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e Introduction

The problem of describing the "behaviour" of modal, or other propositional intensional
formulas on the class of finite frames seems rather natural. Almost all modal logics resulting
from formalization of substantial ideas have turned out to have the finite model property.
Moreover, different semantic constructions in the finite case are effectively intertranslatable
(there is no incompleteness effect). In this paper we consider the question, for any modal
formula, how to recognize whether it has a first-order equivalent on the class of finite
Jframes. Our main result is that no effective algorithmic answer to this question is possible.

Earlier, in [5], algorithmic undecidability was proved for first-order definability without
restrictions on frame cardinality. The proof there uses essentially undecidable calculi and, so,
it cannot be transferred directly to finite frames. But another construction, used in [4] to
show the undecidability of finite frame consequence between modal formulas (a research
problem first stated in [2]) turned out to be a suitable replacement. Thereby the proof
increases considerably in size, since we have to manipulate first-order definability of rather
large formulas (cf. the forthcoming paper [6] concerning superintuitionistic logics). One
indirect purpose of the present work is to give a simplest possible variant for modal
formulas. For this purpose it turned out convenient to use finite GL-frames, having a
transitive and irreflexive alternative relation. Note that, in the infinite case, it is almost
pointless to use this frame class, as it is not first-order definable.

This paper is organized as follows. In Section 1, the relevant result from [4] about the
undecidability of semantic consequence for finite GL-frames is proved, as well as some
generalizations thereof. The main technical lemma of this Section, which shows how to
reduce the Halting Problem for Minsky Machines to the finite frame consequence problem,
will be used in Section 4 to obtain the main results of the present paper. In Section 2, some
technical facts are proved about first-order definability of modal formulas. This contains the
messy complications we mentioned. Readers interested only in the general idea of our main
results may omit the details of constructing the relevant first-order equivalents. In Section 3,
formulas closely connected with the constructions of Sections 1 and 2 are presented, which
have no first-order equivalents on the class of finite frames. The results of Sections 1-3 are
combined in Section 4 to obtain short proofs of the undecidability of various problems
connected with first-order definability on the class of finite frames. In the course of this
exposition, two notions of first-order definability will be considered, a "local” one and a
"global" one. In particular, in Section 3 the problem raised in [1] concerning the difference
between global and local definability on the class of all transitive frames is decided.

0 Some Definitions

The usual definitions and results from Modal Logic are employed, including its connections
with standard logic. In particular, any Kripke frame can be considered both as a semantic
structure for modal formulas and as a model for the first-order language with equality of a
single binary predicate. We say that a modal formula ¢ and a first-order sentence  are
globally equivalent on a frame class K if, for any frame F in K, F F ¢ iff F F y. A



modal formula ¢ is globally first-order definable on the class K if there exists a first-order
sentence globally equivalent to it on K. A modal formula ¢ and a first-order formula v
with one free variable are locally equivalent on K if, for any frame F in K and any
world d, <F,d>kE ¢ iff F F y[d]. A modal formula ¢ is locally first-order definable
on the frame class class K iff there is a first-order formula with one free variable which is
locally equivalent to it on K. It is clear that local first-order definability implies global first-
order definability on any frame class. In this paper, we are mainly interested in the class K
of finite frames (but our results remain true for finite transitive irreflexive ones). Henceforth,
all frames considered will be finite. If we want to allow that a class contains infinite frames,
then we will mention this specifically. Here is some useful notation:

O Ffin VY : for any frame F, F F ¢ implies F F v, and
(0] |=}§’n°\|! :forany F and world d, <F,d> F ¢ implies <F,d> F .
The relations F gy and E E)nc are different. An example is provided by:

LFAOT Efn L but LFA OT K 1,

where LF =0O(Op—p) — Op is the formula that axiomatizes Lob's Logic GL. This
principle is non-first-order in general, but "Transitivity and Irreflexivity" is a first-order
equivalent (both global and local) for it over the finite frames. We will often "translate" first-
order formulas into English: e.g., the preceding term "Irreflexivity" is our translation of the
formula ¥x7xRx . Finally, we will freely use various modal and first-order abbreviations:
such as ¢ for O¢&0 , x=y=z for x=y A y=z, xRyRz for xRy A yRz, xR3y for
Judv(xRuRvRy). Other useful notations will be explained in due course.

1 Reduction of Minsky Machine Computability to
Modal Consequence on Finite Frames

A "Minsky Machine' is a two-tape effective machine operating on two integers s; and sp. A
Minsky Machine Program is a finite set of instructions I of the forms:

(D qu — qg T1To rinstate Qg,add 1to sj,and goto ap;

) Qo — qeToTy :in state Qg,add 1 to sz, and go to dg;

3) Qo — qgT-1To (GyToTo) : in state (g, subtract 1 from sy if s1#0,
and go to Qp, otherwise go to Qy;

4) Qo — 9pToT-1(9yToTo) : in state (g, subtract 1 from sy if sp#=0,
and go to qp, otherwise go to Qy.

A Minsky Machine Configuration is an ordered triple (i, j, k) of natural numbers, where
i is a state number, j=s1,and k=sp. We write P: (o, m,n) — (B, k, 1) to express that
the program P starting at configuration (o, m, n) can reach configuration (B, k, 1) .
Henceforth, we fix the symbols Q¢ and Qg for the initial and final states of the machine.
Finally, we introduce two conventions which do not influence standard facts about Minsky
machines, but are useful for our constructions: (i) all machines considered are deterministic,
i.e., they do not contain different instructions with the same left parts , (ii) "blocking" states
do not occur in our machines, i.e., if some nonfinal state is in the right part of some machine
instruction, then there is an instruction with that state in the left part.
In this chapter we use two variants of undecidable halting problems of Minsky machines:
¢ There is a Minsky Machine P such that no algorithm recognizes for any configuration
whether P eventually halts (in a final state), starting from that configuration.
» There is a configuration (o, m, n) such that no algorithm recognizes for any Minsky
machine program whether it eventually halts, starting from (o, m, n).
Next, we introduce some important sets of formulas. Although we do not need their
semantic "sense" right now, it is useful to have a picture in mind, in accordance with which
they are defined. The irreflexive transitive frame of Figure 1 is such picture; where the part
of the frame surrounded by the dotted line is not needed in this Section. Here is some






Next, we introduce some important sets of formulas. Although we do not need their
semantic "sense" right now, it is useful to have a picture in mind, in accordance with which
they are defined. The irreflexive transitive frame of Figure 1 is such picture; where the part
of the frame surrounded by the dotted line is not needed in this Section. Here is some
explanation of its key features. The frame is constructed from a machine program P and an
initial configuration (a, m, n) . The presence of the worlds h(sj) , where sj = (0, mj, nj),
expresses the fact that s; is the configuration after the first i—1 steps of a computation
starting from (o, m, n) . Now set:

F =021 - OpvOp, F= OF.
These formulas are falsifiable in this frame by the same valuation, F at world f, and F' atf
(and only there). For as soon as F is falsifiable, say by a valuation V , then
Vip, =1, V(p,f})=0 or V(p,f)=0, V(p,fhH=1.

We continue to introduce modal formulas, emphasizing their connection with the worlds in
which they are true:

- Fj=OLap, Fl=OLA7p,
F| = 0iLAOIFIF AQIIEL, (i€ (0,1}, 25j<7)

- A}=OF3AOF AOH4L (0<3),
Al = CIAJATOHIA AN 1OAE (0<i<3, j>0)

. S, AL AD = ALy OAITICAIACALA TOCAACATATIOOAT
(where ¥, k,120).

The formula S(j, Allt, A%) corresponds to the configuration (¥, k, 1). But for describing
instructions we need formulas speaking about arbitrary configurations. Therefore, we set:

Q1 (©OAYVAY ATOAIATOAZA I OAZAPIA T OPL

Q OALATTOAIATOABA TOAZAOp1 A T1OOPT

Ry (OAZVAY A1OASATOANA T1OA ARA 1O,

Ry OAFATOAZA TOALA TOAIA R A OO,

Ty OAZATIOAZATOATA TOABAPIA T O3,

T, OAZATIOAIATOAIA TOABAOP3A 1O,

SG, Qi, Rj) NpOAPA TOAD AOQIA TOOQUAORjA TOOR,
SG5, Q1, AD) NgOAIATOAY ACQIATIOOQACAIATOOAS,
SG5, Ad. R) N HOAIATIOA ACAIATIOOANA ORI ATTOOR]

(where ¥ 20,1,j €{1,2}).

We shall write @=1 if @<y is true in all finite transitive and irreflexive frames, i.e.

GL - peoy. p=y implies that ¢ and y are always semantically interchangeable in
models of GL.



Lemma 1.1 Let @* be the result of the substitution in @ Of OKA{) for p1, OLA%) for
p2 and OAg for p3. Then

i) Q*= AL, @ = AL
i) R1™ = A7, R* = AL ;;
i) T =A3, T2 = A2 ;;
iv) (S(5, Qi R = SG, Afyqiry Afrgery G € (12
v) (S, Q1. AR = S, AL, AD):
vi) SG, AL RD) * = 55,40, AD).
Proof. Immediate. O

The formulas that simulate instructions use subformulas of the form T;j for the "calculation
of some number of steps”. For instruction I set:

« if T is of the form qy — Q«T1To, then
Axl = TTFAOBEGE, QL RDACTIA TOOTPAOT = OB, Q2, RDAOTIA T1OOT));

» if I is of the form Qg — q¢ToTy, then
Axl= TTFACOSGE, QL RDAOTIA TOOTNAOT2 = O(8(6, Q1, R)AOT2A 1OOTY);

» if I is of the form qy — q¢T-1To(qg, ToTo) , then
AxI= (TTFACOESSG, Q2, RDAOTIA TIOOTDAOTy = OB, QL RDACTA T1O0TY)
A (TEAOES(, AL RDAOTI A TOOTD AOT2 - O(8(€, AL RDAOT2A TOOT);

« if T is of the form qy — q¢ToT-1(Q¢, ToTo), then
AxI= (TTFAOEE, QLR AOTIA TOOTPAOT, = OSEQLRDAOT2A T1OOTY)
A (TEAOS(E, Q1, A%)/\ OTIA TIOOTYAOT2— O(S(E, Q1 A(z))A<>T2A OOT).

Next, for a Minsky program P set
AxP = /A\lep Ax],
and then define the formula A(P) as follows:

A(P) = LF A AxP A LinT A UT,

where
LinT = TTFANOAGA TOAIA TOALA TOABATA TG
A O(OAGATIOAZA TOASA TOATATIGA T0);
UT= T(TRAOQAOT] ATOOT AOCAIAOATA OAD)

A <>(—|q/\<>T1A—'O<>T1A<>A8A<>A(1)A<>A%))-
Finally, define the formula B(x, m, n) as follows :

B(x, m, n) = TF A OS( AL, ADACALAOOA))
- OB, QL RDAOTIA TTOOTY).



Now, the main technical result of this Section is the following

Lemma 1.2 = A(P) Ffin B(«, m, n) iff the program P, starting at configuration
(o, m, n) cannot reach a final state (with number J3) .

Proof. "If". This is the direction for which our specific finite frames were developed.
Let the Minsky program P continue indefinitely, starting from the configuration (o, m, n).
We show that then, A(P) F fin B(x, m, n), by a reductio ad absurdum. Suppose that, for
some finite frame F

(nH F E AP),
@) F ¥ B(x, m, n).

Condition (2) means that, for some valuation V, in some world a from F, we have
V(B(«, m, n), a) = 0 (we abbreviate this as: a, B(x, m, n) ). Le.,

3) ak¥F,
(4 ak OB AL ADAOAIATIOOAY),
®)] akF OBE,QLRNAOTIATIOOTY).

Condition (4) implies, that there is a world b in F such that aRb and

(6) bk S AL A2),
(7) bE OA3,
®) b ¥ OOAS.

Condition (5) implies, that there is a world ¢ in F such that aRc and

)] c F OS(B,Q1,R1),
(10) ckF o1,
(1) c £ OOT.

Condition (7) implies that there is a world (denote it by a% ) such that bRa% and

a:;’ I=A3, i.e,

(12) aj E OAZATTOAIA1OAIATIOAD,
(13) a3 £ OOA].

Condition (10) implies that there must be a world x such that sRx and x kE Ty, i.e.,
(14) xE p3ATOp3.

Now we need a further auxiliary result.

Lemma 1.3 Foranyframe F, if F F LF ALinT and the formula F is falsifiable at
one of its worlds h by some valuatlon then the set of worlds of this frame which are
accessible from h , in which the formula OA A _’OA A _'OA A —IOAO

is true, is strictly lmearly ordered by the relatzon of accesszblllty

Proof. This is a standard exercise. O



We continue the proof of Lemma 1.2. By Lemma 1.3, conditions (1), (3) above imply that
the set of worlds in F that are accessible from a at which the conditions (12), (14) hold,
form a chain strictly linearly ordered by the alternative relation in which a{’ is the R-greatest
element, because of (13). Denote this chain by

aiR aﬁ_l R a13<_2R ..R a%R a%.

We can characterize its elements as follows by the formulas A? : a% F A-z’ iff 1 =j. Now,
(14) implies, that x = ag for some s, 1<s<k, so that we have

(15) akE T (from (12), (14)),
(16) ck OAd,
17) c K OO (from (11)).

Now that we have succeeded in identifying x with some ag, and with the help of the
conjunctive members of A(P), which are true in F by (1), we shall get "step by step”
from a% to x . This turns out possible exactly thanks to the finiteness of F :

Let P, starting from (&, m, n), one application of some instruction at a time, give the
successive configurations (op, mp, n2), (3, m3, n3), ... ; where we identify (o, m, n)
with (&1, mi, n1). Note, that by the given conditions, «; # 8 for any i € w. In this
sequence of configurations, we shall only be interested in finite initial segments of length s:

(0(17 ml, nl)a (0(2&m2’ n2)7 eeey (0(57 mSa ns)-
Note that for each i, 1<i<k-1,
E Al A2 37T 3
a OB, Apiis Ap D ACATATIOOA]) —
O(S(@ti41, Ayt AR DACAL ATIOOA,) -

Indeed, from (1), we have by substitution in a suitable conjunct of AxP :

ak TFAOES(04, Al AZDAOAIATOCADAOAL, | —
O S, A}n;i+1’ A%;i+1) A <>A?+1 AT OOA%H) ’

and (3) and aRa},; together with a,; F A2, yield that a F TFAOAS,;, which gives the

desired result. Applying (4) and "Modus Ponens" successively one obtains then, for any i,
1<i<k-1, that

aF O (41, A}n;i+1’ A%;i+1)A<>A%+1A_‘<><>A%+1)
and hence in particular,

ak O (s, Al AZIAOAIATOOAD).

The last condition implies that there is a world d such that aRd and

(18) d F S(as, Al A2,
(19) dE OA3,
(20) dE OOA.



From (19), (20), using Lemma 1.3 and the fact that a} F A3, dRa} while not dRa3,;,
because of which there is a unique world among a%,..., ag in which the formula Tj holds,
it follows with the help of (12), (14) and x = a:s” that

(21) dE OT1AOOT).

Now, we have collected all necessary conditions. From (9), (10), (11) we obtain
(22) ¢ E OTIATOOTIACAJAOALACAS,

and from (19), (21),
(23) dE OTIATIOOTIACAJACARAOAS.

The worlds ¢ and d are different, because (9) implies that ¢ F A 0A% OAY,;, and
from (18) we get d F /\f;%OA(i)A‘IOA%(S +1» by the condition that «g# B. This difference
allows us to define the valuation V for the propositional variable q in such a way that c F q,
d ¥ q. Together with (22), (23), and also (3), this gives a # UT which contradicts (1).

This contradiction shows that A(P) E g B(®, m, n): and thus, we have proved the "If"
direction of Lemma 1.2.

"

Only if". Let us now assume that the program P can reach a final state starting from the
configuration (o, m, n) . We will show that A(P) ¥gn B(o, m, n), by constructing a
suitable finite frame. Let

s1 = (&, m,n) =(x1, mg, ny), s2 =(x2, M, N2), ..., Sk = (X, Mk, Nk)

be the list of all configurations, successively traversed by program P, starting at («, m, n).
‘Set '

u= max (x¢1, ...,®k) , V= max (mt, ..., mg), w= max (ni, ..., ng).

" Consider the frame F sketched in Figure 1. We remind the reader that the part of ¥ which
is "enclosed by the dotted line" remains disregarded for the present.

Lemma 1.4 F F A(P).

Proof. This is a routine verification. For analogous scrupulous verifications see [5], [3]. O

Now introduce a valuation on F such that

xFEp & x=f(1); xEp & x=a,1nk;

xkFp & x=a[21k; xFEp3 & x=ai.

Lemma 1.5 This valuation has the effect that f # B(c, m, n).
Proof. This is again a routine verification. O

From Lemmas 1.4 and 1.5 we obtain the desired result, and Lemma 1.2 is proved. O



Because A(P) and the formulas B(c, m, n) are in fact constructed effectively from the
program P and the configuration («, m, n), the undecidability of the earlier two halting
problems gives the following two results.

Theorem 1.6 There is a formula @ such that the problem of recognizing, given any
formula y , whether @ F fi, @, is algorithmically undecidable.

Theorem 1.7 There is a formula @ such that the problem of recognizing, given any
formula (@, whether @ F f;, y, is algorithmically undecidable.

From these theorems we obtain

Corollary 1.8 There is no algorithm which recognizes, given any two modal formulas
o and y, whether @ F fipy.

Taking into account the simple fact that {<@, p >1@ FEgy ¢} is recursively enumerable,
we obtain from 1.6 — 1.8 this further

Corollary 1.9 a) The set {<@,y> | @ Ffin @} is not recursively enumerable.
b) Thereis aformula @ suchthat {y | @ F fin W} is not recursively enumerable.
c¢) There is aformula @ suchthat {p | @ F fin @} is not recursively enumerable.

From the proofs of statements 1.6 — 1.9 we obtain the following analogues for F }Sl’n"

Theorem 1.10 There is a formula ¢ such that the problem of recognizing, given any
modal formula y, whether @ I=Ilo,f y, is algorithmically undecidable.

Theorem 1.11 There is a formula y such that the problem of recognizing, given any
modal formula @, whether @ I=l§’,f y, is algorithmically undecidable.

Corollary 1.12 There is no algorithm which recognizes, given any two modal formulas
o and y, whether ¢ F }f,f Y.

Corollary 1.13 a) The set {<p,y>] @ #}?,f Y} is not recursively enumerable.
b) There is a formula @ suchthat {y | @ #l?,f Y} is not recursivele enumerable.
c) There is a formula @ suchthat {y [ ¢ #l;?,f Y} is not recursively enumerable.

Now change the definition of A(P) by adding a conjunct <T. In this case the above proofs
will work for F loﬁrf, but no longer for F gy, because after such a change, we will have
AP)AOT F fin B(x, m, n), independently of the choice of P, («, m, n). Thus, one obtains

Theorem 1.14 a) {<p,y>] @ Ffiny, ¢ #ll?,ft,u} is not recursive.
b) There is a formula @ suchthat {y | @ E fin @, ¢ )5;;’,5 g} is not recursive.

c)There is a formula g suchthat {@ | @ F fin w, @ FLS@} is not recursive.

n

We do not know if it is possible to replace "recursive" in the above statements by
"recursively enumerable".
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2 A First-Order Definable Variant On Finite Frames
For Formulas Describing Minsky Machines

To obtain the main result of this paper we need an additional property for the formulas A(P)
from the previous chapter — namely their first-order definability on finite frames. Although
the above construction may have produced formulas of this kind, we shall complicate the
organization of A(P) to simplify the proof of its first-order definability. It wil have to be
checked, of course, that the new version will still do the job of the original formula A(P).
Now we shall merely add conjuncts that are true in the frame of Figure 1, as may be verified
immediately, and this is harmless. The new A(P) is defined as follows:

A(®)=  LFAUF ALasty A UFJ A .. A B A UAJ A UA] A UAS A UAJ
A LinA] A LinAZ A LinA3 A UT A AxP,
where Lasty = O@Ar—OT) V O@A r—OT) V O(TgAr— OT),
UF = O@—P V E(Tq—h,

and for X ¢ {F, S},
UX= OX-0O(Y1V..VYm) A (O@—-XvO(Tq—X))) VF,

where X, Yi, ..., Y are formulas corresponding to different worlds x, yi, ..., ym in
Figure 1, such that xRyj, ..., xRy and whenever xRz, then z€ {y1,...,ym},

and finally, LinA(i) = E](()A(i)/\ /\3 . _‘OA%.)/\ Cir—q)
v O(CAJA §¢j=o—!<>Ag)ADq—>r) VFE

Now we use the new variant of A(P). For this formula, the old Lemma 1.2 still holds.
Moreover, we have:

Lemma 2.1 The new formula A(P) is first-order definable on finite frames
(both globally and locally).

Proof. We shall prove the first-order definability step by step, for which we introduce the
following notation. For a formula of the form A{A..AAj.1A .. AAm, A" will denote
A1A .. AA;. For example, (UF})*=LFAUFALastpAUFQAUFS and (AxP)* = A(P) for the
new formula A(P). We shall construct a first-order local equivalent for the conjunction of
the first i conjuncts of A(P), increasing i till we get to the full A(P). The first-order
equivalent on finite frames ("first-order equivalent”, for short) for formulas (A)* will be
denoted by foe(A)*. For instance, we have

foe((LF)*) = foe(LF) = "transitivity and irreflexivity".

In all conjuncts of A(P), except the first, the formula F occurs. We describe the conditions
of its refutation. The following auxiliary predicate will be useful:

Ix)=n & "a chain of worlds of length n is accessible from x
and chains of length n+1 are not accessible".

Lemma 2.2 The formula F is refuted at world x of frame F iff there are worlds
y,2],22 in F suchthat y is accessible from x and I(y) =1 ,l(z;) = l(z2) = 0,
while YRzj, YRz, z] # z2. This assertion presupposes that the refuting valuation
has zj F p,z3 £ p.
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Proof. This may be verified immediately. O
For convenience, we denote the right-hand condition in Lemma 2.2 by CR(x, y, z1, z2).

Remark. Lemma 2.2 implies that the formulas F and VyVz1Vz 1CR(x,y, z1,zp) are
locally equivalent. O

Now we set  foe(UF)* = foe(LF) A Vx1Vxp ((xRx1Vx=x]) A (xRx2Vx=x2) A
dy3dz13zp CR(x2, Y, 21, 22) — X=X] A X=X2).

This formula expresses the uniqueness of the world in which F is refuted.

Lemma 2.3 (UF)* and foe (UF)* are locally equivalent.

Proof. Let (F)* be refuted at world a of frame F. We show that F ¥ foe(UF)* (a/x).
<F ,a> ¥ (UF)* means that there is a valuation V such that F,V,a ¥ (UR* (later on, we
shall omit V as usual). Then a £LF or a FLF, but a ¥ UF. We may suppose that
<F, x> E foe(LF), because otherwise, the desired result is obtained at once. Then we have
a ¥ UF, i.e.,

(1) ak Op - P, (2) akDOCp-PF.

From (10) we obtain thatin F there is a world a; such that aRaj or a=aj such that

3) a1 F p, (4 a; EF

From (2) we obtain that in F there is also a world ap such that aRap or a=ap with
) ap ¥ p, (6) ay K F.

From (4) and (6), using Lemma 2.2 we obtain that in F there are worlds b', c1', ¢2', b",
c1", ¢" such that the formulas CR(aj, b, ¢1', ¢2") and CR(ap, b", ¢1", ¢2"), and hence
the formulas 3y3z13zp CR(ay, y, 21, 22), Iydz13zp CR(ay, vy, 21, z2) are true. From this, by
(3) and (5) it follows, that a#aj or a# ap. Collecting all facts obtained so far, one obtains
that

F ¥ (aRajVa=a)) A (aRapVa=ap)A IyJz1322 CR(a1, v, 21, 22)
Ady3z13zp CR(ay,y, z1, z2) — a=a] Aa=a)),

which refutes the second conjunct of foe(UF)*(a/x), i.e. F ¥ foe(UF)*(a/x).

Next, let, for some world a of some frame F, F ¥ foe(UF)*(a/x). We show that (UF)*
is refuted at a by some valuation on F. First, we may suppose that F F foe(LF)(a/x),
because otherwise, we can refute LF at the world a. Now the cone of F generated by the
world a is transitive and irreflexive, and there are aj, a2 in F such that aRa; or a=aj
and aRay or a=ap,and a#aj or a# ap, and moreover, there are b', cy', b", c1", c2"
such that in F the formulas CR(aj, b', c1', ¢2"), CR(ap, b", c1", c2") hold. Because of
I(b") =1(b") = 1, we have

(7 b'E 021, 8 b"F O2L.

Two cases arise here: {c1',c2'}n{c1", 2"} =@ and {c1',c2'}n{c1", 2"} = O.
In the former case, we can choose a valuation such that:

ci'EFp,c Ep c1"Ep, 2" Ep.
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In the latter case, say c1'=c2", we can choose a valuation such that:

ci'E p, ' ¥ p,c1" Ep.
Thus, in both cases we have

9) b' ¥ OpvOyp, (10) b" ¥ OpvOp.

From (7), (9) and (8), (10) we obtain b' £ F, b" £ F, and hence a ¥ F, ap ¥ F. Recall
that at least two worlds from a, aj, ap are different, say a # a3. Then we can suppose that

ak q, a3 ¥ q,
whence a ¥ [(q —» F)VE(q —» P, and so a # (UF)*. Thus, Lemma 2.3 is proved. 0O
Now, we define foe(Lastp) :

foe(Lasty) = VyVzVu (xRy A xRz A xRu A y#u A y#z A uzz —
1(y)20 V 1(2#0 V l(u)=0).

Lemma 2.4 The formulas Lasty and foe(Lasty) are locally equivalent.
Proof. This is a standard exercise. O
This statement allows us to define foe(Last)* as follows:
foe(Lasty)* = foe(UF)* A foe(Lasty),
Thus, as a consequence of Lemmas 2.3. and 2.4 we have the following statement:
Lemma 2.5 The formulas (Lasty)* and foe(Lasty)* are locally equivalent.
Now we define foe(UF(Z))*:
foe(UF3)* = foe(Lasty)* A VyVz1VzaVu1Vup (CR(K,¥,21,22) A xRup A xRup
A TuiRzp A TTugRz)) V (ujRzp A wpRzp A TTujRzy A TTugRzy))
A lap=lu2)=1 = ui=u2).

Applied to the frame of Flgure 1 the conjunct added to foe(Lastp)* means that the World
from which the world f(l) (or fl 1) is accessible exactly by one step, but f (respectlvely, fO)
is not accessible, is unique — in thls particular frame, it is fo (respectlvely, fl ). The conjuncts
to be added later to UFj,. UFO have an analogous sense.

Lemma 2.6 The formulas ( UFg) and foe( UF%) are locally equivalent.

Our next step is the following definition, for all i, 3<i<6:

foe(UFL)* = foe(UEED)* A VyVz1VzoVu1 Vg (CRK, Y, z1, 22) A (u1Ri1zq
0 Y : ;
A wRIFlz A TTu Rz A TTuR20) V @RIz AupRi-lzy A TugRzg
A TTupRzy)) A l(up) =lwp)=i-1 — ui=uy).

Lemma 2.7 The formulas (UF})* and foe(UF, 4)* are locally equivalent for 3Si<6.

Proof. By a stepwise argument for each successive i (3<i<6) . O
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Let now foe(UAO) be the negation of a formula expressing the following situation: worlds
are accessible from world x which form a subframe generated by worlds y, uy, up. This is
sketched in Figure 2. Set

foe(UAD* =  foe(UF§)* A foe(UAY) .

The formulas foe(UAO) foe(UA2) foe(UA ) are defined analogously, using the frames in
Figures 3, 4, 5, respectively, 1nstead of Flgure 2. Now define

foe(UAY* = foe(UAEYD* A foe(UAY ,  1<is3.
Lemma 2.8 The formulas ( UA(’;)* and foe( UAé)* are locally equivalent, for 0<i<3 .

Proof. Again, this is constructed successively for each i, 0<i<3. O

Now, if foe(UA(3)) is true in some world x of some frame, then the generated subframes
sketched in Figures 2—-5 cannot accessible from this world, whereas the generated subframes
sketched in Figures 6-9 can be. We shall say that, if one of these generalized subframes is
accessible from world x in a frame, then world v; (see Flgures 6 — 9) is the 'i-th marked
world'. Note that the formulas (UAO) and foe(UAO) state, in particular, that in a frame at
most one i-th marked world is accessible from some world. For later convenience, we
introduce the following predicates ch;(u) :

chj(u) : the i-th marked world is accessible from u or isequal to u,
and the other marked worlds are not accessible from u, 0<i<2;
chz(u) :  the third marked world is accessible from u,
while other marked worlds are not accessible .

Let foeLinOAgl express the following: a set of worlds accessible from x and having the
property ch; is linearly ordered. Set

foe(LinOAY* = foe(UAY* A foeLinOGAD)
foe(LinOAY* = foe(LinOAFY)* AfoeLin® A, 1<is3.

Lemma 2.9 The formulas (LinOAj )* and foe(Lm<>A0) are locally equivalent,
for each i, 0<i<3.

Proof. The proof is again by successive construction for each i, 0<i<3. O
Next, for (UT)* we define the following first-order equivalent:
foe(UT)* = (foeLin()A%)* A YyVz1VzaVuVv (CR(x,y, 21, 22) A XxRu A xRv
A 3w WRwQA VRwo Achg(w()) A Iwi(uRw1 AvRwi Achi(wi))

A w2 URw2 AVRwW2 Achp(w2)) A w3 URw3 AVRW3 A 71 uR2w3
A "IvR2w3 Ach3(w3)) — u=v).

Lemma 2.10 The formulas (UT)* and foe(UT)* are locally equivalent.

Proof. Via a calculation using all previous Lemmas of this Section. O
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Next, we get to the conjuncts simulating the instructions of our Minsky Machine. For future
use, we make the following abbreviations (where u, w1, wp are always free variables):

fodS(s, Q1,R1) =

Jt13t2... 3tg+1 @RtIRE2. Reg41 Achp(ty) Achot) A ... Achp(ty+1))

A T13t13t...3ty42 (URtIRE.. Rey42 Achg(t]) Achg(t2) A ... Achg(ty+2)) AuRwy
A TTuRZw1 Achy(w1) AuRw2 A “TuRZwa A cho(wy),

fodS(3, Q2. R1) =

Jt13t2... A3tg+1 (WRtIRG.. Rty 1 Achg(t]) Achgt2) A... Achg(ty+1))

A T13t13t2.. 3ty42 (RtRE. Rey42 Achgt]) Achg(t2) A ... Achg(ty+2)) AuRZwq
A ‘“luR3w1 Achi(w1) AuRw2 A _lusz/\chz(wz),

fodS(3, Q1. R2) =

Jt13tp... Ity4+1 @RtIRD.. Rtz 41 Achg(ty) Achg(t2) A... Achp(ty+1)) A

A T13t1362... 3tg42 (RtIRE.. Rty4+2 Ach(t]) Acho(t2) A... Achp(ty+2)) AuRw]
A 'TuR2w1 Achi(wy) /\uszz/\ ‘\uR3w2/\ch2(w2),

fodS(s, Af, R1)=
Jt13t... 3ty+1 @RtIRE.. Reg1 Achg(ty) Achg(t2) A... Achg(ty+1))

A 131136 Tty42 (URtRO..Rtg42 Ach(ty) Achp(t2) A ... Achg(ty+2)) AuRw1
Ach1(w1) AVW@UR2w' — “Ichi(w)) AuRwa A “TuRZw) Achp(ws),

fodS(s, Q1. A})=

Jt13t2... 3ty+1 @RtR... Rtg+1 Achg(ty) Achg(t2) A... A cho(ty+1))
A T13t1362...3t542 (WRt1RE...Rtg4+2 Achg(t]) Achg(t2) A... Achg(ty+2)) AuRw]
A TuR2w1 Achy(w1) AuRw2 Acho(w2) A VW'@R2w' — ~Icho(w)) .

Now we can continue our definitions. For any instruction I we write:

« if I =qy — q¢T1To, then foe(UD*AAxI) = foe(UT)* A
VyVz1Vzp Vw1 Vwa Vw3 (CR(%, y, 21, 22) A Ju (xRuAfodS(3, Q1, R1) AuRw3 A TTuR2w3
Ach3(w3)) A Iw'3 XRw'3 Aw'3Rw3 Ach3(w'3)) — Ju XRuAfodS(4, Q2,R1)

A3w'3 @RW'3RW3 A TTw'3RZw3 Ach3(w'3)))),

« if I =qy— Qq¢ToT1, then the definition of foe((UT)*AAxI) can be obtained from the
previous one by substituting fodS(4, Q1,Rp) for fodS(4, Q2,R1),

« if I = gy = q¢T-1To(qcToTo), then foe((UT)*AAXI) = foe(UT)* A
VyVz1 V2o Vw1 Vwa Vw3 (CR(x, v, 21, 22) A Ju (xRuAfodS(3, Q2, R1) AuRw3 A “TuR2w3
Ach3(w3))Adw'3 (XRw'3 AW'3Rw3 Ach3(w'3)) — Ju (XRuAfodS(4, Q1,R1)

A3w's WRW'3RW3 A TTw'3RZw3 Ach3(W'3)) A VyVz1 Vo Vw1 Vwo Vw3 (CR(x, v, 21, 22) A
Ju (xRu A fodS(3, A(l), R1) AuRw3A T uR2w3 Ach3(w3)) Adw's XRw'3 AW'3Rw3 Ach3(w'3))
— du xRuA fodS(4, A(l), R1)A3w'3 (URW'3RW3 A 1 w'3R2w3 Ach3(w'3)))),

« if I =q5 — q¢ToT-1(qsToTo), then the definition of foe((UT)* A AxI) can be
obtained from the previous one by substituting fodS(¥, Q1, R2) for fodS(¥, Q2,R1),
and fodS(4, Q1, Aj) instead of fodS(4, A}, Ry).

Lemma 2.11 The formulas (UT)* AAxI and foe((UT)* AAxI) are locally equivalent,
for any instruction I.
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Finally, we define
foe(AxP)* = /\1ep foe((UT)* AAxI).

Evidently, local equivalence of @1 and i, @2 and py implies local equivalence of @14 @2
and y1AY2, and hence Lemma 2.11 implies:

Lemma 2.12 The formulas (AxP)* and foe(AxP)* are locally equivalent.

Because (AxP)* ‘is- A(P), Lemma 2.1. is then obtained from Lemma 2.12. Now change .
A(P), adding a conjunct <T. From Lemma 2.12, we also get

Lemma 2.13 The formulas A(P)A<OT and foe(AxP)* A 3yxRy are locally equivalent,
and so A(P)ACT is locally first-order definable.

Note that a global first-order equivalent of AP)AOT is L or; for example, Vx(x#x) .

It only remains to be verified that our new first-order version of A(P) works as before.
Consider the proof of the main technical Lemma 1.2 from Section 1. Its "if" part depended
on the conjuncts LF, LinT, UT, AxP , but these still occur in the new variant of A(P) . For
its "only if" part, it was important that A(P) should be true in the frame of Figure 1, andthat
AP)AT be true in world f of this frame. For the latter purpose, because of Lemmas 2.12
and 2.13, it suffices to have the two formulas V'x foe(AxP)* and foe(AxP)* A Jy xRy(x/f) true in
this frame. And this is obvious from their definitions (which were in fact inspired by Figure
1) plus the proofs of Lemmas 2.12 and 2.13. Thus, we obtain the following results:

Proposition 2.14 For the variant of the formula A(P) defined in this chapter,
Lemma 1.2 holds.

Proposition 2.15 For the variant of the formula A(P) defined in this chapter,

Lemma 1.2 also holds with F £ instead of F fin.

3 Modal Formulas Without First-Order Equivalents On Finite Frames

In this Section, we consider the part of Figure 1 surrounded by the dotted line. Essentially,
the results formulated here are small modifications of results obtained by K. Doets in [8].
First we formulate some key facts which we shall need.

Recall the definition of n-equivalence of models, notation: A =, B. We use game-
theoretical terminology as in [9], [8] ([7] has this notion in a different but equivalent form).
Note that we have only equality and one binary relation in the signature (or language) of our
models. Now the n-game on A and B, G(A, B, n), has two players, 1 and II, which
move alternatively. I is allowed the first move; each player is allowed n moves altogether.
A move consists in the selection of an element in either W1 or W, (where W1 and Wj
are the universes of A and B, respectively). However, if player I chooses an element in
W1 (W2), then player II has to counter in W7 (W7p) . Therefore, a move of player I and
the following counter-move of player II form an ordered pair in W1xW> . When the game
is over, the set of ordered pairs of moves is at most an n-element relation he WixWa. II
has won the play by definition if h is a partial isomorphism between W1 and W3. Now,
A and B are called ' n-equivalent' if II has a winning strategy for G(A, B, n). Here is
the basic logical property of =y. If A =;, B then, for any first-order formula ¢ of quantifier
depth at most n,

: AFE u iff BE g.

Following [8], let PZx be the nontransitive frame of Figure 10. The painted circles
represent reflexive worlds.

Lemma 3.1 [8]. If k, m22", then PZy =, PZp,.
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If we now take the MacKinsey Formula O0<p — < Op, then it is noted, once more in [10],
that this formula is true in PZy iff k is odd. If one then supposes that this formula has a
first-order equivalent (global or local), say ¢ of quantifier depth n, then we get that both
PZyn F@ and PZyn ; F @, although PZ,n £ OOp —»<0p, PZyn,; F OOCp - O0p:
which is a contradiction. Thus, the McKinsey Formula is not first-order definable (locally or
globally) on finite frames ([8]). We shall modify the formula and frames employed in this
argument in a manner suitable for our purposes. Call the frame in Figure 11 FENCEk.

Lemma 3.2 If k, m 22", then FENCEy =, FENCE,,.
Proof. Use the winning strategy for player II from the proof of Lemma 3.1. O

If we take the frames from Figure 12, denoting them by FENCE* for future reference,

then Lemma 3.2 implies that, if k, m = 2, then FENCE*y =, FENCE*,. Indeed the

strategy from the proof of Lemma 3.1 is still suitable, with the following stipulation added:
"if player I chooses f in one model, then II chooses f in the other model ".

Next, we use a modified McKinsey Formula of the form

= QOTAOKT = Op) » O(OTAOp) .

The underlined parts of « represent changes to the original McKinsey Formula. It is easy to
see that o is refutable in FENCE*g iff k is odd, and the refutation can occur only in the
world f. Thus o is not first-order definable on the class of finite frames, and not even in
the class of finite transitive irreflexive frames. These observations establish the following

Proposition 3.3 The formula (O(Op — p) — Op) A« is not first-order definable
on the class of finite frames.

Proposition 3.4 The formula (C(Cp — p) — Op) AaxAOT is not locally firsi-order
definable on the finite frames, although is globally first-order definable on them.

Proof. A global first-order equivalent of this formula is, for example, V'x x#x. The absence
of a local equivalent is proved as above, but now using the frames FENCE*y, in which f is
the 'real world'. a

Remark. Consider the modal formula B =031 A(OOp —p) »Op)AXAOT.

It may be proved analogously that B is globally first-order definable on the class of all
transitive frames, but it is not locally first-order definable on the class of all transitive frames.
This answers a question by van Benthem ([1], p.129). O

The frame sketched in Figure 1 is obtained from FENCE; by adding some subframe. Let us
call it Fy(P, @, m, n) .

Lemma 3.5 If t;, 1 22!, then Fy(P,a, m, n) =1 Fyy(P,c, m, n).

Proof. Player II needs the strategy from the proof of Lemma 3.2 with one additional rule:
"if I chooses some element out of FENCEy; in Fy(P,«, m, n), then II chooses the same
element in Fy; (P, «, m, n) ", O

Now we explain the modified McKinsey Formula, i.e., the underlined parts of formula «.
The part OOTA  has been added to make sure that a possible refutation could occur only at
world f in the frame FENCE*k. The parts &T— and OTA were added to give some
information just about the worlds dj, ..., dx in FENCE*g . Define the following further
modification of the McKinsey Formula (changes are again underlined):

5= AFAOCOOB —» O(OBAQ) — O(OOBAOCB — ),
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(here qis usedinstead of p, because p was already used in F ), where
B = OF)AOF] ADSL.
From Lemmas 1.4, 1.5, we then obtain the following fact:

Lemma 3.6. The formula A(P) A (B(x, m,n) V 3) is refutable in the frame FyP, &, m, n)
iff t is odd, and the refutation can take place only in the world f.

As a consequence of Lemmas 3.5 and 3.6, we obtain one final

Proposition 3.7 If a program P, starting at a configuration («, m,n) halts in a final
state with the number [3, then :
i) theformula A(P) A (B(«,m,n) V §) is not first-order definable on finite frames
(either locally or globally);
ii) theformula A(P) A (B(ot, m,n) V §) A OT is globally first-order definable on
finite frames, but is not locally first-order definable on them.

4 Main Results
Now we can formulate the main results of this paper. Here, A(P) is defined as in Section 2.

Lemma 4.1 The following three conditions are equivalent for any program P and
configuration (o, m,n):
i) program P, starting from configuration («, m,n), cannot reach a final state
(with number [3),
ii) the formula A(P) A (B(c,m,n) V §) is locally first-order definable on finite frames,
iii) the formula A(P) A (B(o,m,n) V §)is globally first-order definable on finite frames.

Proof. i) = ii). If i) holds, then by Lemma 1.2, Proposition 2.14 and the Remark
preceding Theorem 1.10, in any frame with a designated world where A(P) is true,
B(x, m, n) is true as well. So the formula A(P) A (B(x, m,n) V ¥) is locally equivalent to the
formula A(P), which is locally first-order definable by Lemma 2.1.

i1) = iii).  This direction is trivial.

i) = 1). Let 1) be false. Then, by Proposition 3.7.1), iii) is not true either. O

Because the Halting Problem for Minsky Machines is undecidable, and A(P) and B(c, m,n)
have been constructed effectively from P and (o, m,n), Lemma 4.1 now implies two
further results:

Theorem 4.2 The problem of recognizing, given any modal formula, whether it is locally
first-order definable on finite frames, is algorithmically undecidable.

Theorem 4.3 The problem of recognizing, given any modal formula, whether it is globally
first-order definable on finite frames, is algorithmically undecidable.

Theorems 4.2 and 4.3 are in a sense independent. Neither follows directly from the other,
witness the following observation:

Lemma 4.4 The following conditions are equivalent for any program P and
configuration (¢, m, n).
i) program P, starting at configuration (x, m,n), halts in a final state
(with number B);
ii) the formula A(P) A (B(x,m,n) V §) A OT is globally first-order definable on
finite frames, but is not locally first-order definable on finite frames.
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Proof. i) = ii). By Proposition 3.7.ii). ii) = i). Analogous to the proof of i) = ii),
but now using Lemma 2.13 instead of Lemma 2.1. a

From Lemma 4.4, we obtain our next result:

Theorem 4.5 The set of modal formulas which are globally, but not locally first-order
definable on finite frames, is algorithmically undecidable.

We conclude with one natural question. The formula LF is first-order definable on finite
frames, but is not first-order definable even on all countable frames.

Theorem 4.6 i) The set of modal formulas which are first-order definable on the class of
finite frames, but not first-order definable on the class of all frames,
is algorithmically undecidable.
ii) The set of modal formulas which are first-order definable on the class of finite
frames, but not first-order definable on the class of all countable frames,
is algorithmically undecidable.

Proof An argument for i) and ii) can be given simultaneously. Return to the proof of
Lemma 4.1. The proof of the implication iii) = i) showed in fact that, if i) is not true, then
A(P) A B(¢, m,n) V ¥) is not a formula, which is first-order definable on finite frames, but
not first-order definable over all (countable) frames. In the case of the proof i) = ii), we
observe that the formula A(P) is not first-order definable in the class of all (countable)
frames. This is proved via the usual counter-example to first-order definablity for LF , using
linear frames in which all conjuncts of A(P) except LF are true. O

Remark The fact that Theorem 4.6.i) and Theorem 4.6.ii) are independent follows from
the undecidability (announced in [5]) of a set of formulas which is first-order definable on
countable frames, but not first-order definable in general. O

Question Whether any of the sets of formulas mentioned in Theorems 4.2, 4.3, 4.5, 4.6,
or their complements, are recursive enumerable.
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