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0. Introduction

A positive equivalence S is an r.e. equivalence relation on non-negative integers w. Qc-
casionally, especially when more than one equivalence is in sight, imagination will be
spared by stipulating that each positive equivalence is an equivalence relation on its
own private copy of w, so that we think of § as a pair (Dom&,~s), DomS being,
essentially, w. Thus, a morphism p: S — 7 from a positive equivalence S to a positive
equivalence 7 is a mapping g : Dom S/~s — Dom 7 /~ for which there exists a total
recursive function A : DomS — Dom 7T s.t. u([z]g) = [h(z)] for all £ € Dom S, where
[D] stands for the closure of an element (a set of elements, a list of elements etc.) D of
DomR under ~%. The recursive function A is then said to represent p. Clearly, p can
as well be represented by any r.e. subset H of Dom & x Dom 7 s.t. for every £ € Dom S
there is a pair (z,w) € H with u([z]g) = [w];, for from (an index of) such an H one
can effectively construct a representation of u in the form of a total recursive function.

Positive equivalences together with the morphisms just described constitute a cat-
egory equivalent to the category of positively numerated sets introduced in Ersov [6,
Kapitel II, § 3]. Our paper focuses on one of its remoter reaches.

A positive equivalence is called precomplete if for any recursive programme we can
effectively compute a number s.t. if this programme happens to converge then its out-
put finds itself in the same equivalence class as that number. Precomplete (positive)
equivalences have been extensively studied since the time of Ersov [5].

An application-motivated yet natural generalization of this notion is that of a uni-
formly finitely precomplete positive equivalence introduced by Montagna [8]. Here one
requires the same but under the condition that the programme can only output a num-
ber in one of the finite number of equivalence classes specified beforehand. (Precise
definitions are given in Section 1.)



This being a proper generalization, there are uniformly finitely precomplete positive
equivalences that are not precomplete. Such are e.g. the e-complete positive equivalences
(Bernardi & Montagna [3], Lachlan [7]), an example of which is the provable equivalence
relation among sentences of formalized arithmetic (see Bernardi [2]).

The aim of this paper is to document several miscellaneous results and observations
on these three classes of equivalences. Section 1 introduces the necessary definitions
and notations and contains a rather lengthy exposition of earlier results that we are
going to build upon. In Section 2 we address partial isomorphisms (i.e. isomorphisms
of domains of proper subobjects) between e- and between precomplete equivalences.
These partial isomorphisms are shown to enjoy strong and, in a way, complementary
extendability properties. In Section 3 we formulate a property that singles out the e-
and the precomplete positive equivalences among all the uniformly finitely precomplete
ones. Section 4 shows that the effort spent in Section 3 was not objectless in that
there exist uniformly finitely precomplete positive equivalences that are neither e- nor
precomplete. The final Section 5 describes sets of fixed points of endomorphisms of
uniformly finitely precomplete positive equivalences.

The present paper is reasonably self-contained.

I would like to thank Serikzhan Agybaevich Badaev for helpful correspondence and
Albert Visser for a number of supportful discussions.

1. Assessing the heritage

We fix an acceptable numbering (¢;)ic of unary partial recursive functions (cf. Ro-
gers [10, Exercise 2-10]) and an acceptable numbering (;)ie, of partial recursive func-
tions of arity zero, which we shall call recursive numbers. In what follows, by an indez
of a recursive number or function we shall mean an index in the appropriate one of
these two numberings. Acceptability of (v;);c,, implies that the s-1-0 case of the s-
m-n Theorem holds for the two numberings: there is a total recursive function s s.t.
Vs(i,e) = @i(%) for all i, z. Here, as well as everywhere below, ~ means that the Lh.s.
converges iff the r.h.s. does and that the outputs, if any, are equal.

Expressions like ()], v € W for W an r.e. set and similar ones will, apart from
their usual role, also stand for the number of steps needed for the corresponding Turing
machine to verify that ¢(z) converges, or that v converges and its output is in W,
respectively. This number of steps is assumed to be oo if ()7, or if (v] or v € W), so
that e.g. the expression ¢ ~5 v < ¢(z) € rngh says that v converges, £ ~s v and the
finite number of Turing steps needed to verify this is less than or equal to the number
of Turing steps necessary to check ¢(z) € rngh, which, in particular, can be oo, i.e.
@(x) does not have to converge, nor does its output, if any, have to lie in rngh. The
particular identity of the Turing machines involved will in each case either be clear from
the context or irrelevant.

Further, we fix numberings of finite sets of numbers and of finite sets of pairs of
numbers s.t. given an z (or (y,z)) and an index of D one can effectively answer the
question z €7 D (or (y, z) €7 D), and, from an index of D, effectively tell the cardinality
of D. Indices in these numberings will be referred to as strong indices. The crucial
properties are that from z,y we can compute strong indices of {z} and {(z,y)}, and
that unions can be performed effectively on strong indices.



For X a finite or infinite set of pairs, we denote by X! the set {(z,%) | (y,2) € X};
dom X and rng X have their usual meanings, so that rng X = dom X 1. Let us also
agree that X1 = X.

For ¢ a partial recursive function and an r.e. set W, ¢[W denotes the partial
recursive function which agrees with ¢ on inputs in W and diverges elsewhere. If, given
a strong index of D and an index of ¢, we set out to calculate the strong index of ¢[D,
we shall only generally succeed if ¢ converges on all elements of D. ¢[n will stand for

e[{0,...,n—1}.

Now we turn to positive equivalences. If addressing the S-equivalence classes in plural
makes sense then the positive equivalence § is said to be non-trivial.

1.1. DEFINITION. A non-trivial positive equivalence P is precomplete if there exists a
total recursive function 7', called a (P-)totalizer, which, when applied to an index of a
recursive number v, produces a number 7 € Dom7P s.t.

if v| then V7 ~p v.

The notation v is chosen to be tolerant to the intended abuses of format: thus, e.g.

T (z) will stand for T' applied to an index of the recursive number p ~ ¢(z) which is
obtained effectively from z and an index of ¢ by the s-1-0 Theorem.

Note that the property of being precomplete is invariant under isomorphisms of
positive equivalences: Let P be precomplete and g : P — 7 an isomorphism and hence
a bijection DomP/~p — Dom7 /~z, represented by a total recursive h. Clearly, T is
non-trivial. Let k represent g~! and T be a P-totalizer. It can then be easily seen that
the function K defined by v¥ ~ A((k(v))7) is a T-totalizer. Similarly, precompleteness
is preserved under non-trivial epimorphic images.

A partial recursive function 6§ : DomS — DomS is (S-)diagonal if 6(z) #s «
whenever 6(z)].

Our starting point is the following theorem of Visser:

1.2. ProPoOsITION (Anti Diagonal Normalization (ADN) Theorem, Visser [12]). Sup-
pose P is precomplete. There exists a binary total recursive function T', which, when
applied to indices of a P-diagonal partial recursive function é and of a recursive num-
ber v, produces a number vTs € DomP s.t.

(i) ifv] then v ~p v, and

(i) if v then vTs ¢ domé.

PRroOF. Let T be a P-totalizer. Given a recursive number v, construct another recursive
number x by the Recursion Theorem:

v if v| < 6(puT)l,
po 8"y STl <vl,
divergent if neither v nor §(uT) converges.

Define v7¢ = uT. Clearly, v75 is recursive in the indices of v and 8.



If u diverges then we have vT and v7s = p7 ¢ dom é.

If v] < 6(uT)] then vTs = uT ~p p = v as required.

Were 6(uT)| < v the case, which would, in particular, happen if »1 and v7s €
dom 6, we would have T ~p pu = §(uT). But then 6§ could not be P-diagonal. ]

An important generalization of the ADN Theorem was found by Sommaruga-Rosolemos.
It shares the proof with its predecessor.

1.3. ProposITION (General Fixed Point (GFP) Theorem, Sommaruga-Rosolemos [11]).
Suppose P is precomplete. There exists a binary total recursive function T', which, when
applied to indices of a partial recursive function é and of a recursive number v, produces
a number vTs € DomP s.t.

(i) ifvl, then vTs ~p v or vTs ~p 6(vT¢), and

(i) ifvT, then vTe ¢ domé or vTs ~p §(17%). L]

Below, T will denote the function corresponding to a totalizer 7" by the ADN and GFP
Theorems.

1.4. ProPosITION (Er3ov [5]). For P a positive equivalence the following are equivalent:
(i) S is precomplete.

(if) & is non-trivial and there is a total recursive function f s.t. for all i one has

(FT or (i) ~s @i(F(0)):

Proor. (ii)=>(i). Suppose the function f satisfies (ii). We construct a P-totalizer 7.
Given a recursive number v, consider the function ¢;(z) ~ v and let v7 = f(i). Clearly,
T is total recursive and is a P-totalizer, for assuming | we have that ¢; is total and
hence vT = f(i) ~p ¢i(f(i)) = v as required.

(i) = (ii) (Sommaruga-Rosolemos [11]). We are given a P-totalizer 7" and have to
produce an f as in (ii). Fix a diverging recursive number 7 and put f(i) = 77+:. Since
n1, we have by the GFP Theorem that either ¢;(77¢:)T or 77#:i ~p @;(nT¢:). The same
theorem asserts that the function f(i) = w7#: is total recursive q.e.d. "

1.5. DEFINITION. A non-trivial positive equivalence Q is uniformly finitely precomplete
if there exists a binary total recursive function 7, called a partial (Q-)totalizer, which,
when applied to an index of a recursive number v and a finite set D C Dom Q given by
a strong index, produces a number v"(P) € Dom Q s.t.

if v| and v € [D]g then v7(P) ~g v.

In the sequel we shall be feeding the finite set-arguments to partial totalizers and similar
functions in the liberal form of lists of elements and finite sets of elements of Dom Q.

As with precomplete positive equivalences, it is easily verified that uniform finite
precompleteness preserves under non-trivial epimorphic images.



An analogue of the GFP Theorem holds for uniformly finitely precomplete positive
equivalences:

1.6. ProprosITION (Relativized GFP (RGFP) Theorem). Suppose Q is uniformly
finitely precomplete. There exists a ternary total recursive function T, which, when
applied to indices of a partial recursive function § and of a recursive number v and a
finite set D C Dom Q given by a strong index, produces a number v™*(P) € Dom Q s.t.
under the condition rngé C [D], we have:

(i) ifv| and v € [D]gy, then v™*P) ~g v or v™*(P) ~g §(v™(P)), and
(i) ifvT orv ¢ [Dlg, then v7s(P) ¢ dom§ or v7¢(P) ~g §(v7s(D)).
ProoF. Fix a partial Q-totalizer 7. For v a recursive number put

v it v € [Dg < 6 ™)1,
pee S 6(ur®y i §(uP))| < v e [Dlg,
divergent if neither v € [D], nor S(um(P)].

Define v7s(P) = (D),

Suppose first v € [D]g < 6(u™P))]. In this case v € [D], and hence v™(P) =
p"P) ~g p = v as required.

Next treat the case §(u"(P))| < v € [Dlg: One has p = 6(u"P)) € g6 and,
therefore, v7s(P) = y™(P) g p = §(u"(P)) = §(v7#(P)), which satisfies the requirements
regardless of the behaviour of v.

Finally, if 1 diverges then we have v7 or v € [D]g, and v™¢(P) = 4P ¢ dom 6. =

The only notational distinction between a partial totalizer 7 and the function 7 of the
RGFP Theorem that we are going to maintain is that of arity.

1.7. CoroLLARY (Relativized ADN (RADN) Theorem, Montagna [8]). Suppose Q is
uniformly finitely precomplete. There exists a ternary total recursive function T, which,
when applied to indices of a Q-diagonal partial recursive function § and of a recursive
number v and a finite set D C Dom Q given by a strong index, produces a number
v75(P) € Dom Q s.t. under the condition rngé C [D]g we have:

1) 1fv] andv € then v7¢ ~g U, an
(i) ifvl andv € [D]g then v"*(P) ~g v, and

(i) ifv] orv ¢ [D]g then v™¢(P) ¢ dom . .

A positive equivalence M is called m-complete if for any positive equivalence S there
exists a monomorphism & — M.
To proceed with the next piece we introduce the following notation:

e for some y s.t. y ~5 z,
[‘P]]s(x) — { divergent if no such y exists,

where S is a positive equivalence and ¢ an arbitrary partial recursive function. Any
choice of y in the first clause would do as long as it results in a partial recursive [p]g.



More generally, this definition will work for any r.e. set H C Dom & X w, producing a
partial recursive function

E: for some (y,2) € H st. y ~s @,
[#]s(2) { divergent if no such (y, z) exists,

so that later we shall be freely using notation like, for example, [ ™! U %] s for partial
recursive ¢ and .

1.8. PrOPOSITION (Bernardi & Sorbi [4], Montagna [8]). Any uniformly finitely pre-
complete positive equivalence Q is m-complete. In particular, the number of Q-equiva-
lence classes is infinite.

ProOF. Since Q is non-trivial, there exist a,b € Dom Q with a £g b. Fix one such pair.
Given a positive equivalence §, we define a function A : DomS — Dom @ and a se-
quence of (indices of) partial recursive functions 6, : Dom @ — Dom @ by simultaneous
recursion:

h(z) = [R[z]2= M50 (),

a ify € [rnghfz]g <y~gaq,
where  6.(y) >~ < b if y ~g a <y € [mghlz]y,
divergent otherwise.

Clearly, h is total.
By induction on  we prove the following:

(i) fy,z< 2, then y ~s z iff h(y) ~g h(z), and

(ii) a¢ [rnghlz]g.
By (ii) of the IH we have

a if y € rnghlz]g,
bo(y) 2 4 b if y ~g a,
divergent otherwise.

From the same premiss it follows that é, is Q-diagonal and hence, by the RADN The-
orem, h(z) #g a € domé, implying a ¢ [rng h[z+1],.

If for some y < & we have y ~s z then [h[z]s(z) = h(z) for some z ~s zst. z< =
and, since 6, is diagonal, h(z) ~g [h[z]s(z) by the RADN Theorem. By (i) of the IH
one then has h(z) ~g [h[z]s(z) = h(2) ~g h(y).

In the case that no such y exists, and so [h[z]s(z)T, the RADN Theorem guarantees
that h(z) ¢ domé, 2 [mngh[z], whence h(z) £g h(y) for all y < z. Thus (i) of the
induction step is also established.

From (i) it now readily follows that h represents a monomorphism & — Q. ]

1.9. DEFINITION. A non-trivial positive equivalence £ is e-complete if there exists a
binary total recursive function 7, called a precision partial (€-)totalizer, which, when
applied to an index of a recursive number v and (a strong index of) a finite set D C
Dom &, outputs a number v™+(?) € Dom € s.t.



(i) ifv| and v € [D];, then v™+(P) ~¢ v, and
(i) if ¥1 or v & [D], then v"+(P) & [D],.

Once again, one can check that e-completeness is preserved by isomorphisms, although
it does not generally preserve under (non-trivial) epimorphic images.

1.10. ProrosITION (Montagna [8] and Bernardi & Montagna [3]). Let £ be a positive
equivalence. The following are equivalent:

(i) £ is e-complete.

(i1) & is uniformly finitely precomplete and there exists a total recursive £-diagonal
function 6, called an (£ )-shift.

(iil) & is uniformly finitely precomplete and there exists a total recursive function
A, called a collective (€ )-shift, s.t. for any finite subset D of Dom& given by a strong
index, we have A(D) ¢ [D],.

Proor. (i) = (ii). Clearly, £ is uniformly finitely precomplete for any precision partial
totalizer is a partial totalizer.

Let 74 be a precision partial £-totalizer and = a divergent recursive number. Put
6(z) = n7+(®). Since 71, we have 77+(®) ¢ [z],., that is, 6(z) #£¢ z. Thus § is an E-shift.

(it) = (iii). We have to obtain a collective £-shift A from a given £-shift .
For D a finite set given by a strong index and a diverging recursive number #, put

A(D) = x7v(tng JTD),

6(z) for some z s.t. y ~¢ x € D,
where 1Y) = {divergent if no such z exists,

T being a partial &-totalizer. Observe that v is £-diagonal, and hence the RADN
Theorem guarantees that A(D) ¢ dom+ = [D], as required.

(iii) => (i). We have got a partial £-totalizer 7 and a collective £-shift A. Here is
how to produce a precision partial £-totalizer: Let

A(D) if y € [D]g,

JTHD) — VTﬁ(D;A(D))’ where Bly) ~ { divergent otherwise

and observe with the help of the RADN Theorem that since 8 is diagonal, 7y is a
precision partial £-totalizer. n

1.11. CoroLLARY (Bernardi-Montagna Fixed Point Property, Bernardi & Montag-
na [3]). If 2 uniformly finitely precomplete positive equivalence Q is not e-complete
then for every total recursive function ¢ : DomQ — Dom Q there exists a Q-fixed
point z: x ~g ¢(z). "

Note that since the equivalence relation ~g of the above Corollary is r.e., the fixed point
in question can be effectively calculated by a recursive function: f(z) ~g @;(f(7)), but
f(?) does not have to converge unless ¢; is total (compare this with Proposition 1.4).



Most of the considerations of the present paper would have hardly been properly
grounded were it not for the

1.12. FAcCT. Pre- and e-complete positive equivalences exist.

COMMENT. The reader may consult Ersov [5], Visser [12], Bernardi & Montagna [3]
and Visser [12], Bernardi & Montagna [3], Lachlan [7] for (natural) examples of pre-
and e-complete positive equivalences respectively. ]

Finally, we would like to mention (without proof) a result which shows that the e-
and the precomplete equivalences occupy somewhat polar positions within the class of
uniformly finitely precomplete ones.

1.13. ProPoOSITION (Bernardi & Montagna [3]). For any e-complete £, uniformly
finitely precomplete Q and precomplete P, there are epimorphisms & — Q and Q@ — P.
In particular, the uniformly finitely precomplete positive equivalences are precisely the
non-trivial factorobjects of the e-complete ones. ]

2. Extending partial isomorphisms

Partial morphisms £ : § — T between positive equivalences § and 7 are partial map-
pings Dom §/~5 — Dom 7 /~+ that are represenied by some partial recursive function
h:DomS — Dom7 s.t for all € DomS, h(z) converges iff £([z]s) is defined, and, if
so, &([z]g) = [h(z)];. More generally, partial morphisms can be represented by appro-
priate r.e. subsets of DomS& x Dom 7.

A partial morphism € is finite if so is the set of equivalence classes on which £ is
defined. Note that any finite partial morphism can be represented by a finite set of pairs
of representatives of the equivalence classes. If such a set is given by a strong index,
one speaks of a strong representation.

A morphism p: 8§ — 7 is an eztension of a partial morphism ¢ : § — 7T if £ C p as
functions on equivalence classes.

A partial morphism € : § — 7 is a partial isomorphism if the partial mapping £ is
one-one, and there are S-equivalence classes on which ¢ is undefined if and only if there
are 7-equivalence classes with no £-preimage.

It has been known for some time that all e-complete positive equivalences are isomorphic
(Montagna [8], Lachlan [7]) as well as all precomplete ones (Lachlan [7]). We shall
demonstrate that the isomorphisms involved can be constructed as extensions of a large
class of partial isomorphisms. In the precomplete case, our proof is a straightforward
modification of the original isomorphism proof. The proof of the e-complete case does
not differ from the original one.

2.1. THEOREM (after Montagna [8]). Let & and &, be e-complete. Suppose a finite



set F' C Dom &y x Dom&; strongly represents a finite partial isomorphism € : &y — &;.
Then we can construct (a representation of) an isomorphism p : & — & extending £
effectively in a strong index of F'.

Proor (Montagna [8]). Starting from a set F' as in the statement, we compile an r.e.
set of pairs H D F representing an isomorphism g which then obviously extends €. This
is done by a standard back-and-forth argument of which, since the situation is perfectly
symmetric, we present just one step, namely, the first one.

Since F' strongly represents a partial isomorphism, we have for all (z,w), (y,2) € F
that  ~¢, y iff w ~¢, z. Let u be an arbitrary element of Dom &y — dom F.. Let 7} be
a precision partial £;-totalizer and define v by

7l (rng F
v=[FIE ™ ).

Note that if u ~¢g, z for (z,w) € F then [F]; (u) ~¢ w € g F' and hence v ~¢, w.
If u is in an &-equivalence class alien to F' then v ¢ [rng F, . Thus F U {(u,v)} also
represents a finite partial isomorphism and hence can be enumerated in H. ]

2.2. CorOLLARY (Montagna [8], Lachlan [7]). Any two e-complete positive equivalences
are isomorphic. n

2.3. COROLLARY. Let £ be an e-complete and § an arbitrary positive equivalence. One
can find monomorphic extensions of finite partial isomorphisms £ : § — £ effectively in
strong representations of €.

Proor. By Proposition 1.8 there exists a monomorphism 7 : & — £. From our
premisses it follows that £ o ™! is a finite partial automorphism & — &£ whose strong
representation one can find effectively from that of £. By Theorem 2.1 we can effectively
obtain a representation of a full automorphism p : £ — £ extending £ o n~1. It is then
easily verified that o7 : 8 — £ is the required monomorphic extension of &. ]

The property asserted by Corollary 2.3 of e-complete positive equivalences is used in
Lachlan [7] to define the notion of e-completeness. The following Proposition shows that
a slightly weaker property already distinguishes the e-complete positive equivalences
among the uniformly finitely precomplete ones. In particular, Theorem 2.1 does not
hold for precomplete positive equivalences.

2.4. PROPOSITION. Suppose a uniformly finitely precomplete positive equivalence & is
such that monomorphic extensions of finite partial automorphisms € : £ — £ are found
effectively in strong representations of the latter. Then & is e-complete.

Proor. Let £ be uniformly finitely precomplete and suppose a recursive function ¢
provides indices of monomorphic extensions of finite partial automorphisms strongly
represented by its argument. Fix a,b € Dom¢& s.t. a %¢ b. The function é(z) ~
Pu({(a,2)})() is then an &-shift and hence, by Proposition 1.10, £ is e-complete. .

Despite the failure of effective extendability for precomplete positive equivalences, we



are going to see that one can prolong not just finite, but arbitrary partial isomorphisms
between these. First, however, we point out that this is not the case for e-complete
equivalences.

2.5. PROPOSITION. Suppose & is e-complete. There is a partial automorphism of £
which can not be extended to a full endomorphism.

PRrROOF. Let 7 be the minimal positive equivalence: z ~7 y iff # = y. We shall produce
two monomorphisms 7,6 : T — & s.t. the partial automorphism o~! : £ — £ is not
extendable.
Let P be a precomplete positive equivalence. Since by Proposition 1.8 both P and
& are m-complete, there are monomorphisms £ : Z —P and A: P — &. Let n = Ao k.
To construct 4, let A be a collective £-shift. Define

t(z) ~ A(rngt[z;0,...,z).

Clearly, t is total. Furthermore, it represents a monomorphism Z — & for if = 1 v,
that is, ¢ # y, then either t(z) € rngt[y or t(y) € rngt[z and, therefore, t(z) ¢ t(y).
Let @ be the monomorphism represented by .

Suppose p : & — £ were an endomorphism extending ¢ o n7!. Let then a total
recursive function 2 : DomP — Dom& represent p o A.

Consider the function é§ : DomP — Dom P:

§(2) = [A™]g o t(h(=))-

Note that since p extends 6 o p~*, we have § = pon = po Aok and hence rngt C
[rtng k], = dom [A~1], because t represents ¢ and A represents goX. Therefore, [A~1], ot
and hence 6 are total.

Further, observe that we have h o 6(z) ~¢ ho [h™!], ot(h(z)) ~¢ t(h(z)), whereas
t(h(z)) #¢ h(z) by the definition of ¢. This gives h o §(z) ¢ h(z) and so §(z) £p z
for h represents a morphism P — &. Thus §é is a P-shift which is impossible since P is
precomplete.

The contradiction proves that no endomorphism p extending 4 o n~

1

1 exists. n

2.6. THEOREM (after Lachlan [7]). Let Py and Py be precomplete. Then any partial
isomorphism Py — Py has an extension to an isomorphism Py — Pj.

ProoOF. Let a partial isomorphism & : Py — P; be represented by an r.e. set A C
DomPy x DomP;. We assume that there are Pg-equivalence classes not mapped by &
as well as P;-equivalence classes left unmapped to by &, for otherwise € is a full-blown
isomorphism in which case nothing needs to be done.

We are going to describe a construction commencing in recursive Stages meant to
bring forth a representation H C DomPy x DomP; of the desired extension of £.

In various lower indices below, P; will be persistently replaced by iz, so that e.g. ~;
stands for ~p,.

Before and after each Stage, for both 7 we have a finite collection of i-clusters. These
are pairwise disjoint finite sets of elements of Dom P; and they are meant to simulate the
‘P;-equivalence classes. Elements of DomP; that are not found in any ¢-cluster are called
unatiended. Each i-cluster is ascribed one of the three statuses: homegrown, imported,
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or pre-engaged. Each homegrown i-cluster is assigned an index (of a recursive number).
Furthermore, there is a bijection * between the i- and the (1—%)-clusters. An i-cluster
A is homegrown if and only if the (1—)-cluster A* is imported and A is pre-engaged if
and only if A* is. (We stipulate that * works both ways so that ** =id.)

Before Stage 0 there are no clusters and so all elements of Dom Py and DomP; are
unattended and * is void.

At each Stage of the construction, new clusters may be created, previously unat-
tended elements may be added to a cluster, two already existing z-clusters may merge
to form a new i-cluster and the status of a cluster may change. The bijection * is then
updated in such a way that along with any newly born i-cluster A we also create a
new (1—zi)-cluster B and put A* = B; if a new element is added to a cluster A then
(AU{a})* = A*;if two i-clusters A and C merge then A* and C* also do and we have
(AU C)* = A* U C*; changes in status do not affect *. This will ensure that once at
some Stage for a € DomP;, b € DomP;_; there are clusters A and B respectively with
a € A, A* = B and b € B, then two clusters satisfying these conditions can be found at
any later Stage.

Let T° and T be Pop- and Pj-totalizers respectively. For i = 0,1 fix elements
z;,y; € DomP; s.t. z; € domh!~% and [y;], N domA!~% = (. Note that z; #; y;.

As we proceed to describe the Stages of the construction, the reader is invited to
inductively check that, apart from the fact that the construction adheres to the rules
indicated, the following clauses hold before and after each Stage:

(i) Any i-cluster only contains P;-equivalent elements of Dom P;.

(if) For any pre-engaged 0- and 1-clusters A and B with A* = B we have {([4],) =
[B];, and

(iil) For any homegrown i-custer A and its associated index j, l/JTl_i € A*.

While clause (iii) should be unproblematic, we shall be explaining wherever necessary
why the instructions of each Stage violate neither (i) nor (ii).

Stage 6n+: (i=0,1).

Find the smallest unattended number a¢ in DomP;. Fix an index j. (Since the
construction may later define the value of v;, this involves an appeal to the Recursion
Theorem.) Calculate b = 1/]711—' € DomP;_;.

If b is unattended, let {a} and {b} be a pair of new clusters with {a}* = {b},
{a} homegrown and {b} imported. Associate the index j to {a}.

If b is inside a (1—7)-cluster B, consider B’s current status:

Case A. B ishomegrown.

Let then k be the index associated with B. Define vy = a. Let a join the
imported i-cluster B* to form a new homegrown i-cluster B* U {a} with j the
associated index. The (1—i)-cluster B becomes imported and forms a "-pair
with the new i-cluster B* U {a}. (Note that we then have a = v ~; v} € B*
so that the new i-cluster remains inside a single P;-equivalence class.)

Case B. Bisimported.
Let k£ be the index associated with the homegrown i—clus}:gr B*. Define
vg = ¢1_; and v; = y1_;. (This implies 21_; = vx ~1—; ¥ € B3 b=

1—1 . “ . .
I/]T ~1-i Vi = Y1—; making 21_; ~1_; y1—; which contradicts the choice
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of #y_; and y;_;. Thus the Recursion Theorem prevents Case B from ever
happening. Formally, here and in similar impossible Cases below we should add
an instruction to halt the construction at this Stage.)

Case C. Bispreengaged. -
Put v; = yy_;. (Hence y1_; = vj ~1—; ¥]  =b € B C [domh%~1]
contradicting the choice of y;_;. Thus Case C never happens.)

—1

Go to the next Stage.

Stage 6n+2+17 (i=0,1).

Look for two numbers a, ¢ in distinct i-clusters, call these A and C respectively, s.t.
a ~; ¢ is verified in < n Turing steps with max(a, ¢) the smallest among such.

Go to the next Stage if @ and ¢ are not found. If they are, declare AUC to be a new i-
cluster *-paired with the new (1—z)-cluster A*UC™. (Note that since A 3> a ~; ¢ € C, the
new i-cluster lies within a single P;-equivalence class.) For other assignments consider
the following Cases:

Case A. Both A and C are homegrown.

Let j and £ be the indices associated with A and C respectively. Define
v = z/;rrl_‘. Call the i-cluster A U C homegrown with j the associated index
and declare the (1—i)-cluster A* UC* imported. (Note that the elements of A*
and C* are P;_;-equivalent for A* 3 V;‘-rl_l =V ~1_g V{l_' ec)

Case B. Both A and C are imported.
Let j and k£ be associated with A* and C* respectively. Put v; = z; and

vr = y;. (This will prevent Case B from happening for z; = v; ~; VJT' € A>

1 . . . .
a~;ceC> V{ ~; Vg = y; implies &; ~; y;, a contradiction.)

Case C. Both A and C are pre-engaged.

AUC and A* UC™ are defined to be pre-engaged. (We have [A], = [C]; and
hence it follows from the inductive clause (ii) that [4*],_, = [C*],_, and that
the new clusters are mapped one to the other by £.)

C ase D. Oneof the clusters, say A, is homegrown and the other, C, is
imported.

Declare A U C imported and A* U C* homegrown. Associate with A* U C*
the index that has been associated with C*. Suppose j is associated with the
homegrown A. Put v; = ¢ for some ¢ € C*. (This ensures A* > Vij_; ~_i Vj €

C*, so A* and C* are within the same P;_;-equivalence class.)

Case E. Aishomegrown and C is pre-engaged.

Both AUC and A*UC™ become pre-engaged. For j the index associated with
A we put v; = ¢ for some ¢ € C*. (This provides for A* 5 VJTI—' ~1-iv; €C,
and hence A* ~q_; C*.)

Case F. Aisimported and C is pre-engaged.
Let j be the index associated with A*. Put v; = y;. (This results in

Yi =V~ Ufi € A > a~; c€ [domh!~%], contradicting the assumption on y;.
So Case F is safe from happening.)

Go to the next Stage.
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Stage 6n+44:¢ (:=0,1).

Search for the least number ¢ € Dom™P; s.t. a is in a homegrown or imported
i-cluster and a € dom h'~% is detected in < n Turing steps.

Go to the next Stage if no such a is found. Otherwise, let A be the i-cluster with
a € A and consider the following Cases: '

Case A. A is homegrown.

Rule that both A and A* are pre-engaged and for j the index associated with
Aput vy = [A1~¥];(a). (Hencev; ~1_; v}~ € A* so that [A1~=%],(a) € [4*],_,
and, therefore, one of the equivalence classes [A], and [A*],_; is taken to the
other by £ as required.)

Case B. Aisimported. A
Let j be associated with A*. Put v; = y;. (Then y; = v ~; V;:[“ €A>dac
dom k=% contrary to the choice of y;. Thus Case B never happens.)

Go to the next Stage.

The description of the construction is now complete. We put H to be the set of all
such pairs (a,b) € Dom Py x DomP; that at some Stage of the construction a and b are
found in clusters connected with each other by *.

The systematic approach of Stages 6n+: takes care that any element of DomP;
gets sooner or later into some i-cluster, so that dom H'~% = DomP;. Stages 6n+2+i
guarantee that any a, ¢ € DomP; s.t. a ~; ¢ eventually find their way inside one and the
same i-cluster. Together with clause (i) preceding the description of our construction
this implies that H represents an isomorphism y : Pg — P;. Stages 6n+4-+i ensure
that every element a of [dom h'~%]; becomes in due course a member of a pre-engaged
i-cluster while clause (ii) says that £1-%([a],) = p*~?%([a],), entailing & C u q.e.d. ]

2.7. CoroLLARY (Lachlan [7]). All precomplete positive equivalences are isomorphic.
n

2.8. COROLLARY. Let P be a precomplete and S an arbitrary positive equivalence.
Then to any partial isomorphism £ : § — P there exists a monomorphic extension
pw:S—7P.

Proor. Similar to that of Corollary 2.3. ]

3. Fixed points and diagonals

Consider the following condition on a positive equivalence §:
(+) There is a binary total recursive function v : w x Dom S — Dom S s.t.
if y(z,z) ~s x, then ;(y(z,z))1 or ¢ (7(z,z)) ~s 7(i,z) ~5 .

Let us verify that (+) preserves under isomorphisms. Suppose 7 is the function
witnessing (+) for § and let total recursive functions A and k represent isomorphisms
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p:8 — T and pu~! respectively. For a partial recursive function ¢; : Dom7 — Dom 7

define @;i«(2) > k 0 ¢; o h(z). Note that * is an effective operation on indices.

Let B(Z,z) ~ hoy(i*, k(z)). We check that the total recursive function § witnesses
(+) for T:

First observe that ¢;» o y(i*, k(z)) ~ k o ; o h o y(i*, k(z)) ~ k 0 p; 0 B(i, ).

Suppose f(i,z) ~7 2. Then ko B(i,2) = k o h o y(¢*,k(z)) ~s k(x). Since ko h
represents the identity on S, we have y(¢*, k(z)) ~s k(z), and so, by (+) of S, @i~ o
(2%, k()] or i« 0 y(i*, k(z)) ~s k().

@i+ 0 7(7*, k(z))] means k o ¢; o B(i,z)1. Therefore, since & is total, ¢;(3(¢,2))7. If
pi= 0v(i", k(2)) ~s k() then p;(B(i,2)) ~r hokop;oB(i,z) = hopi oy(i", k(z)) ~1
ho k(z) ~7 z. This establishes (+) for 7.

3.1. Fact. Precomplete and e-complete positive equivalences enjoy (+).

PRrOOF. One takes (2, 2) = f(¢) for the function f of Proposition 1.4 in the precomplete
case and, for e-complete equivalences, (i, ) = 6(z) for é a shift. n

A property considerably stronger than (+) holds for e-complete positive equivalences:

3.2. PROPOSITION. Let & be e-complete. Given a strong index of a finite set D C Dom &
and (an index of) a partial recursive function ¢ : Dom & — Dom &, one can effectively
find a number n € Dom¢ s.t.

if n € [D]; or ¢(n) € [D]g, then ¢(n) ~¢ n.

FIRST PROOF. Fix a total recursive function h representing a monomorphism & — P
with P precomplete. Note that A[D represents a finite partial monomorphism and
hence so does (h[D)~1. By Corollary 2.3, a representation g of a monomorphism yx :
P — & extending the partial one represented by (A[D)~! can be found effectively in D.
Since P is precomplete, by Proposition 1.4 we can effectively find an m € Dom7P s.t.
ho@™+(P) o g(m) ~p m, where 7 is a precision partial E-totalizer. Note that one then
has g o ho ™+ (P) o g(m) ~¢ g(m). We claim that we can put n = g(m):

Suppose n = g(m) € [D];. Since go h is, modulo ~¢, the identity on [D]., we have
¢+ (D)(g(m)) ~¢ g(m) € [D], and hence (g(m))] and p(g(m)) ~& ™+ D) (g(m)) ~g
g(m) as required. If p(n) = p(g(m)) € [D]; then p(g(m)) ~e ¢™+P)(g(m)) ~¢
goho@™+P)og(m) ~¢ g(m) as was to be shown. n

SECOND PROOF. Define a recursive number

e+ Py if p(v™+P)) € [D], < v+P) € [D],,
v 8 @) it ymP) € D] < p(u+ ) € (D,
divergent otherwise,

where 7, is a precision partial E-totalizer and 6 an £-shift. We show that n = »™+(P)
satisfies the requirements of the Proposition.

Indeed, if v™+(P) € [D], or (™)) € [D],, then either p(v™+(P)) € [D], <
v7+(P) € [D]g or v™+P) € [D], < p(v™+P)) € [D],.

In the first case we have v = @(v™+(P)) € [D], and hence v™+(P) ~g v = (v7+(P))
which is all right. The second case can not happen for then [D], 3 v™*+(P) ~p v =
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8(v™+(P)), 6 failing to be diagonal. .

Finally, we show that the e- and the precomplete positive equivalences are the only
uniformly finitely precomplete ones satisfying (+).

3.3. PROPOSITION. Suppose Q is uniformly finitely precomplete and satisfies (+).
Then Q is either e- or precomplete.

ProoF. Assume Q is not e-complete and so, by the Bernardi-Montagna Fixed Point
Property, every total recursive function has a Q-fixed point. Given an index ¢ for a
partial recursive function, consider the function Az.y(7, z), where v is the total recursive
function featured in (+). Let y be its O-fixed point: ¥(i,y) ~g y. Then, by (+),
@i(v(Z, )7 or i(v(2,y)) ~g 7¥(3,y). Note that y is effective in i, so we have constructed
a total recursive function f(7) = v(i,y) satisfying clause (ii) of Proposition 1.4, thus
establishing that Q is precomplete. =

4. Between e- and pre-

While examples of e- and precomplete positive equivalences occur in everyday life, the
existence of uniformly finitely precomplete positive equivalences that are demonstrably
outside these two classes has, as far as I know, been avoiding human experience. This
circumstance appears to be somewhat regrettable in that it would, for example, be nice
to know whether the applicability range of Corollary 1.11 is materially wider than that
of ()= (ii) of Proposition 1.4.

The Bernardi-Montagna Fixed Point Property of Corollary 1.11 is in fact very close
to precompleteness, as is seen from (ii) = (i) of Proposition 1.4. However, Badaev [1]
shows that there exist countably many pairwise non-isomorphic (hence most of them
not precomplete) positive equivalences enjoying this property, namely that every total
recursive function has a fixed point modulo the equivalence relation; Badaev calls such
positive equivalences weakly precomplete. The next Theorem shows that there is a
weakly precomplete positive equivalence among uniformly finitely precomplete ones that
is not precomplete.

4.1. THEOREM. There is a uniformly finitely precomplete positive equivalence R that
is neither e- nor precomplete.

Proor. Let us fix an e-complete positive equivalence £ together with its collective
shift A. We are going to construct the desired equivalence R as a factor of £ so that
the uniform finite precompleteness of R is automatic. In constructing R we take care,
in a priority-like fashion, of the following two infinite series of requirements:

Py If g4 is total then it should have an R-fixed point.
N.: If @, is total then there should be an index 7 s.t. (%) £r v;.

Here d and e range over w. The priority ranking, which is useful to keep in mind, is
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Py, Ng, P1,Ny,... The positive requirements Py, if they are met, see to it that R has
the Bernardi-Montagna Fixed Point Property so that R can not be e-complete, while
the negative requirements N, insist that no total recursive function be an R-totalizer
so that R can be neither precomplete nor trivial.

The construction of R proceeds in Stages, before and after each of which each
positive and negative requirement is in one of the three states: a positive requirement
can either be vezed, allocaied, or settled; a negative one is vezed, targeted, or accomodated.
Each requirement preserves its state through any Stage unless this state is explicitly
changed by the instructions of that Stage. At each moment almost all requirements are
vexed.

Further, there are three kinds of labdels Z4, X, and Y., with d,e € w that can be
attached to an element of Dom&. A label Z; is attached the moment the positive
requirement Py becomes allocated. Later, the same requirement P; may become vexed,
in which case the label Z; is temporarily removed from the playfield to reappear at a
later Stage and, possibly, at a different location. If the requirement P4 changes its state
from allocated to settled then the label Z; is not removed, but becomes a sticker z4,
which means that it will stay where it is forever. At the same moment another sticker
sq appears at a certain element of Dom&. The labels X, and Y, are only present if
the current state of N, is accomodated. If, later, N, chances to change its state, these
labels are removed until N, becomes accomodated again and so on.

On top of that, the moment a negative requirement gets targeted, an index (of a
recursive number) is associated to it and stays with it until the requirement becomes
vexed.

We shall be using the names X, Y, and z; not just for the labels and stickers
themselves, but also for the numbers that these labels or stickers are (currently) attached
to, confusion being unlikely. The notation Dy, is reserved for the finite set of (current)
positions of all labels and stickers that, immediately before Stage m, label or stick to
some element of Dom &.

Before Stage 0 all requirements are vexed, neither any labels nor stickers are present
and so Dy = §J.

Now that all the characters are introduced, we stage the construction:

Stage 4n.

Pick the vexed positive requirement with the smallest index among such. Call it Py.

By Proposition 3.2 find a number m € Dom¢ s.t. either of the two conditions
m € [Dun]e and @4(m) € [Day], implies pa(m) ~¢ m. Attach the label Z; to m.
Declare all allocated positive requirements P4 with d’ > d vexed. Declare P, allocated.

Stage 4n+1.

Choose the smallest negative vexed requirement N,.

Associate an index ¢ (of arecursive number) to it. (Note that we may later define
the value of v;.) Call N, targeted.

Stage 4n+2.

Let P4 be the smallest positive allocated requirement s.t. ¢4(Z4) converges in < n
Turing steps. (Just go to the next Stage if there is no such Pyg).

From now on the label Z; becomes a sticker z4 and we put the sticker sq on the
number ¢4(z4). Declare all allocated positive requirements Py with d' > d and all
accomodated requirements N, with e > d vexed. Put P, itself in settled state.
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Stage 4n+3.

Find the smallest targeted requirement N, s.t. (%) converges in < n Turing steps,
where 7 is the index associated with N.. Go to the next Stage if there are none.

Put v; = A(Dany3;pe(i)). Attach labels X, and Y, to ¢.(2) and v; respectively.
(Note that one then has X, +#¢ Y..) Call N, accomodated. Declare all allocated
requirements Py with d > e vexed.

The description of the procedure is now complete. We let ~% be the minimal equiv-
alence relation containing ~¢ and s.t. 24 ~ sg whenever these stickers are deployed by
the construction just described.

Claim 0. Every requirement, positive or negative, can change its state only
finitely often, and the final state of any requirement can not be vexed.

This is established by induction on the priority ranking of requirements. For this it
is sufficient to note that a positive (negative) requirement goes from vexed to allocated
to settled (from vexed to targeted to accomodated) unless some requirement of higher
priority changes its state, in which case the requirement in question may become vexed.

Thus every requirement reaches a final state. Moreover, inspection of Stages 4n
and 4n+1 reveals that this state can not be vexed, for vexed requirements are system-
atically allocated or targeted.

Claim 0 also implies that each label is attached and removed at most finitely often,
and that the same holds for indices of recursive numbers associated to negative require-
ments. By 7, we shall denote the last index ever associated to the requirement N, and
we use the notation ¢} for the number of the Stage in our construction at which i, was
associated with N,.

Similarly, zq and z4d} will from now on stand for the final position of the label Z;
and the number of the Stage at which this happened, regardless of whether or not Zg4
remains a label forever or becomes in future life a sticker. If the final state of P is settled
then sq; and sql} are the position and the date of birth respectively of the sticker sq.
Finally, ¢, = ¢.(3.) and y, = v;, are the final positions of labels X, and Y, in case the
requirement N, is eventually accomodated, with y.{ the number of the Stage when this
final accomodation took place.

Claim 1. Ford# d one can not have zq ~¢ zq unless z4 ~g sq OF 2gt ~g Sar.
Suppose w.lo.g. zgll < zad. Then 24 € D,y and therefore by inspection of
Stages 4n it is seen that zg ~g 24 € [Dzd:u]g can only happen if 24 ~¢ g (24) = sar.

Claim 2. For N, eventually accomodated, one can not have y, ~¢ z4 unless
Zd ~E Sq.

If yol} < 24|} then y. € D,y and, as in Claim 1, y, ~¢ zq implies 24 ~¢ sq. If
ZdU» < yeU then 2q € ‘Dyer' So Ye = Vi, = A(Dye-u;xe) 765 Z4.

Claim 3. Suppose Py and Py are both eventually settled and zq #¢ sa ~¢
Zq 765 sqgr. Then 2zl < 2zl < sqrdl < sqd).

We clearly have z4} < sa{l and z4l} < sql}, for before a positive requirement is
settled, it has to be allocated.

Let us show z4l} < zg:|l. If the opposite, z4:|l < z4l}, held then z4 € D,,y and the
instructions of Stages 4n would allocate Z; in such a way that sq = @4(z4) ~¢ zar €
[D;,y]p only if 24 ~¢ @a(2a) = s4, quod non.

Next we shall see that d < d’. For suppose otherwise, ' > d. As is already

17



established, we either have zgl} < sql} < zg) or 23l < 24} < sqll. In the former
case sq € D,,,y, so zg can not be £-equivalent to sq because zg: ¢ sa (and this
contradicts the assumptions of the Claim). In the latter case we have that the state
of P4 immediately before Stage z4| is allocated and, since P4 has lower priority, it
becomes vexed at this Stage contradicting z4l} < za{}. Thus d < d'.

Finally, if s4{} < sq/d} were the case then the instructions of Stage sq4l} would make
P4 vexed at this Stage for d < d', i.e. Py has lower priority, and hence sql} < za{},
whence it follows by inspection of Stages 4n that since sq € Dy, zar ~¢ $q could only
happen if zg ~¢ 54/, quod non. Therefore, sg{ < sq¢l} and the Claim is established.

Our aim is to prove that all the requirements P4, N, are met. For P4 this is easy:
Consider z4. If @4 is total then ¢4(24)| and for a certain n, Stage 4n+2 will make a
sticker out of the label Z; and deploy a sticker sq4 so that zq ~z s4 = @a4(z4) as required.

We turn to N.. Assuming . total we have @(i.)| and hence z. and y. are eventu-
ally defined via Stage 4n+3 for an appropriate n. We are going to show that z. #£r y.
for then ¢.(i.) = z. #®r Ye = vi,, Which satisfies N,.

First note that z, ¢ A(Dy.y;2.) = y. and so the only possibility for z. ~» y. is
that there exists a finite sequence of pairs ((ag, b),(a1,b1),-..,(an,bpn)) s.t. b; ~g azyy
for all # < n, ag ~¢ z. and b, ~¢ ye, and for all j < n there is an eventually settled
positive requirement Py, s.t. {a;,b;} = {24;,54;}. We clearly can assume zg; ¢ Sd;
for otherwise we can just delete the pair (a;,b;) from the sequence.

By induction on j from n downto 0, using the above assumption and Claims 1 and 2,
one obtains that (a;,b;) = (24;,s4,) for all j < n, so that s4, ~¢ 24;,,, 24, ~¢ z. and
$d, ~¢ Ye. 1 applications of Claim 3 give then that

ZdoU<"'<Zdn'U'<'9dnU<‘“<5do~U~

Next we show z4 || < yell < sq,{. Indeed, we can not have y.§ < 24, because
then y. € D,, y and, by the instructions of Stages 4n, we only can have g4, (z4,) =
Sd, ~¢ Ye € [Dag, ] if 2a, ~¢ ¢a,(2a,) = sa, Which, as we have agreed, is not the
case. Neither can we have sq, |} < yel for'if so then sq, € D, y and hence y. = v;, =
A(Dy,y;2e) #¢ sa, contrary to what we have seen above.

Let us now consider the relative priority ranking of P4, and N,.

Suppose do < e. In this case N, becomes vexed the moment sq, is deployed and
we can not have y.|} < sq,{, contrary to what we have established. Try e < dy. Since
24, < yell, we have that before Stage y.d} the requirement P4, is allocated, so Stage y.{
puts Py, in vexed state and one can not have z4,} < y.{, again, contradicting earlier
considerations.

The contradiction proves that no finite sequence of pairs of stickers stretches from
z. to y. and, therefore, z, %% y. q.e.d. ]

The behaviour of labels X, and Y, in the proof of Theorem 4.1 is in effect a limiting
computation of the point at which the function ¢,, if total, fails to be an R-totali-
zer: T, = @e(te) #*r Vi. = Ye. That one can not pinpoint this failure in a more
straightforward way is seen from the following

4.2. PRroOPOSITION. A uniformly finitely precomplete positive equivalence Q is e-
complete iff the failures of Q-totalization are effective, i.e. there exists a total recursive
function q s.t. for all i, if @; is total, then vy;)| and ¢i(q(2)) #@ V(i)
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ProoF. (only if). Let Q be e-complete and § a Q-shift.
Given an ¢, define v ~ 8(pi(k)) and let ¢(i) = k. Suppose ¢; is total. Then
vi = 6(pi(k))] and ¢i(q(2)) = pi(k) %o vk = vy(i)-

(if). Suppose we are given a total recursive function ¢ as in the statement. We
construct a Q-shift 6.

Given an z, let ¢ be s.t. p.(y) = z, all y. Let 6(z) = vy). Observe that since ¢
indexes a total recursive function, we have v,(.)| and 6(z) = v(c) #g pc(g(c)) =z. =

Incidentally, note that we can not have v,(;)| for all 7 in the statement of Proposition 4.2
for, were this to be the case, we would get v (s) %o ©s(q(s)) = vy(s) for s the index of
the universal partial recursive function ¢,(z) ~ v, which is absurd.

5. Fixed points of endomorphisms

Here we characterize those subsets of Dom Q for Q uniformly finitely precomplete, that
can be obtained as the sets of fixed points of an endomorphism of Q. For precomplete Q,
this question is implicitly raised by the Main Lemma in Montagna [9].

5.1. PROPOSITION. Let Q be a uniformly finitely precomplete positive equivalence and
let W be an r.e. subset of Dom Q closed under ~g. The following are equivalent:

() There is an endomorphism p of Q s.t. {z € Dom Q | u([z]g) = [z]g } = W.
(i) W is nonempty unless Q is e-complete.
ProoF. (i) =>(ii) is obvious.
(ii) = (i). Consider first the case of non-empty W. Fix a € W. We define a total
recursive function h to represent the desired p:
h(z) = [id[W U h[z] 3= 8590 (g),

a ify~g 2,

where  ag(y) ~ { divergent otherwise.

Here 7 is a partial Q-totalizer and its lower index is appended via the RGFP Theorem.
We shall demonstrate by induction on z:

(i) fy,z<zand y~g z, then h(y) ~g h(z), and
(i) Hy<z, then h(y) ~gyifyeW.

This clearly implies that A represents an endomorphism g whose fixed points are pre-
cisely the members of W.
Let us now proceed with the induction step. There are two Cases.
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Case 1. z¢gW.

If there is a y < z with y ~g z then, by (i) of the IH, [A[z]g(z) ~g h(y),
(id[W)(x)1 and, since a, is diagonal, by the RADN Theorem there holds A(y) ~g
[zl g(z) = [id[W U h[z] 5 (=) ~g h(z). (ii) follows then by (ii) of the IH.

If no such y exists then [id[W U h[2]4(2)1, which by the RADN Theorem implies
h(z) ¢ doma, = [z]y, that is, h(z) #g = as was to be shown.

Case 2. agfgzeW.

Here we have (id[W)(z) = @, and [A[z]4(z) ~g # or [h[z],(2)1 by the IH. There-
fore, since a; is diagonal, the RADN Theorem gives h(z) ~g [id[W U hlz]4(z) ~g =
so (ii) is established. (i) follows from (ii) of the IH.

Case 3. a~gzeW.

Now [id[W UA[z]4(z) ~g = by the IH, and, for all y, a;(y) ~g y implies y ~g
a ~g z. By the RGFP Theorem this results in h(z) ~g [id[W U h[z]4(z) ~g =, or
az(h(x)) ~g h(z), which entails h(z) ~g z all the same. (ii) is proven. (i) follows
by IH.

Thus we have constructed the required p : @ — Q under the assumption W # §.

Finally, we consider the situation when W = §f and Q is e-complete. We have
to produce a representation h of an endomorphism Q — Q without any fixed points.
Although such endomorphisms are known from a particular example of e-complete posi-
tive equivalence (cf. Bernardi [2] or Bernardi & Montagna [3]), we give a coordinate-free
construction. Here it is:

hlz;
h(z) = [A[z]g ") (a),
where 7y is a precision partial O-totalizer. One easily verifies the inductive clauses
(i) fy,z< e and y~g z, then h(y) ~g h(z), and

(ii) If y < z then A(y) #gq y
that clearly imply that h represents a fixed point-free p. ]
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