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Remarks on
the Theory of Semi-Functors

R. Hoofman* I. Moerdijk!
University of Amsterdam University of Utrecht

Abstract

By establishing an appropriate equivalence, we show that the the-
ory of semi-functors can be fully embedded in the theory of (ordinary)
functors. As a result, standard properties and constructions on func-
tors extend automatically to semi-functors.

1 Introduction

Categories and functors play a central role in the semantics of various formal
languages. For example, it is well-known that extensional typed lambda
calculi are essentially equivalent to cartesian closed categories (see e.g. [12]).

In order to develop a similar categorical semantics for non-extensional
typed lambda calculi, S. Hayashi introduced in [3] the notion of a semi-
functor between categories. He developed in loc. sit. the theory of semi-
adjunctions and semi cartesian closed categories, and showed that the latter
correspond to non-extensional typed lambda calculi. He also showed how the
theory of semi-functors provides a natural approach to the “extensionaliza-
tion” of models of the lambda calculus. Later on, semi-functors were studied
in the context of linear logic and the second-order lambda calculus; see e.g.
[4, 7, 9, 14, 15, 16]. A systematic exposition of the theory of semi-functors
is given in [5].

*Email: raymond@fwi.uva.nl.
"Email: moerdijk@math.ruu.nl.



Although the introduction of semi-functors at first sight appears to be
a proper extension of ordinary category theory, we show in this paper that
the theory of semi-functors can be fully embedded into the theory of (or-
dinary) functors. More specifically, we establish an appropriate equivalence
between, on the one hand, the theory of categories, semi-functors, and nat-
ural transformations between such semi-functors, and, on the other hand,
the theory of Karoubi-complete categories, ordinary functors, and ordinary
natural transformations. A precise statement of this equivalence occurs as
our main Theorem 1 below.

As a consequence of this result, many standard properties and construc-
tions of functors extend automatically to semi-functors (see section 3). In
particular, many results of [5] are immediate consequences of our main the-
orem.

In a next section (section 4), we investigate the relation of our approach
to the work of Koymans [10], while in the final section we will present an ex-
tension of our main theorem to the context of fibred (or indexed) categories.
We are motivated by the fact that such fibred categories (with appropriate
properties) provide models of second-order languages (see e.g. [9, 17]). In-
deed, in [8] we will show that this extension to fibred categories provides a
method for the extensionalization of second-order calculi.

2 Semi-Functors and the Karoubi Envelope

In this preliminary section we review some basic definitions. We assume that
the reader is familiar with the notions of 2-category, 2-functor, etc. (a basic
reference is [11]). For a 2-category C, the category obtained by forgetting the
2-cells of C will again be denoted by C.

Let C and D be categories. Recall from [3, 5] and the introduction that a
semi-functor F : C — D maps objects, respectively arrows, in C to objects,
respectively arrows, in D, preserving domain, codomain and composition.
Hence a semi-functor is defined just as a functor, except that a semi-functor
need not preserve identities. For semi-functors F’ and G : C — D, a natural
transformation between semi-functors o : F — G is a family (ac : FC —
GC | C € C) of arrows in the category D, satisfying the two conditions

1. ap o F(f) = G(f) o ac,



2. aco F(idg) = ac.

" Semi-functors and natural transformations between semi-functors can be
composed in the obvious ways, thus yielding a 2-category denoted by Cat,.
The usual 2-category Cat of categories, functors and natural transformations
is a subcategory of Cat,, full on 2-cells.

Recall that an idempotent in a category C is an arrow p : C — C in C
such that pop = p. A splitting of p is a triple (R, r, s) where 7: C — R and
s : R — C are arrows satisfying 7 o s = idg and s or = p. Such a splitting of
a given idempotent is unique up to isomorphism. One says that a category C
has splittings (or that idempotents split in C, or that C is Karoubi complete)
iff a splitting exists for every idempotent arrow. (Observe that we do not
require a “canonical” choice of splittings; see section 4 below.) We write
Cat; for the full 2-subcategory of Cat with as objects the categories that have
splittings. Thus

Cat; — Cat — Cat,.

The Karoubi envelope KC of a category C is obtained by freely adding
splittings for idempotents in C: objects of KC are pairs (C, p) where p: C' —
C is an idempotent in C, while arrows f : (C,p) — (D, ¢) in KC are arrows
f:C — D in C with the property that go fop = f. (Note that the identity
arrow on (C, p) is not the identity arrow idg of C but p: (C,p) — (C,p).) It
is easy to see that any idempotent f : (C,p) — (C,p) in KC splits, via the
object R = (C, f).

If F: C — D is a semi-functor, then one obtains an ordinary functor
K(F) : KC — KD defined on objects by X(F){C,p) = (FC, F(p)), while
on arrows K(F)(f) = F(f). Similarly, a semi natural transformation « :
F — G between semi-functors yields an ordinary natural transformation
K(a) : K(F) — K(G), with components o ¢y = ac o F(p)(= G(p)oac). In
this way one obtains a 2-functor

K : Cat, — Cat;.

In [2] it is observed that, when viewed as a functor K : Cat, — Cat, the
Karoubi envelope is right adjoint to the inclusion Cat — Cat,; see also [5].

3 The Main Theorem

Our main result is the following:



Theorem 1 (Main Theorem) The Karoubi envelope K defines an equiva-

lence of 2-categories
K : Cat, > Cat;.

As we shall see, this theorem is not difficult to prove. Nonetheless, it
is fundamental for the theory of semi-functors, since it allows us to extend
properties of functors and natural transformations in a systematic way to
semi-functors and natural transformations between semi-functors. Some in-
stances are mentioned below.

For the proof of the theorem, first recall that a functor F : C — D is
an (ordinary) equivalence of categories iff F induces an isomorphism from
C(C,C'") to D(FC, FC") and, moreover, F is surjective up to isomorphism
(in the sense that for each D € D there exists C € C such that FC = D).
Uniformly substituting “equivalent” for “isomorphic” in this definition yields
the notion of an equivalence of 2-categories. In detail,

Definition 2 Let C,D be 2-categories. A 2-functor F : C — D is an equiv-
alence of 2-categories (and C and D are 2-equivalent) iff the following con-
ditions hold:

1. For any objects C,C' € C the 2-functor F restricted to C(C,C") —
D(FC, FC'") is an ordinary equivalence of categories.

2. The 2-functor F is surjective up to equivalence: for each D € D there
exists C € C such that FC ~ D (i.e., there are one-cells f : FC — D,
g:D — FC, and invertible 2-cells fog = 1p and go f = 1pc).

Now we give the proof of Theorem 1:

Proof: For any category C, there is an evident functor ¢ : C — K(C)
given on objects by nc(C) = (C,idc). This functor is full and faithful.
Furthermore, it is well-known that 7¢ is an equivalence of categories when
idempotents split in C. (Indeed, if (R,r,s) is a splitting for (C,p), then 7
and s define an isomorphism nc(R) = (C,p) in KC.) This shows that the
2-functor K : Cat, — Cat; is surjective up to equivalence.

The “forgetful” semi-functor e¢ : K(C) — C runs into the opposite direc-
tion of nc, and is defined on objects by ec(C,p) = C. Both n¢ and ec are
natural in C in the sense that for any functor F,

np o F = K(F)onc:C— KD, (1)
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and for any semi-functor G,
ep o K(G) = Goec: KC— D. (2)
Observe, furthermore, that for any category C we have the identity
K(ec) omec =14d : KC — KC, (3)
as well as a canonical natural isomorphism
K(nc) 2 nec : KC — K2C. (4)

To complete the proof of the theorem, we now show that for any categories
C and D, the Karoubi envelope gives an (ordinary) equivalence of categories

K : Cat,(C,D) 5 Cat;(KC,KD).

First we show that this restriction of K to hom-sets is surjective up to iso-
morphism. To this end, let F : XC — KD be any functor, and consider the
semi-functor ¥ =epo Fonc : C — D. Then

KF K(ep) o K(F) o K(nc)
K(sD) o K(F) o e
K(ep)omxco F

F.

—
™
N’

R

—_
i
~

—_
w
I~

Next we observe that the Karoubi envelope K restricted to hom-sets is full
and faithful. Indeed, if F, G : C — D are semi-functors, then the operation

Nat(F, G) — Nat(K(F),K(G)) : @ — K(a),

from natural transformations F — G to natural transformations C(F) —
K(@G), is a bijection. Its inverse is

Nat(K(F),K(G)) — Nat(F,G) : B — B - nc,

where the components of 3-n¢ are given by (3-1¢c)c = B(c,iq), for any object
CecC |



Note that the inclusion Cat; — Cat, is a quasi inverse for K : Cat, — Cat;.
In other words, any category C is semi-equivalent to its Karoubi envelope KXC
vianc: C— KC, ec: KC — C.

A large part of the theory of semi-functors presented in [5] can be viewed
as an immediate application of Theorem 1. For example, when one defines
a semi-adjunction between semi-functors FF : C — D, G : D — C in the
standard way in the language of the 2-category Cat; (see [11]), then F is left
semi-adjoint to G iff K(F) : KC — KD is left adjoint to X(G). Further-
more, all well-known categorical properties of adjoint functors immediately
transport along the equivalence Cat; ~ Cat, to give the same properties of
semi-adjoint semi-functors. (For example, semi-adjoints are unique up to
semi natural isomorphism, semi-adjunctions compose, etc., etc.)

The same principal applies to other properties which can be expressed
in the language of 2-categories. Thus a category C has semi-products iff
KCC has products. (Indeed, the existence of a right (semi-)adjoint to the
diagonal C — C x Cis a 2-categorical property of C as an object of Cat,, and
the equivalence between Cat, and Cat; preserves products and diagonals.)
Similarly, a category is semi cartesian closed iff XC is cartesian closed. As a
last example, one can develop a theory of semi-monads and semi-algebras by
transporting the usual theory of algebras and monads (formulated for objects
in a 2-category in [11, 18]) along the equivalence of Theorem 1. The notion
of a semi-algebra finds an application in [6].

4 The Karoubi Envelope as a Monad

The main purpose of this section is to point out some relations with the work
of Koymans [10]. We assume that the reader is familiar with the notions of a
monad, the Kleisli category construction, and the Eilenberg-Moore category
(a basic reference is [13]).

To begin with, we observe that the Karoubi envelope yields a monad on
the category Cat. Indeed, the functor K : Cat — Cat (i.e., Cat — Cat; — Cat)
comes equipped with natural transformations 5 : Id — K and p : K* — K as
follows: define 7 as in the proof of Theorem 1, and take uc((C,p), f) = (C, f).
(Actually, K is a 2-comonad on the 2-category Cat.)

Next we consider the Kleisli category of the Karoubi monad. Recall that



the objects in the Kleisli category are the same as in Cat, viz. categories,
whereas arrows F' : C — D in the Kleisli category are functors F' : C — KD
in Cat. We observe that each such functor F gives rise to a semi-functor
np o F : C — D, while each semi-functor G : C — D yields a functor
K(G) oexp : C — D. As this defines a one-to-one correspondence between
arrows in Cat, and arrows in the Kleisli category of K, it follows that the last
category is actually isomorphic to Cat,.

Proposition 3 The category Cat, of categories and semi-functors is isomor-
phic to the Kleisli category of the Karoubi monad (IC,n, u) on Cat.

We remark that this isomorphism can also be extended to an isomorphism
of 2-categories. As an easy consequence of the proposition, standard monad-
theory tells us that there exists a (2-)adjunction between Cat and Cat,, which
is of course the adjunction mentioned in section 2.

We consider the Eilenberg-Moore category (the category of algebras) of
the Karoubi monad. Recall that the objects of this category are functors of
the form F : KC — C that satisfy F onc = Idc and F o uc = Fo K(F). An
arrow H : (F : KC — C) — (G : KD — D) consists of a functor H : C — D
that satisfies the requirement G o K(H) = H o F. The Eilenberg-Moore
category can be described as the category Cat;. of categories with chosen
splittings and splitting-preserving functors, defined as follows:

Definition 4 A category C has chosen splittings if there is given a family
(Rp,7p, Sp | p idempotent in C), where each triple (Rp, Ty, sp) is a splitting of
p, satisfying the following requirements:

1. Ry, = A,
2. Tig, =1dy,
3. Siq, =1dy.
Moreover, for each pair of idempotents p,q satisfyingpoqop =p,
4. Rypogos, = Ry,
9. Tryoqos, O Tp 0 g =Ty,

6. qO 850 8r,0q0s, = Sq-



If also D has chosen splittings denoted by (R, 1, sp), then the functor H :
C — D is said to preserve chosen splittings iff H(R,) = Ri,), H(rp) = Tg(y),
and H(s,) = 3}1—(?). For splitting preserving functors H, K : C — D, a natural
transformation oo : H — K 1is said to preserve chosen splittings iff

r'K(p) oay o H(p)o s}I(P) = Qag,.

The notion from [10] of a category with ezplicit splittings differs slightly
from the notion introduced here. Specifically, in the definition of a category
with explicit splittings, requirement (5) above is replaced by the somewhat
stronger requirement

Trpogos, O Tp = Tyg
and analogous for requirement (6).
Let Cat;. denote the (2-)category of categories with chosen splittings and

splitting preserving functors. Similarly, Cat;, denotes the full (2-)subcategory
of Cat;, of categories with explicit splittings.

Proposition 5 The Eilenberg-Moore category of the Karoubi monad on Cat
s isomorphic to the category Cat;. of categories with chosen splittings.

Proof: Each chosen splitting on C determines an algebra F : KC — C as
follows. Let (Rp,7p, s, | p idempotent in C) be a family of chosen splittings
on C, then take F(C,p) = R, and F(f : (C,p) — (D,q)) = rgo f o s,.
The other way round, algebras F : XC — C give rise to chosen splittings:
take R, = F(C,p), r, = F(p), and s, = F(p). It is easy to check that this
yields a one-to-one correspondence between algebras and chosen splittings.
Furthermore, splitting preserving functors correspond to morphisms between
algebras. |

As in the case of proposition 3, the isomorphism of proposition 5 can be ex-
tended to an isomorphism of 2-categories. Furthermore, by standard monad-
theory we find an adjunction between Cat and Cat;., which restricts to the
(2-)adjunction described in [10] between Cat and Cat,,.

5 Extension to Fibred Categories

Motivated by the fact that the (categorical) semantics of second-order lan-
guages require fibred categories, we indicate in this section how our main
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Theorem 1 can be extended to this context. These results will be applied
in [8]. We assume that the reader is familiar with the notions of fibred cate-
gory and cartesian functor (see e.g. [1]).

Let B be a fixed category, and let Fib(B) be the 2-category of fibered
categories over B. So its objects are (Grothendieck) fibrations P : E — B,
its arrows are cartesian functors over B, and its 2-cells are vertical natural
transformations, all as usual. Say a fibered category P : E — B has fibrewise
splittings iff each category Ep = P~!(B) has splittings. Denote by Fib,;(B)
the full 2-subcategory of Fib(B) whose objects have fibrewise splittings (where
vi stands for vertical idempotent).

For a fibred category P : E — B, we construct a new fibred category
K,E — B as follows. The objects in K,E are pairs (E,p) where E is an
objectin E and p: F — F is a vertical idempotent: P(p) = idpg and p* = p.
The arrows (E,p) — (E',p') in K,E are arrows f : E — E' in E satisfying
p o fop = f. The composition and identities for I,E are obvious (just as
for the ordinary K). Finally, we extend the functor P : E — B to a functor
K.E — B by (E,p) — PE on objects and in the obvious way on arrows. We
call K,(P) the vertical Karoubi envelope of P.

Proposition 6 The functor K,E — B defines a fibred category with fibrewise
splittings.

Proof: Let u : B — B be an arrow in B and (E,p) an object in K,E with
PE = B. We indicate how to define a cartesian lifting u* : (E',p') — (E,p)
of u, and leave further details to the reader. First choose a cartesian lifting
w' : E' - E of win E. Then since E is fibred over B there is a unique
p : E' — E' with v’ op’ = v’. By uniqueness, p' is idempotent. Finally, take
w=pou: (B p') — (E,p) as the desired cartesian lifting of u in ,E. W

It is easy to see that if the fibred category E — B is defined from an
indexed category B’ — Cat, then K,E — B is induced from the composite
indexed category B°” — Cat X Cat.

Many properties of fibred categories are preserved by the vertical Karoubi
envelope. For models of second order languages the most relevant ones are:
(1) If E — B is fibrewise cartesian closed, then so is K,E — B. (2) IfE —» B
is complete (cocomplete), then so is K,E — B. [For this last preservation



fibred category is a semi-fibred category. We leave it to the reader to check
the following proposition: the functor X,E — B defines a fibred category iff
E — B is a semi-fibred category.
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property, recall from [1] that P : E — B is said to be complete (cocomplete)
iff B has pullbacks and if, for each morphism u in B, the functor v* = P(u)
has a right adjoint (left adjoint) satisfying the Beck-Chevalley condition.]

Let P: E — Band P': E' — B be fibred categories over B. A semi-functor
F :E — E over B (ie.,, P'o F = P) induces an ordinary functor X,(F) :
K.E — K,E, exactly as in section 2. Furthermore, a natural transformation
a : F — G between two such semi-functors induces an ordinary natural
transformation ICy(a) : K,(F) — K,(G). Say that F is semi-cartesian iff
ICo(F) is cartesian, and say that o is vertical iff P(ag) = idpg for all E € E.
This defines a 2-category

Fibs(B)

with fibred categories as objects, cartesian semi-functors as 1-cells, and ver-
tical natural transformations between such semi-functors as 2-cells. The
following result is now a straightforward extension of Theorem 1.

Theorem 7 The vertical Karoubi envelope defines an equivalence of 2-categories
IC, : Fibs(B) — Fib,;(B).

Remark: For a semi-functor F : E — E' over B as above, the property of
being semi-cartesian can be described explicitly as follows. The semi-functor
F is semi-cartesian iff for every cartesian arrow f : D — FE in E its im-
age F(f) has the following property: F(f) can be factorized uniquely (up
to isomorphism) as g o h, where h : FD — K vertical and g : K — FE
cartesian; for this factorization there exists a vertical h' : K — FD so that
h'oh = F(idp) and gohoh' = F(idg) o g.

Remark: Various of the results in this section can be further extended.
For example, proposition 6 above can be strengthened as follows. Let u :
B’ — B be an arrow in B. A semi-cartesian arrow over u is an arrow
f: Ey — E over u (i.e., P(f) = u) equipped with an operation assigning to
each arrow ¢ : B2 — E and factorization P(g) = uwov an arrow G : B, — E;
over v satisfying f og = g. Moreover, we require the operation to be natural
in the sense that go h = go h, for each h: D — E,. A functor P : E — B
is a semi-fibred category iff for each w : B' — B in B and E € Ep there
exists a semi-cartesian morphism over u with codomain E. Note that each
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