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Inventory of IpL fragments

1. Introduction

The main subject of this report is the semantic structure of fragments of intuitionistic
propositional logic (IpL). It is demonstrated that in some of the fragments there is a
subordering of the Lindenbaum algebra of the fragment F which not only reflects its
structural properties but also is -or can be extended to- a Kripke model, X, which is complete
for the fragment; that s:

Vo,yeF. o y =K I- ooy

These concise representations of fragments were first introduced in 1975 by De Bruijn as
exact models ([B75a)).

De Bruijn was aided by acomputer in constructing the exact model of [A, —]3 (the fragment
with conjunction and implication over three atoms). The exact model, with 61 elements, was
used to write acomputer program testing validity in [A, —]3([B75b]).

The interplay between logic, mathematics and computer programs has proved to be typical of
this kind of 'computer aided logic' research on the semantic structure of IpL-fragments.

Inthe late 70's and early 80's attempts were made to calculate diagrams, the partial ordering
of the Lindenbaum algebras, of IpL fragments using tableaux based theorem testers ((H80],
[R85]). These attempts were hampered however by lack of computer time and memory (or,
stated differently, by lack of sufficiently efficientformulatesters).

The approach of De Bruijn proved to be a successful alternative ([JHR91]) although it
needed knowledge of the structure of exact models (and hence of the semantic structure of
the fragments) to be applicable. This inventory shows how the structure of most types of
fragments has been unravelled now. The tableaux tester mentioned above still played its part
from time to time to find an exact model or to check a candidate for an exact model.

This inventory mainly reports on the results of the search by D. de Jongh, G. Renardel de
Lavalette and the author, for exact models in fragments of IpL and their use in calculating the
diagrams of fragments.

This report would never have existed, if not for the generous support and valuable criticism
of D. de Jongh and G. Renardel de Lavalette.

Inthe preliminary section, after the table of contents, the reader may find those notations,
notions and conventions used in the text that may not be common knowledge in the logic
community.

The structure of the main body of this treatise is explained in section 4: Fragments and exact
models.

The spell of experimental logic however, the thrill of computer programs spitting out
thousands of formulas, the excitement of a new drawing of an exact model, the fun of using
one exact model to generate another one, itis all notincluded here.

The computer aided logic toolbox (that is the bunch of computer programs used to get most
of the results described here) will be documented in a separate report.
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3 Preliminaries

For a background on intuitionistic propositional logic IpL the reader is referred to [TD88] (in
which IpL has the name IPC).

Most of the tools and terminology from lattice theory used in this inventory can be found in
[DP90].

For some application of lattice theory to IpL see [C77].

Definition 3.1 Fragments of IpL are sublanguages of [A, v, —, —],0obtainedbyrestriction
of the set of atoms or the application of connectives (or both).

Examples of restrictions of the application of connectives are exclusion (for example in the
formulas of the fragment [A, —];, there are no applications of v or —) and exclusion in
combination with the use of defined connectives (like — and < in [—,<>],).

Notation 3.2 In our notation of fragments there are six main rules:
[AV]a is the fragment with n atoms and A, v as its only connectives
(likewise [A, —,—], is the fragment over n atoms with A, — and —
asits connectives, etc.).

[A, V] is the IpL fragment with A, v as its connectives and some countably
infinite set of atoms. Likewise for [—, —] etc..
A=l is the fragment of conjunctions of formulas of [—],,.

(Likewise V[A,—], s the fragment of disjunctions of formulas
of [A, — ], etc.).

P, ={pg,-..pn} 1is assumed to be the set of atoms if a fragment has n atoms. In
general we willuse metavariablesp, g, r etc. torange over atoms p;.

(A, Vv, Pyl is used as an alternative notation for [A, V],.
F(Py,) denotes that P, is the set of atoms in the fragment FF.
Notation 3.3 Let G < IpL, G finite:
AG is the conjunction of all formulas in G
VG is the disjunction of all formulas in G .
If@q, ..., @, is a finite set of formulas and / < n then:
Ao, isthe conjunctionof @y, ... , @p.

Definition 3.4 If F and G are fragments in logics with derivability relationships - and
Fg.then F is a conservative extension of G if
1. each formula of G is a formula of F (GC F)

ii. forallo,ye G, otFg Yy Ok vy

As most of the fragments in this report are in IpL, often the two derivability relationships
mentioned in definition 3.4 are identical. Hence in this reportitis almost always trivial that
an extension is conservative (an important exception is in section 7.2).

Definition 3.5 Let S be an ordered set (p.o. set, see [DP90]), U < S then:

JU :={xeS |yeU.x<y} J U is called the down set of U.
TU :={xeS 13yeU.x2y} TU is called the up set of U.
U°:={xeUlVy<x.yeU} U° is called the interior of U.

In case of down sets of singletons, instead of Lix} we usualy write Ix (likewise for up
sets).

Notation 3.6 The complement of a set U will be denoted by U €.
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Fact 3.7 U° = (T(U )¢
Fact 3.7 is a straightforward consequence of definition 3.5.

Definition 3.8 If S is an ordered set , then:
a. S is a lattice (see [DP90]) if there are operations M (join ) and U (meet ) on
S such that:
alVx,y,ze S.x<yAax<zox<ynz
a2Vx,y,ze S.x<zAy<zeoxUy<z
b. Alattice S is distributive iff
Vx,y,z € S.(xNy)uz =(xvz)N(yuz)
c. If S has a bottom (a minimum), then this element is denoted by L
d. If § isalattice, anelement x € S is called join-irreducible
(or simply irreducible ) if x # 1 and
Vy,ze S. x=yuz->x=y)vix=z).

Definition 3.9 Let K = < K, <> be a finite ordered set and k € K. The depth of k, &(k ), is
defined as:

k)=0 if Kk aminimal element(soVIeK.I <k — 1 =k),

Ok)=n+1 ifmax{dU)!1<k}=n

Definition 3.10 Let K = <K, <> be an ordered set and for each atomic formula p, w(p) a
down set of K then X = <K, 0> is a Kripke model, K is sometimes called a Kripke frame.
Foreach k € K and each (IpL-)formula ¢ the (forcing) relation k I+ @ is defined inductively:

klI-p foratomicp,if k € w(p)
k I+ oay iffk - @and k I~y

k I+ ovy iffk -@ork I-wy
kIFo—-y  iffVISK(I Fo=11Fvy)
k I+ -0 iff VI<k( ¥+ @)

As usual we define:

Xi-o for:Vke K.k I~ ¢

Ko if for all ®, <K, @> I~ ©.

I-o for: VXK. X I+ ¢ (or VK. K I ¢)
Qv forr VK. K IFo= K-y

If Kk eK andl <k forall I eK then k is called the root of K.
If Kk eK and!l <k forno I €K then k is called a terminal node of K.
If k €K then atom (k) is defined as: atom (k) = {p atomic | k I+ p }.

The most important reason to repeat the definition of the Kripke semantics here is the
reversal of the usual order. This is convenient in case our Kripke frame is a set of
equivalence classes of formulas ordered by |-, in the definition above + will correspond
naturally with <. In this way A will behave as a meet and v as a join in a lattice of
equivalence classes.

Most of the notions and terminology used to describe the semantics of IpL stem from Kripke
semantics inmodal logic [B85].
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Definition 3.11 A Kripke model L = <L, v> is a submodel of model X =<K, &> if L
is a down set in K (with inherited order) and for all atoms p: v(p ) = o(p ) N L.

In the literature on semantics for modal logic, L is called a generated subframe of K [B85]
and the kind of submodel defined above is also known as a generated submodel.

Definition 3.12 Two Kripke models X and L are called equivalent (X =L ), if for
every IpL-formula@: X I- ¢ < Ll .

Definition 3.13 Let K and L be Kripke-frames. A function p: K — L is a reduction
from K to L if:

i. forallk,l €eK: I <k =pl)<pk)

ii. forallkeKandIeL 1<pk)=3Imepl).m <k

iii. pis surjective.
If X=<K, o> and L=<L, v>Kripke models and p: K — L areduction such that
forall k € Kandall atomicp: k € o(p) < p(k) € v(p), then p is areduction of the
Kripke model X to L .

Functions for which the first two conditions of definition 3.13 hold are sometimes called
p-morphisms (originally strongly isotone )[JT66, B85,R86, TD88a]. The first condition
will be recognised as a homorphism (or monotonicy) condition. The second condition is
known as the p-morphism condition.

Fact 3.14
a.If X and L are Kripke models and L is areduction from X, then K= L
b. A Kripke model X isirreducible iff every subframe (submodel) of X isirreducible.

Definition 3.15 A Kripke frame K is rooted if K has one maximal element (there is a
m eK such that m is the greatest, K = L m). A Kripke model is called rooted if its frame is
rooted.

Definition 3.16 Let K be a Kripke frame, P a finite set of atoms, then ® is a P-valuation
(onK)if: (p)zd=p € P.
X =<K, o>is aP-model (onK) if ®is aP-valuation.

Fact 3.17 (Kripke semantics completeness for IpL)
For any IpL formula ¢:
aktoelo
b. if i+ @ then there is a finite rooted Kripke model X such that X It* ¢
c. if Val (@) < P and i+ ¢ then there is a (rooted) P-model X such that X I+ ¢

The completeness theorem for finite rooted Kripke models, which results from 3.17.a, is
just a weaker case of the completeness theorem for finite trees [TD88] and c. is a refinement
of b. which will be clear from a careful inspection of the proof of b.

Notation 3.18 Equivalence of formulas ¢ and y is denoted by ¢ = y.
Sop=vyiff o yand y+ @.
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Definition 3.19 A formula ¢ of IpL is called v-irreducible or simply irreducible,
ifoz Landforallyandy: ¢@F yvy = OFyorot x

Note that in IpL (ordered by ) the A and v are lattice operators on equivalence classes
Hence in definitions 3.8.d and 3.19 the concept of irreducibility is essentially the same.

To verify facts about irreducibility we will often use the notion of the Aczelslash .

Definition 3.20 (Aczel slash) Let I" be a set of formulas, and ¢ a formula, thenI'l @ is
definedinductively:

I'lp = I'tp forp atomicorp =1

T'loay = I'eandT' Iy

I'lovy = I'lgorT'ly

I'lo—vy = I'-e—-yandT1o=Tlvy)
Fact 3.21

a. (Kleene, [K62]) If @ # 1 then s @ irreducible iff @ | @

b.I'Ne=TFo

c.IfI'+ op—»yandI't* @thenI'| o>y
d. All formulasin [A,—,—]\L are irreducible

In the sequel we will need some elementary facts (see for example TD88)
about classical propositional logic, CpL, and its relation with IpL.

Definition 3.22 If P, is a set of atomic formulas and Q < P,, then define:
9Q:=Af{p Ip € QIAA{—p Ip e P,\Q}

Fact 3.23 Let |- be the derivability relation in CpL. Then
a. The set { 9Q!Q C Py } is the set of irreducibles in the diagram of the classical
fragment [A, —, P, ]¢
. If Var(y) c P, and y = L then forsome Q < P, : 9qF ¥
-9 EY S OS5y
o=y & oy

caoo
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4 Fragments and exact models

This inventory describes almostall finite fragments of intuitionistic propositional logic with
connectivesintheset { A, v, —, ¢<>,—, —} and a finite set of atoms. Not included are the
[«>] fragments and some very trivial ones, like [—],,.

Modulologicalequivalence(forexample [A, <], =[A, —],), for any finite number of
atoms n, the fragments of IpL can be ordered by conservative extension into a lattice:

AV—>—

AV—>—

AV—

>
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Definition 4.1 The diagram of a fragment F, Diag (F), is the set of equivalence classes of
formulas of F, ordered by the derivability relationship +.

Intalking about 'finite' fragments we identified the fragment with its diagram (taking it
'modulo equivalence).

From the 27 fragments above, 21 are finite for each finite number of atoms n. The 6
extensions of [v, —],, are infinite forn>1 and already [v, —,—]; (andhence [A, v,—,—]1)
is infinite ([R49], [N60]).

The diagrams of 7 of the finite fragments are distributive lattices (as will be proved in
consecutive sections). For finite distributive lattices Birkhoff's representation theorem s
applicable:

Theorem 4.2 (Birkhoff) Any finite distributive lattice is isomorphic to the lattice of the
down sets of its irreducible elements.

Pf. A proof can be found in [DP90]. |

Definition 4.3 If the diagram Diag (F) of fragment F is a finite distributive lattice and
Irr (Diag (F)) is the subset of irreducible elements of Diag (IF) (with inherited order), then
Irr (Diag (F)) is the exact model of F: Exm (F) = Irr (Diag (F)).

Fact 4.4 If Diag (F) is the diagram of fragment F, Exm (F) its exact model and U is the
joinof formulas (representing equivalence classes) in Diag (F), then for @, y € Fand
X € Exm (F):

a ovyFouy

b. xFouyoy-ooryt vy

If Exm (F) is the exact model of F there is a 1-1 mapping between formulas of F (modulo
equivalence) and the down sets of Exm (F): (@) :={y € Exm(F) | y+ ¢}
Note that ® here is not (yet) a valuation of a Kripke frame.

Notation 4.5 If E is a set of formulas, <E , > is the Kripke model with the set E ordered
by I asits frame and valuation: w(p ) :={¢€ E |lo+ p}.If o € E, thenodein<E, >
corresponding to ¢ will be denoted by Ko

The introduction of this notation helps us to distinguish ko Iy (in <E, > the node of ¢
forces y) from @ I+ y (every Kripke model forcing ¢ forces y).

The exact model Exm (FF) can be taken as a Kripke model <Exm (F), >, but in this report
we will meet exact models which are not faithful as Kripke models (i.e. its valuation ® do
not correspond to the 1-1 mapping ® defined above).

Definition 4.6 The exact model Exm (F) of Fis called an exact Kripke model if in the
Kripke model <Exm (F), > and for any ¢ € F:

{we Exm(F)ly+ ¢} ={ye Exm(F) lkwlk— 0}
If F has an exact Kripke model, it will be denoted by ExKm (FF).

In case of an exact Kripke model ExKm (F) of F it is straightforwardly proved that wis a
topological valuation of formulas of F on Exm (F), in the sense of [MT48].
Fact 4.7 is arecapitulation of the details of this topological valuation.
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Fact 4.7 If ExKm (F) an exact Kripke model of F and  as above, then (as far as the
connectives are applicable in F):

O(QAY) = () N W(Y)

o(evy)  =a(p) U a(y) '

(0—>y) =a(@)=u(y) =(a(P)° U a(y))°

o(l) =g

(@)  =a(@)°

OF-@Q)  =0(@)°°

The 21 types of finite fragments mentioned before form a sublattice of the lattice of
fragments above. In the diagram of this lattice below, the 7 types of fragments having exact
modelsareindicated by abold dot:

—— AV—

* /]

Foreach n the exact models of [A, V], [A, V, =], [A, —]pand [A, —, =], are exact Kripke
models, as will be proved in the sequel of this treatise (see 6.1, 7.1, 10.1and 11). Forn > 1
the exact models of [v, —],, [A, V,— ], and [A, =, — ], are not exact Kripke models (see 8,
9.1 and 12).

Definition 4.8 A fragment Fis an exact hull (exact Kripke hull ) of a fragment G if F
has an exact model (exact Kripke model) and is a (conservative) extension of G.

Note that the condition that G is a conservative is only important if the logic of G differs
from that of FF.

From the diagram above we derive a first fact about exact Kripke models.

-10-
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Fact 4.9 Each finite fragment of IpL with connectives in the set {A, v, =, <>, —, —} has a
finite fragment of IpL as an exact Kripke hull.

So the type of efficient theorem provers based on exact models [B75b, JHR91] can in
principle be used to calculate the structure of all diagrams of finite fragments of IpL (with
connectives in the set mentioned before).

As we are particularly interested in the structure of diagrams of IpL as reflected by the
structure of exact models, the fragments of IpL have been grouped in this inventory around
the fragments with an exact model.

section main fragment subfragments

6 [A,V] [AL[V]

7 [A,V,—ﬂ [A’—ﬂ

8 [V7_ﬂ

9 L«;Vs_Tﬂ} [Aa_ﬂ_d9[v’_7ﬂ]
10 (A—] [—]

11 [A’_éfﬂ] [—9fﬂ]

12 A, —,—] [—,—]

A stronger version of fact 4.9 can be obtained using the notion of restricted depth of left
nestingofimplication.

Definition 4.10 The left nesting level of an IpL formula @, A(®), is defined inductively by:

Mp) = 0 foratomicp orp =1
MoAy)=Movy) = max(Mo), My))
Mo—y) = max(M@)+1, Ay))

If lgl is the class of formulas equivalent with @, the level of left nesting of lgl is the
minimum of A(y) for y € lol.

Notation4.11 A fragment F c [A, v, —], with left nesting restricted to some finite
numberk will be denoted as a subfragment of [A, v, ¥—>],, (hence as [A, k=], or [k—],
etc.). As negation is definable if 1 is in the language of F, fragments with negation and a
restricted level of left nesting will be denoted as subfragments of [A, v, k—, 1],..

Note that we could have introduced a negation rule for A, A(—@) = A(¢) + 1, but the notation
ofafragment with negation and restricted level of leftnesting k as [A, v, k=, =], would not
express the restriction on the negation.

By the way, notrestricting the application of negation would yield an alternative level of left
nesting A' by stipulating that apart from A'(—@) = A'(¢) all rules for A and A’ are the same, for
which one easily proves that for every @ there is an equivalent y such that A(@) <A'(y) + 2.

The structure of fragments with restricted left nesting of implications is not yet fully

unraveled. But we doknow thatall fragments of type [A, v, k=], and [A, v, k—, 1], are finite
and have an exact Kripke model.

-11-
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Lemma4.12 (A. Visser) The diagram of [A, v, 1], is finite.

Pf. By induction on n.
n=1: The diagram of [, v, 1] has clearly only two classes: p and p—p.
ntl: In[a,v,1-],all formulas can (up to equivalence) be built thh Aand v
from atomic formulas and formulas of the form p—0,where @ € [A, v, 15],,1 and
p atomic.
We prove that there are only finitely many p —@in [A, v, 1 -], 1 whichproves
[A, v, 1], .1 tobeafinitely generated distributive latticeand hence finite.
Withoutlossof generalityassumep [A v, 15 Letoe [A, v, 1-],,1and
v=0[p:=T](where T = g—qe€ [A, v, 1-],). One simply proves p—>@ =p ——>w
and as y € [A, v, 1], there are only finitely many p—0.

Theorem4.13 The diagram of [A, v, k-], is finite.

Pf. By induction on k.
k=1: By lemma4.12.
k+ 1: The diagramof [A, v,k*1—] canbe generated using the operators A, v, 1—
and using the equivalence classes of [A, Vv, k=], as aset of generators. By induction
hypothesis the diagram of [A, v k1, is finite. Hence the diagram of [A, v, k+15] is
the homomorphicimage of the diagram of [, v, 1], for some m, and by lemma
4.12 is finite. o

Corollary4.14 [, v, k] has an exact model, the set of v-irreducibles in [A, v, k—1],..

Pf. The diagram of [A, v, k—]_ is a finite distributive lattice the join of which corresponds
to the disjunction (V). So by definition 4.3 the set of irreducible elements of
[A, v, k=], isanexactmodel. O

The diagram of [A, v, ¥—, 1] is a homomorphic image of the diagram of [A, v, k=], by
F(@):= @[z :=L]. The proof of the next fact is essentially the same as that of corollary 11.7
insection 11.

Fact 4.15 Let P be the set of atomic formulas in [A, v, —, =] and P U{z } be the set of
atomic formulas in [/\ V, =]n+1- Then the submodel correspondmg to w(z —AP) in the
exactmodel of [A, v, ]n+1 is the exact Kripke model of [A, v, k—, L],

Theorem 4.16 Each finite subset of IpL has an exact hull which is a finite fragment of
IpL with an exact Kripke model.

Pf. Bydefinition all connectivesinan IpL-fragmentare definable by a[A, v, —, L] formula
(possibly with extrarestrictions, like reduced nesting). If IFis a finite fragment, there is
amaximum number n of atoms in F and a maximum k of the left nesting of
formulas of F written as [A, v, —, L] formulas. Hence Fis (modulo equivalence, can
be conservatively embedded mto) apartof [A,V, k »Lln- O

-12-
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Corollary 4.17 In IpL every formula is a finite disjunction of irreducible formulas.

Pf.

In a finite fragment containing disjunction and with an exact model, each formulais

a finite disjunction of irreducibles. By theorem 4.16 it is sufficient to prove each IpL
formula @ to be formula of a finite fragment (containing v).

As @ has a finite number, say 1, of atoms as subformulas and a finite level of left
nestingofimplication,sayk, @ € [A, v, ¥—, 1], whichis finite (and even has itself an
exactKripke model). a

Corollary 4.17 can also be proved in a more direct fashion, using the properties of the Aczel
slash (fact 3.21):

Pf.

By induction on the length of (i.e. the number of symbols in) the IpL formula .
Ifo=1thenp=VJ.

If @ atomic then trivially @ | @.

Note thatif ¢ # L then @ is a finite conjunction of atoms, disjunctions and implications.
If one of the conjuncts of @ is a disjunction, @ = yvy for some y, ) which are shorter
than ¢. Now apply the induction hypothesis to y and , to prove @ is a finite
disjunctionofirreducible formulas.

Otherwise, @=4p; A A(W;—%;)

If @ - yy for some k, 1 Sk < m, then @ =Y AAp; A A (y;—>Y;) and hence reduces
to a strictly shorter formula. i

Else o+ y forallk,1<k <m.So¢ql| (yj—%; forallj <m and @ | A(\;IJ-—-)XJ)
Astrivially @ | Ap;, wehave @l0.

Theorem 4.18 For every IpL formula @ there is an (up to equivalence) unique set of
irreducible formulas vy, ..., Y, suchthat:

Pf.

a. if yi-y; then i =j (independency)
b. o= Vy;

From the previous corollary it is clear that there is a finite independent set of
irreducibley;'s such that @ = V;. To prove this set unique up to equivalence, assume
X1 -- » Xm 1S anindependent set of irreducibles (that is satisfying the independency
condition a) and @ = V;. We prove each ; to be equivalent to some \pl

From y; - Vy; and theirreducibility of X;j> infer that for some 1 : X; -

On the other hand, from y; + Vx and the irreducibility of ;, infer ghat for some k :

V; + Xk Hence y; = xy and by 1ndependence J =k,whichprovesy;=y;. O
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5 y-Reductions, three-valued Heyting logic and Kripke completions

In this section some general notions and methods to describe and construct Kripke models
are introduced and a detour is made into the intermediate propositional logic H3, the three-
valued Heyting logic. The reader may skip this section and return later to be informed about
details of y-reductions, exact frames, H3 and Kripke completions which will be used after
section 6.

5.1 Exact frames

Reductions (or surjective p -morphisms, see definition 3.13) can be regarded as built up from
o.-and B-reductions (see JT66), where o-reductions eliminate repetitions of 'equivalent’
worlds and B-reductions eliminate repetitions of 'equivalent’ submodels. We may (as will
be proved in the sequel) reduce a finite Kripke model as much as possible, by combining all
possible o- and B-reductions. This is essentially what is happening in what will be called a
Y-reduction.

Recall the definition of afom (k) as the set of atoms forced in k (definition 3.10).
IfK =< K, <> aKiripke frame and X = <K, ®> a Kripke model we will use <K , <, ®> as
analternative description for K.

Definition 5.1.1 Let K = <K, <, &> be a finite Kripke model. The y-reduction of X is
defined as XY = <K, <Y, ®'>, where K¥= {y(k) | k € K } and y(k) is defined inductively
over the depth of k, 8(k ):

8(k)=0: Y(k) = <atom (k ), D>

dk)=n+1: yk)=v1) if atom (1) = atom (k) and LI = {m | m <k}

=<atom (k), {yI)!1l <k}> otherwise.

The order <Yis induced by defining: Y(I) <yk) < Yk)=<Q,R>andy(I) € R.
The valuation wYis defined as: (k) € o(p) & p € atom (k).

Fact 5.1.2 Let X be a finite Kripke model, then XY is a finite Kripke model.

Note that the definition of yidentifies isomorphic submodels (applies B-reductions) and by
its casewise definition, if 3(k) >0, also applies a-reductions.

Lemma 5.1.3 Let X be a finite Kripke model, then XY is a reduction of X.

Pf. X — XY is the required reduction (see definition 3.13).
The proof that ysatisfies all conditions is straightforward. O

Corollary 5.1.4 If X is a finite Kripke model, then X =XY.
Pf.  Applyfact3.14. O

Definition 5.1.5 A Kripke model X = <K, > is called y-irreducible if:
Vk, k' € K (atom (k) = atom (k') A lk\{k, k'}=4lk'\{k,k'} = k=k").

Definition 5.1.5 may read as an alternative definition of y-reduction, as is stipulated in the
following fact.

Fact 5.1.6 If X is y-irreducible, then X is isomorphic to XY.

-14-



Inventory of IpL fragments

Lemma 5.1.7 If X is a finite Kripke model, then XY= K.

Pf. First, note that by definition 5.1.1 atom (yy(k )) = atom (Y(k )) = atom (k).
By induction on the depth of k, 8(k ), we prove Yk )=yy(k).
If 8(k ) = 0, then yy(k ) = <atom (y(k )), >. Hence Yy(k) =Yk ).
If8(k)=n + 1 and y(k) =y(I) for some I < k, then by induction hypothesis:
k) =) =) = y(k).
If8(k)=n + 1 and Y(k) = <atom (k ), {y(1) |1 < k }, then by definition 5.1.1
wehave:
YY(k)=<atom (k), {yyI)!l <k}.
Hence, by induction hypothesis one infers y(k ) = yy(k ). O

Lemma 5.1.8 If K is a finite Kripke model and K.Y is its y-reduction, then every reduction
of XY is an isomorphism.

Pf.  LetL be areduction of XY, f areduction and:
X LXY L
As f is areduction, it is surjective.
Toprove f to be injective, let f(<L, S>)=f(<L', §">).
By the definition of reduction we have:
f(L,S>)IFp = <L,S>Fp & pe L
Hence L =L".
To proof S = S' we proceed by induction over the depth of <L , S >.
Let S = . By the p-morphism condition, if f(k) < f(<L , J>) then k =<L ,J>.
So in this case we also have S' = .
Letke S.Ask <<L,S>,also f(k)<f(<L,S>)=f(<L', §'>).
~ Bythep-morphism condltlon
Alefl(fk)). 1 <<L',S">.
For such anl, by definition of the Y-reduction,le S'.
By the induction hypotheses, from f(k) = f(I) inferthatk =1.Hence S < S'.
In the same way one proves S' < S, which proves S =S O

Notation 5.1.9 Recall the definition of P-model (definition 3.16)
If K is a finite Kripke frame, we will write Qp(K) for the set of all P-valuations on K.

Definition 5.1.10 Let K be a finite Pke frame and P a finite set of atoms.
Let, for each valuation ® on K, <K, w>"be the y-reduction of <K, w>.
Deﬁne the canonical P-model on K, Modp(K), as:

Modp(K) = U{<K, o>Y| v e Qp(K)}.

The canonical P-model (or canonical model for short) on K is an ordered set. Its order is
definedbystipulating: <L,S><<L',S> & <L,S>€ S’

Fact5.1.11 Modp(K) , defined above, is a well-defined Kripke model.
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Lemma 5.1.12 Let K be a finite Kripke frame and P a finite set of atoms. Then every P-
model on K is reducible to (hence equivalent with) a submodel of Modp(K), the canonical
P-model of K.

Pf.  LetX be aP-model, XY its y-reduction. We prove XY =<KY, u'>to be a
submodel of Modp(K) = <Mg , p>.
By the definition of Modp(K), KY ¢ Mg. For the valuations we have:
wW(p)={<L,S>eK'lpeL}={<L,S>eMglp e L} nKY=p(p)nK.
To prove K" to be a down set:
Letk € KY, k =<L, S>and 1 € Mg suchthat <k .From I <k inferthatl € S.
ButS cK' sol € K. a

Lemma 5.1.12 stipulates that the canonical P-model on K contains only the most 'reduced’
P-models on K. Combining lemma 5.1.8 and lemma 5.1.12 yields the following corollary.

Corollary 5.1.13 Modp(K) (the canonical P-model for some finite frame K and finite set
of atoms P ) is irreducible.

Lemma 5.1.14 Let Modp(K) = <MK , > be the canonical P-model of K, then every
rooted submodel of Modp(K) is a reduction of some submodel of a P-model of K.

Pf. letk € ME,thenby definition (5.1.10) for some P-model X = <K, w>and m € K
and k =<L, S$>such that 1k is the v-reduction of dm (asin the proof of 5.1.12). 0

In case the frame K in lemma 5.1.14 is a tree, one can prove a stronger version of this
lemma: every rooted submodel of Modp(K) is a reduction of a P-model. To prove this use
the fact that the application of a reduction to a reduction yields a reduction and the next
lemma.

Lemma 5.1.15 Let K be a finite tree and P a finite set of atoms, then every rooted
submodel of a P-model of K is a reduction of some P-model of K.

Pf. LetX =<K, ®>and k € K. Let m be some terminal node in Lk and define:
fay =1 ifl <k
=k ifk <1
=m otherwise
Letv(p)={I | f(I) € a(p)}.
Then v clearly is the required valuation on K such that <K, v>is a P-model reduced
by f to lk,if f indeedisareduction.
Toprove f areduction, first note that f certainly is surjective.
Next, let i<j, we prove f(i) < £(j).
Let x<>y denote —(x <y)A—(x 2y).
In general there are five cases:

J <k asf(i)=iand f(j)=j,indeed f(i) < f(j);
k<j asf(j)=k and f(i) <k,indeed f(i)<f(j);
Jj <>k there are three subcases:

i <k impossible here,as K is a tree and hence Ti is lineairly ordered, so
fromi <k and i <j weknowj <>k isexcluded;
k <i impossible asitwouldby k <i <j imply k <j;
i <>k thenf(i)=m =£(j).
Remains to prove the p-morphism condition: i < f(j) = Jhe (). h <.
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In general, there are three cases:

Jj <k then f(j)=j and hence i <j;
k <j then f(j)=k andi <f(j)=k <J;
j <>k then f(j ) = m.
As m is aterminal node, i = m and hence j € fA3). O

Example 5.1.16
Here is an example showing that lemma 5.1.15 is not true in general for al Kripke frames.
The frame on the left is not reducible to its subframes on the right.

Theorem 5.1.17 If K a finite frame, P a finite set of atoms and Modp(K) the canonical
P-model of K then:
(1) every P-model on K is equivalent with a submodel of Modp(K);
(ii) everKy rooted submodel of Modp(K) is a reduction of a submodel of some P-model
onk;
(iii) if K is a tree, then every rooted submodel of Modp(K) is a reduction of some
P-model on K;
(iv) every reduction of a submodel of Modp(K) is an isomorphism.

Pf. Bythelemmas above. O

Definition 5.1.18 If K is a finite frame and F a fragment such that: @ i+  iff there is a
valuation o such that for K = <K, o>, X I ¢—v, then K is a canonicalframe for F.

The notion of derivability here is not restricted to IpL, but applies to every propositional logic
(having the same formulas as IpL) which has a completeness theorem for some class of
Kripke models (like H3 for example, see section 5.2).

If K is a canonical frame for FF then every ¢ € F corresponds uniquely with a down set on
the canonical model of K. However, it may still be that Modp(K) is not the exact model of F
because the mapping of formulas of IF to down sets of Modp(K) may be non-surjective.

Definition 5.1.19 If K is a canonical frame for F and its canonical model, Modp(K), is
the exact model of F, K is called the exact frame of F.

Example 5.1.20 The classical propositional logic, CpL, has an exact frame: 1, the frame
with exactly one world.
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5.2 The three-valued Heyting logic Hj

Defnition 5.2.1 Hj is defined as the logic with as its axioms those of IpL (see for
example [TD88]) plus the Godel-formula (see [G32]) expressing that there are only three
truth values:

(G3) (peq)v(perr)v(pes)vger)v(ges)v(aes).
Derivability in H3 is denoted by 3.

Fact5.2.2 Hj canalternatively be axiomatized as:
al IpL+p v(p—=q)v—g
a2 IpL+((p—>(((g—r)—q)—>q))—p)—p +
(p—q)Vv(g—p)
a3 IpL+({(p—=q)—=r)=>(((s—>p)—r)-r)

The Hj axiom in a.1 is a simplified version of Hosoi's pv —p v (p—q) v (q —r) [H66].

For the Kripke-models of Hj3 the axioms in a.2 correspond to linearity and maximal depth 1

(definition 3.9): (p—>q) v (q—p) 1s Dummett's axiom for LC and
((p—=(((q—=r)—q)—q))—p)—p istheiterated Peirce axiom.

For the details see for example [T65].

The scheme a.3 stems from Ivo Thomas [T62].

Fact 5.2.3
The truth value of formulas in H3 can be calculated by the matrices:

A 0 1 2 i 0 1 2
0 0 0 0 0 0 1 2
1 0 1 1 1 1 1 2
2 0 1 2 2 2 2 2
—> 0 1 2 -/
0 2 2 2 0 2
1 0 2 2 1 0
2 0 1 2 2 0

The behavior of the matrices above is modelled by the behavior of valuations on the frame 2
defined as the set {0, 1} ordered by 0 < 1 (and the order is of course reflexive).

0

The frame 2.
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To prove 5.2.3, first observe that G3 is only true in rooted frames with less then three
worlds. Next prove that the Dummett axiom is derivable in H:

G3[r :==pvq,s =paqltF (p =q) v (g—p). Hence models of H; are (equivalent to)
valuations on 2.

Fact 5.2.4 The logic Hj is characterized by the Kripke frame 2, that is:
3 @ iff, for all valuations @won2, 2 I+ @[w]

Lemma 5.2.5 Let H3,, be Hj restricted to n atoms, then 2 is a canonical model of Hz,,.
Pf. Byfact5.2.4.

Theorem 5.2.6 2 is the exact frame of Hj,.

Pf.  Let P be the set of atoms in H3,, Mod, (2) = <Mj,,,, 1> the canonical P-model on 2.

As observed above, after lemma 5.1.12 we only have to prove thatevery down setin
Mod,,(2) corresponds with a formula in Hs3,, in the mapping

(@) ={k € My, | k I-9}.
One may check that I € My, is of the form:

1 =<L,S> suchthatL cPandS =9 (1)
orS ={<L',@>}and L c L' 2)
Define casewise:
¢ =ALAA{—p Ip € P\L} (in case 1)

ALAA{—p Ip € P\L'"IAA{—p |Ip e L'\L}AA{pe>qlp,q € L\L} (if
2)
Itisreadily checked that (@, ) = {k € My, |k I- @ } = L1
For any downset S in M5, we may take the disjunction of the ¢; suchthat/ € S.O

Of course in the proof above, the ¢; can be simplified (with the added equivalences only one
— p suchthat p € L'\L will do). Also the formula for down set S could be restricted to
the @y such that I is amaximal elementin S.

Corollary 5.2.7 From the proof of theorem 5.2.6 one may deduce the structure of
Mod,,(2) as a Kripke model such that:
a. there are 2™ terminal elements each representing a subset of the set of atoms P;
b. above each terminal node, say corresponding to Q < P, the nodes (if any)
correspond exactly to the proper subsets of Q ;
c. the maximal depth of each node is 1.

Corollary 5.2.8 Mod,(2) has Zkleo(ﬁ)zk elements and Hk20(22k‘1 + 1)@ open
subsets. Hence H3, has Hk20(22k‘1 + 1)® equivalenceclasses.
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Example 5.2.9
The exact model of H3, is the model Mod,(2):

p q
‘9 3@ 4@ S@ 6

1@ 7 8 9
P q P-q
The corresponding formulas:
1. =pA—g 4. p Amq 7. p ~—q
3. apA—+—q 6. —pAq 9.prq
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5.3 Kripke completions of exact models

As announced in section 4 and as will be proved in section 8, some fragments [ of IpL do
posess an exact model, <E , > which is not an exact Kripke model (hence not for all

o, ye F:oF yo<E,F>I- o-v).

In this section a technique is introduced to extend E to E* such that for all

o, ye F:oF yo<E*, > o—y.

In the proofs of this section we will need the fact that F satisfies some conditions, i.e. F is
'normal’ in a sense to be made more precise in the following definition.

Definition 5.3.1 A fragment F is called a normal fragment if:
a. the connectives of F are among those in {A, v, =, <>, —,—}
b. if = or <> are connectives of F, so is A.

Notation 5.3.2 Let P,, be a finite set of atoms, E a set of formulas. Recall the definition
of 079) from definition 3.22 and from notation 4.5, for@ € E , that of k,p € <E,F>.
If @ = @¢ then k,, will be denoted as kq.

In the following lemma we need the notion of a P, -model, definedindefinition3.16.

Lemma 5.3.3 Let Var(¢9) c P, , 9= L and Q < P,. Then:
a. if kqisaterminal node ina P, -model, then: kg I- ¢ < @+ ¢
b. o+ @q = 0=0qQ
C. OoF 9 = oot ¢
d. thereisan R C P, suchthatif kg is a terminal node in a P,, -model, kg I+ @

Pf. a.Letkqbe aterminal node ina P, -model. Then kg I+ ¢ = kq I- —9.
Applyingthisto p gives kq |- —p for p € P,\Q, whichleadsto kq - @q.
Asaconsequence g - ¢ = kg I ©.

Assumekg - ¢. If L is a P, -model such that L I- @q, then clearly L is reducible to
<kg>, the Kripke model with kq as its only node. As <kgo> I- @, so does L.

By the completeness theorem for P,, -models (fact3.17.c)@q - ¢.

b. As a simple consequence of 3.23.b: if ¢ # L, then for some R cP,, itis true that
QR+ @.Hence, if @ - 9q also @g - 9 and by the definition of ¢ and @R it will be
clear that g = @q. Which proves ¢ =@,

c. Let <kgp> be the model defined in the proof of part a. If g - —, thenas a
consequence of a: kg |- ——@and, as kq is aterminal node, kq I ¢. Again using part a.
of thislemma: g - @.

d. This is a combination of fact 3.23.b and part a. of this lemma. a

Lemma 5.3.3 justifies the name 'end extension' in the next definition.
Definition 5.3.4 Let E c F(P, ). Then E* is defined as: E* :=E U {¢@q | Q <Py}
The Kripke model <E*, > is called the end extension of <E,+>.

Ify is the reduction defined in 5.1.1, then <E*, >" is called the Kripke completion
of <E,F>.
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Lemma 5.3.5 If <E, > is the exact model of the normal fragment F(P, ) and <E*, >
isitsend extension, thenforeachye E andeachgpe E*: k, -y & oFw.

Pf. Byinduction on the length of y. Use the induction hypothesis that forall§ € E strictly
shorter then y we have:
(IH) VoeE* ky & & o &
ve P, by deﬁmtlomfp € Py thenky -p ok p
WY = YAC: kg I=xA0 = kg I}—xanqu, o
mor xad @k 6 & @k YAC
=Y VO: as y € E, yisirreducible in Diag (F) and if v is a connective of F, y
is v-irreducible (see the remark after definition 3.19). Hence y =
ory=candinbothcasesbyIH: k, Iy < o+ vy
=Y—C: aAssume(pl—x——xs ForallteE'? TFO=THYY=1TF0O)
If k; <kg thenth @andbyIH: k; =y = k; I-o.
Hence k,, I+ x—0.
b. Assume kg, I-x—oc. If T+ @then k; <k, , so k; -x—0,
and by IH: T+ @Ay implies T+ ©.
As <E, > is the exact model of I, if o the 1-1 correspondence
between Diag (F) and the downsets of <E, ->, we have:
(QAY) < (o). (Note that by definition of a normal fragment
oAy is in F). Hence @ - x—0.

= Y >0: in this case the proof closely resembles the proof in case of
Y =Y—0.
V==Y a. Assume @ + —).Forallte E*: 1+~ o=t Y (asLl & E*).

If k; < kg then T+ @ and by IH k; I+ . Hence kg, 1= —.
b. Assume k, - —) . LetQ < P, thenkp aterminal node
suchthatkg <k, iff g + @. Hence for all Q < P, wehave
(using lemma 5. 3 3) o ?— —, . According to fact 3.23 in CpL we
have 9=V{ g | Q c% and @gt @}, which proves @+, .
Again by fact 8.23 this 1mp1ies QF —x.

Y =) a. Assume @ - ——Y. If Tis minimal in E* and t+ @ thenk, isa
terminal node of <E¥, > such that k; < k,
By lemma 5.3.3 T=@q forsome Q c P, and, also by lemma 5.3.3

kg IF . Hence kg = —x.

b. Assume k,, I —mx Let Q < P, thenkp aterminal node
suchthatkgy < ki, iff oq F ¢. Hence for aﬁ Q c P, wehave
(using 1emma 5. 3 3) o C%_ X . According to fact 3. 23 in CpL we
have o=V{ g ! Q c?’ and Qg @}, which proves @ —.—.x
Again by fact g 23 this 1mphes (0} }— —X.
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Cdrollary 5.3.6 If <E, I-> is the exact model of the normal fragment F(P, ) and
<E*,> isitsend extension, then V@, y e F: o+ y & <E*, > 9>y

Pf. Assume <E*,>I- (p—>\|1 Forevery & € E suchthat - @itis truein <E*, >, by
lemma5.3.5, thatk € and hence kg I~ ¢. By assumption we have k¢ I~ v and,
againbylemma5. 355 E- .

As<E, F>isthe exact model of I, this proves @ I . a

The following theorem shows that the Kripke completion of an exact model, <E, >, of a
normal fragment is an end extension, modulo the identification of some of the kQ with
terminal nodes of <E, ->.

So, the exact model of a normal fragment is isomorphic to a subset of its Kripke completion
(with the order inherited from the Kripke frame).

Theorem 5.3.7 Let <E, > be the exact model of the normal fragment IF(P ) and let
<E*,+>Y beits Kripke completron Then: Vo, y € F: o y & <E*, |—> I @—v.
Moreover ify is the reduction of the end extension <E*, -> to <E*, - >Y, then v restricted
to E is injective (a monomorphism).

Pf. That Vo,ye F: o+ y < <E*, >YI- ¢ is a direct consequence of corollary
5.3.6 and corollary 5.1.4.
Assume ¢, Y € E and y(ky ) =Y(ky,). In <E*, I—>we have, by lemma5.3.5, k, I+ @.
Asyis areduction, this is also true in<E*,+>Yand hence ky, I @ in both <E*, +>Y
and <E*,>. Again by 5.3.5, this proves y I @. In the same way one proves @ F y.
Which proves ‘yrestricted to E to be an injection. a

Note that the restriction of theorem 5.3.7 to normal fragments is not very essential.
From the overview of fragments in section 4 it is clear that the only fragments in this report
thathave an exact model are normal.

According to lemma 5.1.8, the Kripke completion of an exact model is in a sense minimal.
Still it is sometimes possible to be more economical about extending the exact model, as is
stipulated by the following lemma.

Lemma 5.3.8 Let X be a Kripke completion of the exact model of normal fragment
F(P, ). If for some terminal node k of X , k I* ¢ for all @ € F then in theorem 5.3.7 X
may be replaced by K\{k }.

Pf. Let<E,I->the exact model of F and <E*, > isits end extension.
Forno& e E we have (bylemma5.3.5) kg I+ &
Soif k Ii# @ forall ¢ € F, thenk = kg for some Q c P,
Note that k is anisolated terminal node, not below any of the other nodes in X.
Hence K\{% } is a generated submodel of K and for ¢ € F:
(ke Xk II— o}={k e X\kg } kIFo } which proves X and X\{kq } to be
equivalent for F formulas.
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6.1 The [A, v]-fragments
The structure of the [A, v]-fragments is relatively well known [C77,DP91, S13, S36].

Fact 6.1.1
a.For [A, v]formulas classical propositional logic (CpL) and IpL coincide, i.e.
forallg,ye [A, V]: oF y S ok v
b. The Lindenbaum algebra of [A, V], isisomorphic to the free distributive lattice over
n generators.
c. (Disjunctive normal form) Each @ € [A, V], is equivalent to a finite disjunction of
[A], formulas.
d. All @ € [A], are v-irreducible.
e. [A]isdualto [Vv]. If @ € [A] define @* := @[Vv/A, A/V] (replacing all A by v and vice
versa). Then forall @, y € [A, v] we have:
oFYy < Y = ¥
f.IfQ e [A, vP]then: AP, - @.

Theorem 6.1.2 The diagram of [A]\AP, is the exact Kripke model of [A, v, P,].

Pf.  Define @: [A, V], =[Al)\AP, as (@) ={AQ | Q c P, and AQ + ¢}. We prove wis
the required isomorphism.
Itis easily verified that c(¢) is a down set in the diagram of [A],\\AF, . That w is
surjective is also obvious as for adown set U in the diagram of [A],\AP, , o(VU )=U
(if we define VU = AP, if U =O).
To show \?) is mJectlve let ¢,y € [A, Vv, Py] beindisjunctive normal form (fact6.1.c)

ando=VU,

Now VU = VYU and forall € [A])AP, - 9 <y e LU.
So (@) = LU and from (@) = w(\y) we infer V? U= V»L W and hence ¢ = .

To show [A],\AP, is anexact Kripke model, we have to verify:

o(Q)={Ye [A];\ AP, | k, I+ @} (for kx see notaition 4.5)
This can be done by proving forallx € [A],\AP, by induction over the complexity of
Q€ AV, Pyt

(IH) %€ o) <
For atomic p : by definition (definition4.2) x - p & x+ p © % € o(p).
O=YAd: x € O(Yrd) & x+ yand X+ ¢ (ﬁ) ky - yand ky I- ¢

& ky I-yadp
0=yvo: x € (Yvo) = X yvo
& xF yory ¢ (x is irreducible, fact 6.1.1.d)

& & -york - ¢ o k- yvo o

Corollary 6.1.3 The exact Kripke model of [A, v, P,] is (isomorphic to) the p.o. set of
proper nonempty subsets of the set P, , ordered by 2.

Pf. Define v: [A]\AP, — (P, \P, by:

Wy =9 if x=AP,
= {peP Iy p} otherwise.
Obviously v is the required isomorphism. O
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As the characteristic functions of down sets are exactly the monotonic functions into {0, 1},
corollary 6.1.3 in fact establishes the correspondence between formulas of [A, V], and
monotonic functions of 2™ — 2. The problem of determining the number D(n) of these
functions (for each n) goes back to Dedekind and is also known in a different, but equivalent,
form as the Sperner problem. The number D(n ) corresponds to the number of elements in
the diagram of [A, V], (see [S28], [K69] and [K88] for more details).

In [S73] there is a table (1439) for D(n ):

n D(n)
1
4
18
166
7579
7 828 352
2 414 682 040 996

NN LW =

6.2 The [A]-fragments

The structure of the [A], diagram was already revealed in corollary 6.1.3: the [, P, ]-diagram
is isomorphic to the p.o. set of non-empty subsets of the set P,,.

This is trivial, as each X € [A, Py]isequivalentto AU for some non-empty U C F,, .

From this observation the number of equivalence classes in [A], is easily calculated: 21-1.

6.3 The [v]-fragments

The structure of the [v],, diagrams is dual to that of their [A], counterparts (that is, in the
categorical way, using the correspondence of fact 6.1.1.e, the diagram of [ ], is obtained from
that of [A],, by reversing the direction of all arrows).
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7.1 The [A, v, —]-fragments

In this section we will prove that the diagram of [A, =]\l is the exact Kripke model of the
fragment[A,v,—],. Also a simple family of frames F, is presenented such that each F; is a
canonical frame for [A, v, =],

Lemma 7.1.1 (The [A, —] normal form) Each @ € [A,Vv, =], is equivalent to a finite
disjunction of [A, =], formulas ([A, v, =],= VA, =]p)-

Pf.  Straightforward, using formulainduction. The mostinteresting step is negation, where
we use (Y1 V..WWp) = -—T(=YiA... A=y, to prove that:
—Ppe [/\,V,ﬂ]n < 0pe [/\,—'1]1.l
—(Y1V.e. VW) = (= Y1A...A—Yp,) is a simple consequence from fact 3.23 and
one of the classical De Morgan laws. O

Theorem 7.1.2 The diagram of [A, —],\L is the exact Kripke model of [A, v, =],
Pf. Recall from fact 3.21.d that all formulas of [A, =]\l areirreducible.
Hence by lemma 7.1.1 and definition 4.2 [A, =]\ L is the exact model of [A, v, —],.
To prove this model to be an exact Kripke model, with valuation:
o(p) = (x€[r =\ IxF p)
we prove by formulainduction, forallQ € [A, Vv, =],
(IH) for all x € [A,—],\Lwe have y + 0=k, I @.

Recall that (notation 4.5) k, is the class of X, as a node in the Kripke model.

© atomic: by definition

oAy k- oAy < ky - @and ky -y YFoand X F Yy S X E oAy

ovy: k- ovy e K - @or k- y @ xFoeorywy

& X ovy (as y is irreducible)

=\ by fact 3.23 and completeness of [A, —] for classical propositional logic,
thereisac € [A,—], such that ¢ =, y and hence —y = —c. If 6 = L then
(IH) is trivially true. So assume G € [A, =]\l and let 6 in the sequel range
over formulas of [A, =]\l
X F =0 = VOy. Oy Pz Vo-y. kglFry <k I- -y
To show VO x.0Fy = ¥ F —0, observe that YAc € [A,—], and
both xAc + % and YAC |+ ©.
Assuming V0. 0 i o we find xAc = 1 and hence x + —0. O

The fragment [A, v, —] has the intermediate logic of all frames with maximal depth 1 as a
conservative extension. To prove this we need the following lemma.

Lemma 7.1.3 Let K be arooted Kripke model with kj as its root and L its set of
terminal nodes. If X'is the Kripke model {ky }UL (with inherited order and valuation
fromX)thenforallpe [A,v,—]: KIF o= K'I- @.

Pf. Byinductiononthe complexity of @.
If @ =—wy thenuse:
KI-F—-yoVieL(-—y) o VieLdFy)oK -y
The other cases are even more trivial. O

There are simple counterexamples to prove that (the <=-part of) lemma 7.1.3 fails if
implications are involved.

For example take a Kripke model X with three worlds { k,, kp, k. } such that:

k, > kp >k, and atom (k,) =, atom (kp ) = {p } and atom (k;)={p, q }.

Let X'be as defined above, then X' I+ p—q and X I+ p—q.
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Corollary 7.1.4 The rooted frame F,, of depth 1 and 20+1 elements is a canonical frame
for the fragment [A, v, =],

Pf. Let@,ye [A,Vv,—],and QF .
According to definition 5.1.18 we have to prove that there is a valuation ® on F;, such
that<F,, > I~ ¢ and <F,,, 0> I y.
By the completeness theorem (see fact 3.17) there is arooted Kripke model X,
K I @ and X I+ y. According to lemma 7.1.3 there is also a Kripke model X' which
is rooted, has a maximal depth of 1 and is equivalent to X for [A, v, —],-formulas.
As far as [A, v, —],-formulas are concerned, each terminal node k in a Knpke model is
characterized (up toequivalency) by atom (k) N P,,. Thatis, there is a maximum of 21!
terminal nodes in the y-reduction of a P,-model (see definitions 5.1.1 and 5.1.9). This
proves that X7, the y-reduction of the model X' above, is (isomorphic to) a Py-
model on F,,. As K'Vis equivalentto X' (corollary 5.1.4) this proves F,, to be
canonical for [A, v,—],. |

Theorem 7.1.5 The intermediate logic IpL + ((p—(((q—1)—q)—q))—p)—pisa
conservative extension of the IpL fragment [A, v,—].

Pf. Recall (see5.2.2,[G81]) that (p =(((q =r)—q)—q))—p)—p istheiterated Peirce
formula, which characterizes the frames of maximal depth 1. a

TheintermediatelogicIpL+((p—(((q—1)—q)—q))—p)—pisamaximalconservative

extension of [A, v, —]. Butitnot unique, other intermediate logics exist that are also maximal
conservative extensions of [A, v, —].
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7.2 The [A, —]-fragments

In this section we will prove the three-valued Heyting logic H3 to be an exact hull of the
fragment [A,—].

Lemma 7.2.1 (Normal form of [A, —]) Foreach@ € [A,—], thereisa Q < P, and a
formulay e [A, =], suchthat @ = AQ A —.

Pf. Byasimple induction on the complexity of . O

Animmediate consequence of lemma 7.2.1 is the existence of a simple algorithm to decide
forevery @,x € [A,—] whether @ - . If = AQ A—y and x = AR A —pthen:
oY © R cQ andpt,.y (yisaconsequence of p in classical logic).

Definition 7.2.2 If ] is a terminal node in the finite rooted Kripke model X, with k as
its root, and m as its valuation, the terminalsubmodel Klis defined as the frame {ko, 1},
such that I < ky, and a valuationv such that Vke X1. kev(p) <> kew(p)

Note that the terminal submodels are models with frame 2.
In the lemma below we will need a simple fact about Kripke models:

Fact 7.2.3 Let X be a finite rooted Kripke model and K1 a terminal submodel of X and
Iy @thenl -1 .

Lemma 7.2.4 Let X!be a terminal submodel of (finite rooted) X, ¢ € [A, v, —]and
X I~ @, then X1I- ¢.

Pf. Byformulainduction: ¢ atomic, aconjunction oradisjunction: trivial
In case ¢ = —v: if X |- —ythen, by 7.2.3,11 —y. Hence X1 I —y. O

Lemma7.2.5 Let X be a finite rooted Kripke model, ¢ € [A,—] and X Ii* @, then there is a
terminal submodel X1 such that X! It ¢.

Pf. By formula induction:
@ atomic: trivial
© = YAY: Kltyaxy = Kl yor X I+ y
d - Kl yordl. Xl x <31 Kk yay
Q= K I+ —y = forsome k € X, m I~ yforallm e Lk and hence for
terminal nodes I of Lk: I I+ —yand X1+ —y O

Theorem 7.2.6 Hj is a conservative extension of [A, —

Pf. If @,y e IpLthen @ - yimplies @ I3 y (by the completeness theorems; the 2-
models of H3 are a special kind of Kripke models).
Let @ I y. By the completeness theorem (fact 3.17) there is a finite rooted X such
that X I~ @ and X It . By lemma 7.2.5 there is a terminal submodel X1 such that
X1l yand by lemma 7.1.3 X! I+ @. This X!is a 2-modeldisproving @+3 y. O

Let again Hz,, be Hj restricted to n atoms. In section 5.2 we proved Hz,, to have an exact
frame, 2. Hence has an exact Kripke model, Mod,,(2).

Corollary 7.2.6 Hj, is an exact Kripke hull for [A, —].
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8 The [v, —]-fragments

The finite [v, —]-fragments in IpL do have exact models which, for n > 1, are not exact
Kripke models. In this section the structure of the exact model of [v, -], will be described
and we will use the technique of Kripke completions from section 5.3 to obtain Kripke
models that are 'almost' exact Kripke models.

Lemma 8.1 (Normal form of [v, —]) Forevery ¢ € [v,—], there is a finite set of atoms P
and a finite setof y; € [v,—] (1 £i<m for some m) suchthat ¢ = VP v V.

Pf. Byasimple induction on the complexity of @. O

Theorem 8.2 The fragment [v, —], has an exact model: EN,, the set of atoms and
negationsin [v, —],, ordered by .

Pf.  From the previous lemma we know every formulain [v,—], isa disjunction of
formulas in EN,,. According to fact 3.21.d both atoms and negations are always
irreducible. g

Corollary 8.3 The exact model of [v, =], is a copy of the classical fragment [v, =] \L
(where all formulas are preceded by a double negation) and the n atoms added.

The normal form of lemma 8.1 can be restated in terms of EN,,. For every ¢ € [A, —], there
isasubsetyy, ... W, € EN,, such that @ =Vy;. Note thatif all y;, X;j € ENp, , then

Vi Vy; & Vidjoyk-

Note that the CpL fragment [v, —],, is equivalent with the CpL fragment [A, —],,. Hence the
irreducible formulas of [v, ], (see fact3.23) are equivalent with (irreducible) formulas of

[/\, —1]n.

Fact 8.4 The exact model of [v, -], consists of those formulas in [A, —], (the exact
model of [A, v, =], ) that are (equivalent with a formula) in [v, —],.

Example 8.5
The exact model of [v, —, p]anditsdiagram:

—(p V)
- —p
6
p
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Lemma 8.6 If p € P, then for each [v, —],-formulage ENj,:

pro = p=¢or —pko
Pf.  If ¢ atomic, then trivially p=¢. Solet ¢ =—y. Then:
pFr—VY = —VYkF—-p = —pk—yY = -—TpkQ g

By lemma 8.6 the atomic p in the exact model of [v, —],, is a direct predecessor of —p.

Example 8.7
The exactmodel of [v, —,p, q], EN; :
—(pv—)

—(-PVvq)

——(pv—q)

—pv—PM(1PVa))

~{pv-0)
—{(— y \\ ' S

—pvq)

—pv—)

~HHpvv—+—pv—q)

®q

—(-pVvq) ePl

There are 385 down sets in this exact model, so the fragment [V, =], has 385 equivalence
classes.
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The example above shows that for n > 2, [v, —], does not have an exact Kripke model.
Equipped with the valuationw(p ) = { y € EN, |y p } in the model EN, the node
corresponding to g would force —p for example.

Let £, =<EN,, > be the exact model of [v, =, P, ]. From the structure of the exact
model (and that of the diagram of the corresponding classical fragment) the minimal elements
of ENy, are known. The classical fragment [v,—], is a Boolean algebra which has as its
atoms the formulas g =AQAA{—p Ip € P,\Q}, where Q c P;,.

Fact 8.8 The minimal elements of E,, are the atomic formulas in P,, and (in case
n > 1) the formulas of the form —@q.

This fact is a consequence of lemma 8.6. Recall that for these atoms @q of the Boolean
algebraof [v,—], and for any y € [v, —], in classical propositional logic it is true that:
0QFcV & PoFc—V & 9o —v.

The @ above are the irreducible elements in the Boolean algebra and act like an exact model
(for the classical fragment).

Theorem 8.9 Let £, = <EN,, -> be the exact model of [v, -, P,],n> 1.
Extend E,, to X, =<K, ®>by adding, for every nonempty Q < P, ,elements kqsuch
that:

@) kQ forces exactly the atoms in Q;

(i) forallye Kj:

kg <% <X € ENy and @gF (pgasdefinedabove).

(iii) forp € P, and @€ ENy; kq,li—p S OFp

Then X, is the Kripke completion of li-:n.

Pf. Note that for n > 1 and every nonempty Q < P, , forsome p € P, kg forces
either pAq or pA —q,foreveryq € P, .
Suppose for some nonempty Q < P, that pe Q and (after application of ¥) kg
reduces to a terminal node ky, of ENj, in the end extension of <EN,, , ->.
If y - p, then by theorem 8.2 y = p. From Y(kq) =Y(p) and kq - —q one
could (using theorem 5.3.7) infer that p - —q, which is not the case.
On the other hand, if yI* p then Y(kq) = Y(ky,) would imply y+ p,a contradiction.
Hence for Q # & kp will not be identified with an element of EN,, by reduction .
As@g = VP, isin EN,, itis not necessary to add k. O
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Example 8.10
The Kripke completion of £, = <EN,, > the exact model of [v, —,p, q1:

P.q

Note that in case of [v, —, p]the Kripke completion is isomorphic to the exact model itself.
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9.1 The [A, v, —]-fragments

The finite [A, v, —]-fragments have exact models which are not exact Kripke models. In
this section we will prove that their Kripke completions can be replaced by slightly smaller
models, equivalent with the Kripke completions for [A, v, —]-formulas.

Lemma 9.1.1 (Normal form of [A, v, ——]) Forevery @ € [A, v,—], there is a finite set
of formulas ; such that

D vy =AQ A—y; for Q asetofatoms, X; € [A, V]

i) o=V

Pf. By formula induction. For the A-case observe that:
((AQ A —I—|(X) \% (AR A —|—|B)) A ((AS A —l—l'Y) \'% (AT AN —|—|8)) =
(AQ A—0a) A(AS A—7) V(AQ A—0) A (AT A—d)) v
(AR A—B)A(AS A—Y)) V(AR A—B) A(AT A—d)) =
AQUS)IA—T(AY) VAQUT)A—(0LADJ)) V
ARUSIA—TPBAY) VIARUT) A—@ A )
and the last formula is of the required form. O

Theorem 9.1.2 The fragment [A, v, —, P, ] has an exact model: the set ED,, of
formulas of the form AQ A —@where Q c P, and@ € [A, V],.

Pf.  Apartfrom AP, , every formula of [A, v,—,P,] is a disjunction of formulas of the
set ED,, by lemma9.1.1.
Let AP, correspond to the empty set, then every formula @in [A, v,—, P,]
corresponds to a down set (@) of ED,, (in the order of -) and vice versa via
o(9)={ye ED, |y ¢}
Clearly this wis the required isomorphism. O

The formulas in ED,, of the form AQ play animportant role in the construction of the
Kripke completion of the exact model of [A, v, —, P, ].

Fact 9.1.3 The minima of the exact model ED,, of [A, v, —, P,] are formulas of the
form A(P, \{p )A—p wherep € P,.

From fact 9.1.3 it is clear that in the Kripke completion of the exact model of

[A, v,—,P, ] none of the kg 's will reduce to a minimal element in the exact model.
Moreover, as all minima force at least all ——p wherep € P,, the node kg will be an
isolated element as describedinlemma 5.3.8.

Theorem 9.1.4 If <ED,,, > is the exact model of [A, v, —, P,]as defined in theorem
9.1.2, thenfor [A, v, —, P,]-formulas its Kripke completion is equivalent to the end
extension of <EDj, , > without the node k.

Pf. By theremark above and lemma 5.3.8. O
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Example 9.1.5

The diagram of [A, v,—, p, q], its exact model and the Kripke completion of its exact
model (withoutkgy):

—pA(pv—"q) —qAa(QV-—Tp)

—pA(PVq) ——qA(Vq)

p q
i PA—q qA-Tp
" PAQ
i
p q
P q
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9.2 The [A, ——]-fragments

In this section we will show that each [A, —],, fragment has as a simple exact hull the
fragment [A, —, T],, thatis: the fragment [A, —],, Where there is a top element T added.

Lemma 9.2.1 (Normal form for [A, —]) Each formula ¢ € [A, —],is equivalent witha
formula of the form:

AA X —AB
where A , B are sets of atoms of the fragment such that ANB =< and AUB #Q.

Pf.  Trivial. o
Corollary 9.2.2 The number of equivalence classes in [A, —], is 3°-1.

Pf.  ltiseasily verified thatif AA A——AB and AC A —D are normal forms then they
are equivalentonlyif A =C and B = D.
For every formula AA A —AB and every atom p there are three possibilities:
p € A,p € B or p ¢ AUB.Note that this is in fact a three-valued valuation
(compare H3 in section 3.23). Every valuation of the n atoms will correspond
to aformula in normal form in the same way, but for A, the conjunction of an empty
set of formulas. Hence the number of equivalence classes in [A, —], is 3%-1.0

The proof of corollary 9.2.2 in fact already points out how, by adding atop T (corresponding
to AQD) the diagram of the [A, —],, fragment becomes isomorphic to the lattice of down
sets in the structure of n copies of 2.

Theorem 9.2.3 The fragment [A, —, T], has an exact model, En, the n copies of 2 such
that:

APp)

AP\ ) A —p

wherep € P,.

Pf.  We prove that every down setin E,, corresponds to a normal form and vice versa.
As in the proof of corollary 9.2.2 for each normal form ¢ and each atom p there is a
copy of 2 with exactly three possibilities (either + p , - ——p or @ ¥ —p),
corresponding with ¢ beeing forced in the top, at the bottom or nowhere in that copy.
Which gives an exact correspondence between formulas of [A, —, T}, and down sets
in the specified structure provided that we have a formula for the whole set. O
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Theorem 9.2.4 If E, =< E,, > is the exact model of [A, —, T, P,]and
Ky=< Wy, F>is an extension of E, where W, =E, U {AP,\Q | IQ <1},
then X, is equivalent to the Kripke completlon of £ forl[A,—, T, P, ]-formulas

Pf.  Clearly X, is a part of the end extension of E; and if Q = P, or Q = P,\{p } then
no element of E,, will reduce to k inthe Knpke eompletlon
IfQ =P,\{p, q} forsome p # q then @ does not imply any of the formulas in E,,.
For assume that g AP,\{p } then 9g - g and also @qF —g , butof course @q is
consistent.
By lemma 5.3.8 the Kripke completion without such kq's is equivalent to the Krlpke
completion itself, as far as the [A, —, T, P,]-formulasareconcerned.

Example 9.2.5 The diagram of [A, —,p, ¢ ] and a Kripke completion for [A,—, T, p, q]

PAq P-q
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9.3 The [v, —]-fragments

The diagram of a [v, —], fragmentis almost a (distributive) lattice, with the bottom
element missing. In this section we will demonstrate that the extension of the fragment with
abottomelement L, to [v,—, 1], ,is an exact Kripke hull for [v, —],,.

Lemma 9.3.1 (Normal form for [v, —]) Forall ¢ € [v,—, P,]thereisanequivalent
formula of the form:

VA vV{(—VBIB e £}
where A c P, & Cc p(Py)and A U UL #D.

Pf.  Byformulainductionon . o

Corollary 9.3.2 Every formula in [v, —],, is a finite disjunction of atoms and formulas of
the form —@.

Definition 9.3.3 Let D, be the diagram of [Vv],,, then D7 "is the set {——@l@e D}
ordered by .

Fact 9.3.4
a. D7 isisomorphic to Dy,
b. D7, is isomorphic to the p.o. set of non empty subsets of P, (or to the the n-
dimensional hypercube minus bottom).
c.  theminimal elementsin D" are the formulas of the form —p for atomic p .

Theorem 9.3.5 The exact Kripke model of [v, —, 1], is a copy of D" where the
atomic formulas are added (suchthatp <;x & x=-—p ).

Pf.  Let X be the supposed exact Kripke model of [v, —, L], asspecified.
From corollary 9.3.2 infer that X is the exact model of [v, —, L],,.
Inspection of the structure of X, using fact 9.3.4 shows X is exact. a

Corollary 9.3.6 The number of equivalence classes in [v, —, 1], is
Yi2o@®D(k )+1), where D(k ) is the k -th Dedekind number (see section 6.1).
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