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Dick de Jongt &
stbent Visser

ABSTRACT: In this paper we study embeddings of Heyting Algebras. It is pointed out that such em-
beddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in
the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra
on countably infinitely many generators, and those embeddable in the Heyting Algebra of Heyting’s
Arithmetic (HA). A partial result is obtained. We show that every recursively enumerable prime

Heyting Algebra is embeddable in the Heyting Algebra of HA*, a ‘natural’ extension of HA.

1 Introduction

This paper sprung from an interest in the Heyting Algebras of Constructive Arithmetical

Theories. This interest was in its turn inspired by an interest in the Propositional

Derived Rules of constructive Arithmetical Theories. We study and compare four speci-

fic Heyting Algebras in some detail:

e The free Heyting Algebra on countably infinitely many generators, in other words:
the Heyting Algebra p of the Intuitionistic Propositional Calculus (IPC).

 The Heyting Algebra ;5 of Heyting's Arithmetic (HA).

» The Heyting Algebra ©;, of BX.,-sentences in HA (here BY., is the set of Boole-
an (or perhaps more appropriately: Brouwerean) combinations of .,-sentences).

* The Heyting Algebra yy,« of HA¥, an arithmetical theory studied in Visser[82].

We ask ourselves which RE Heyting Algebras can be embedded in our target algebras.
As we will see the answer to this question also determines what the Propositional
Derived Rules for the various theories are. A complete answer has only been obtained
for 9ya*. All RE algebras of which one could reasonably expect it, i.e. those
satisfying the property of primenes (corresponding to satisfying the disjunction
property), are embeddable in Hya*, and in consequence, only rules directly derivable
in intuitionistic logic are rules under which HA* is closed. This property of HA* is a
nice one —and in a surprising manner enables one to prove some properties of HA
itself— but it does not seem to hold for more usual theories. Neither in 9a, nor in

Dipc itself can all these algebras be embedded, since both these theories validate many



additional rules not derivable in intuitionistic logic, the best known being:

—-A—(BvC) / (-wA—B)V(-=A—-C)). (Independence of Premiss Rule)
It is even an interesting open question whether in HHa and in Hipc the same Heyting
algebras can be embedded. This is where ©ya comes in: it is possible to show that in
Sya and in Hipc at least the same finitely generated Heyting algebras can be
embedded. It follows that rules validated by formal arithmetic when one restricts one-
self to substitutions of propositional combinations of ¥.;-sentences, and rules validated

by the propositional calculus are the same.

We state some sample results:

* Any RE prime Heyting Algebra § can be embedded in Hyyp*. (5.1)

* There are X,-sentences A and B such that the subalgebra of Dpa* generated by A
and B is RE, non-recursive. (7)

* Let & be a Heyting Algebra on finitely many generators, which is embeddable in
Orpc- Then § is the Heyting Algebra of a finitely axiomatizable IPC-theory. (2.3)

* Let $ be a Heyting Algebra on finitely many generators. Then & is embeddable in
Sy iff O is embeddable in pe. (6.2)

The paper is organized as follows. In section 1 we define Heyting algebras in the
presentation most useful to our purposes. In section 2 we introduce the notion of
embedding and a connected notion of propositional formulas exactly provable for
sentences of a theory. Propositional formulas with no iterations of implications on the
left (NNIL formulas) turn out to play an important role. In section 3 and 4 necessary
facts about HA and IPC, and HA™ respectively, are given. In section 5 the above
mentioned ‘RE universality’ of HA* is proved. In section 6 Syap is treated. Finally, in
section 7 it is shown that, in consequence of the previous results, there is a Heyting
algebra on two generators which is RE, but non-recursive, that can be embedded in

Dua*, whereas such an algebra could never be embeddable in ©ya or Hipc.

1.1 Acknowledgements: Most of the results of this paper were obtained
during an exceptionally inspiring visit of both authors to the Katedra Logiky of Prague
University and the Institute of Computer and Information Science of the Czech Acade-

my of Sciences. We thank the Prague logicians for their wonderful hospitality.



Some of the main methods employed in this paper were invented by Volodya
Shavrukov (see Shavrukov[93]) and further developed and simplified by Domenico
Zambella (see Zambella[92]). The work of Shavrukov and Zambella concerns embed-
dings of RE Diagonalizable Algebras into Diagonalizable Algebras of Classical Arith-

metical Theories.

A major tool of the present paper is also Pitts’s Uniform Interpolation Theorem (see
Pitts[92]).

1.2 The classical case: Before going on, let’s briefly look at the Boolean
Algebras of classical Arithmetical Theories. The Boolean Algebras of all consistent RE
arithmetical theories extending Q are isomorphic to the free Boolean Algebra on X,
generators, i.e. to the Boolean Algebra of the Classical Propositional Calculus, say:
Bpc- As far as we can trace this result is folklore. It follows from three observations.
First: the Boolean Algebras of all consistent RE arithmetical theories extending Q are
countably infnite and (by Rosser’s Theorem, see also 1.4) atomless. Second: %CPC is
countably infinite and atomless. Third: all countably infinite atomless Boolean Algebras

are isomorphic.

It is not difficult to show that every countable Boolean Algebra can be embedded into

§BCPC‘

1.3 Heyting Algebras: A Heyting Algebra © is a structure (H,A,v, L ,—),
where (H,A,v, L) is a lattice with bottom L. We demand that & is non-trivial, i.e. that
H contains at least two elements. Let x<y be defined by xvy=y. — is a binary operation
satisfying: XxAy<z < x<(y—z). Itis easily seen that if a partial order can be extended to a
Heyting Algebra such an extension is unique. Heyting Algebras can be shown to be
distributive lattices. Conversely every finite distributive lattice determines a Heyting
Algebra.

There are many good sources for Heyting Algebras. We just mention van Troelstra &
van Dalen[88b].



We will write:

e T:i:=1-1,

s —X:=Xx—1,

* XYV =XDY)A(Y—X),
o DEAKX) = AX)=T,

where A is a polynomial in A,v, L,— and x is a sequence of elements of §.
Note that § can be recovered from k=, since A(x)=B(y) & 9= AX)<>B(y).

Define:

e TH=8 :e fisan embedding of H into &
e D=8 : [:H=8K for some |

e H=R . H=8 and K=9

Clearly = is a preorder on Heyting Algebras with induced equivalence relation =.
1.3.1 Example: Equivalent Heyting Algebras need not be isomorphic.

It is easily seen that any linear order with endpoints determines a Heyting Algebra. E.g.
we find: x—y := T if x<y, x>y =y if y<x. Moreover an embedding of linear
orderings determines an embedding of Heyting Algebras. Consider the algebras given
by the real interval [0,1] and by [0,1/2]U{1}. On the one hand these algebras are

equivalent, on the other they are not isomorphic. O

Let T be any consistent theory in constructive propositional logic or in constructive
predicate logic. We take $ to be the obvious Heyting Algebra given by the T-provable
equivalence classes. Sometimes we will consider only equivalence classes of a subset
X of the language of T, which is closed under the propositional connectives. In this

case we write: Hr(X).

We can go from theory to algebra. Obviously it is sometimes natural to go back and
recover theories from algebras. We introduce some notions relevant to this motion,
which is executed by choosing a set of generators.

* A numbered Heyting Algebra H is a pair (f,9), where

(i) fis a function (not necessarily injective) from either n={0,...,n-1} or w to HS?;



(i) § is generated by the range of f.

* A numbered Heyting Algebra is finitely based if dom(¥) is finite.

o DI = {(F. Q) (f.R) is finitely based and K=9}

&, is the language of IPC if v=c, and the language of IPC restricted to p,...,p,_,
if v=n. We often write £ for £ .

* For Ae gdom(f): HEA := 9=A[f], where A[f] is the result of substituting fi for p;
in A (for each relevant i). It is pleasant to use = also when A contains P; for
j& dom(f). In this case we substitute T for P}

« Th(H) :={Ae ﬂdom(f)l H=A}.

1.3.2  Fact: Let H=(f,9) be a numbered Heyting Algebra. Then & is isomorphic

Proof: Trivial. |

Define:
* A numbered Heyting Algebra H is RE if Th(H) is RE.
* A Heyting Algebra is RE if it can be extended to an RE numbered Heyting Algebra.

Note that the Heyting Algebra of an RE theory is RE.

Let T be any theory and let f be a function from the propositional variables to the
language of T. We write A[f] for the result of substituting the f(p;) for p; in A. Define:
*  Ak{B:< V{ THA[f] = T-BIf].

We say that the inference form A to B is an IPC-derived rule for T. Since all derived

rules we will consider in this paper are IPC-derived we will suppress the ‘IPC’.

[PC-derived rules are studied in detail by V.V. Rybakov. A good reference is Ryba-
kov([92], where it is shown that the IPC-derived rules for IPC are decidable.

1.3.3 Fact

i) AFiB < VHell9ll (H=A = H-=B)
i) NOICIHyll and A B = AFB.
iii) H=K = UK.



Proof: Obvious. g

1.4 The density of Heyting Algebras of Arithmetical Theories

Evidently many properties of Heyting Algebras are not captured by embeddability
results (see example 1.3.1). Such properties are not the main subject of this paper, yet
they at least merit a brief comment here. Moreover many properties of the Boolean
Algebra of Classical Arithmetical Theories can be generalized to the constructive case.

We briefly illustrate this for the property of density.

Let i-Q be the constructive version of Robinson’s Arithmetic.

1.4.1 Fact: The Heyting Algebra of a consistent RE extension of i-Q is dense,

i.e. between every two points there is a third one.

Proof: Fix a consistent RE extension of i-Q, say T. Let O stand for (the formalization
of) provability in T. Consider any two sentences A and B such that O0(A—B) and not
O(B—A).

Interpolated Remark: The usual proof of this theorem for the classical case would
be as follows. Take the Rosser sentence R of T+B+—A. L.e. something like:

Tk R & O(BA=A)—>—-R)<O((BA—-A)—R),
holds. Here < is the witness comparison relation, which is defined between formulas
having an outer existential quantifier. There are two witness comparison relations,
which are defined as follows:
. (3x Dx < 3Jy Ey) := 3x (Dx A Vy<x —Ey),
. (3x Dx < dy Ey) := 3x (Dx A Vy<x —Ey).
The element between A and B will be: C := (Av(BAR)). In constructive logic one cannot
even conclude from the data that T+B+—A is consistent. The correct constructive proof

is just a slight variation on the classical argument. O End of Remark

Define by the fixed point theorem a sentence R such that (verifiably in T):
R < O((BAR)—A) < O(B—(AVR)).
Let S := O(B—(AVR)) < O((BAR)—A) and C := (Av(BAR)). Clearly C(A—C) and

(@)




O(C—B).

Wehave:
O(C—A) — O(BAR)—A)
— RVS.
On the other hand:
O((BAR)—>A) AR — O((BAR)—>A) A OR
— OB-A).
And:
O((BAR)—>A) AS — O(BAR)—A) A OB—(AVR))
— OB-A).
Combining we find: O(C—A) — O(B—A). Ergo not O(C—A).

Also we have:
OB-—-C) — OB—(AvR))
— RVS.
On the other hand:
OB—(AVR)) AS — OB—(AVR)) AOS
— OB—(AVR)) AO-R

— OB—-A).
And:
OB—(AVR)) AR — OB—(AVR)) A O(BAR)—>A)
— OB—A).

Combining we find: O(B—C) — O(B—A). Ergo not O(C—A).

2 Embeddings of Heyting Algebras in Free Heyting Algebras

Every Heyting Algebra on countably many generators is the homomorphic image of
O1pc- In other words: it is the Heyting Algebra of some theory in IPC. On the other
hand not every Heyting Algebra on countably many generators can be embedded into
D1pc- First of all Hipe is prime, ie.: YpcE(xVvy) = (DipcFx or DpcFy), or, in
other words: IPC has the disjunction property. Clearly subalgebras inherit primeness. In
this section we illustrate that many countable prime Heyting Algebras are not embedda-
ble in Hpc. We provide some information about the Heyting Algebras on finitely

many generators that are embeddable in yp. The problem of giving a neat characteri-



zation of the algebras embeddable in yp is still open.

Whenever ‘+’ is used without exhibiting a theory we intend provability in IPC.

2.1 Example: There are many non-trivial derived rules for IPC. For example:
e F (—A>A) > (Av-A) =+ —AV-A (De Jongh[82])
e F-A—>BVC) =+ (-A->B)v(-A—>0) (Independence of Premiss Rule)

This means that every embeddable algebra § will satisfy:
i .gél: (—l—ﬂA—)A) 4 (AV—'IA) = @|= —AvV—A

2.2 Example: We give an infinitary derived rule. Let F (p) be an enumeration
of the formulas presenting the non-top elements of the Rieger Nishimura Lattice. (For
information about this lattice, see e.g.: Troelstra & van Dalen[88a], p49.) We have:

e (Foralln- F (A)—>B)=FB.

It follows that in an embedded Heyting Algebra for any x there can be no element

between the F (x) and the top.

Proof: Suppose for all n - F_(A) — B. Let p be a propositional variable not in A and
B. It follows that for all n: -+ F (p) — ((p<>A)—B). By Pitts[92] there is a uniform
pre-interpolant of ((p<>A)—B) w.r.t. to the variables in this formula unequal to p. This
means that there is a formula C with just p free such that for any formula D containing
no variables of A or B we have:
FD - (pe~A)—B) &+ D—-C.

(Following Pitts we could write fhe formula C as: Vq((p<>A)—B), where q represents
the propositional variables in A,B.) It follows that for every n: - F (p) — C. Ergo
(since C only contains p): C and hence - ((p<>A) —B). Substituting A for p we find:
+B. A

2.3 Theorem: Every Heyting Algebra on finitely many generators that is
embeddable in Opp is the Heyting Algebra of a finitely axiomatizable IPC theory.

Proof: Suppose the generators of the algebra go to A,,...,A . We have:
F B(A,.AY) © F (P OADAAPOA)) = B(ys...py)-



We suppose that {pl,...,pn}mVAR(Ai)=@ and VAR(B)S{p,;....p,}- Now let C be
the Pittsean post-interpolant of ((p;<>A)A..A(p,<>A)) W.r.t. the variables in the A;.
So, if these variables are q, we could write C as: 3q((p;<>AA...A(p,<>A,)). The
only variables of C are the p; and we have: - B(Al,...,An) < FC—B. A

Which formulas C are axioms of Heyting Algebras on finitely many generators that are
embeddable in Hpc? We call such C IPC-exactly provable. In this paper we will ab-
breviate IPC-exactly provable by exact. So C(p,,...,p,) is exact if there are A,...,A}
such that for all B(p,,....p,): FB(A,...,A,) & FC—B. The notion of exactly provable

formula was introduced in De Jongh[82].

Clearly by the above the exactly provable formulas are precisely those which are
provably equivalent to Pitts' formulas of the form 3q((p;<>ADA...A(p,<>A,)), where

q contains precisely the variables occurring in the A; and where none of the p; isin q.

We say that A is prime if 9ypc, 4 is prime, i.e. IPC+A is consistent and IPC+A has
the disjunction property:
e forall B,Ce+FA—-BVC)=+FA—-Bor-A—C.
In an alternative formulation, adhering to the convention that the empty disjunction is
L, IPC is prime if for every finite set of formulas X:

FA—VX=3BeX+A—B.

We give some properties of exact formulas and provide some special classes of such
formulas. Our primary aim is to show that the prime NNIL-formulas are all exact.
NNIL-formulas are formulas with No Nestings of Implications to the Left. Let’s
define NNIL more precisely. Let Sub(A) be the set of subformulas of A. We have:

¢ Ais in NNIL iff for all (B—C)e Sub(A): B does not contain —.

NNIL-formulas were studied in Visser[85] and Renardel[86]. The lemmas we give,
can, however, also be used to establish exactness for more formulas than our target

class. The result on NNIL will be used in the proof of 6.2.

2.4 Observation: If A is exact, then A is prime.



2.5 Observation: Suppose p does not occur in A. Then (p—A)AB is exact if

B[p:=pAA]is.

Proof: Let f be the embedding for B[p:=pAA]. We show that g:=[p:=pAA]of is the
embedding for (p—A)AB. We have for C with variables from p,A,B:
F Cg <+ Clp:=pArAlf |
< + Bp:=pAA] — C[p:=pArA]
S (p—>AAB) > C.
(The last equivalence from left to right is because - (p—A) <> (p<>(pAA)). From right
to left is by substituting pAA for p.) a

We say that a formula is confined if it is a conjunction of formulas of the form p—B.
A formula is strictly confined if it is confined and if for any two distinct conjuncts the
antecedent variables are different. (We consider T as the empty conjunction, so T is

strictly confined).
2.6 Corollary: Any confined formula is exact.

Proof: Suppose A is confined. First rewrite A to a strictly confined formula A' by
merging different conjuncts p—B and p—C to p—(BAC). Suppose A' is of the form
(p—D)AE. This formula is equivalent to A":=((p—D[p:=T ])AE). According to
observation 3 A" is exact if A*:=E[p:=(pAD[p:=T ])] is. Clearly A¥is again a strictly
confined formula with less conjuncts than A'. Repeat the procedure till all conjuncts are

eliminated and we end up with T. T is exact by the identity substitution.

Note that it follows that confined formulas are prime.

2.7 Observation Suppose p does not occur in A. Then (pAA) is exact if A is.

Proof: Suppose f is the embedding for A. Take g:=[p:=T Jof. Then g is the

embedding for (pAA). Let the variables of B be among the variables of (pAA), we have:
FBg ©F Blp:=T]f

<+ A-B[p:=T]
< F (pAA) — B. a

10



2.8 Theorem: Every prime NNIL-formula is exact.

2.8.1 Lemma: Suppose p does not occur in A. Then A is prime if (pAA) is.

Proof: Suppose (pAA) is prime. Let X be a finite set of formulas and suppose
FA—VX. Without loss of generality we may assume that p does not occur in X. It
follows that - (pAA)—\/X and hence - (pAA)—B for some Be X. By substituting T for
p we find: - A—>B. Q

Proof of 2.8: Let A be a NNIL-formula. We will reduce A to a formula A,. The
formula A satisfies one of the following properties: (i) A is confined or (ii) A is a
prime NNIL-formula and has strictly less propositional variables than A. Moreover we
have: if A is exact, then A is exact. In the first case we are done, in the second case we

repeat the procedure.

Step 1: We first remove T and L from A by the obvious procedure. This only fails
when we end up with either T or L. We cannot end up with L, since A was supposed
to be prime and hence non-refutable. If we end up with T, then A is exact by the

identity substitution. If we do not end up with T go on to step 2.

Step 2: Write A in disjunctive normal form (treating the implications as atoms). Since
A is prime, it is equivalent with one of its disjuncts, say A'. A' is a conjunction of
atoms and implications. If the number of atoms is zero go on to step 3. Otherwise write

A' in the form pAC. Clearly pAC is equivalent to pA(C[p:=T]). Put Aj:=C[p:=T].

Step 3: A' is a conjunction of implications. Reduce subformulas of the form
(BAC)—D to (B—(C—D)) and subformulas of the form (BvC)—D to (B—>D)A(C—D).
Repeat the procedure till no such subformulas are left. Let A, be the result. Since A’

was in NNIL, clearly A is confined. Q
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3 Some useful facts about IPC and HA

In this section we provide some technical preliminaries to the result of section 5.

We suppose the reader is familiar with Kripke models for IPC (see Troelstra & van
Dalen[88a], or Smorynski[73]). To fix notations: a Kripke model is a structure K=
(K,<,E), where K is a non-empty set of nodes, < is a partial ordering, F is the atomic
forcing relation: it is a relation between nodes and propositional atoms, satisfying: k<k'
and k=p = k'Ep. The relation = can be extended to the full language of IPC in the
standard way. We write [<= A for: Vke K ki A. A rooted Kripke model [K is a structure
(K.kq,<F), where (K,<,F) is a Kripke model and where k,eK is the bottom element
w.r.t. <. For any ke K K[k] is the model (K'k,<'=", where K":={k'lk<k'} and where
<'and F' are the restrictions of < respectively = to K'. (We will often simply write <

and = for <'and E'.)

3.1 The Henkin construction: A set X is adequate if it is finite, closed
under subformulas and contains 1. A set I" is X-saturated if:

1) I'eX, (i) I'r L, (qii)) ' A, Ae X = AeT,

@iv) I'-(BvC), (BvC)e X=Bel orCelI.

The Henkin model Hy has as nodes the X-saturated sets and as accessibily relation C.
The atomic forcing in the nodes is given by: I'ep < pel’. We have by a standard
argument: for Ae X: I'FA & Ael.

3.2 Definitions

i) Let K be a set of Kripke models. M(K) is the model with nodes (k,K) for ke Ke K
and ordering: (k,K)<(m,M) :< K=M and k<yam. As atomic forcing we take:

. k,K)=p : < k= Kp.

(In practice we will forget the second components of the new nodes, pretending the
domainstobedisjointalready.)

ii) Let K be a Kripke model. B(K) is the rooted model obtained by adding a new
bottom b to I and by taking: b=p :< KEp. We write Glue(K) := BM(K).

3.3 Push Down Lemma: Let X be adequate. Suppose A is X-saturated and
[<=A. Then Glue(Hy[A],K)=A.

12



Proof: We show by induction on AeX that b=A < AeA. The cases of atoms,
conjunction and disjunction are trivial. If (B—C)e X and b= (B—C), then A= (B—C)
and hence (B—C)e A. Conversely suppose (B—C)e A. If b B, we are easily done. If
bEB, then Be A, hence Ce A and by the Induction Hypothesis: b=C. O

We say that A is prime if it is consistent and:
for every (CvD)e &: A-(CvD)= A-C or A-D.

3.4 Theorem: Suppose X is adequate and A is X-saturated. then A is prime.

Proof: A is consistent by definition. Suppose A-CvD and At C and A#D. Suppose
KA, KkC, MEA and MED. Consider Glue(Hy(A),iK,M). By 3.3 we have: bEA.
On the other hand by persistence: bk C and b D. Contradiction.

3.5 A big model: Construct a Henkin model by taking as nodes (I',X), where
X is adequate and I' is X-saturated. Take (I',X) < (A,Y) := I'cA and XCY. Also:
[ X)Ep :© pel. Then for all Ae &: (I, X)=A < I'A. The proof, which uses 3.4, is

left to the industrious reader. O

3.6 Formalization in HA: We first formalize Kripke completeness for finite
models in Peano Arithmetic (PA). Noting that the model existence theorem yields a
multi-exponential bound E on the size of the Henkin model we formulate the result as
follows: PA + VA((VIKSE(A) KFA) — IPCHA). Noting that the formula proved is
I1,, we see that by a theorem due to Kreisel: HAFVA((VIKSE(A) K A) — IPC-A).
Since the converse is readily verifiable in HA we find:
HARVA((VK<E(A) KFA) < IPCA).
So IPC-provability is decidable in HA.

In intuitionistic theories even subsets of the singleton set are not decidable. We,
however, assume that the finite sets that we are using, e.g. in the construction of the
Henkin model, are coded as numbers and hence provably finite and decidable. Under
this convention whether a finite set is X-saturated or not becomes decidable, given the

decidability of IPC-provability.
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We leave it to the reader to verify 3.3 and 3.4 in HA (assuming K to be a finite set of
finite models, etc.). Note that the reductio reasoning in 3.4 is harmless because of
decidability. O

3.7 Theorem: Let X be a prime, RE set of IPC-formulas, closed under IPC-
consequence. Without loss of generality we may assume that X is given by a recursive
increasing sequence of finite approximations X;. We assume that X =@. Say, this
sequence is presented by the A;-formula &(i,x). Then we can represent X by a sequence
(Yi,Zi>, where:
1) X=UY,,
ii) i<j= (Yi;Yj and Zi;Zj)
iii) Z, is adequate
iv) Y, is Z;-saturated
Our sequence can be represented by a A;-formula o(i,y,z) such that HA verifies the
functionality of the sequence, plus (ii), (iii), (iv). Let Y be given as: {Bl3i,y,z (a(i,y,z)
A Bey)}. It follows by 3.4-3.6 that HA verifies that:

Y is prime, that YEX and that (X is prime) — Y=X.

Proof: We reason informally, but constructively, and leave verifiability in HA to the
industrious reader. Remember that our sets are really finite, decidable sets represented
by numbers. Fix an increasing sequence U, of adequate sets such that for every A we
can effectively find an i such that Sub(A)CU;. We define weakly monotonic functions
f,g:0—w and take Z;:=Ug, and Y;:={Be ZiIXgil—B}.

o f0:=0, g0:=0

* Consider U, . Incase {Be Ug, |IX , FB}is Uy, -saturated, put f(n+1):=fn+1,

n+l
g(n+1):=n+1. Otherwise f(n+1):=fn, g(n+1):=gn.

f and g are recursive, since, by 3.6, IPC-provability is (verifiably) decidable. By the

formalization of 3.4, every Y, is prime (in case i=0, this uses the fact that IPC is

prime).

Suppose X is prime, then both f and g tend to infinity (and hence Y=X). Evidently it is
sufficient to show that after every stage the first clause of the definition of f and g will

become active. Consider stage n. If at stage n+1 {BeUyg, ,IX , ,FB} is Ug -
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saturated, we are done. Suppose not. Since Ug, ., is finite we can exhaustively

enumerate the Ug, , ;-disjunctions EVF proved by X Since X is prime we can find

n+1-
for any such EVF an i such that X.-E or X;-F. Let n; be the maximum of these i's. By

assumption {Be Ufn_HIanr—B } properly extends {Be Uy, ,IX, . ,FB}. If {BeUg ||
anl—B} is Uy, ,-saturated then either f and g have moved between n+1 and n; or will
move at n,. If not we repeat the procedure. Thus we obtain a sequence n+1:=
ny<n;,...<ny<... . Note that {Be Uy, +1|Xni+ 1I—B} properly extends {Be Uy, +1IXnil—B}

so N<IUg, .4l So eventually we reach a Uy, . -saturated stage and our functions did

move Or move now. d

4 What is HA*?
In this section we introduce the theory HA*. This theory was introduced in Visser[82].
HA* is to Beeson's fp-realizability (Beeson[75]) as Troelstra's HA+ECT,, is to
Kleene's r-realizability. This means that for a suitable variant of fp-realizability HA* is
the set of sentences such that their fp-translations are provable in HA. The natural way
to define HA™ is by a fixed point construction as: HA plus the Completeness Principle
for HA™. (Here it is essential that the construction is verifiable in HA, see below.) The
Completeness Principle can be viewed as an arithmetically interpreted modal principle.
The Completeness Principle viewed modally is:
C HA—>OA
The Completeness Principle for a specific theory T is:
C[T] F A —O7A.
Here O stands for the formalization of provability in T. So we have:

HA* = HA + C[HA™].

We briefly review some of the results of Visser[82].

e Let 2 be the smallest class closed under atoms and all connectives exept implica-
tion, satisfying: A€ and BeY = (A—B)eU. Note that modulo provable
equivalence in HA all formulas of the classical arithmetical hierarchy in their
standard form are in 2. HA* is conservative w.r.t. 2 over HA.

* There are infinitely many incomparable T with T=HA+Cy. However if T=HA+Cy
verifiably in HA, then T=HA™,

* Let KLS:=Kreisel-Lacombe-Shoenfield's Theorem on the continuity of the effective
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operations. We have: HA* KLS — Oga*-L. This immediately gives Beeson’s
result that HA# KLS (see Beeson[75]).

Consider the Lob conditions.

L1 FA=FOA

L2 + O(A—B) —» (OA — OB)
L3 F OA - O0A

L4 F OOA—A) - OA

i-K is given by IPC+L1,L.2. i-L is i-K+L3,L4. We write i-K{P} for the extension of i-
K with some principle P. Note that i-L{C} is valid for provability interpretations in
HA*.

A principle closely connected to C is the Strong Lob Principle:
SL F (OA>A)>A

As a special case of SL we have: - —— L.
4.2 Fact: i-L{C} is interderivable with i-K{SL}.

Proof: L4 is immediate from SL. “i-K{SL}+~C":
F A — (O(AAOA) = (AAOA))
— AAOA
— DA.
“I-L{C}+SL”:
F (OA—>A) — (DA-A)A O(OA—A)
— (OA—>AA TA
—A. 3

i-L{C} is a kind of Kindergarten Theory in which all the well-known syntactical results
of Provability Logic have extremely simple versions. We add the proofs for

completeness. 4.3-4.6 are not essential for the rest of the paper.
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4.3 Substitution Lemma: In i-L{C} we have a very powerful substitution
principle:

St  + (A&B) - (CA-CB)

Proof: By a simple induction on C. Q

We say that p occurs only modalized in A if all occurrences of p are in the scope of [J.

4.4 Uniqueness of Fixed Points in i-L{C}:Suppose p occurs only mo-
dalized in Ap and q does not occur in Ap. We have ini-L{C}:
F(p<>Ap)A(ge>Agq) — ([O(pe>q) — (Ap>Aq)
—(peq)
—(pe9g). Q

4.5 Explicit Fixed Points in i-L{C}: Suppose p occurs only modalized in
Ap. We show that Ap has fixed point AT. We have:
FAT—->ATeT)

— AAT.
FAAT - (OAT > OATeT)
—AT)
— AT. Q

A formula of the modal language is closed if it contains no propositional variables. We

define: 001 = L, On+l ] :=pOnL, 0@l :=T.

4.6 The Closed Fragment of i-L{C}: Every closed formula A is i-L{C}-

provably equivalent to a formula of the form 0% | for a<w.

Proof: The proof is by induction on A. We have:
FTeoOel, - Lol
F O LAOB L «» Omin(ep) |
F OoLvOB L ¢ Oomax(ep) |
FO* 1l —0OP L <> 0B L, where (a—B):=T if a<p and (a—B):=P if B<a.
Note that min(a,y)<B < y<(a—p).
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OOl < Olte ] Q

4.7 Open Problems
i)  Isi-L{C} the provability logic of HA*?
ii)  Prove or refute: HAF——KLS.

5 A Shavrukov Style Embedding Theorem for HA*

Shavrukov proved that every RE Diagonalizable Algebra satisfying an appropriate
Disjunction Property is embeddable in the Diagonalizable Algebra of Peano Arithmetic.
It is clear from section 3 that there is no analogous result for Heyting Algebras and
Heyting Arithmetic. In this section we show that an analogue can be obtained for the

theory HA™.

5.1 Theorem: Any RE prime Heyting Algebra § can be embedded in Hy*.
Moreover the equivalence classes in the range of the embedding all contain a -

sentence.

Before proving the theorem we briefly look at an illustrative example to give the reader
some feeling of how it is possible that an embedded algebra can completely consist of

equivalence classes of ¥, -sentences.

5.1.1 Example: Consider the algebra $, IPC-axiomatized by ——p—p. To be
precise: 9=9pc e —>p)(81)' We have:

£ can be embedded into $pc by e.g. [p :=—p];

© can be embedded into Yy by e.g. [p :==Oya L]
On the other hand § cannot be embedded into H;, by sending p to a X;-sentence,
since for any 2.,-sentence B, we have:

HA+——B—B = HA-Bv-B

= HAFB or HA-—B.

(The first implication is proved by applying the Friedman translation for —B to

(——B—B). See e.g. Visser[85].)

We turn to HA*. Let R be the ordinary ¥, Rosser sentence for HA*. Le.:
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Let S := Oy *R < Ogp*—R. We have by the ordinary Rosser property:

HA* ¥ R and HA* # S.
On the other hand we have:

HA* - —R ¢> S and and HA* - =S & R.
We prove the first equivalence. “«—” Trivially HA* - S — —R. “—” Reason in HA*,
Suppose —R and Oy, *S. It follows from the second assumption that Cpy, +—R and
hence that RvS. Combining RvS with our first assumption, we get: S. By SL we may

drop the assumption Oy #S.

Using the above facts it is easy to see that the subalgebra of Hpy,+ generated by R is
given by the non-equivalent ¥, -sentences: L, R, S, Oy ,*L, T. This algebra is clearly
isomorphic to 9. @)

In 5.6.1 we show that it is definitely not the case in HA™, that the Zl-sentences are

closed under the Boolean operations (modulo provable equivalence).
Proof of 5.1: Let O stand for O 4 * and Proof for Proofyy 4 *.

Consider the following Kripke model H, which is a variant of the Big Model of 3.5. Its
nodes are of the form (i,U,V), where:

. i€ {0,1}

. V is an adequate set of formulas,

. UcV, U is V-saturated.

Define < and F as follows:

. 1,U,V) < ,W,T) 1< i<j and USW and VCT and (i=1 = V=T)

. 1L,UV)E p:e=pel.

Using 3.3 and 3.6 it is easy to see (in HA) that:
for any formula A: (O,U,V)E A & URA,
for Ae V:(1,U,V)E A & UHA.
Note that it follows that the relation ki= A is decidable.

Let (Y;,Z;) be an enumeration of a propositional theory presenting £, satisfying the

properties promised in 3.7. We define a Solovay function ) from w to the nodes of H.
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3x, the state of ) at x, is defined as (f)x)o. 30 will be set at 0. Till a certain
catastrophic Event happens, the state will remain 0 and §) will run upward through
nodes (0,Y;,Z;). As soon as (and if) the Event happens, the state will definitively move

to 1 and our function runs upwards through nodes of the form (1,U,V). Define by the

Recursion Theorem §) as follows:

. [A] ;<> 3x hx=A
. H0 :=(0,Y,Z)
. H(n+1) :=kif (¥) Proof(n,[A]), hnkA,
k is a 1-node, hn=<k, k maximal such that ki A
. h(n+1) :=(0,Y, ;. Z, ) if case (*) does not obtain and $n=0
. H(n+1) := hn if case (*) does not obtain and 3n=1.

Since k& is (provably in HA) decidable, it follows that f) is a well defined recursive

function.

Note that the catastrophic Event is the first time that (*) obtains. Before the Event the
function enumerates nodes representing better and better approximations of $. After
the event it behaves like an ordinary Solovay function traveling upwards through a

converse wellfounded (w.r.t. <) part of the model.
5.2 Lemma
HAF x<y — Hx<ly
HAF (x<y A hx=A) = hyFA
Proof: Obvious. 0
5.3 Lemma: HA- 3x#0 — Ody hx<by.
Proof: Reason in HA. Suppose 3x+0. f) must have arrived at hx by case (*). So for
some A and for some p<x: Proofy , «(p,[A]), hp+1)=hx# A. By X-completeness we
have: Ofx# A. Combining this with O3y hyE A, we obtain, using 5.2, the desired

result. 0

5.4 Lemma: 3n=0 for any n.

20




Proof: Suppose 3n#0. By 5.3: O3y hn<Dy. Remember that HA® is [],-conservative
over HA. Thus HA™ will certainly satisfy Y.-reflection. It follows that for some m:

Hn<hm. Repeating the argument we can construct an infinite strictly ascending chain

above hHn. This contradicts 3n#0. a
5.5 Lemma: [.] commutes modulo HA*-provability with the propositional
connectives.

Proof: Reason in HA*. Clearly [L]¢> L and [T] < T.

Suppose [AAB], then for some x: hxi= AAB. It follows that hx=A and hx=B and hence
[A]JA[B]. Conversely suppose [A]A[B]. Say hy=A and §z=B. Let u:=max(y,z), then
by 5.2: Huk A and HurB and thus hu= AAB. We may conclude: [AAB].

Suppose [AVB], then for some x: hx=AvVB. It follows that fjx=A or hx=B and hence
[A]V[B]. Conversely suppose [A]v[B]. Suppose e.g. hy=A. It is immediate that also
hy= AVB and so [AvB]. Similarly in case z=B.

Suppose [A—B] and [A]. Then for some x and y: hx=A—B and hyrFA. Take
u:=max(x,y). Clearly ju=A—B and fHu=A. Ergo: hu=B and thus [B]. Conversely
suppose [A]—[B]. We show [A—B] using the SL. So we may also assume O[A—B].
Suppose  Proof(p,[A—B]). In case §(p)=(A—B) we have [A—B]. Suppose
H(p)¥ (A—B). In this case h(p+1) is a maximal k>=0p such that ki (A—B). It follows
that k= A and ki B. From §)(p+1)=k= A, we have: [A], and hence by assumption: [B].
But [B] imediately implies: [A—B]. So in both cases we find [A—B]. By the SL we
may drop the assumtion that O[A—B]. Q

We finish our proof of 5.1, by showing that: Ae X < HA*H[A].
Suppose Ae X. Then for some n: A€ Y. By 5.4: 3n=0 and hence Hn=(0,Y ,Z ). Ergo
Hnk A and so HA™hn=A and thus HA*+[A]. Conversely suppose HA*[A]. Say m

codes a proof of [A]. Suppose Y, #*A. Since Hm=(0,Y ,Z ) it follows that hm# A. So

clause (*) would become active and the catastrophic Event would take place. But 5.4
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tells us this cannot happen at a standard stage. a

5.6 Remarks on the proof: (i) The present proof combines the proof
strategy from Zambella[92] with an idea from Visser[85] (on how to handle implication
using the SL). In fact our proof follows Zambella’s quite closely modulo some ines-

sential stylistic differences (like our use of a kind of Henkin model).

ii) The proof cannot be extended in any obvious way to give a completeness theorem
for the provability logic of HA¥, since nodes of our Henkin model where we have O L
also satisfy Excluded Third. But of course HA™ does not prove Excluded Third from
oL.

iii) An attractive alternative formulation of the proof is to take, on the one hand, as
nodes of the Henkin model the more traditional pairs (U,V), but to work, on the other
hand, with two accessibility relations:

. (U,V)<((W.,T) = UCW and VCT

. U,V)</(W,T) :&=UCW and V=T

Corresponding to these different accessibility relations we have forcing relations F ; and
k. We define a suitably adapted Solovay function simultaneously with an auxiliary
state function. Which accessibily relation and which forcing relation is relevant, will

depend on the state. We leave it to the reader to work out more details.

iv) The [A]'s are Zl. So our embedding is into the Zl—formulas modulo HA*—provable
equivalence. The surprising property of the [A]'s is that they are closed under
implication (modulo HA*-provable equivalence). It is not true in general that the Y-
sentences of HA™ are closed under implication. This is immediate from the following
well-known fact (which is a simple adaptation of Kripke’s result on flexible sentences

to the constructive case).

5.6.1 Fact: Let T be any consistent extension of HA. Then there is a .,-sentence

Q, such that for no ¥, -sentence S: T-—Q>S.

Proof: Let T be a consistent extension of HA. Take Q such that:
HAF+ Q& Truez(eS.DT(—lQHS)).
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Here Truey is the usual truth-predicate for X, -sentences and €S.0p(—Q&>S) is the
first S such that O(—€2¢>S) that we find if we run through the T-proofs. Clearly
QeX.,. Suppose for some S'€ Y : T-—QS'". Let S be the first such S' that we
encounter, when running through the T-proofs. We have: HAFS = €S".0(—=Q¢>S")
and hence: HA- QT ruez(S). We may conclude that HA-Q&>S. On the other hand
TH—=QS. Ergo Tk L. Quod non. a

5.7 Corollary: A=y ,+B < IPC-(A—B).

Proof: ‘<’ is trivial. ‘=’ Suppose IPCl- (A—B). Then there is a finite Kripke model
[< such that K= A and Kk B. Let $ be the Heyting Algebra of upwards closed sets of
K. Obviously © is finite and hence RE. Embedding & into §y,* gives us an
interpretation f such that HA*F A[f] and HA*#B[f]. Q

6 On HA

Are the same Heyting Algebras embeddable in $y, and in Hpp-? The answer to this
question is unknown. We conjecture: yes. In this section we show that if we restrict
ourselves to Heyting Algebras on finitely many generators embeddable in ©y, :=

DuaBX)), then is the answer is yes.

We first prove the uniform version of De Jongh's Completeness Theorem for IPC

w.r.t. interpretations in HA using the result of 5.
6.1 Theorem: Dpp- is embeddable in Sy ,.

Proof: Let [.] give the embedding of 5.1 of Oipc into Hyy 4+ Let f be given by: fp :=
[p]. We have:
IPCHA = HAFA[f]
= HA*A[f]
= HA*-[A]
=I1PC-A. |
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6.2 Theorem: Let § be a Heyting Algebra on finitely many generators. Then
£ is embeddable in Sy, iff § is embeddable in Hype. It follows immediately that the
IPC-derived rules for IPC are equal to the IPC-derived rules for HA w.r.t.

substitutions involving only B.,-sentences.
To prove 6.2 we borrow three facts from Visser[85].

6.2.1 Fact: For each IPC-fromula A, there is a formula A* in NNIL such that:
i) All propositional variables of A* occur in A,
ii) For all Be NNIL: IPC+B—A < IPC-B—A*.

Note that 6.2.1(ii) tells us in terms of Hypc that {BeENNIL | B<A} both has and

contains a supremum A*. Thus A* is the greatest lower NNIL-approximant of A.

6.2.2 Fact: Let | assign .,-sentences to the propositional variables. Then for any
propositional A: HA-A[f] = HA-A*[f].

6.2.3 Fact: The number of NNIL-formulas in p,...,p,, modulo IPC-provable

equivalence is finite.
Proof of 6.2: Let $ be a Heyting Algebra on finitely many generators.

Suppose § is embeddable in Hypc. By 6.1 Hypc is embeddable in Sy, and hence H
is embeddable in ©yy,.

Suppose § is embeddable in ©p;,. Let the generators of § be A,,...,A . These
generators are in their turn Boolean combinations of Zl—sentences, say, Sy,...,.5,. So
A; = B{(S,,...,S,) for some propositional B;. Let § be the subalgebra of S
generated by S,,...,S_ . Since § is embedded in & by assigning B; to p;, it is
sufficient to show that & is embeddable in Hpc. Let C* be the greatest lower NNIL-
approximant of C promised by 6.2.1. We find by 6.2.2:
HAFC(S,,....S) = HAI—C*(SI,...,Sm).

So {EC = S&EC*. Since the set of NNIL-formulas in p,,...,p,,, is finite (modulo
IPC-provable equivalence) by 6.2.3, there are only finitely many possible C*, Let C*
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be the conjunction of the C*. We find for D in p,.,...,.p,,, 8D & IPC-Ct—D.
Clearly C* is a prime NNIL-formula. By 2.8 C* is exact. Ergo & is embeddable in

Drpc- d
6.3 Open question: Is ©;, isomorphic to Hyp-? We conjecture: no.
7 An RE, non-recursive Heyting Algebra on two generators

We show that there is an RE, non-recursive Heyting Algebra in two generators. It
follows by 5.1 that there are X,-sentences A and B such that the subalgebra of Oy, *
generated by A and B is RE, non-recursive. In contrast we know by 2.3 that every
finitely generated Heyting Algebra embeddable in Hyp is decidable and similarly, by
6.2, for ©y;,. It is still consistent with everything we know that there are arithmetical
sentences A and B such that the subalgebra of ©y;, generated by A and B is RE, non-

recursive.

It is sufficient to produce an infinite decidable set X of IPC-formulas in p,q such that:

. for every finite X,CX and every Ae X/X: X+ A

. every finite X,CX has the disjunction property

The desired algebra is obtained by taking an RE and non-recursive subset of X as

axiomatization.

In de Jongh[80] infinite sequences are produced of finite rooted Kripke models L;, of
formulas A; (llli* in de Jongh[80], p107) and of formulas B; (s; in de Jongh[80],
p107) such that:

. L= Aj S i#
. A, is of the form B,—C for some C
. It is decidable whether a formula is of the form Ai

(This result is originally due to Jankov, see Jankov[68])

We take X to be the set of A;. Consider a finite X,CX and Ae X/X,,. Suppose A=A.,.
Then clearly L;F X, and L, A;. Hence X * A;.

To prove the Disjunction Property, consider any finite X,=X. Suppose X +EVF, but
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X #E and X ##F. Let K=X, and K#E and Mi=X, and M#F. Let j be such that Ajis
not in X,,. We have: [Ljr=X0 and lebé B; for A, in X,,. Consider GIue(K,M,[Lj). Clearly
b#E and b F. Consider any A;e X,. biB;, since L;#B;. Since A, is of the form B;—>C
and K, M and l]_j all force A, it follows that b=A;. We may conclude that b=X, but
b¥E and b# F. A contradiction.
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