 0 ;

(ii) if t = (rs), then &(t)

8(r) + lh(s) ;
(iii) if t = (r,s) , then &(t) = 8(r) + 8(s) + 1
Then using induction on &(t) we see that following equalities define uniquely

a total operation on terms denoted by t° for a term t:

=5 (1)
(ps)b = pbs (2)
(p(ar))® = ((pq)r)° (3)
(p(q,r))° = ((p@)°, (pr)”) (4)
((q,r))° = (g°,r) (5)

where s is simple and p,q,r are arbitrary terms. Again, we have for all

terms t and s : tb is normal; tl—)tb ; and if trss then tb = sb . The

13



former two are obvious and the last is shown straightforwardly by induction on

8(t). o
Now we shall define for every term t € Term((azo,...,wn_l)) an isomorphism
b, (8): ME.IE) = Z.t°)(E)
natural in € , where §& = (i:,'o,...,éjn_l) and «a« = (a:o,...,a:n_l) . Writing for
short b(t) for gt(E) and t* for [AE:.t](-é) for any t € Term((mo,...,acn_l)) ,

define gt(E) as follows:
(bl) if t is normal then b(t) = t* ;
(b2) if s is simple and t is not normal then b(ts) = b(t)s* ;

(b3) if s

pq is normal then b(ts) = b(tp)grea ;
(b4) if s = (so,sl) is normal then blts) = (Q(tso),g(tsl))oi ;
(b5) if s is not normal then  b(ts) = Q(tsb)ot*h(s) ;

(b6) if (to,tl) is not normal then Q((to,tl)) = (Q(to),b(tl))

Note that (b2) and (b6) hold for any terms t,t ,t

oty o and (b5) holds also for

any t,s .
Lemma 2. For all terms t,r and every normal s we have:
blts) = b(t°s)ob(t)s* (6)
and
b(t(rs)) = bl(tr)s)ea (n.
Proof. Induction on s for both (6) and (7) . If s is simple, then
b(t°s)eb(t)s* = (t°)*s*ob(t)s* = blts) .
If s = pq then q is simple since s is normal, and by (b3), 1.2.(2) and the
induction hypothesis for p :
b(t°s)eb(t)s* = b(t’p)gxomeb(t)(p*q*) = b(t°plg*eb(t)prq* o
= b(tp)g*ea = b(ts) .
If s = (so,sl) then similarly
b(t°s)eb(t)s* = (b(t"s ),b(t"s,))oiob(t)(s *,s, *)

- (Q(tbso)og(t)so*,g(tbsl)og(t)sl*)°_i_
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= (_Q(tso),h(tsl))oi = b(ts)
This proves (6). If rs is normal then (7) is immediate from (b2) and (b3).
Suppose rs is not normal. Then by (b5) we have

blt(rs)) = blt(rs)®)et*b(rs) (8).

Consider cases for s . If s is simple, then

b(t(rs)) = Q(t(rs)b)ot*(_b_(r)s*) = g(t(rbs))ot*(p(r)s*)

= Q(trb)s*o&ot*(b_(r‘)s*) = Q(trb)s*O(t*Q(r‘))S*o& = b(tr)s*oa

= b((tr)s)ea
If s = pgq then q is simple, and using (8), the induction hypothesis for p,
and 1.2.(8), we have :

bt(rs)) = b(t((rp)°a))et*(b(rplg*)e txa

b(t(rp)®)groaet*(blrp)g*)e tra = b(t(rp)®)q*o(t*b(rp))g*caot*a

b(t(rp))g*oaet*a = b((tr)p)q*eaq*oaet*a = b((tr)p)g*oaoca

b((tr)s)ea

Finally, if s = (so,sl) , then Sy and s, are normal, and using (8), the
induction hypothesis for So and s 7 and 1.2.(9), we have:
b b .
b(t(rs)) = _b_(t((r‘so) ,(rsl) ))ot*(‘g(rso),p(rsl))ot*;

= <g(t(rso)"),g(t(rsl)"))oiot*(g(rso),g(rsl))ot*i

(a(t(rs )),blt(rs, Nejotri = (g((tr)so)o&,g((tr)sl)o&)oiot*;

(g((tr)so),p((tr)sl))o(&,&)oiot*; = (g((tr)so),g((tr)sl))o;o&

b((tr)s)ea .o

Equalities (6) and (7) will be referred below as ’coherence properties’.

2. RECURSION THEORY IN DM-CATEGORIES.

2.1. The coding theorem.

Let ¥ be a DM-category. A term system in ¥ is a pair (s;x&) where « and s
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are strings R o and s

yeeesS
n-1 o

x5 n-1 of variables x, and terms s, from
Term({«}) respectively. Each  term system S = (s;a) defines a functor
sx: ¥ — F by S*(E) = (SO(E),...,Sn_l(E)) where Si = [Ai.si] for all
i<n . A term system S = (s;x) will be called normal, iff all terms
0""’sn-1 are normal.

It was yet mentioned in the introduction that principal object of present
paper are lL.f.p. of endofunctors of the form S* where S is a term system. From
1.3.(iii) and results of 1.6 it follows that without a loss of generality we
may restrict ourselves with normal systems S . Now we are going to state our
main result (Theorem 1 below) about such endofunctors. In order to do this we
need some additional definitions.

Let S = (s;&) be a normal term system in ¥ . Then a set K of normal terms
will be called closed under S iff following conditions hold:

(i) a:i € K and s € K for all i<n ;

(ii) if c is a constant and pc € K, then p € K ;

(iii) if (t,r) e K, then t e K and r € K ;

(iv) if pe, € K where i<n , then (psi)b € K ;

and with every function Kk:K—Ob% we shall associate a function kS: K — Ob%

defined as follows:

(L if t is a constant ;
k(p) if t = pc where c is a constant;
0 = 1 k(@) if t = (q,r)
k(si) if t = x, where i<n ;
b . .
\ k((psi) ) if t = pe, where i<n

Define for each term t an endofunctor Ft: ¥ — F by following conditions:

(F1) Ft(E) = Ly , if t is a constant with value 7;

1]

(F2) Ft(E) = R(&y) , if t pc , ¢ is a constant with value ¥ and t is
normal;

(F3) Ft(E) = RE in all other cases.
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Finally, here is the main definition in present section:

Definition. A coding for a normal term system S in ¥ (w.r.t. a given
interpretation of the parameters) is a triple (K,k,00) , s.t.: K is a set of
normal terms closed under S , k: K — ?0 is a mapping into the set ?0
defined in 1.4, o € ¥, and for all t € K we have:

okit) = F (K1) (1.

Theorem 1. Let F be an iteratively closed DM-category and let S = (s;@) be

a normal term system in ¥ where x = (a:o,...,a:n_l). Suppose (K,k,0) is a

coding for S in ¥ and (w;m) is an iteration of o . Then there is an arrow Ww

in " s.t. (OK(e),...,0k(@_ );w) is L.f.p. of S* in F".

-1

The proof of Theorem 1 which we give in section 3 below is rather long, so
we prefer to consider first its corollaries. We shall obtain from it the
fundamental facts of recursion theory in  DM-categories, especially  the
inductive  completeness of iterative DM-categories with translation functor
(see definition of translation functor and Corollary 2 ©below). We shall
restrict ourselves with the principal corollaries of Theorem 1 , but let us
note that there are other applications of this Theorem using special kinds of
codings (for more details about this see [6]). The exposition in the present
section is not essentially different from that for the special case of
operative spaces in the sense of Ivanov [1], the main difference between the
last case and the general one for DM-categories being in the proof of
Theorem 1. Therefore our proofs here will be less detailed than those in the

next section and the reader may get additional information from the book [1].

Everywhere in 2.2 and 2.3 ¥ will be an iterative DM-category.
2.2. Representation of natural numbers and translation functors.

Define for every natural number n an object n* e ¥ inductively as
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follows: 0O = L ; (n+1)+ = Rn' . Then by (DM4) and (DM5) for all i < n we

have an isomorphism

)
R
R
8

natural in ocO,...,ocn_1 e ¥ .

Definition. A functor T ¥§ — 7 is called a translation functor (this
term is adopted from Ivanov [1]) iff for every object ¢ € F and for each
natural n

T(go)n+ ] n+go (1)‘
and the last isomorphism is natural in ¢ .

Lemma 1. Let ¥(p) be an endofunctor in ¥ defined by V(p)(€) = (Lp,RE) and
for all ¢ € ¥ the functor V() has L.f.p. (T(p)st(p)) in F . Then T
is a translation functor in & .

Indeed, by 1.3.(i) we have a natural isomorphism (L¢,RT(¢)) = T(p) whence
by induction on n we see that T(go)n+ = n+qp .0 We shall call a translation
functor obtained from Lemma 1 a standard translation functor.

Corollary 1. If the category ¥ satisfies conditions of Theorem 1.4.2 then
there is a standard translation functor in ¥ . o

Every translation functor T gives rise to a bifunctor

Rlp,y) = (L I(TW)))T(p)

(see Ivanov [1]), called a T-primitive recursion. The functor R satisfies

following natural (in ¢,¥) isomorphisms:
Rip, )0 = ¢ (2)
and
+ +
Rlp,¥)(n+1) = Y(R(p,y¥)n ) (3)
which follow from lR((p,gIl)n+ = Y. Y (n times), the last being proved by
induction on n. Objects ¢ € § , produced from constants L, R, I
(respectively L,R,I,aro,...,arl_l) by means of functors R, M and D are called

T-primitive recursive (respectively T-primitive recursive in (70,...,71_ 1)).
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Theorem 2. If T is a translation functor in ¥ , then for every primitive
recursive function § there is a T-primitive recursive ¢ € ¥ , s.t.
en’ = (Fm)*
for all natural n .
Proof. Identify isomorphic objects and apply corresponding results of [5].

The proof of Proposition 8.1 in [1] can also be straightforwardly adopted. o

2.3. Universal codings and the recursion theorem.

Definition. (i) An object a € F is called recursive (in parameters
70""’71-1)’ iff there is a system of terms S = (s;@) (so,...,sn_l;a:) and
1.f.p. (E;E) = (Eo,...;;) of the functor S* , s.t. f;‘o 2 o .

(ii) Writing Nterm and Syst for the set of all normal terms and all normal
systems of terms respectively, an universal coding is a pair (k,0) , s.t.

k: SystxNterm — ?O is a function, and for every S € Syst the triple
(Nterm, At.k(S,t), o) 1is a coding for S .

Lemma 2. Suppose T is a translation functor in ¥ and S € Syst where
S = (E;a:o,...) . Then there is an universal coding (k,0) , s.t. k(S,a:o) = L
and

o = (I,T('Jo),...,T(yl_l))oc (4)
for a suitable T-primitive recursive object « € ¥ .

Proof. The proof is rather standard one, |wusing primitive recursive
numeration of terms and systems. An essential role in it play two primitive
recursive objects m,p defined as follows:

n = R((LL,RL),(LR,RR)) and p = R(LL,RT(R))
They satisfy following isomorphisms:
+ + +

't = (Ln+,Rn+) and pn £ nn

which follow from (1),(2) and (3) by induction on n . Now let we are given a
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primitive recursive numeration of the elements of SystxNterm and define
k(S,t) = (I\L(S,‘c))+ where N:(S,t) is the number of the pair (S,t) . The
numeration can always be chosen to satisfy M(S,a:o)=0 for any fixed system S ;
then k(S,a’:o) = L . By Theorem 2 there are primitive recursive objects

O‘O,po,pl,pz,p3,p4,p5 s.t. for any system S and all terms t,p,q :
4

o' if t 1is a constant;
1+ if t = pc where c is a constant;
o RS = 4 2¥ it = (p,q)
3* if t 1is a variable;
L 4+ if t = px where « is a variable;
(ot if t=1 or t=pl ;
+ .
1 if t=L or t=pL ;
pok(S,t) = +
2 if t=R or t=pR ;
L(i+3)+ if t=c, or t=pc, where i <1 ;
1 bR
plk(S,t) = RK(S,p) , if t = pc where c is a constant;
pzk(S,t) = RK(S,p) and p3k(S,t) = RK(S,q) where t = (p,q) ;
p4k(S,t) = Rk(S,si) , if S = (SO,...,sn_l;a’:o,...,a':n_l) , t = «, and i<n ;
. b . _ . -
psk(S,t) = Rk(S,(pa:i) ), if S = (so,...,sn_l,aco,...,a:n_l) , t px, and
i<n.
(Note that the normal form function t° on terms is primitive recursive,

since the function & defined in the proof of Lemma 1.6.1 is primitive
recursive.) Next define
o = (R"(0"L,...,(1+2)"LIp ,R" p T(p, Jp,Llp,,p )M, Lp ,Lp )0 p
where
R’ = (LT(I),LT(L),LT(R),R) »
and define o by (4) . Then it can be checked directly from these definitions
that (k,c) is an universal coding.o
From Lemma 2 and Theorem 2.1 we have immediately:
Corollary 2. Suppose that T is a standard translation functor in ¥ . Then:

(i) Every object p € F recursive in (70,...,71_1) is naturally (in
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7 ) isomorphic to an object which can be expressed explicitly by

¥ 1-1

0
means of 70,...,71_1,I,L,R,M,ID,|],T .
(ii) Any functor defined explicitly by means of the constants and the
functors in (i) is naturally isomorphic to a functor T of the form
reE) = 11, 7))L s
where a is a T-primitive recursive in (70,...,71_1} object of F .
(iii) The set Ob%¥/= where = is the relation of isomorphism is a combinatory

algebra w.r.t. application App defined by:

Applp,¥) = 1((I, T(¥))p)L

(iv) There 1is an object w € ¥ recursive in (70,...,71_1), which is
universal among all objects recursive in (3’0,...,3'1_1) , L.e.
(a) for every recursive in (70,...,71_1) ob ject ¢ € F there is a
natural number n such that ¢ & wn+ and
(b) there is a primitive recursive function s(n,m) , sS.t. for all

natural n,m

+ + +
w(s(n,m)) 2 wn m

3.PROOF OF THE MAIN THEOREM.

Assume the suppositions of theorem 2.1. Up to the end of the proof c will

denote an arbitrary constant and ¥ will be the value of ¢ in ¥; the letters

t,s,p,q,t 0 etc will denote terms. We shall adopt some rules for omitting
brackets in long expressions, e.g. %S will be a short notation for
((py)p)s . This rule of ‘’association to the left’ will apply to objects,

arrows and terms as well, as mentioned before in 1.3. Let U be the standard

endofunctor in ¥ with parameter o , i.e.

ug) = (I,€)o
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3.1. Definition of the arrows m.

For every term t € K define an endofunctor Gt in ¥ as follows:

4 if t =c
Gt(E) = { Ek(p)y if t = pc and t is normal (1)
Eks(t) otherwise

Lemma 1. For each t € K there is an isomorphism
gt(i): U(E)k(t) = Gt(i)
natural in € .
Indeed, by 1.1.(DM1) and 2.1.(1)
U(Ek(t) = ((I,&)o)k(t) = (I,€)(ck(t)) = (I,E)Ft(ks(t))
Consider cases for t € K :
1) t = ¢ ; then by 2.1.(F1), 1.1.(DM1), 1.1.(DM4) and 1.1.(DM2)
U(gk(t) = (LE)(Ly) = (LEL)y = Iy & y = Gt(g) ;
2) t = pc and t is normal; then by 2.1.(F2), 1.1.(DM1) and 1.1.(DM5)
U(&)k(t) = (LE)((R(p))y) = ((LE)(RA(P)))y = ((LERK(P))y
= (Ek(p))y = Gt(g) ;
3) all other cases; by 2.1.(F3), 1.1.(DM1), 1.1.(DM5) we have

UK = (LERRSWM) = (LERK(M)

IR
IR

gr>(t) = G,(&) .o

We shall write r_lt(&j) for n_l(g'). Since (wym) is Lf.p. of U

n, , the arrow

m: U(w) — w is an isomorphism. Therefore by Lemma 1 we have an isomorphism
m(t) = mh(t)en (0): G (w) = wk(t) (2)

and we shall write m(t) for m'_l

(t) .

3.2.Construction of the arrows M.

Using the condition of the theorem that (w;m) is iteration of o, we shall

construct for all t,s € K, s.t. (ts)b € K, an arrow
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M(t,s): wR(t)(wk(s)) — wR((ts)") (1 .
Fix t € K and denote by K’ the set {s e K| (ts)® € K } . Define a normal
functor H: ¥ — ?KI by H(E) = AseK’.wk(t)(£k(s)) and an object ¥ e ?KI by
Yy = AseK’ wk((ts)®) , and for each object (£,x) e (HlY) define an arrow

x’: H(UE)) — ¢ as follows:

'm(ts)owk(t)gs(i) , if s=c ;
m((ts) ") ox(p)yeaowk(t)n_(§) , if s=pc ;

x(s) = {m((ts)")eio(x(q),x(r))eiowk(t)iowk(tn (£), if s = (q,r) ;
m(ts)ox(si)owk(t)gs(i) , if s = €, i<n ;
m((ts)®) ox((ps,)°) cwk(t)n_(£) , if s=opc , i<n.

We leave to the reader to check, using definitions in 1.6 and 3.1, that this
is indeed in arrow x’: H(U(£)) — ¢ , i.e.

X’ (s): wR(t)(U(E)K(s)) — wk((ts)®)
for all s € K’ . Then we may define an endofunctor X in ((H\Lﬁ),P) by X(§&,x)
= (U(),x') . To check that X 1is an endofunctor it 1is enough to show
(according to Lemma 1.3.1) that for every arrow f: (§,x) — (n,y) in (HJ,;ZI)
we have x’ = y’ o H(U(f)) , i.e.

X’ (s) = y’(s)owk(t)(U(f)k(s))

for all s € K’ . The last is done by considering five cases for s as in the
definition of x’(s) . As an illustration we shall do this for the case s = pc.
Then wusing the equality X = yoH(f) (since f is an arrow in (HJ,!Z) ),

1.2.(2), 3.1.(1) and Lemma 3.1.1 we have:

X’ (s) = m((st)b)oy(p)?/o(wk(t)(fk(p)))7°&°wk(t)gs(§)

m((st)b)oy(p)zo&owk(t)(fk(p)w)owk(t)gs(i)

m((st)b)oy(p)aro&owk(t)Gs(f)owk(t)gs(f;')

m((st)b)oy(p)aro&owk(t)gs(n)owk(t)(U(f)k(s))

y’ (s)owk(t)(U(f)k(s))
In the sequel we shall write (E,X)X for the second component of  X(&,x) ,
i.e. (& ,x)X = x' in notations above. Since (w,m) is iteration of ¢ , (w,m)

is LLf.p.. of U in the normal projection ((H|$),P) where P is the standard
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forgetful functor. But the endofunctor X satisfies PoX = U-°P . Thence by
Lemma 1.3.1 there is unique arrow M: Hw) — ¢ , s.t. (w,M)X = MoH(m)
We shall write M(t,s) for M(s) to exhibit the term t that was fixed above.
Then M(t,s) is the unique system of arrows (1) which satisfies the equality

(w,M)X(t,s) = M(t,s)owk(t)(mk(s)) (2)

for all s € K’ , where (w,M)X(t,s) is (w,?\seK’.M(t,s))X(s) .
3.3.Definition of the arrow w.

In the sequel we shall write wk(xd) for the object (wk(a:o),...,wk((cn_l))
of ¥% , and t*(g) for [A&.tl(é) for any E € F and t € Term . Define by

induction on t € K an arrow

w(t) : t*(wk(x)) — wk(t)

as follows:
([ m(t) if t=c
m(t)ow(p)y if t = pc
w(t) = m(t)olo(w(to),w(tl)) if t= (to,tl)
wk(t) = lwk(t) if t = a:i , 1 <n
\ M(p,a:i)ow(p)(wk(a:i)) if t= paci , 1 <n ;
and define for all i < n :
w, = mix,)ow(s,)
1 1 1
Then by 3.1.(2) we have
w, : s, *(wk(x) — wklc,) ,
1 1 1
ie. w : S*(wk(@) — wk(x) in ¥, where w = (w_,...w _) . We shall show

that (wk(x);w) is Lf.p. of the endofunctor S* in F" .
3.4. Construction of the arrows v.

Let (p;a) be an arbitrary object of the category (S* = F") (defined in

e " and a is a string (ao,...,a ) of

1.3), i.e. q_> = (SO n-1

0 *%n-1)
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arrows ai: si*(a) — goi in ¥. We shall construct for every t € K an arrow

v, (p;3) 0k(t) — tx(p) (0.
Fix ¢ and a , and consider the functor H:?—»?K defined by H(£)(t) = Ek(t)
and let § be the object of ?K defined by Y(t) = t*(p) for t € K . Since H is
naturally isomorphic to a normal functor (namely AteK.I(€k(t)) ) it follows
by Lemma 1.3.3 that (w,m) is LLf.p. of U in ((H{$),P) where P is the
obvious forgetful functor. Define an endofunctor Y in ((H[{),P) by

Y(£,x) = (UE),(€,x)Y)

where
([ n(€&) if t=-¢c¢
x(p)yogt(i) if t = pc
(€071 = { (x(q),x(r))eion (&) if t=(qr)
a,ox(s,)eon, (&) if t=a,, i <n
i i t i

— = b . _ .

\ p*(w)aiob(psi)ox((psi) )ogt(E) if t= pe, , i<n .

We leave to the reader to check that Y is an endofunctor in  ((H{),P) , using

Lemma 3.1.1 and 3.1.(1). Then by Lemma 1.3.1 there is unique arrow v:H(w)—y ,
Y .

s.t. (w,v)" = veH(m) , i.e.

(0,7 () = v(t)omk(t) 2)
for all t € K . Now defining vt(a;a_l) = v(t) we have (1). We shall write
v(t) for vt(a;a) except in the special case when (g;a) is (wk(x);w) ; in
this case we shall write Vw(t) for vt(wk(c;:);v—v) and otherwise the object

(p;a) will be fixed.
3.5. Lemma.
For all t,s € K s.t. (ts)b € K we have
v((ts)b)OM(t,s) = b(ts)ov(t)v(s)

Proof. Fix t € K and define K’ as in 3.2. First we shall construct for

all s € K’ an arrow
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M’ (s): wk(t)(wk(s)) — (ts)°*(p)
by the same method as in that 3.2 and 3.4. Define a normal functor H:?—)?K’
and an object § € FX by  HENS) = wk(W)EKS)  and  §(s) = (ts)°*(p)
respectively. Then there is an endofunctor Z in (HJ,JJ) s.t.

Z(E,x) = (UE),Ex5

where
( v(t)7°wk(t)r_1$(€) , s =c;
x(p)'xoaowk(t)gs(ﬁ) , s = pc ;
(€0%s) = { (x(),x(r))eiowk(t)jowk(tn_(£) , s = (qr) ;
t*(go)aiob(tsi)ox(si)owk(t)gs(i) , s=a , i<n;
b¥* - -— b b —_ s .
\ (tp) (qp)aiob((tp) si)ox((psi) )owk(t)gs(ﬁ) » 8 =px, , i<n;

We leave to the reader to check that Z is indeed an endofunctor (the main
necessary tools are Lemma 1.3.1 and Lemma 3.1.1). Then by Lemma 1.3.1 there is
unique arrow V: H(w) — ¥ s.t.
(0,V)% = VoH(m) (0.
Define two arrows Vlz H(w) — ¢ and V2: Hw) — § by
Vl(S) = b(ts)ov(t)v(s) and V2(s) = v((ts)®)oM(t,s)

respectively. We shall show that V 1 and V2 satisfy the equation (1) w.r.t. V
whence it will follow that Vl = V2 and this will complete the proof of the
Lemma. To prove that for all s € K’

@,V )As) = V. (s)ouk(t)(mk(s)) (2)

consider cases for s as follows:

Case 1. s = c is a constant with value % . Then

@,V )%(s) = vithyeuk(tn (0) = vithn () (by 1.2.(1)

= v(t)(w,v)Y(s) (by definition of Y in 3.4)
= v(t)(v(s)om&k(s)) (by 3.4.(2))

= v(t)v(s)owk(t)(mk(s)) (since M is a functor)

=V, (s)owk(t)(mk(s)) (by 1.6.(b1)) .

Case 2. s is of the form pc . Then
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(w,vl)z(s) = Vl(p)7°&owk(t)gs(w) = l_)(tp)'af°V(t)v(p)7°&°wk(t)gs(w)

= Q(tp)yoaov(t)(V(p)7°gs(w)) (by 1.2.(2) and since M is a functor)
= blts)ov(t)(w,v) Y (s) (by 1.6.(b3) and definition of Y)

= blts)ev()v(s)owh(t) (mk(s)) (as in case 1)

= V_ (s)owh(t)(mk(s)

Case 3. s is of the form (q,r) . Then

Z, .\ . .
(w,Vl) (s) = (Vl(q),Vl(r))°1°wk(t);°wk(t)gs(w)

(b(tq),b(tr))e (v(t)v(q),v(t)v(r))O_iowk(t)iowk(t)gs(w)

Q(ts)ov(t)(v(q),v(r))owk(t)iowk(t)gs(w) (by  1.2.(7), 1.6.(b4))

Q(ts)ov(t)((v(q),v(r))oiogs(w))

blts)ev(t)(w,v) \(s) = v, (5)owk(t)(mA(s)) (as in case 2) .

Case 4. s = a:i , i<n . Then

(0,V.)%(s) = t*(pla, obl(ts,)oV_(s,)owk(t)n (w)
1 i i 1 i S

t*(p)a, ob(ts, )oblts )ov(t)v(s,)owk(t)n (w)
1 1 1 1 S

v(t)(a,ov(s,)en (w)) = v(t)(w,v)Y(s)
1 1 S

Vl(s)owk(t)(mk(s)) (as in case 1)
Case 5. s = pa:i , i<n . Then
(,V)2(s) = (tp)°*(@la, ob((tp)°s, )oV_ ((ps, ) owk(t)n (w)

! U DRt R TR R Bs

= b* 0 o_ b o o o o o
= (tp) (fp)ai b((tp) si) b_(t(psi) ) v(t)v((psi) ) wk(t)gs(w) .

But

(tp)"*(p)a, +b((tp)"s, )eb(t(ps,)")

= (tp)**(p)a, b(tp)s *(p)eb(tps )eblt(ps )°) (by 1.6.(6) )

= (tp)"*(p)a, ob(tp)s *(p)eweb(t(ps, ))ob(t(ps,)") (by 1.6.(7) )

= g(tp)goio(tp)*(a)aio&ot*(a)&psi) (by 1.2.(1) and 1.6.(b5) )

= b(tp)p, cxet*(p)(p*(p)a )ot*(p)o(ps,) (by 1.2.(2) )

= blts)et*(p)(p(p)a, )ot*(p)blps.) (by 1.6.(b3) )
Therefore

(w,vl)z(s) = p(ts)ot*(5)(p*($)ai)ot*({o)€(psi)ov(t)v((psi)")owk(t)gs(w)
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- = b
Q(ts)°v(t)(p*(go)aiob(psi)ov((psi) )ogs(w))

B(ts)ov(t)(w,v)  (5) = V. (s)owk(t)(mki(s)) (as in case 2) .
This finishes the proof of (2). Thence (w,Vl)z = VloH(m) . To prove

(@,V,)% =V, oH(m)
we have to prove that for all s € K’

(@,V,)%(s) = V,(s)oak(t)(mki(s)) (3)
which is done by considering cases for s as in the proof of (2) . The proof
of (3) is simpler then that of (2) since coherence properties are not used in
it. We shall illustrate it by treating one of the cases leaving the rest to
the reader.

Case 5. s=pa:i, i<n . Then

z _ Y (TVa ob b, by
(w,Vz) (s) = (tp) (go)a,l b((tp) Si) V2((psi) ) wk(t)gs(w)

b, - = b b b
(tp) *(go)aiob((tp) si)ov((tpsi) )OM(t,(psi) )owk(t)gs(w)

= (w,v)Y((ts)b)oﬁ( boM(t,(ps,)b)owk(t)g (w) (by definition of Y)
ts) i S

=v((ts)b)omk((ts)b)oﬁ(ts)boM(t,(psi)b)owk(t)gs(w) (by  3.4.(2)

= v((ts)b)om((ts)b)OM(t,(psi)b)owk(t)gs(w) (by 3.1.(2))

= v((ts)b)o(w,M)X(t,s) (by definition of the endofunctor X in 3.2)

= v((ts)®)oM(t,s)owk(t)(mA(s)) (by 3.2.(2))

=V, (s)ouk(t)(k(s))

This finishes the proof of (3) and of Lemma 3.5. As a corollary we have:

if ta:i € K where i < n, then
v(ta, JoM(t,a,) = v(t)v(a,) (4).
i i i

We shall write v(«) for the arrow (i), ...vle 1)) : wk(z) — € in " .

Corollary 1. For all t € K we have v(t)ow(t) = t*(v(ax))

Proof. Induction on t. Consider cases for t as in the definition of wi(t).
All cases are easy but the last one t = pa:i in which Lemma 3.5 is used

through (4):

v(t)ow(t) = V(pmi)°M(p,mi)°w(p)(wk(a:i)) (by definition of w(t) )
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v(p)v(wi)ow(p)(wk(mi)) (by (4))

= (v(p)ow(p)v(z,) = p*(v(E:))v(oci) (by the induction hypothesis)
= t*(v(x)) .o
Corollary 2. v(x) is an arrow viz): (wk(x);w) — (@;a) in the category

(S* > %) , ie. forall i <n :
vic, )ow, = a,es, *(v(x)) (5).
it i ii
Indeed, by definition of W 3.4.(2), 3.1.(2) and Corollary 1 :

vie,)ow, = a,ov(s,)on (w)om_lk(t)om(a:.)ow(s.) = a,ov(s,)ow(s,)
i i i it —t i i i i i

= a, os, *(v(x))
i7i
It remains to show that v(x) is the unique arrow (Wk(x);w) — (@;a) in
(S* = ¥%) . For that suppose that v: (wk(x);w) — (p;a) is an arbitrary arrow
in the last category, i.e. v = (VO’”"Vn-l) and
v.ow, = a_os *(V) (6)
1 1 1 1

for all i < n .
3.6. Lemma.

For all t € K we have v(t) = t*(\-r)ovw(t)
Proof. Let v/ = MeK.t*(;)ovw(t) . We shall show that v’ satisfies 3.4.(2)
i.e.

(0, v () = v omk(t) (1)
for all t € K . Thence by the uniquity of the arrow v satisfying 3.4.(2) it
will follow that v = v’ . Consider cases for t as in the definition of the
functor Y in 3.4. We shall treat one of the cases only, the other cases being
similar and simpler. This is the case t = pa:i where i < n ; it is the only
case of using the supposition 3.5.(6) . Let t = pa:i . Then

@ v W) = pr(@a, obps,)ev ((ps,)")en, ()

= p*(p)a, oblps,)elps ) *(V)ev ((ps,)")on, (w)
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= p*(&)aiO(psi)*(x_l)og(psi)ovw((psi)b)ogt(w) (since b is natural)

= p*(V)(aiosi*(G))oE(psi)ovw((psi)")ogt(w

- Vv ow )ob . oy,

= p*(v)(vi wi) b(psi) vw((psi) ) n_t(w) (by 3.5.(6))

= p*(V)V, op*(wh(@)w_ oblps Jov ((ps,))on, (w)

= p*(;)ViO(w,vw)Y(t) (by definition of Y in 3.4)

= t*(\_/)ovw(t)omk(t) (by 3.4.(2)).

This completes the proof of Lemma 3.6.

3.7. Lemma.

For all t,s,r € K such that (ts)® € K ) (sr)® € K , and (tsr)® € K we
have:
M(t, (sr)*) cwk(t)M(s,r)oe = M((ts)’,r)oM(t,s)(wk(r))

Proof. By the same method as in the proof of Lemma 3.5. Fix t € K and

s € K s.t. (ts)® € K and denote by K’’ the set of all r € K s.t.
(sr)® e K and (tsr)® e K , and let o = wk(t)(wk(s)) . Then define a
normal functor H: ¥ — S‘K and an object lz € S‘K by

H(&)(r) = 9(&k(r))

and
U(r) = wk((tsr)®)
respectively. Consider an endofunctor A in (H|Y) defined by

A€,x) = (U,

where
rm((tsr)b)oM(t,s)aro«‘)gr\(i) if r=c;
m((tsr)*)ox (p)yewodn (&) if r=pc;

(€,0%0) = {m((tsr))oTo(x(p), x(q))oiovioon (&) if r = (p,q) ;
m((tsr)®)ox (s, )oon (&) if r=a, ;
1 r 1

m((tsr)”)ex ((ps,) ") oon_(£) if = pe

By Lemma 1.3.1 there is unique arrow u: H(w) — Y st (w,u)A = uoH(m)
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Therefore to prove the Lemma it is enough to show that both arrows Ml and M2
satisfy the last equation w.r.t. u , where

M, = AreK’’.M(t,(sr)")owk(t)M(s,r) o
and

M, = AreK’’.M((ts)",r)eM(t,s)(wk(r))

That means to show that for all r € K’’

(0,M 1)""(r) M, (1) 9(mki(r)) )

and

@MAE) = M (r)on(mk(r)) (2).
To prove (1) consider cases for r as in the definition of A .

Case 1. r = c . Then

(w,M )A(r) = m((tsr)®)oM(t,s)yoon (w)
1 “r

= (0, M)X(t,sr)owk(t)h_ (w)oaodn () (by definition of X in 3.2)
sr - -r
= M(t,sr)owk(t)(mk(sr))owk(t)n _(w)oaodn (w) (by 3.2.(2))
sr _— -
= M(t,sr)owk(t)m_(sr)ogoﬁfﬁ(r)om‘}(mk(r)) (by 3.1.(2))
= M(t,sr)owk(t)g(sr)owk(t)(wk(s)rﬁ(r‘))°gu‘)(mk(r‘)) (by 1.2.(2))

= M(t,sr)owk(t)(w,M)X(s,r)owk(t)(wk(s)(m_lk(r)))°goﬂ(mk(r))
(by definition of X and 3.1.(2))
= M(t,sr)owk(t)M(s,r)oaod(mk(r)) (by  3.2.(2))
= Ml(r‘)oﬂ(mk(r))
Case 2. r = pc . Then

A _ b -
(w,Ml) (r) = m((tsr) )°Ml(p)7oaoﬁgr(w)

m((tsr)”)oM(t, (sp) ")y cwk(t)M(s, p)y oy oxodn (w)

(0, M)(t, (sp)°c) k(D

(Sp)bc(w)ogc_owk(t)M(s,p)x°garo&oﬁgr(w)

M(t, (sr)*) e wk(t)m((sr)") ook (tIM(s, py oy oo () (by  3.2.(2)

M(t, (s)") owk(t)m((sr)")owk(t) (M(s,p)) croay ododn (1) (by  1.2.(2))

M(t,(sr)b)owk(t)(w,M)X(s,r)owk(t)(wk(s)ﬁr(w))owk(t)gc_ogoga'o&oﬁgr(w)

M(t,(sr)b)owk(t)M(s,r)°wk(t)(wk(s)m(r))ogoﬁgr(w) (by 3.2.(2), 1.2.(8))
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Ml(r)oﬁg(r)oz‘)gr(w) (by 1.2.(2))

M, (r)0(mki(r)) (by  3.1.(2)).
Case 3. r = (p,q) . Then
(M YA(r) = m((tsr)*)eTo(M, (p),M, (a))oiodioon (w)
But
b, T
m((tsr) )°1°(M1(p),M1(q))
= m((tsr)®)e i o(M(t,(sp)*),M(t, (sq)*)) o (WR(tIM(s, p),wk(tIM(s,q)) o (e, )

= (MX(t,(sr)) owk()n,_ bowk(t)To 1o (wh(tIM(s,p),wk(t)M(s,q))o(0,a)

(sr)
= M(t,(sr)") owk(t)m((sr)”) cwk() 1 o i o (wh(t)M(s,p),wk(t)M(s,q)) o (et, )
= M(t,(sr)b)owk(t)g((sr)b)owk(t)-i_owk(t)(M(s,p),M(s,q))o_i-o(g,g)
= M(t, (s)%) ok(t) (0, M) (5,r) owk(t) (wR(S)n_(0)owk(s)To1)oT o(e,)
= M(t,(sr)") e wk(tIM(s, 1) owk(t) (wk(s)m(r)) owk(t) (wh(s)io1)o i o(a,a)
= M, (r)oxewk(t)(w(s)m(r))ewk(t)(wh(s)iei)e i o (o)
= M, (r)odm(r)odioxowk(t)iolo ()

Therefore

A = —'—o_o ToTo ojoQio
(w,Ml) (r) = Ml(r)oﬂ_n;(r)om oowk(t)ioio(a,a)oiodi ‘l?Qr((a))

Ml(r)oﬂm_(r)oﬁ?o&o_o_co?oio@ioﬁgr(w) (by 1.2.(9))

Ml(r‘)oo&m(r‘)oﬁgr(w) = Ml(r)oos(mk(r))

Case 4. r=a:i , i < n . Then

(@, M) = m((tsr)®)oM. (s, )odn (w)
1 1 i =T

m((tsr)®)oM(t, (ss ,)®)owk(tIM(s,s, Joodn (w)
1 i - -r

(w,M)X(t,sr‘)°wk(t)r_lsr(w)°wl’c(t)M(s,si)ogot‘}gr(w)

M(t,sr)owk(t)m(sr)cwk(t)M(s,s, )oaodn (w)
i’ = " r

M(t,5r) 00k (1) (0, M) (5, ) owk(t) (wk(s)_(w))oaoon ()

M(t,sr‘)owk(t)M(s,r)owk(t)(wk(s)g(r))ogwgr(w)

Ml(r)oﬁm(r)oﬁgr(w) = Ml(r)oe&(mk(r))
Case 5. r = pa:i , i < n . This case is treated similarly to case 4. We

leave it to the reader.
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This completes the proof of (1). To prove (2) consider cases for r as in
the proof of (1). We shall treat one of the cases only, the rest ones being
similar but simpler. Let r = (p,q) . Then

A by, T s o
(w,Mz) (r) = m((tsr) )o1o(Mz(p),Mz(q))oloz‘}loogr(w) ,
and defining for short
by, T b b
® = m((tsr) )oio(M((ts) ,p),M((ts) ,q))
we have by definition of the functor A :

(w,Mz)A(r) = <I>°(M(t,s)(wk(p)),M(t,s)(wk(q))°i°0ioa?gr(w)

= @ojoM(t,s)(wk(p),wk(q))edioon (w) (by 1.2.(7))

. <I>oioM(t,s)(iow(k(p),k(q))oﬂgr(w) (by 1.2.(7))
= @ojowk((ts)”)ioM(t,5)G_(w)eon () (by  3..(1)
= @oiowk((ts))iowk((ts)")n () oM(t,s)(UWA(r)) (by  1.2.(1))
= (0,M)X((t5)°,r) M1, ) (UwIA(r)) (by definition of X in 3.2)
= M((ts)®,r)owk((ts)®)(mA(r)) o M(t,s) (U(w)K(r)) (by  3.2.(2)
= M((ts)®,r)oM(t,s) (wk(r)) o8(mA(r)) (by  1.2.(1)
= M, (r)oo(mk(r))

This completes the proof of Lemma 3.7.

We shall write Qw(t) for Qt(wk(z;:)) (see definition of b, (§) in 1.6 )

|

and b (t) for b 1(t) .
W (9]

3.8. Lemma.
For all t,s € K , s.t. (ts)® € K we have
M(t,s)ow(t)w(s) = w((ts)")ob, (ts)

Proof. Induction on s . Consider cases for s as in the definition of wi(s)
We shall treat only two of the cases: s = pc and s = p(l:i . The rest ones can
be considered similarly to the former.

Let s = pc . Then by 3.2.(2), 3.1.(2) and the definition of w(s)

M(t,s)ow(t)w(s) = (w,M)X(t,s)°wk(t)(m—1k(s))°w(t)W(S)
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m((ts)®)oM(t, p)y caowk(t)m(s) ew(t)(m(s) ow(p)y)

I_n_((ts)b)°M(t,p)7o&ow(t)(w(p)7) = m((ts)b)oM(t,p)arow(t)w(p)'a'o&

m((ts)b)ow((tp)b)arogw(tp)z'o& (by the induction hypothesis)

w((ts)b)ogw(ts) (by definition of w((ts)®) and 1.6.(b3) ).
Let s = pe, , i <n. Then by definition of wi(s)

M(t,s)ew(t)w(s) = M(t,s)°w(t)(M(p,a:i)ow(p)(wk(mi)))

M(t,s)owk(t)M(p,aci)owk(t)(w(p)(wk(wi)))ow(t)s*(wk(E:)) (by 1.2.(1))

M((tp)b,azi) oM(t,p)(wk(a:i)) o&owk(t)(w(p)(wk(aci))) ow(t)s*(wk())

(by Lemma 3.7)

M((tp)b,a:i)oM(t,p)(wk(a:i))ow(t)w(p)(wk(a:i))ogc

M((tp)°, &, )ow((tp)®)(wk(a,))ob (ts)(wk(a,))ow
1 1 w 1

(by the hypothesis of the induction)

w((ts)b)olzw(ts)

This completes the proof of Lemma 3.8.

3.9. Lemma.
For all t € K we have w(t)ovw(t) = wk(t) = lwk(t) .
Proof. By the method of the proofs of Lemma 3.5 and Lemma 3.7 . For each
pair (§,x) where x(t): €k(t) — wk(t) or in other words x is an arrow
AteK.&k(t) — AteK.wk(t)

in ?K , define another arrow

€,)F: AteK.UE)R(t) — AteK.wk(t)

in % by
[ m(t)en, (£) if t=c
m(t)ox(p)vogt(s) if t = pc
(&0 = { m(DeTe(x(p),x(@))oion, () if t=(p,q
m(t)ox(si)og‘t)(&') if t= «, i <n
L m(t)ox((psi) )°Qt(€) if t = P, i<n.

As in the proofs of Lemma 3.5 and Lemma 3.7 we see that there is unique arrow

e: AteK.wk(t) — AteK.wk(t) in ?K s.t.
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,e)5(1) = e(t)omk(t) (1)
for all t € K . Therefore to prove the Lemma it is enough to show that (1)
holds for both e = e, = AteK.w(t)ovw(t) and e = e, = AteK.wk(t). We shall

do this for e 1 only, the case with e, being easy. Again, in the proof of
E
(w,el) (t) = el(t)omk(t)

we shall consider one of the cases for t only, namely the most interesting

case in which Lemma 3.8 is used. This is the case t = pmi . The rest of the

cases we leave to the reader. Let t pa':i , i <n . Then

(w,el)E(t) = m(t)oel((psi)b)ogt(w) = m(t)°W((psi)b)ovw((psi)b)°gt(w)

b b
m(t)ow((psi) )ovw((psi) )°gt(w)

= m(t)eM(p,s,)ew(p)w(s, )eb (s )ov ((ps,)")en, (w) (by Lemma 3.8)
- (w,M)X(p,(ci)owk(t)ﬁa:i(w)OW(p)W(si)ogw(psi)ovw((psi)b)ogt(w)
=M(p,aci)owk(p)m(a:i)ow(p)w(si)ogw(psi)ovw((psi)b)ogt(w) (by 3.2.(2))
= M(p,& )ew(p)w ob_(ps )ov ((ps,))en (w) (by definition of w_)

= M(p,e,)ew(p)uk(e, )op*(wk(@)w_ ob (ps )ov ((ps,)*)en,(w) (by  L2.(1)
= W(t)O(w,vw)Y(t) (by definitions of w and Y in 3.3 and 3.4)

= w(t)ov_(t)omk(t) (by  3.4.(2))

= el(t)omk(t)

This completes the proof of Lemma 3.9.

3.10. Final of the proof of the Theorem.

By Lemma 3.9 wk(e,) = wle, )ov (x,) = wkl(a, )ov (¢,) = v (¢,) , whence by
i i e i i’ e L w i

Lemma 3.6 viec,) = v, ov (&,) = v, . a
1 1 w 1 1
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4.EXAMPLES.
4.1. Functorial DM-categories.

Denote by C0 the category of all categories in which exist initial

objects and direct limits of w-sequences Xo — X1 — ; morphisms in C

0

are the functors which preserve such objects and limits. In the category Co
there exist binary sums G+D for all objects €,D € Co ; moreover all w-sums

Zi<w€i exist in it. The construction of these sums is straightforward and is

similar to that in the category of sets . Leaving details of it to the reader,
we shall mention only following property of this construction: every object of

the category 2i<oc€i (a=w or o=2) can be uniquely represented in the form

I.(X) for certain i<e and X € &, , where I.: 6, — 2, ©, are the
1 1 1 1 1<0 1

canonical injections of the sum. Existence of w-sums implies existence of

objects € € C0 s.t. G

IR

6+6 in C0 . Now suppose that we are given an
object €, two morphisms G: 6 — €+6 and H: €+6 — € in C0 and a natural
isomorphism n: GoH = 1€+€ . Let ?1 be the category with objects the arrows
p: € — € in C0 , i.e. the endofunctors in & preserving initial objects and
direct limits of w-sequences, and morphisms the natural transformations. Then
define multiplication M in ?1 as composition, 1 as the identity functor 16’ .
and define L = HoIo and R = HoI1 where Io: 6 — 6+6 and II: € — 6+6
are the canonical injections of the sum 6+6 . Next define cartesian functor
in ?1 by D(p,y) = lp,yloG where [p,¢] is the unique arrow G+ — & s.t.
[q),lIIIOIO = ¢ and [fp,uplol1 = ¢y . For arrows f: ¢ — ¢’ and g Yy — Y’
define D(f,g) = I[f,glG where f,gl: loy]l — lo’,y¥'] is the natural
transformation uniquely determined by

[f,g](Io(X)) = f(X) and [f,g](II(X)) = g(X)

for X € 6, and [f,glG is the natural transformation AXe6.[f,gl(G(X))
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Theorem 1. The category ?l is a DM-category w.r.t. MD,ILL,R as defined
above and suitable natural isomorphisms g,)_\,e,l,r_,i

Indeed, define g,)_\,g,i as corresponding units, and define

lp,y) = AXe@.[q),w](g(Io(X))) and rle,y¥) = AXet«?.[q),lll](g_(Il(X)))

Then conditions (DM1) - (DMS8) hold trivially except (DM4) and (DM5S) which are
but easy. o

If the natural transformation n is an unit, i.e. 6+6 is a retract of € in
C0 , then all isomorphisms a,A,p,Lr,i are units and the category ¥ is what
we can call a strict DM-category.

Theorem 2. The category ¥ 1 is iterative and there is a standard translation
functor in ¥ 1

This follows from Theorem 1.4.2 and Corollary 2.2.1. We leave to the reader

to check that conditions of Theorem 1.4.2 hold.o

4.2. Category of abstract programs with correctness proofs.

We shall construct a category & 9 whose objects are ternary relations
¢ S FxMxM where M is a set treated as data domain and elements of F are
conceived as proofs. Such a relation ¢ will be considered as an abstract
representation of a data processing device & which given an input from M gives
a set of outputs from M and s.t. o(u,x,y) is equivalent to ’u is a proof
that given the input x to & y will belong to the set of outputs’. For the set

M we shall suppose that there are two nonempty disjoint subsets MO’M 1 S M

and three mappings do,dl,d: M —- M, s.t. di(x) € Mi , and d(di(x)) x
for all x e M and i < 2. For the set F we shall take the typed structure of
hereditary partial functionals over M. We should note that this construction

can be carried on with other structures for F, for instance it is enough to

suppose that [F has the structure of a linear combinatory algebra with
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surjective pairing. But we prefer to exhibit an example in which using the
notion of iteratively closed DM-category seems to be essential.
Define types inductively as follows:
1) 0 is a type;
2) if a and b are types, then a—b and axb are types;
3) if ... is an infinite sequence of types, then a xa xa,...
(or shortly -2, ) is a type.

The set IFa of hereditary partial functionals of type a over M is defined

by induction on a as follows: F. is M ; F is the set of all partial
(0] a—b
functions from F to F, ; is [F xF, ; and F_. is the product
a b axb a b ]'p.ai
w
ITi=o a’

i

Now the category ?2 is defined as follows: objects are all relations
¢ < IFaxMxM for all types a ; ¢ € ?2 will be called to be of type a iff
¢ < IFaxMxM . Arrows in ?2 from ¢ € ?2 of type a to Y € ?2 of type b are

functionals f € F , s.t. fuxy is defined iff o(u,x,y) (we

a—(0—(0—b)))
are writing fuxy for f(u)(x)(y) etc.), and

V ux,y ( olu,x,y) = y(fuxy,x,y) ) .
Composition gof of arrows f from ¢ to Yy and g from Y to x is defined by
(gofluxy = gl(fuxy)xy , and for every ¢ € ?2 let 1¢gxy = u if e(y,x,y)
and let lngy be not defined otherwise.

Next we define functors M and D ; the idea is that they will correspond to
composition and branching of programs respectively. The definition is as
follows:

(pY)w,x,y) & 3Jz,u,v( w = <Z,G,v»> & olu,z,y) & Ylyv,x,z) )
the type of oY is Ox(axb) if a and b are the types of ¢ and ¥
respectively;

(fg)z,<u,v>xy = <z, Kfuzy,gvxz> ,

where f e ?z(go,go’) , g € ?2(111,#1’) and (W) (Kz,<u, v>>, x,y) , and
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(fg){z,<u,v»>xy is undefined otherwise;

Do, P)(w,x,y) < Fu,v( w = U, & ((x € M0 & v = & ¢(u,d(x),y))

%
v (x € M1 & u = o, & Y(v,d(x),y))) ),

where ¢ and Y are objects of types a and b respectively, and 9. € [FC is any

fixed functional of type c ; the type of <p,y> is axb ;

1<
I

9, & ¢(u,d(x),y)

q & Y(dx)y) ,

( <fgd(x)y,gb> if x e M, &

D(f,g)<u,wxy = ! <ga,ggd(x)y> if x € M1 & u

]
(o]

undefined otherwise

Let I be the object of 92 of type 0 defined by I(u,x,y) & u=o_ & x=y , and

0
define L e ?2 and R € 92 respectively by Lu,x,y) < I(u,do(x),y) and
R(u,x,y) < I(u,dl(x),y) .

Theorem 1. The category ?2 is a DM-category w.r.t. MD,LL,R as defined
above and suitable natural isomorphisms 2»7_\:8»1»2»1

The proof this theorem is long but straightforward.o

Theorem 2. The category % 2 is iteratively closed and there is a standard
translation functor in it.

Proof (a sketch). Denote by (q))L and (¢), the multiplication functor with

R

fixed left and right argument ¢ respectively:

(@) (&) = € and  (p) (&) = &p , £€e9
These functors have right adjoints (go)Li.E and (g())l:E respectively: for ¢y e &
(‘P)L*(W) is defined by
(@), Wwx,2) o Vuy puzy) »pwyxy) )

and the arrow h: go((go)L*(lll)) — Y defined by h<z,<u,w>>xy = wuy is
universal: for every arrow f: o€ — Y the arrow f’: &€ — (go)L*(lIl) defined
by f’vxzuy = f<z,{u,v>xy is the unique one satisfying f = hoepf’ ; the
construction of right adjoint to (go)R is similar. For every sequence Ai.q)i of

objects of & 9 of type a; respectively the object ¢ of type l'Ii.aLi defined by

p(Aiu,,xy) & Vip (u,,x,y)
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is a product of M.q)i in f’iz ; projections Pt 9 — ¢ are defined by

pi(Ai._gi)xy = u, . Existence of w-products and right adjoints to (go)L and
((D)R implies existence of right adjoint to every normal functor H:?z——ﬁzw

Let ¢ € ¥ 2 be an object of type a . Then the standard endofunctor [I'(£)=D(I,£)¢
has Lf.p. (7,m) which can be constructed directly as follows. Let b be the

type boxblx... where bo = 0 and bn+1 = 0x((0xbn)xa) for all natural n.

The set M is infinite; therefore we may identify natural numbers with

certain elements of M. Denote by IFb n the set of all functionals

of type b of the form <{n,w ﬂn,g,g,..) where we write <v_,...> for

0t 0

7\i.y_i and omit subscripts in 9. etc. and n is a natural number as element of

M. Then define a functional m of suitable type by
<0,<z,<K0,0>,¥>>,0,0,...> if ze Mo

m<z,{Ko ,w>,v>> = {<n+1,w LW ,0,0,...> if zeM, and w = Ai.w, € F
- 0 — '~ - n 1 —i b

1’°° +1
undef ined otherwise ,

n

where Z,W,V are of types 0,b,a respectively. Next define an object ¥ of
type b as the least relation satisfying following two conditions:
a) =z e M0 & d(z) = y & ¢(v,x,z) & w = m(z,¢0,0>,v>xy = ¥(w,x,y)
b) z e Ml & ¢lv,x,z) & y(w’,d(z),y) & w = mlz,K&o,w’'>,v>>xy = y(w,x,y) .
Then m: I'(y) — ¥ is an arrow in ?2 . Given an arrow f: ['(§) — £ in ?2 the
equality hom = foI'(h) for h: ¥y — € is equivalent to :
f<z,<0,0>,¥v>>xy if the hypothesis of a) holds
hwxy = { f<z,<o,hw’d(z) y>,vw>xy if the hypothesis of b) holds

undefined otherwise
The last equality is satisfied by wunique functional h defined by corr’esponding
recursion. Therefore (7,m) is 1L.f.p. of ' . In a similar way can be shown
that there is L.f.p. of the functor AE.D(Ly,RE) whence there is a standard

translation functor in & 2.|:1

4.3. Category of logical programs with correctness proofs.
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We shall construct an example similar to the previous one in which elements
of F will be real proofs and objects of the category will correspond to
logical programs. For the set M we shall suppose that a structure is given on
it and by A we shall denote the positive diagram of that structure, i.e. the
set of all true atomic formulas in the language £ of the structure enriched
with constants for all elements of M (which we shall identify with
corresponding constants). By logical program we shall mean as usual a finite
set of first order predicate formulas in the language £ which are universal
closures of Horn clauses written by conjunction & and implication > , i.e.
formulas of the form Va:o...Vxn_l(Po&...&Pm > P) or Va:o...Va:n_lP where
P,.,Pp, P are atomic. We shall suppose for the language £ that it contains
for each arity a countable list of predicate variables and by ){,XI,X2
we shall denote the first three predicate variables of arity two respec-
tively. For any formal object (formula, proof etc.) or finite set of such
objects Q, by Q1 (respectively Qz) we shall denote the result of replacement
in Q@ of every predicate variable of each arity with number i with that with

number 2i+1 (respectively 2i+2 ). The set of all normal natural derivations

(in the sense of Pravitz [13]) in the language £ will be denoted by N . We
shall write d: T — 4 for ’d is a natural derivation with conclusion formula
A and all uneliminated hypotheses of d belong to ' ’. It will be convenient
to use some termal notations for natural derivations, namely given two
derivations do: r — Ao and dl: r — Al by <d0,d1> we shall denote the
the obvious derivation d I’ — AO&A1 obtained from do and d1 by applying
&-introduction to their conclusions; similarly, given d: ' — A>B and
e: T — A let de: ' — B be the derivation obtained from d and e by
applying >-elimination to their conclusions. A ternary relation ¢ < NxMxM

will be called to correspond to a logical program & iff

e(u,x,y) & u A® — X(x,y)
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for all triples (u,x,y) € NxMxM . (We are writing A,® for Aud etc.)

Now define a category ?3 with objects relations ¢ < NxMxM corresponding

to logical programs and arrows f: ¢ — ¥  the functions f:r ¢ — N s.t.
pwxy) = YFwxy),xy)

for all (u,x,y) € NxMxM . Composition of arrows and units in ?3 are defined

as in section 4.2.

Denote by C the formula Véw/;(xl(/;,q)&xz(a:,/;)DX(a:,q)) and let d(x,y,z)
be the obvious normal derivation d(x,y,z): C — Xl(z,y)&Xz(x,z)DX(x,y))
where x,y,z € M . For any two relations ¢,y € NxMxM define a relation
oY S NxMxM as in 4.2:

(pY)(w,x,y) & 3z,u,v( w = d(x,y,z)(gl,f) & ¢(u,z,y) & Y(v,x,z) )

Lemma 1. If ¢,y € ?3 then oy € ?3 .

Indeed, if ¢ and ¢ correspond to logical programs & and V¥ respectively,
then ¢y corresponds to the logical program <I>l,\I/2,C . The proof wuses a
standard analysis of normal derivations w: A,<I>1,\I/2,C — X(x,y) which should be
of the form d(x,y,z)(gl,g2> .o

The last Lemma enables us to define multiplication functor M as in the
previous section: M(p,¥) = ¢ , and for arrows f: ¢ — ¢’ and g Yy — Y’
define

(fg)(d(x,y,z)<gl,12>,x,y) = d(x,y,z)<(f(y_,z,y))l,(g(g,x,z))2> .

To define cartesian functor D in & 5 We need some additional suppositions.
We shall suppose that a logical program X 1is given together with predicate
variables T,F,D,DO,D1 occurring in it of arity 1,1,2,2,2 respectively s.t.
following conditions are fulfilled:

1) the program X have no predicate variables among other ones i.e. those
who are subject to substitutions denoted as Ql etc. (in other words predicate

variables in ¥ are treated as constants however different from basic constants

of the structure M and the program itself as set of axioms for those
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constants);
2) for every x € M there is at most one normal derivation
Q_T(x): A — T(x) ;
we shall write MT(x) for ’the derivation QT(x) exists’;
3) for every x € M there is at most one normal derivation
QF(x): AT — F(x) ;
we shall write MF(x) for ’the derivation QF(x) exists’;
4) for no x € M both MT(x) and MF(x) hold;
5) for every x € M there is unique d(x) e M and unique normal
d(x): A,Z — D(x,d(x)) ;

6) for every Xx € M there are unique do(x) € M and unique dl(x) € M and

unique normal derivations
gl_i(x): AS — Di(x,di(x)) , 1=0,1;

7) for every x € M and both i = 0,1 we have d(di(x)) = x , MT(do(x)) ,
and MF(dl(x)).

The suppositions 1) - 7) are fulfilled when the program X consists of
trivial formulas of the form Va(P(a)>T(a)) where P is a basic predicate of
the structure M etc.; they are fulfilled also in following natural case: the
structure M is that of natural numbers with basic relations the equality to
Zero X =0 and the successor relation X = y+1 ; T,F ’D’DO’Dl are
respectively following relations: ’x is even’, ’x is odd’, y = [x/2], y = 2x ,
and y = 2x+1 ; and X is the obvious inductive definition of those relations.

Now let BT(ac,u,q) be the formula T(x) & D(x,u) & Xl(u,q) > X(a,y) and let
VB be the wuniversal closure VquVqBT(m,u,q) . Similarly define BF(a:,u,q) as

T

Flad) & D(x,u) & Xz(u,q) > Xl(x,y) and VBF as the universal closure of BF

For all x,y € M denote by gT(x,y) and gF(x,y) the obvious normal derivations
er VBT — BT(x,d(x),y) and ep VBF — BF(x,d(x),Y)

respectively. Given normal derivations
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u I' — X(d(x),y) and v: ® — X(d(x),y)

we may define two normal derivations

* *
T (u,x,y): A,Z,]",VBT — X(x,y) and F (v,x,y): A,Z,@,VBF — X(x,y)
by
* 1
T (W,x,y) = ep(6,y)<d (x),d(x)>,u™>
and
* 2
F (5,x,5) = eplx,y)dp(x),d0x)>,y™>
respectively. Then for any relations oY S NxMxM define a relation

D(p,¥ ) € NxMxM as follows:
D(p,¥)(w,x,y) < 39_,_2((MT(x) & ¢(u,d(x),y) & w = T*(g,x,y)) v
(M (x) & Y(r,d(x),y) & w = F (1.x,9)))
Lemma 2. If ¢,y € ?3 then D(p,y) € 9‘3
If ¢ and Y correspond to logical programs & and ¥ respectively, then D(g,y¥)
corresponds to the logical program D(®,¥) = Z,<I>1,\I/2,VBT,VBF . As in the proof
of Lemma 1 a standard analysis of normal derivations w: A,D(®,¥) — X(x,y)
shows that w should be of the form T*(g,x,y) or F*(y_,x,y) for suitable u
s.t.  ¢(u,d(x),y) or y(u,d(x),y) respectively.o
As before Lemma 2 enables us to define cartesian functor D in ?3 : for

arrows f: ¢ — ¢’ and g ¢ — Y’ we define

T (£(u,d(x),7),%,5) it M) & w

T*(g,x,y)
D(f’g)(ﬂrx)y) = *
T (u,x,y)

F (g(u,d(x),),%,7) it M) & w
Next define objects ILLL,R of ?3 as corresponding to the logical programs
veX(x,x) ; Z,Vqu(Do(m,q) > Xl(a,y)) ; Z,Va:\/q(Dl(a:,q) > X(«,y)) respectively.
Theorem 1. The category & 3 is a DM-category w.r.t. MD,LL,R as defined
above and suitable natural isomorphisms «,A,p,l,r,i
The proof of this theorem is similar to that of Theorem 4.2.1.0

Theorem 2. The category ¥ 3 is iterative and there is a standard translation

functor in it.
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The proof of this theorem follows that of Theorem 1.4.2. We can not apply
immediately the last theorem because it is not seen how to construct limit to
arbitrary w-sequence in ¥ 3 - But we can construct limits to the concrete
w-sequences arising as in the proof in Theorem 1.4.2. This is done by a direct
construction similar to that in the proof of Theorem 4.2.2 and using an
obvious logical program for the iteration. For the translation functor the

proof is similar but easier.o
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