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Abstract

The paper deals with two versions of the fragment with unit, tensor, linear im-
plication and storage operator (the exponential !) of intuitionistic linear logic. The
first version, ILL, appears in a paper by Benton, Bierman, Hyland and de Paiva; the
second one, ILL", is described in this paper. ILL has a contraction rule and an in-
troduction rule !T for the exponential; in ILL™, instead of a contraction rule, multiple
occurrences of labels for assumptions are permitted under certain conditions; more-
over, there is a different introduction rule for the exponential, !I*, which is closer in
spirit to the necessitation rule for the normalizable version of S4 discussed by Prawitz
in his monograph “Natural Deduction”.

It is relatively easy to adapt Prawitz’s treatment of natural deduction for intu-
itionistic logic to ILL™; in particular one can formulate a notion of strong validity
(as in Prawitz’s “Ideas and Results in Proof Theory”) permitting a proof of strong
normalization.

The conversion rules for ILL explicitly mentioned in the paper by Benton et. al.
do not suffice for normal forms with subformula property, but we can show that this
can be remedied by addition of a single conversion rule.

ILL™ also suggests the study of a class of categorical models, more special than
the class introduced by Benton et. al.

1 Introduction

In this paper we shall assume familiarity with the proof-theoretic treatment of intuitionistic
logic IL as presented e.g. in [P1, T1, T2].

We discuss natural deduction versions of the multiplicative-exponential fragment of
intuitionistic linear logic, ILLy. (usually shortened to ILL below, since we shall not deal
with the full system ILL here). The operators and constants of ILLy,, are x (tensor), 1
(unit), —o (linear implication), and ! (storage operator, exponential).

! behaves more or less like the modal necessity operator in the well-known sytem S4
of modal logic; in particular, the first natural deduction formulations proposed for ILL
(e.g. in [A]) had the following introduction rule for !

T'HA
TH'!A
*We gratefully acknowledge the use of D. Roorda’s stylefile “exptrees.sty” for the typesetting of

prooftrees. We are indebted to H. Schellinx for discussions and critical comments on a first draft of
this paper.




(we use I',TV,..., A, A',. .. for multisets of assumptions) or in tree form

['T]
D

A
1A

where the brackets [ and ] in [!I'] serve to indicate that [!I'] is a complete multiset of
open assumptions in D, discharged at the application of !-introduction. This version has
the disadvantage, as noted by several researchers, that the proof trees are not closed
under substitution of deductions for open assumptions (substituting deductions for the
assumptions 'I' in an application of !-introduction leads to a deduction which ends in
general not with a correct application of !-introduction). In [BBHP] it was proposed to
generalize the !I-rule to

ArF 14y, Ap 14,  14;,...,1A, F B
A1,...,AF 1B

In the sequel we shall reserve the designation ILL for this version from [BBHP]. Closure
under substitution is now taken care of, but for a proof-theoretic treatment the new version
of the !I-rule turns out to be somewhat awkward; in a sense, the rule both introduces
and eliminates !-formulas, and there is no direct relation in complexity between !B and
the formulas !A;; the latter may be much more complex than the conclusion. Prawitz’s
treatment of S4 in [P1] suggests another possibility, which we shall call !I*: a correct
application of /I has the form

D1 D,
[1A1, ..., 14,]
D

B
'B

(no assumptions open in D; become bound in D; [!4y,...,!4,] is a complete list of the
open assumptions in D). However, this does not combine very well with the contraction
rule for the exponential. Therefore we study another version of ILLye, called ILL™, in
which !I is repaced by !IT, and contraction is eliminated by considering prooftrees where
multiple labels of variables are permitted, if they arise by substituting isomorphic copies
of a deduction D' for a collection of open assumptions of the form !4 in another deduction
D. Thus we suppress the dynamic aspect of contraction (i.e. the separate operation of
replacing two distinctly labelled occurrences of a formula !4 by a single occurrence); a
precise statement of the conditions permitting multiple occurrences of the same label will
be given later on.

It appears that ILL™ permits a proof-theoretic treatment closely parallel to Prawitz’s
treatment of intuitionistic logic in [P1, P2]. In particular, we can formulate a notion of
strong validity giving rise to a proof of strong normalization for ILL™; normal forms of
deductions in ILL™' have the subformula property and can be analyzed in terms of the
structure of tracks (track = path in [P1]), which in normal deductions always consist



of an elimination part, followed by a minimal part, followed by an introduction part.
Applications of the kind given in [P1] follow.

Returning to ILL itself, the obvious “direct conversions” contracting an E-rule appli-
cation with the conclusion of an I-rule as main premise, and the “permutative conversions”
permitting to permute E-rule applications upward past minor premises of certain E-rules,
do not suffice to give a normal form with subformula property. But one extra conversion,
corresponding to one of the equalities in the notion of categorical model of ILL described
in [BBHP], suffices for this; it is consideration of ILL™ which suggests a suitable normal-
ization strategy for ILL relative to this set of conversion rules.

Finally, one may ask what notion of categorical model corresponds to ILL'? For
ILL™ as such, the question does not make immediate sense, since the restrictions one has
to impose on conversions in ILL™ are non-standard for a term-calculus. But the question
does suggest the possible interest of a notion of categorical model obtained by imposing
one extra equation on the set of equations listed for the models of BBHP, to the effect
that any map from !IT" to !4 can be obtained as the result of an !I-introduction to a map
from IT" to A. This identity is true in algebraic models (trivially), but we do not know of
a non-trivial type-theoretic or categorical model where it holds.

2 Notational representation of natural deductions

We recall that deductions in the system IL of natural deduction for intuitionistic propo-
sitional logic can be presented, in a highly redundant way, as trees where the nodes are
labelled by sequents of the form

(*) z1:A1,...,2,: Ay Ft: B

where t is a rigidly typed term of type B, and the free variables of £ occur among 1, ..., Z,.
Such a representation obviously contains redundancies, since if ¢ is rigidly typed, the
variables z; in t occur also typed as x; : A;; moreover, t reflects in its construction the
complete prooftree up to this node, so the conclusion label at the bottom of the tree
contains in fact all relevant information concerning the tree.

Several isomorphic forms of presentation of deductions in IL are obtained by stripping
certain types of redundant information from the tree. Thus, for example, we obtain the
usual formula-tree presentation by (1) stripping the terms and the context z; : Ay,...,zp :
A, of each label, retaining only B in (%) above, (2) retaining the variable labels of as-
sumptions appearing at the top nodes (the leaves) of the tree; (3) indicating the rules
used (when needed to avoid ambiguity) and (4) indicating, by repeating the labels, where
assumptions are discharged.

The term-presentation is obtained by retaining only the rigidly typed term at the root
of the tree, etc.

Each of these styles has its own merits; the formula-tree style has a certain “geometric
flavour” and permits an appealing formulation of the structure of normalized proofs (as
built from tracks with an elimination part, minimal part, and introduction part, cf. [P1])
from which we can neatly derive a number of corollaries (the subformula property, a
generalized form of the disjunction rule etc.) It is true that for IL the VE-rule and the
corresponding conversions (normalizing steps) are nastier than the other rules (a fact
strongly emphasized in [GLT])— but really not too nasty, I think — it is still manageable.



The term presentation is very compact and precise, and makes the isomorphism be-
tween typed-term calculi and deduction systems fully explicit. It also suggests further
normalization steps, which serve as a stepping stone towards a category-theoretic formu-
lation of the logic.

The preceding remarks apply, mutatis mutandis, also to natural deduction formulations
of intuitionistic linear logic.

In exhibiting deductions as formula trees, we use some standard conventions. We use
calligraphic D, &, F,G,H, possibly sub-or superscripted, for formula prooftrees.

(4]
D
B

is a prooftree D with [A] the set of all open asumptions of the form A with the label z.
The label is often dropped. Several assumption classes may appear as:

(4, B] or [4)[B]

Whenever an open hypothesis 51 is discharged by a rule application, all occurrences of A
with label z above the application of the rule are discharged (closed) simultaneously. It
is usually convenient to assume that any label z discharged by rule application a occurs
only above «; this can be achieved by relabelling closed assumptions if necessary (in term-
notation this is just renaming bound variables).

3 Intuitionistic linear logic

In presenting intuitionistic linear logic ILL care has to be taken in handling assumptions.
For the purely multiplicative fragment with %, —o, 1, this is simple: in the formula-tree style,
the assumptions are treated as a multiset, or more precisely, as a set of occurrences, each
occurrence with a distinct label; each —I-application discharges precisely one occurrence,
each xE-application precisely two occurrences.

If we add the exponential !, however, we must build into the rules that multiple use is
equivalent to single use of the assumption !A.

We can stick to the convention that distinct occurrences of assumptions always have
distinct labels by having a contraction rule. The effect of this rule is to replace two distinct
labels (z,y say) of a formula occurrence !4 with a new single occurrence with a new label
(z say). In the formula-tree style an application of the contraction rule looks like

T Y z Y
['4,14] 14, 14]
: D' or more generally D D'
14 B 14 B
L) —z,
B y B Y



Similarly with weakening; the possibility of “vacuously” depending on assumption of the
form !A (labelled z) is expressed by a weakening rule:

., D D D
A B ,moregenerally 14 B
B B

3.1. DEFINITION. In an application of the promotion rule !l

1 Tn
[A: ..., 4]

Dl D'n. &
14, ... 4, B
iB T1y...,&q

the conclusions !4; of the D; are the side premises of the !I-application, and B is the main
premise. O

3.2. NoTATION. If ', A are used for collections of formulas in versions of ILL, the I') A
are treated as multisets; for sequences of formulas and derivations we use vectornotation
B,D etc. O

3.3. DEFINITION. (The system ILL) For reference, we give a version of a natural deduc-
tion calculus for ILL (restricted to !, —o, %, 1), presented as a termcalculus.

Axiom z:A==z:A4

*II‘=>3:A A=1t:B *EI‘=>5:A*B Az:Ayy:B=>t:C
I'A=sxt:AxB A= E;,(st):C
I I'Nz:A=>1t:B EI‘=>s:A—oB A=t 4
—o —o
I'=sAzt:A—-B I'NA=st:B

I'=>s:1 A=t:A

11 =x%x:1 1E
* T,A=El(s¢): 4

Tyt 1A, , T Hty 14, z1:141,...,2p 1A Fs: B

T
Ty, Do b ey en (B, T )
I'=>s:!1B A=t A D I'=>s:!B
I'A=Ev¥(s,t): A I' = Ed(s): B

I'=>s:'B z:B,y:'BA=t: A
IVA=Eg,(st): 4

C

T, A are sets of statements z; : A; with the z; all distinct; I', A disjoint. In !3(;s) the
operator !z binds Z in s; in E (s,t) E; , binds z,y in t. W = weakening, D = dereliction,
C = contraction. O



In discussing ILL it is often advantageous to generalize both weakening and contrac-
tion. Weakening is generalized to:

Dy D, D
14, ... A, B
B

and contraction to

[(!Al)kl’ LR ('An)kn]
Dy D, D'
14, ...14, B

where (14;)% refers to k; (k; > 1) assumptions of the form !A4; in D'. This form of
contraction is a combination of n applications of

[(14:)%]
D; D!
14; B
B

which in turn is a mild generalization of the original contraction rule.

3.4. DEFINITION. In the applications of the general forms of W and C, the ! A; appearing
as conclusions of the D; are called the major premises (plural!) of the application, and B
the minor premise. O

3.5. In [BBHP]| normalization for natural deduction is not discussed, but some conver-
sions are listed, in particular

(1) “detour-conversions”, i.e. the removal of a formula occurrence introduced by an
I-rule, only to be immediately eliminated as major premise of an E-rule.

(2) permutation conversions of the following general form: a subdeduction of the form

Doo 'D(n D01 Dl
—A B D converts to Do B ¢
B C A C
C C

where the final rule is an E-rule with B as major premise (and similarly with more premises
in the rule).

Normalization becomes rather complicated in ILL, due to the complicated form of
the promotion rule, as illustrated by the conversion of an !-introduction followed by a



contraction. The dotted line in the second prooftree serves to make it visually clear that
both formulas above it enter as assumptions in the deduction F.

T1 Tn
[A41 ..., 4] "
D, D, E (!lB!B|
14 14, B
! 1 T, »Tp f
'B C u,v
C
is transformed into
['41,...,14,] [lAy,...,14,]
E " n E
14, 14, B 14; 14, B
['B !B|
Dl Dn __________ j: ——————————
14, --- 4,
5 (contractions) z1,y1,...,Tn,¥n

Detour conversions and permutative conversions are not sufficient to guarantee the sub-
formula property for normal proofs, as we shall see.

3.6. EXAMPLE. Here is an example of a deduction in the fragment —o,! which is nor-
mal w.r.t. detour- and permutation conversions, but which does not have the subformula
property. (In particular, !(B; — B3) does not occur as subformula in the conclusion).

I(!C—o(B;—0By)) ®

IC—o(B1—B;) 1C® I(By—oB,)® 1B
I(IC—o(By—0B,)) ) 1€ Bi—B, ,, B1—B; B,
I(B;—B,) ’ 1B B, 67
By . ’
(1B;—o!By)
IC—o(1B; —!By) )

(IC—o(B1—0Bz))—o(!C~o(1B1~!By))

Formulating an analogue of the notion of path (frack in our terminology) as used by
Prawitz, it seems natural to let in an application of !I the occurrences of !4; as conclusion
of D be followed by the assumption !4; in &.

We then see that in our counterexample the introduction of !(B; — Bz) on the left is
followed by a dereliction from the assumption !(B; — Bj) on the right; but the detour-
conversions and permutation conversions mentioned before do not permit contracting the
'T followed by !E (dereliction) in the path.



The following type of conversion permits us to contract the promotion/dereliction in
our example.

. LI
F D [..14;..]
'\B A; D'
G 4 ¢ C
IC
F Fi
(!é is a sequence of deductions of the form !B;) is replaced by
['B]
. D
'B A;
[...14; ..]
F D'
GB G c
IC

This additional conversion permits normalization with subformula property for normal
deductions, as we shall see later; an appropriate normalization strategy will be suggested
by the system ILL™, to be discussed next.

For the reasons given above it seems worthwhile to explore the possibility of an alter-
native formula-tree presentation which is geometrically more manageable, at the expense
of a slightly more complicated treatment of labelling of assumptions. Our solution (system
ILL™") is closer in spirit to Prawitz’s treatment of natural deduction for S4 (cf. [P1]) and
permits a satisfactory normalization theorem, with the subformula property for normal
proofs, and a structure of paths in deductions similar to the case of intuitionistic logic.

4 The system ILL"

In comparing the two systems we shall stick to the convention that in a proof tree [A]

always refers to a single assumption occurrence of the form A. The principal features in
which ILL" differs from ILL are the following.

4.1. The promotion rule

In ILL™ the rule, now called I+, takes the form

[14; - 14,]

SRS



that is to say, in deduction D with conclusion B and complete set of open assumptions
14,,...,14,, deductions &i,...,E, have been substituted; this premise permits deriving
!B from B. In term style this becomes

If tfze,...,xn/51,..-y8a) : B, FV(t) ={z1:!41,...,2, : 145}
sy :1A4y,...,8, :14,, then W[Z/5]:!B.

Soin ILL* the operator ! does not bind variables; we may assume (FV(s1)U...UFV(s,))N
FV(t) = 0.

DEFINITION. An application of /It as exhibited is said to be based on &,...,&,. O

4.2. The contraction rule and multiple label occurrences

The weakening rule is not changed. The contraction rule does not appear explicitly, but
is built into the system by permitting multiple occurrences of the same free variable for
assumptions.

Let us formulate the condition for multiple label occurrences more precisely. Whenever
a label = for an open assumption A in deduction D is used precisely k times (k > 1), then
there are k isomorphic copies £,...,& of the same deduction F with conclusion of the
form !B, such that in each &; there is a single occurrence of z, and D is of the form

& & F F
B...'B] = [B...'B] or t[z1:!B,...,x}:!B/s,...,s]
& £
A special case is where the &; consist of !B alone. Labels y1,...,yr in &1,. .., E respectively

corresponding to a label y bound in F, are all distinct. (This is necessary to guarantee
that identical labels are always discharged simultaneously.) Intuitively we may think of
the multiple occurrence as representing a generalized contraction rule application. The
set of occurrences of !B is called a substitution location.

The weakening rule is generalized as already indicated for ILL.

4.3. DEFINITION. (The termsystem for ILL™)

t:A s:B t:AxB s[z:A,y:B]:C
s axs P Ei,(t9):C
tlz: A]: B Et:A—oB st A
Ay.tfz/y]: A —- B ts: B
te:1]: A
1T x:1 1E ———+—
* El(t): 4
!I+t[£:!é/€:!A]:B D t:!B Ct:!A_, s:B
't[z/s] : 'B Ed(t): B Ev¥(t;s): B

with restrictions on variables as indicated above. O



4.4. PROPOSITION. There is a map ° from the deductions in ILL* to the deductions in
ILL, and a map * in the opposite direction, such that if D in ILL™ (£ in ILL) proves
T'+ A, then D° in ILL (£t in ILL') proves ' - A.

ProOF. We introduce an auxiliary system ILLTY, containing all the rules of ILL™,
having the same conditions on labels, and in addition has the (derivable) rules 'T and the
generalized contraction rule of ILL:

(A, ..., TA]
D £
14 c
C

The map * may be defined on the deductions of ILL, inductively on the length of deriva-
tions:
(1) replace any application of C as above by

TLlyeeey Ly

D D
[14,...14]
£
c

(Nothing in any copy of D is bound in £.)
(2) replace an !T-application as on the left by the IT-application on the right.

1 Tn 'Dl D
['41, ..., 4] [4s,... 14.]
Dl Dn E £
14, ... 14, B
5 Tly.e.,Tn '_B_
: 'B

(Nothing in any D; becomes bound in £.) For the converse map °, we proceed as follows.
Let D be a deduction in ILL*™"; suppose a k-fold occurrence of a label results from the
substitution of copies of D’ at k (k > 1) assumptions of the form !4 in D", i.e.

D' v
D = [4,...,14]
D”

Then the k assumptions !4 form a substitution location (“subl”) and the D’ is the corre-
sponding substitution deduction (“sded”). Define the multiplicity degree md of a deduction
D as the sum of the lengths of its sded’s.

N.B. If we encounter nested subdeductions

DI

['B]

D”

14

DIII —

10



with both !B and !4 elements of substitution sets, then this contributes at least length(D’)
+ length(D") (i.e. the elements of D' count at least twice!).
Any replacement of a subdeduction D" of the form

' ’ ! Tn
D D [14,...,!4]
[14,...,14] by D' D"

D" 14 B
B B

Llyeeeyly

lowers the md of the deduction. We successively remove multiple occurrences of labels
from a given deduction D as follows. Given a multiple label z, arising from substitution
of deduction D’ at k occurrences of !4 in D, we distinguish two cases:

(1) z is open in the whole deduction D, and we replace the multiple substitution of D’
by a contraction applied after the last rule application.

(2) if z is bound, there must be a rule application where all occurrences of z become
bound simultaneously, so D contains a subdeduction D*

D' D! D' D

[14,...,14] ['4,...,14]
D" or D"
—B-—Bl—‘gm,y,... g—?-—Ba:,y,...

In this case we introduce the contraction after the conclusion B of D”.
‘We continue till we have found a deduction of md zero. The result is almost an ILL-
proof, except for the possible occurrences of !IT-applications

Dy Dy
[!4s,. .., 4,]
£
B
'B

We may now assume that all assumption occurrences have distinct labels in the whole
deduction. We replace such an !IT-application by an !I-application

Dy Dy £

14, ... 14, B
B Liy.+3Tn

(z1,-..,¢, fresh labels). In finitely many steps we reach an ILL-deduction. While there
are several possibilities for transformation, as e.g. in the case of It-applications, a unique
choice is easily stipulated (e.g. choose highest occurrences !44,...,!A, which can serve as
a basis for the !T+-application). O
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5 Conversions of ILL™

5.1. New conversions

Permutative conversions are defined as usual, and involve xE, 1E, and (multiple) weakening
followed by some elimination rule. Also standard are the x-, —o- and 1-conversions.

5.2. NoTATION. We write D > D’ if D reduces to D', and D >1 D' or D' <11 D, if D' is
obtained from D by a single conversion. [
'T* followed by dereliction contracts according to

D;
|[. ooy !Ai . ]] Di
D > [...14; .. ]
B D
'B B
B
ie.
D4t Ed(1t[Z/5]) = t[Z/5)

where !t is based on the §. !IT followed by weakening contracts as follows:

D;

[..'4; ... .
g . >1 4. C
B c

c

an instance of the generalized rule of weakening (which may be replaced by n successive
weakenings). In term notation:

EY(t[Z/5];t) = EV(5,t)
With n-fold weakening as primitive, the !IT—W contraction may be formulated accordingly:
wit E¥ ({1, 8[2/5), t;t) = BV (£1, 5, f2; ')

Here the & indicates the set of occurrences [!4;,...,!4,] in a promotion application, i.e.
t is based on §.

It is to be noted that application of a single conversion in a subtree belonging to a
set of isomorphic subtrees inserted at a substitution location, may fall outside our class of
prooftrees for ILL™; but finitely many “isomorphic” conversions will then bring us back
into the class of ILL*-prooftrees.
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5.3. The term equations for ILL

We shall briefly compare the term-equivalences of [BBHP] with the equivalences generated
by our conversions. For brevity, we state the term equivalences of [BBHP] in our notation;
it is instructive to write them out as operations on prooftrees. We arrange the equations
in groups.

1. Equalities corresponding to detour-conversions for 1, x,—o and !I-!E.

D1 El(x,s) = s,

D2 E:’y(t*t',s) = slz,y/t,t'],
D3 (Az.t)s = t[z/s],

D4 E4(12(5,1)) = t[&/5].

In ILL", D1-3 also hold as conversions, to D4 corresponds the conversion of dereliction
following promotion in the form D4* mentioned before.

2. Extensionalities (analogues of -conversion).

El E'(t, flz/4]) = flz/4),

E2 Ezy(t flz/zxy]) = fl2/4],
E3 dz.tz =t (z & FV(t)),

E4 L (t,E4(2)) = ¢.

To E1-4 correspond in ILLT E1-3 and E4 in modified form

E4* (BEd(t)) =t

3. Equalities involving weakening. EV(5;t) is short for
E¥(s1,E"(s2,... E¥(sp,t)...))

The equations are

Wi E¥(12(51),¢) = EV(5;1),

W2 o,z (5,5, E¥ (2, 1)) = B (s, 1z (3, 1)),

w3 Ecy(s, BV (2,2)) = tly/s], Ezy(s,E"(y,1)) = tz/s],
W4 FIE" (2, 8)] = E" (2, f[s])-

W1 corresponds to the conversion of promotion followed by weakening and corresponds in
ILL" to W1t mentioned above.

13



W2 expresses that for a promotion following a weakening the weakening may be pushed
“downward” past the promotion. In ILL™ it corresponds to (in term notation)

w2t IEY (z;t[Z/5]) = EV (z, 1t[£/5]).
W3 corresponds to
w3t EY(t, s[z/t]) = s[z/t].

which is also not among our conversions. W4 permits us to push weakening up/down as
long as no binding of hypotheses is involved, and contains our permutation conversions
for weakening as a special case.

4. Equalities with contraction. We use an abbreviation

7.2t 8) =Ey, (41, By, ., (t2,... By (ta,s)...)

where ¥ = y1,...,Yn, Z = 21,...,2,. The equalities are

C1 E; . (12(5:t); ") = B3 20 (55 8'[y, 2/12(Z'; 1), 12(2"; 1)),
C2 Lz (5,8 (2,1) = ES 4 (s, o,z (2,9, 551)),

C3 E; . (5,t) = Ej . (s,1),

C4 Eg (s, By (w, 1)) =E, . (s, B y (w,1)),

C5 flz/Bgy(s,0)] = BZ 4 (s, fl2/1]).

C1-5 disappear (i.e. left- and righthand side of the equation translate into identical terms)
in ILL™.
The generalized form of contraction requires a much more involved term operator.

5. Other rules.
P1 flw/E (s, 8)] = B1(s, flw/1]),
P2 flw/E7 (s, t)] = EZ 4 (¢, flw/s]).

The same equations can be adopted in ILL™; these equalities contain the permutation
conversions for E* and E1 as special cases.

X1 Lirggn (8312 £), 875 9) =l g gm @, 6,175 gly/12(E; £)]).-

In ILL* X1 disappears.
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REMARK. If there is a notion of categorical model corresponding to ILL™, which might
be seen as a strengthening of the conversion rules for ILL™ as well as the categorical
identities for ILL as stipulated in [BBHP], it should be based on the ILL*-conversion
rules plus E1-3, E4T, W2+ W3+ W4, P1-2.

However, the term calculus of ILL™ does not behave in the standard way, as we
already pointed out: isomorphic subterms of type !A giving rise to multiple occurrences of
the same variable (multiple labels) ought always to be converted simultaneously in order
to stay within the same class of ILLT-terms.

It does make immediate sense however, to ask for the notion of categorical model
corresponding to a system based on contraction as for ILL, but with the rule !I*. In this
intermediate system a very natural conversion rule suggests itself, namely

E4* #(§ B4 (1)) = t[#/4],
from which it follows that
14(5 B4(1)) = t[3/3].

This conversion has in ILL the effect that

[B] A1, ..., 4.]
&; D
A A Ay C
IC
is equivalent to
['B]
&
[1A1...,14;,...,14,]
. D
14; .. 1A; 1!B14;11 ... 14, C

IC
(Replace &; by

and apply the rule X1, etc.)
The rule E4* holds in algebraic models for linear logic (intuitionistic linear logic with
storage, in the terminology of [T2]), but we do not know of a non-trivial type-theoretic
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model where E4* is fulfilled. E4* is in fact equivalent to the requirement that a “change
of basis” for the promotion rule leaves the proof term the same. Specifically,

['B]

pg [ »

VR U

1A —'A_ 'B A
’ 1A

where the first instance of !T has basis !4, the second the basis [[!é]]; the first equivalence
is the usual E4, the second is the "change of basis” equivalence, the combination yields
E4*.

5.4. Strategies for normalizing

5.5. DEFINITION. A segment in a deduction is a set of formula occurrences A;,...,4,
of the same formula, such that A;;; is immediately below 4; for 1 <i < n, 4; fort: <n
is minor premise of W,1E or xE, A4; is not conclusion of such a rule, and A4,, is not minor
premise of such a rule.

A segment is mazimal if either n = 1 and A; = A, is conclusion of an I-rule and major
premise of an E-rule, or n > 1 and A4, is major premise of an E-rule.

A terminal segment of D is a segment where A4, is the conclusion of D. (N.B. In our
fragment of ILL™ the terminal segment is unique.)

A segment is criticalif it is a maximal segment of maximal degree (degree of a segment
= complexity of the formula of the segment). O

5.6. PROPOSITION. (Normalization for ILL") Each deduction D in ILL* can be brought
into normal form by a finite sequence of reduction steps.
ProoOF. We may normalize deductions by making conversions at the leftmost-topmost
critical segment. If this is done in the leftmost subdeduction D’ of a finite set of copies
of D' inserted for several occurrences of a formula !A, then the result might fall outside
our class of deductions; but if we next successively make the same conversion in each of
the copies, we are back at a deduction of ILL*. Each step in this procedure according
to the strategy just described results in a diminishing of the total length of all maximal
segments of maximal complexity.

One case requires attention: what if for a substituted deduction D’, at two occurrences
01 and oz of the substitution location consisting of occurrences of !4 say, at 0; a conversion
cutting out !4 is possible, and at 0, not? But in this case Rule (D') is promotion, and it
is easy to see that in this case we can take the basis of the promotion (a set of occurrences
of a formula !B say) in all copies of the original D' as new substitution locations.

The form of normal deductions may now be analyzed as done in [P1]; more details are
given in section 6.
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6 Strong normalization in ILL*

We may prove strong normalization for ILL™ using Prawitz’s concept of strong validity,
adapted to the present system (for an exposition of the intuitionistic case see e.g. [T1]).

Since single conversions do sometimes lead outside ILL™, we consider a wider class
of proof trees, where multiple labels are permitted (as usual, open assumptions with the
same label always have to be discharged simultaneously); for the rest the rules have the
same form as for ILL*.

If we can prove strong normalization for this wider class of deductions, we have SN for
ILL™, with respect to those normalization strategies where, if one of a series of copies of
D substituted at a set of occurrences of !4 is converted, then all the others are converted
in the same way at the next steps until the whole group has again become isomorphic.

6.1. DEFINITION. Z is a conversion candidate of D if the terminal segment of D is of the
form A x B and begins with an *-introduction with deductions F,F’ of the premises, and
Z = (F,F").

If D > D* and D* has a conversion candidate Z, we say that Z is a derivate of D. O

NoOTATION. Below we shall (unless indicated otherwise) stick to the convention that given
a derivation D not ending with W, the subdeductions of the premises from left to right
are Dy, Dy, ...; in the case of weakening D; is the minor premiss and Dy stands for one of
the major premises. This may be iterated giving rise to notations Dg; etc. Similarly for
D'

We write D > D' or D' < D if D reduces to D', i.e. D' is obtained from D by a series
- of conversion steps. We write D >; D' or D' <1 D if D' is obtained from D by a single
conversion applied to some subdeduction of D.

Rule(D) is the last rule applied in D.

“SN” abbbreviates “strongly normalizable”. O

6.2. DEFINITION. A deduction D is said to be strongly valid (SV) if one of the following
clauses applies:
1. D consists of an assumption, or the axiom 1I.

2. Rule(D) € {#I, 'I*} and the subdeductions of the premises are SV.

3. Rule(D) = —I, i.e. D is of the form

(4]

DI

B
A—-oB

then D € SV if for all D* € SV with conclusion A
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D *
[4]

is SV.
4. Rule(D) € {—E, !E}, D is normal or for all D' 4; D', D' is SV.
5. Rule(D) = W, and D is normal or for all D' <11 D, D' is SV, Dy € SN, D; € SV.
6. Rule(D) = 1E, and D is normal, or for all D' <1 D, D' is SV, SN(Dy) and SV(D,).

7. Rule(D) = E, and D is normal or for all D' <; D, D’ is SV, and condition () holds,
that is to say SN(Dy), SV(D1), and whenever the deduction Dy of the main premise
A x B has a derivate (F,F'), and the minor premise has deduction

!
(4, B] B
Dy , then ’ is SV.
Dy
C
C

|

6.3. LEMMA. Let Rule(D) € {I,!I*, —I}. Then, if D >; D) > D3 1>y ..., where

’D(") = D((]n) or D((Jn) Dgn)
A A

then ... > ’Dgn) >1 ’D§n+1) >1 D§n+2) D>1 ... become reduction sequences after deletion
of repetitions.

6.4. LEMMA. IfD > D' and SV(D) then SV(D').
PROOF. By induction over the inductively defined class of SV deductions. Obviously it
suffices to show that if D >; D', and SV(D), then SV(D’). O

6.5. LEMMA. D € SV = D € SN.

PRroOOF. By induction over the class of SV deductions. The induction step is immediate
if D € SV by clauses 3-6, since then if D is not normal all D' <; D are SV, and so by
the induction hypothesis SN. If D € SV by clauses 1-2, strong normalizability is also
immediate from the induction hypothesis. O

18



6.6. LEMMA. Let Rule(D) € {xE, —E,!E,W,1E}. Then D € SV if
(i) SN(D;) for all immediate subdeductions D;.
(ii) If Rule (D) = —oE or 'E, then SV(D;).
(iii) If Rule(D) = W, then SN(Dy) and SV(D;).
(iv) If Rule(D) = 1E, then SN(Dy) and SV (D1).
(v) If Rule(D) = %E, clause (x) in the definition of SV applies.

ProOOF. In order to prove this lemma, we assign to each D satisfying the conditions of the
lemma with conclusion of given complexity an induction value IV(D) = (8,+,8) where

e 8 = (sum of) length(s) of reduction tree(s) of Do ( resp. Dy);
e v = (sum of) length(s) of Dy (resp. Do);
e § = sum of lengths of reduction trees of the deductions of the premises.

The ordering is lexicographic: (8,7,8) < (8',7,8) =B <B)V (B=0F Ay <)V
B=pB Ay =9 A6 <§). We prove the lemma by induction on IV(D). It suffices to
prove VD' <1; D(SV(D')), since the other conditions imposed on SV by the definition hold
automatically if the assumptions of the lemma are satisfied.
Case 1. D normal: we are done.

In all other cases, let D' <11 D; let IV(D) = (8,7, 6) and IV(D') = (8',7',8') (if defined,
which has to be shown).
Case 2. D' is obtained by a conversion step applied to the deduction of one of the primises
of the last rule application in D. Then D’ falls under the conditions of the lemma, and
has a well-defined lower IV.
Case 8. D' <1 D by a detour-conversion involving the final rule-application. Then the
major premiss of the last rule in D is obtained by an I-rule. For example,

4] D,
Dyo A
—_ Y
A—-B A 00
————B B

By clause (ii), SV(D1), SV(Dy), and hence by the definition of SV, it follows that SV(D’).
if

— Doo
B

then SV(Dy), hence SV(Dyg), where Dyg = D’.
Case 4. D' <11 D by a permutative reduction involving the final rule application.
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Subcase 4.1. —FE or !E is permuted over xE. Let

45l [4,B] D,
Doo 0,1 ,
_ - D Doy C
D = 44B Cc—-D Di D = Af(i? — 5
C —-D C Db
D

SN(Dy), hence also SN(Dj). The induction value of D', if defined, is clearly lower: 8 < g
or 8 =0 Ay <v. We must show that D' again satisfies the conditions of the lemma.
Note: SV(Dy), SV(D1), SV(Do1), hence SV(D}) by the lemma, since IV(D}) = (8”,7",8")
with 8" < BV (8" = BA+" < v), hence SV(D}).
Also, if Dgg has a derivative (F,F’), we must show that

FF
[AB]
" —
Fo= Dor D
C—-oD C
D

is SV. For this we need that the left subdeduction of F" is SV. But SV(Dy), hence this
follows by condition () in the definition of SV.

As a result, Dy, D} are SV, hence SN, and IV(D’) is defined and the IH applies.

The treatment of !E over xE is completely similar.
Subcase 4.2. —FE or !E over W or 1E. The arguments are quite similar to, but slightly
simpler than in the preceding case.
Subcase 4.3. xE or W or 1E over *E or W or 1E. Let us consider the most complicated
case of xE over xE.

[4, B] [4,B] [C,D]
Do  Dor [C)D] Do1 D
D = A4B CcxD Di D' = Dy CxD E
CxD F AxB E
FE E

IV(D) = (B,v,6). We have
(a) Dy € SN, Dy € SV;
(b) If Dy has a derivate (F,F’), then

FF
[C D]

Dy
E

is also SV.
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We have to show that D' falls under the IH. In the first place SN(Dgg) holds, since
SN(Dy). Secondly, we must check that D] is SV. This requires (1) SN(Do1), which follows
from SN(Dy), (2) SV(D;) which holds by (a), and (3) whenever Dy; has a derivate (F,F'),

then H as above is SV.
But if Dy; has a derivate (F,F’) then (F,F’) is also a derivate of Dy, so (3) follows

from (b). Hence SV(D}) follows by IH, since D has a lower IV.
In order to get SV(D’) it remains to be shown that if Dgo has a derivate (G,G’), then

g g
) [4,B] [c,D]
g = Do D,
CxD FE
FE

is also SV. This is similar to the preceding part of the argument; the crucial clause to be
verified is now: if G§ has a derivate (F,F’), then H is SV.
However, if Dgg has a derivate (G, '), this means that Dy reduces to something like

g ¢
A B
E., AxB
AxB
: (4, B]
80 AxB D()l
Ax B CxD
CxD
and then Dy also reduces to
G ¢ [A,B]
A B py
AxB CxD
En CxD
CxD
50 CxD
CxD
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so Dy reduces to a deduction

g g

(4, B]
Do

& CxD
CxD

50 CxD
CxD

and it appears that (F,F’) is also a derivate of Dy, hence H is indeed SV.
Subcase 4.4. Permutation of 1E over xE. This case is similar to earlier cases, but simpler.
O

6.7. DEFINITION. D is SVS (strongly valid under substitution) if every substitution of SV
deductions for open assumptions in D yields a SV deduction. O

6.8. PrROPOSITION. All deductions in ILL™ are SVS.
Proor. By induction on the lengths of deductions. We consider two typical cases.
Case 1. Let Rule (D) = W. Then

Do Dy
14 B
B
Dy, Dy are SVS by induction hypothesis. Let D* be a substitution instance of D, so

D =

Dy Di
A B
B

then Dg, D] are SV, hence Dj is SN and so D* is SV by the preceding lemma.
Case 2. Rule(D) is xE, so

D* =

(4, B]
D= Do Dy
AxB C

C

and let D* be a substitution instance

[4, B]
p* = Dg D3
AxB C

c
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By induction hypothesis D}, D} are SV, so Df is SN. Suppose D has a derivate (F,F’)
occurring in a D** < D*; D** is SV, and it follows that F, F' are SV. Then

F F
[4, B]
Di
C
is SV. etc. O

7 The structure of normal deductions in ILL*

7.1. DEFINITION. A track in a normal D is a sequence of formula occurrences Ag, A;,
Aa,..., A, such that

1. Ap is an axiom, open assumption or assumption closed by —I in D;

2. Aiyi is immediately below A; if A;1; is conclusion of an I-rule, 4; a premise of the
same rule;

3. Aiy1 is immediately below A; if 4; is major premiss of an application of |E = D,
—oE, or minor premise of an application of xE, W, or 1E;

4. A; is major premise of an application of xE and A4;; is an assumption discharged
by that application;

5. A, is either conclusion of D, or major premise of 1E, or a major premise of W.

O

We can divide a track into segments as in the case of intuitionistic logic; in a track of
a normal deduction we can then distinguish the elimination part, followed by the minimal
part, followed by the introduction part.

7.2. LEMMA. Fach formula occurrence in the proof tree of a normal deduction belongs
to some track .
Proor. By induction on the depth of deductions. O

7.3. PROPOSITION. (Subformula property) Let I' - A by a normal deduction D. Then
all formulas in D are subformulas of T'U {A}.
PROOF. A track of order 1 of a deduction D ends in the conclusion of D (i.e. is a terminal
track ). A track of order n + 1 terminates either in a major premise of 1E, or in a major
premise !B of W, or in a minor premise of —E, while the minor premise in the case of 1E,
W, and the major premise in the case of —E, belong to a track of order n.

We prove by induction on the order of tracks that all formulas in a track are subformulas
of U {A4}.

For the track of any order we have that all formulas occurring in it are subformulas
of the open assumptions of the deduction or of the final formula of the track. Let m be a
track of D (with conclusion A) of order n + 1.
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If 7 terminates in a minor premise B of —E, then the major premise B — C belongs
to a track of order n and so by induction hypothesis, B — C is subformula of I' U {A}.
Then B is also subformula of ' U {4}, so = satisfies the subformula property.

If 7 terminates in a major premise of an 1E- or W-application, the last rule must be an
elimination, and the whole track consists of subformulas of the first formula in the track.
The first formula is either an open assumption of the deduction, or is discharged below
the end of the track. If discharged by —oI, or by xE, this happens in a track of lower order,
and the IH applies to this track. O

As an example of an application we give the next proposition.

7.4. DEFINITION. A formula (-occurrence) in a formula A is said to be a strictly positive
part (s.p.p.) of A according to one of the following clauses:

1. Ais s.p.p. of 4;

2. if BxC is s.p.p of A, then B,C are s.p.p. of 4;

3. if IB is s.p.p. of A, so is B;

4. if B-oCiss.p.pof 4,s0is C.
O
7.5. PrROPOSITION. IfT' - A x B in ILL, and T does not contain % in a strictly positive
position (x not main operator of a s.p.p. subformula of T'), then T'; - A and T2 + B with
Iy and T’y sub-multisets of T'.

ProOOF. Let D be a normal deduction of I' - A x B. If D ends with an I-rule we are done.
If the terminal segment starts with an introduction, the deduction takes the form

F F

A B
&, AxB
AxB

& AxB
81 AxB
AxB

where the final segment passes through a number of xE, 1E, and W-applications. However,
xE-applications are in fact excluded, since no strictly positive occurrence of x appears in
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T. But this means that in F and F' no assumptions are discharged, and

F F
£ A

A B
. and .
82 A 82 B
& A & B
A B

are both correct deductions. O
REMARK. The statement of the proposition may be considerable refined, e.g. by noting

that assumptions common to I'j,I'; must permit to derive exponential formulas, etc.
Another application may be (almost) copied from [P1, page 57).

7.6. PROPOSITION. Let C be without —,I' = {A; — B; : 1 < ¢ < n}, and assumeT' | C.
then I + A; for some i < n, IV a sub-multiset of T.

8 Normalization in ILL

We shall now show how the normalization strategy in ILL™ suggests a corresponding
strategy in ILL.

8.1. DEFINITION. A segmentin ILL is a sequence of occurrences A;,..., A, of the same
formula such that

1. A; not conclusion of W, 1E; xE, nor assumption discharged by C or !I;

2. A, not minor premise of W, 1E, xE, or side premise of !I, or major premise of C;

3. for 1 < ¢ < n, either A; is minor premise of an application a of W, 1E or «E,
and A; is the conclusion of a; or A; is major premise of C and A;;; is one of the
assumptions discharged by «; or A; is side premise of an instance « of !I, and 4;;

is an assumption discharged by a.

A segment is mazimal if 0 = Aj,...,A,, A1 conclusion of I-rule, 4, major premise of
E-rule. As before, we define a critical segment as a maximal segment of maximal degree.
O

8.2. DEFINITION. A track of D in ILL is a sequence of formula occurrences Ay, ..., 4,
in D such that

1. A; is an open assumption or an axiom or an assumption discharged by —oI;

2. A; is major premise of —FE or D, or minor premise of «E, C, 1E, W, or premise of

—oI, %I, and A;, is the conclusion;
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3. A; = Cx D is major premise of xE, and A;; is one of the assumptions discharged,;
4. A; is major premise of a contraction, and A;;; one of the assumptions discharged;

5. A; is a side premise of a promotion, and A;;; is an occurrence discharged by the
promotion.

6. A, is major premise of a weakening or 1E, or minor premise of —oE;

a

8.3. Description of a strategy for normalization

We look for an analogue of the strategy which works well in the intuitionistic case and
for ILL*, namely: look for the rightmost branch in the formula tree containing a critical
segment; apply a conversion in the topmost critical segment in this branch.

This strategy works for ILL™, because segments (in contrast to tracks) always belong
to a unique branch of the tree. But this is not any longer the case for ILL. So in order to
determine the proper place for a conversion, we construct, inspired by ILL™, an auxiliary
partially ordered system with nodes labeled by formulas as follows. Given D, the auxiliary
structure [D] is obtained by systematically replacing

[D1] -+ [Da]
['A1,...,14,] 14, 1A,
Dl Dn D’ by [!Al e 'A’n]
14;...14, B T —[_97]_ o
'B B
'B
and
(D]
YR 4
D Y2 by  [l4...!4]
14 B
(D]
B B
B

letting the map [ ] act as a homomorphism for all other rules. There is a bijective corre-
spondence between the formula occurrences in D and in [D].

A more formal description of the partial order of [D] is as follows: [D] = (D,<) is a
partial ordered set of the formula occurrences of D, extending the tree order (D, <) of D.
Occurrence A is below occurrence B in [D] if

(a) A< BinD,or
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(b) there is an !T-application where B is in the deduction of the main premise below
assumption !4;, and A is in the deduction of the side premise !A;, or

(c) there is a C-application with A in the deduction of the major premise !C, and B in
the deduction of the minor premise below one of the occurrences of !C discharged
by the C-application, or

(d) A below B by an application of transitivity for the ordering <.

For an instance of !I, all occurrences in the derivations of the side premises are above the
occurrences in the derivation of the main premise in [D]; and for an instance of contraction,
all occurrences in the derivation of the major premise are above all occurrences in the
derivation of the minor premise.

The strategy is now described as follows. Select in [D] a rightmost branch containing
a topmost critical segment; take the topmost critical segment in this branch and apply
the conversion to this segment.

A crucial instance of conversion may serve to show that the strategy has the desired
effect.

3 _ IE,\4,1E]
£ D¢ D [!B,!B]
IE 4 B! B D"
'B C
C
converted to
['E,'4,'E"] ['E,!A,'E"]
3 ) D 3 3 D
IE 14 B’ B IE 14 \E' B
['B |B]
E o & TTTTTTTTO pr T
'E 1A B’ C
C

has as effect that indeed an occurrence of !B is removed, but on the other hand, there is on
the right hand side an extra occurrence of !A4; but if we have chosen the critical segment
according to our strategy, the occurrences of !4 cannot belong to a critical segment.

9 Concluding remarks

The simpler version of promotion plus the removal of the “dynamical” aspect of con-
traction (by which we mean that identifying the labels of two distinct assumptions of a
formula of the form !4 is made into a separate operation) result in a variant ILL™ with a
relatively simple proof theory. In addition, it suggests the consideration of a special class
of categorical models for ILL.
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There is a price to pay: the condition on the occurrence of multiple labels for ILL™*
is not difficult to manage, but if we want to extend ILL' by additive operators and
constants, it becomes rather unwieldy.

On the other hand, the study of ILL}_ suggested a suitable normalization strategy
for ILL,. as well; this strategy seems also suitable for a complete system ILL. Although
there seems no reason to doubt strong normalization for ILL (presumably a variant of the
method in [G] would do the job), it is not clear how to extend strong validity to ILL.

We have not troubled ourselves with the Church-Rosser property (confluence), which
holds for ILL and ILL*. The significance of confluence for these systems seems to be
limited, as it is not likely that the conversion rules identify all intuitively equal deductions.

It would be interesting to extend the treatment of ILL™ to a multiple conclusion
sequent calculus for a correspondence fragment for classical linear logic (cf. [C] for classical
logic) and compare normal forms for this case with proofnets.

References

[A] S. Abramsky, Computational interpretations of linear logic. To appear in Theo-
retical Computer Science.

[BBHP] N. Benton, G. Bierman, J.M.E. Hyland, V.C.V de Paiva, Term assignment for
Intuitionistic Linear Logic. Report 262, Computer Laboratory, University of Cam-
bridge, 1992.

[C] C. Cellucci, Existential instantiation and normalization in sequnet natural de-
duction. Annals of Pure and Applied Logic 58 (1192), 111-148.

[DT] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol.2, North-
Holland Publ. Co., Amsterdam 1988.

[G] J.-Y. Girard, Linear Logic. Theoretical Computer Science 50 (1987), 1-102.

[GLT] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge University Press,
Cambridge (U.K.), 1987.

[P1] D. Prawitz, Natural Deduction, Almqvist & Wiksell, Stockholm 1965.

[P2] D. Prawitz, Ideas and results in proof theory, in: J.E. Fenstad (editor), Proceed-
ings of the Second Scandinavian Logic Sumposium, North-Holland, Amsterdam
1971.

[T1] A. S. Troelstra, editor, Metamathematical investigation of intuitionistic Arith-
~ metic and Analysis, Springer-Verlag, Heidelberg 1973.

[T2] A. S. Troelstra, Lectures on Linear Logic, Center for the Study of Language and
Information, Stanford 1992 (CSLI Lecture Notes 29).

28



The ILLC Prepublication Series

CT-91-10 John Tromp, Paul Vit4nyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith S Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics

CL-91-01J.C. Scholtes Kohonen Feature Maps in Natural Language Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunctiondl;rb?ﬂerty of Intermediate Propositional Logics .
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional

Logics

X-91-03 V. Yu. Shavrukov Sl;:ﬁa;febras of Diagonalizable Alizbras of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance . . .

X-91-09 L.D. Beklemishev %1 Bimodal Provability Logics for I1;-axiomatized Extensions of Arithmetical

eories

X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael aschev Canonical Formulas for K4. Part I: Basic Results

X-91-12 Herman Hendri Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en
Michael Moortgat

X-91-13 Max L Kanovich The Multiplicative Fra%gﬁnt of Linear Logic is NP-Complete

X-91-14 Max 1. Kanovich The Horn ra%ment of Linear LXFiC is NP-Complete . .

X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised
version

X-91-16 V.G. Kanovei Undecidable Hﬂpotheses in Edward Nelson's Internal Set Th

X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version .

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Losgic: an Analysis from a standard point of view

X-91-19 Papers presented at the Provability Intelxg]tabﬂity Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil., Utrecht University

1992 ual Report 1991

Logic, Semantics and Philosophy of Langauge

LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures

LP-92-03 Szabolcs Mikul4s The Completeness of the Lambek Calculus with respect to Relational Semantics

LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic

LP-92-05 David 1. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute Value Grammar
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of ic Modal Logic

LP-92-09 Johan van Benthem Quantifiers in the world of Types

LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of change and
knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic

LP-92-12 Heinrich Wansing Sequent Caluli for Normal Modal Propositional Logics

LP-92-13 Dag Westerstihl Iterated Quantifiers

LP-92-14 Jeroen Groenendijk, Martin Stokhof Interrogatives and Adverbs of Quantification
Mathematical Logic and Foundations

ML-92-01 A.S. Troelstra . Comparing the theory of Representations and Constructive Mathematics

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shell)lrmélgn MgzmmalLo imal Kripke-type Semantics for Modal and Superintuitionistic
edicate Logics

ML-92-03 Zoran Markovié¢ On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I

ML-92-05 Domenico Zambella Shavxjul;ov’IsA’g'heorem on the Subalgebras of Diagonalizable Algebras for Theories

containin, +EXP

ML-92-06 D.M. Gabbay, Valentin B. Shehtman \}J’ngi?;iidgbi]ity of Modal and Intermediate First-Order Logics with Two Individual
ariables

ML-92-07 Harold Schellinx How to Broaden your Horizon

ML-92-08 Raymond Hoofman Information Systems as Coalgebras

ML-92-09 A.S. Troelstra Realizability

ML-92-10 V.Yu. Shavrukov A Smart Child of Peano’s

Compution and Complexity Theory
CT-92-01 Erik de ﬁaas, Peter van Emde Boas Object Oriented zgfyp]ication Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures

X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of Z;
conservativi

X-92-03 Willem Groeneveld ]l\)dynanﬁc Setn};antics and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning

}1(69923-05 Erik de Haas, Peter van Emde Boas  Object Oriented Application Flow Graphs and their Semantics, revised version

Logic, Semantics and Philosophy of Langauge

LP-93-01 Martijn Sgaan Parallel Quantification

LP-93-02 Makoto wa ic Generalized Quantifiers and Monotonicity . . .

LP-93-03 Nikolai Pankrat'ev Completeness of the Lambek Calculus with respect to Relativized Relational Semantics

LP-93-04 Jacques van Leeuwen Identity, Quarrelling with an Unproblematic Notion

Mathematical Logic and Foundations

ML-93-01 Maciej Kandulski Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains

ML-93-03 Mati Pentus The Conjoinablity Relation in Lambek Calculus and Linear Logic

ML-93-04 Andreja Prijatelj Bounded Contraction and Many-Valued Semantics

ML-93-05 Raymond Hoofman, Harold Schellinx Models of the Untyped A-calculus in Semi Cartesian Closed Categories

ML-93-06 J. Zashev Categorial Generalization of Algebraic Recursion Theory

ML-93-07 A.V. Chagrov, L.A. Chagrova Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the
Class of All Finite Frames

ML-93-08 Raymond Hoofman, Ieke Moerdijk Remarks on the Theory of Semi-Functors

ML-93-09 A.S. Troelstra Natural Deduction for Intuitionistic Linear Logic

Compution and Complexity Theory 3

CT-93-01 Marianne Kstbeek The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax

CT-93-02 Sog}‘ie Fischer A Note on the Complexity of Local Search Problems

CT-93-03 Johan van Benthem, Jan Bergstra ~ Logic of Transition Systems

Other Prepublications

X-93-01 %aul Dekker Existential Disclosure, revised version

X-93-02 Maarten de Rijke What is Modal Logic?



