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1 INTRODUCTION

Modal operators record simple, very restricted patterns of relational models through their truth
definitions. Such patterns live in classical languages (first-order, second-order, infinitary, ... ).
Modal correspondence theory studies the relations between modal languages and classical ones.
It does so at various levels, depending on the way modal formulas are interpreted. When inter-
preted on models the standard modal language ML(<), for instance, ends up as a very restricted
fragment of a first-order language. When M L(<) is interpreted on frames its propositional vari-
ables are universally quantified over, and it ends up as a set of II}-conditions. In this approach
a key issue is: when does a modal I1}-condition reduce to a first-order formula? An important
tool here is the Sahlqvist-van Benthem algorithm, which when input a modal formula in ML(<)
of a certain form, reduces it to an equivalent first-order property of binary relations via suitable
instantiations. Recently this algorithm has been extended by Gabbay & Ohlbach (1992) and
Simmons (1992) through the use of Skolem functions.

This paper is concerned with reducibility issues of the kind described above. The paper
studies and extends the Sahlqvist-van Benthem and Gabbay-Ohlbach-Simmons algorithms in a
very general setting; this is done for various reasons. First, a better understanding of the ins and
outs of the algorithms is gained if the analysis is independent of any particular modal calculus.
Second, recent years have witnessed a boom in extensions and alterations of the standard modal
format; as was noted in (De Rijke 1993d), only little is known in the way of general results
on transfer or applicability of facts and constructions from standard modal logic to extended
ones. A fully general analysis of the above correspondence algorithms reveals their applicability
to arbitrary modal logics, and beyond, as will be illustrated in §6 below with examples from a
variety of modal and temporal logics, dynamic logic, circumscription and other areas. Third, it’s
an important tradition in logic to compare different theories and languages; the work reported
on below is part of that line of research.

The next section supplies the main preliminaries; it may be skipped on a first reading. §3 defines
the central notion of the paper: correspondence or reducibility; roughly speaking, a formula is
reducible for certain variables if it is equivalent to a formula in which those variables don’t occur.
For most practical purposes actual reductions are obtained by making appropriate substitutions
for the forbidden variables. This approach underlies §§4, 5, where we analyze what makes the
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Sahlqvist-van Benthem and Gabbay-Ohlbach-Simmons algorithms work; the analysis involves
both a semantic description of the substitution mechanisms, and a syntactic characterization of
the formulas allowing such substitutions. A less algorithmic perspective is adopted in §7; there
we obtain reducibility results by imposing restrictions on languages and their interpretations.
§8 concludes the paper with comments and questions.

Before taking off: a frequent complaint about the actual use of the Sahlqvist-van Benthem
algorithm has been its alleged obscurity (Kracht 1993, page 194), (Gabbay & Ohlbach 1992,
Section 4.3). To address these complaints we pay special attention to using the algorithms in
§84-6 below.

2 PRELIMINARIES

First we need to be specific about classical logic. For 7 a classical vocabulary, a (classical)
logic is given by two classes Form,[7] and Sent.[r] of L-formulas and L-sentences respectively,
together with a relation =, between structures and L-sentences. Str[r] denotes the class of
T-structures. We assume that for any classical logic £, Form[r] contains n-placed predicates
lsand Ty (n €N, s a sort in 7) such that in any model 2, L is interpreted as the empty set,
T, as the domain of sort s. Basic model-theoretic notions are introduced as usual.

We assume that we have membership or acceptance predicates € available, which take as
their arguments an n-placed symbol of a ‘relational’ sort and n terms of the appropriate sorts
to form formulas. E.g. if 7 is a symbol of a binary relational sort, then erzy is a wif; its intended
interpretation is that the pair denoted by (z, y) is to belong to the relation denoted by r. Instead
of erzy ...z, we will write r(zy,...,z,). Furthermore, equality (=) is used only between terms
of the individual sort. For a classical logic £, IT}(£) denotes the set of formulas with universal
quantifier prefix V... binding relational symbols of L.

As to modal logic, following (De Rijke 1993d) a modal language has a set of (modal) sort
symbols and for each sort a set of (propositional) variables, a set of constants, and a set of
connectives; in addition it has a set of modal operators. The modal formulas of sort s are
built up from atomic symbols ps, connectives @ and modal operators # according to the rule
¢ = ps | (P15, Pns) | F#(Psys--.,Ps,), where it is assumed that e, # return values of
sort s. The semantics of a modal operator # is given by an L-pattern dx, that is, by an L-
formula Az, ... Zs,. ¢(Tsy .o Top; Topyyy - - Tspy ), Where z,, is a variable of a classical sort s;,
¢ € Formg[7] for some 7, and L is a classical logic. Models for modal languages have the form
M= (Ws,..., V) where M is ‘rich enough’ to interpret the classical vocabulary in which the
patterns for our modal operators live, and V is a valuation assigning subsets of W to symbols of
sort s. Truth of modal formulas is given by 9, z |= p, iff z € V(p;) for atomic symbols ps, the
obvious clauses for connectives o, and M,z |= #(P1,...,¢n) M,z = 64(1(d1),...,I(dn)).

The standard translation transcribes the truth definition of a modal language into a clas-
sical language containing predicate symbols p corresponding to the modal atomic symbol pj:
ST(ps) = p(z), ST commutes with connectives, and ST (#(¢1, ..., ¢n)) = 64(ST(¢1), ---,
ST(¢n)). The important connection here is that for all modal formulas ¢,

(W, V), w ¢ iff (W,..., V(p),...) E ST(¢)[w],

where V(p) is assigned to the predicate symbol p corresponding to ps;. In the context of the
basic modal language ML(<) the notion of a frame arises when one quantifies over all possible
valuations, thus arriving at second-order equivalents of modal formulas:

(W,R),z |= ¢ iff (W,R)|=VpST(4)[z].



This is generalized to arbitrary modal languages by selecting a modal sort s (with non-empty set
of variables), and universally quantifying over all variables of that sort, while letting valuations
take care of variables of the remaining sorts as before. Thus, we look at (higher-order) formulas
of the form V7 ST (¢), where the V7 binds all variables of sort s, rather than at formulas of the
form ST(¢). Our prime question at this point is: when, and if so how, can we get rid of this
higher-order quantification?

3 REDUCIBILITY

TwO EXAMPLES

3.1. EXAMPLE. In the basic modal language ML(<) the formula p — <p is equivalent to the
second-order condition Vp (p(z) — Jy (RzyAp(y))) when interpreted on frames. By substituting
Au.u = z for p in the second order formula, it reduces to Jy (Rzy A y = z), or Rzz. This
reduction yields an equivalence, one direction of which is just an instantiation; the validity of
the other follows from the upward monotonicity of the consequent of Vp (p(z) — Iy (RzyAp(y))).

3.2. EXAMPLE. Recall that propositional dynamic logic (PDL) has U (union), ; (composition),
and * (iteration) as operations on its relational component. Through the standard translation
PDL ends up as a fragment of £, .; because of the Kleene star * we need to go infinitary here:
ST ((a)p) = Fy (V,(RZzy) A p(y)). As an example, on frames the PDL-formula p A [a]p —
(b; a*)p is equivalent to the I} (L, )-condition

Vp (p(w) AYy (Razy — p(y)) = Jy'z' (Rbyz' A Ryzy A p(y)))- (1)

Substituting Au.(u = z V Rgzu) for p in (1) reduces it to the L,,,-formula Jyz (Ryzz A
Va.(R22y) A (y = z V Rqzy)), or 3z (Rpzz A R zz). To see this, observe that one direction
is again an instantiation; the other follows from the upward monotonicity of the consequent of

(1).

Examples 3.1, 3.2 show that in modal higher-order conditions the higher-order quantification
can sometimes be removed through suitable substitutions — the question when and if so with
which instances such reductions may be done, is analyzed in §§4 and 5.

Basics

Given a (classical) formula g8 involving variables pi,...,p, of some sort s, we want to know
whether the IT}-like formula Vp ... Vp, 3 is equivalent to a formula vy not involving any variables
of the sort s.

3.3. DEFINITION. Let 8 € Formg[r], v € Formg/[7'], for some 7,7/, L, L. We say that
corresponds to v, or (3 is reducible to «y if for every all 2 € Str[r U '], and all 4 € A, we have

A =g plu] it A = y[d).

Note that I concentrate on pointwise reducibility, that is, on formulas that (may) depend on
parameters. In most of the literature on correspondence theory for standard modal logic the
emphasize has largely been put on a ‘uniform’ approach to reducibility, by considering only uni-
versally closed formulas; given the local perspective of this paper I have opted for the pointwise
version.

In most practical cases Definition 3.3 will apply with 7 O 7’ and Form/[r] usually contains
all IT}-like conditions over L'.



3.4. CONVENTION. In the sequel 7 is a fixed classical vocabulary, and s is a sort of T such
that the only symbols of sort s are the variables VAR, = {p1,...}; the elements of VAR,
are called s-variables. A formula is s-universal if it is of the form Vp; ...Vp, B, where all s-
variables occurring in it are bound by the prefix Vp; ...Vp,. If Vp 5 is an s-universal formula,
we will tacitly assume that the prefix ‘Vp’ contains all and only quantifiers binding s-variables.
A formula 3 is s-free if it contains no (free or bound) occurrences of s-variables.

Here are some simple reducibility properties of s-universal formulas.

3.5. PROPOSITION. Let Vp 3 be an s-universal formula in Form[r]. Then VP 3 reduces to an
s-free formula in Form[7] iff VP [-pi/pi|B does so.

3.6. PROPOSITION. Assume Vp 3,Vp' ' are s-universal formulas in Form[r]. IfVp 3 and Vp' B’
reduce to v and ', respectively, in Form[r], then Vpp' (B A B') reduces to (y Av'). IfVp B and
V'8 have distinct s-variables p and p’, then Vpp' (B V B') reduces to (y V).

3.7. PROPOSITION. Let VP 8(¥; Z) be an s-universal formula in Form[r] that is reducible to the
s-free v(¥;Z) € Form[r]. Assume that v'(Z;¥) is s-free. Then VpVy (v — B) is reducible to
vy (v — ).

Proof. Assume 2 = VpVy (v (Z;§) — B(Y; Z))[dw

0]. If A = +/(Z; §)[uv®w] then obviously A |
VP B(y; Z)[uvw]. So, by assumption, A = v(¥; Z)[d =

3.8. REMARK. The class of formulas x such that V7 y is reducible to an s-free formula, is not
closed under —. To see this, let = contain a binary relation symbol R and a single predicate
variable p. Consider the first-order formulas 8 = 3y (Ryz A p(y)) and 8’ = Vy (Ryz A p(y) —
Jz (Ryz A p(z))). Then Vp 3 is reducible to a p-free formula, by 4.2, and Vp 8’ is reducible
to a p-free formula by 5.3. Hence their conjunction Vp (8 A 3') is reducible as well. However,

Vp _'(ﬁ A IBI)a i'e'7
(WF) ¥p (3y (Ryz A p(y)) > 3y (Ryz A p(y) AVz (Ryz — —p(2))))

is not reducible to a p-free formula. It may be shown that (WF) expresses that R is well-founded,
and hence is not elementary, or, reducible to a p-free formula over 7.

Observe that the converse of the first half of Proposition 3.6 does not hold. As VpVz (p(z) —
Jy (Rzy A p(y))) reduces to Yz Rzz, the conjunction of the former formula with (WF) is incon-
sistent, hence reducible to a p-free formula, although (WF) is not.

4 FINDING THE RIGHT INSTANCES

As was observed before, in many practical cases reducibility results are obtained via suitable
substitutions, if at all. In effect, this is the idea underlying the reduction algorithms mentioned
in §1. For 8 = Vp ' an s-universal formula (over a classical vocabulary 7), they find an s-free
equivalent of « (again, over ) by taking suitable s-free instances 1, ..., v, of the s-variables
P1y .-+, Pn in B such that

E /b1, n/pnlB = VB G (2)

the converse implication follows by instantiation). We are interested in combinations of TT}-like
( P y 1
s-universal formulas § of the form

VP (a — ), (3)

4



where 7 is monotone, and the antecedent « is a formula ‘supplying’ the substitution instances
v for P that yield the desired reduction of (3) to an s-free formula as in (2). The key-topic
below is to make precise in what way the antecedent « supplies the substitution instances. We
set down semantic (and syntactic) conditions on formulas that guarantee the existence of such
instances, and we describe the instances needed. The results lead to a fully general formulation
of the Sahlqvist-van Benthem and Gabbay-Ohlbach-Simmons algorithms in §5.

MONOTONICITY

We first examine the simplest instance of the general schema (3), where « is either T or L.

4.1. DEFINITION. Let (%) € Formg[7], let p be an s-variable, for s a sort in 7. We call 7(7F)
upward (downward) monotone in p if for all A = (A4, p,...) € Str[r], and for all 4 € A, and all
p' 2 p (p' C p), we have that 2 |= 7[d] implies (4, p’,...) = «[d].

The temporal logic formula Pp has ST (Pp) = 3y (Ryz A p(y)), which is monotone in p.

4.2. PROPOSITION. Let 7(Z) € Formg[r] be upward monotone in p;. AssumeVp;...Vp, 7(Z) is
s-universal. Then Vp; ...Vp, 7(Z) is reducible to an s-free formula iff the formula Vp; ...Vp;_1

Vpit1... Voo [L/pilm(Z) is.

Proof. If A |=Vpy ...Vpy, w[ii] then A = Vp1 ... Vpi_1Vpit1 ... Vpy [L/pi]n[d], for any A € Str[r].
Using the fact that 7 is upward monotone in p;, one sees that the converse implication holds as
well. -

4.3. PROPOSITION. Let 7(Z) € Formg[r] be downward monotone in p;. AssumeVp; ...Vp, w(F)
is s-universal. ThenVp; ...Vp, 7(Z) is reducible to an s-free formula iff the formulaVp; ...Vp;_1

Vpiv1...Vpn [T/pi]m(Z) is.

4.4. COROLLARY. Assume that for every s-variable p, m € Form 7] is either upward or down-
ward monotone in p. Then, if VP is s-universal, it reduces to a p-free formula in Form,[7]
via a suitable instantiation.

Observe that the only instantiations needed in Corollary 4.4 are | and T.

As an example, the temporal formula Until(T, p) translates into 3y (Rzy AVz (Rzz A Rzy —
p(2))), which is upward monotone in p. Substituting L for p, we find that on frames Until(T, p)
is equivalent to 3y (Rzy A =3z (Rzz A Rzy)).

To actually use semantic properties of formulas, a syntactic characterization of all and only
the formulas having the properties comes in handy. For monotonicity this involves positive and
negative occurrences. An occurrence of a symbol is said to be positive iff it is within the scope
of an even number of negation signs; otherwise an occurrence is called negative.

4.5. THEOREM. Let B3 € Formg, [7], p € VAR;. Then ( is upward (downward) monotone
in p iff B is equivalent to a formula in Formg, [7] in which all occurrences of p are positive
(negative).

Proof. We prove the characterization of upward monotonicity only. A quick proof using Lyndon
Interpolation runs as follows. For a new relation symbol p’ let 7/ be T extended with p’; 7'-
structures then take the form (2, X), where 2 is a 7-structure, and X is a relation over an
appropriate domain in 20 which interprets p’. The assumption that g is upward monotone in
p amounts to B(p'), VZ (p'(Z) — p(Z)) E B(p), for a new relation symbol p’. Let v be an
appropriate Lyndon-interpolant. As p’ occurs only on the left-hand side of the |=-sign, v does

not contain p’; and as p occurs only positively on the left-hand side, p is positive in . Hence,



v is the required equivalent. -

The result extends to many other logics, including all logics that have Lyndon Interpolation
such as L,

CONTINUITY: THE BASIC CASE
We now allow the scheme (2) to contain continuous antecedent formulas.

4.6. DEFINITION. Let o(Z) € Formg[7]. Then «(Z) is called continuous in p € VAR, if for all
A= (A,U; Ti,...) € Str[r], where |J; T; interprets p, and for all @ € A, we have A = «a[d] iff
(A, T;,...) E a|i], for some 3.

As an example, both 3y (p(y)Aq(y)) and 3y (p(y) A—¢(y)) are continuous in p; their conjunction
is not, however. Hence the class of continuous formulas is not closed under A.

As a further example, let B be a complete Boolean algebra with operators (BAO), and let
f be a completely additive n-ary operator on 8. According to the well-known duality between
BAO’s and modal frames, f can be represented as a relation Ry on such frames (cf. (Jénsson &
Tarski 1952, De Rijke & Venema 1991)). Then, the modal operator ©¢, defined by

Cf(p1y--hpn) ={z:3Fp €p1...3yn €E pn Ry ... yn },

is a continuous operator. This connection can be made into full-fledged representation: a formula
B(p1y---,Pn;T1,- - Ty) is continuous in F iff in each model A = (4,...) the set { @ : A |= B[a] }
can be represented as the R-image of py, ..., pn, for some R C A™T™,

4.7. PROPOSITION. Let 3(Z) € Formg([7], and let p be an s-variable. Then (3 is continuous in
p iff for all T-structures A = (A, T,...), where T interprets p, we have: A = [[d] iff either

(A,0,...) = B[i] or for some t € T, (A,{f},...) = Bld].

Proof. For the if direction consider the set |J; T;. We have (4,U; Ti,...) | B[u] iff either
(4,0,...) = B[] or for some t € |U; Ti, (A,1,...) = B[], iff for some i such that ¢ € Tj,
(A,{%},...) = B[d]. For the only-if direction observe that (4, T,...) |= B[] iff (4, Uzert tu
0,...) = B[d] iff either (A,0,...) = B[], or for some %, (4,{%},...) = Bf], as required. -

In general, continuity of a formula in pi, ..., p can be equivalently stated as 2* possibilities;
because of this ‘explosion’ we don’t state results on continuity in full generality.

4.8. LEMMA. Let w(Z;y;Z) € Formg[r] be upward monotone in p, and assume o(Z;y;7') €
Formg[7] is continuous in p. Then VpVy (o — m) is reducible to a p-free formula via suitable
instantiations.

Proof. The instances we need here are of the form \Z.Z = §, A\Z.Z = Z, or AZ.Z # Z depending
on whether p occurs in a and =, only in e, or only in 7. Assume first that p occurs both in «

and 7. Then
= (077 = D/ @ m) = (ovE @ m).

To see this, assume (A, T) &= V§[(A\y.¥' = ¥)/p](e = n),a[d;Z — @], where T interprets
p, and 7 — @ means that @ is assigned to Z. Now, (A, T) | «[d;Z + @] implies that
for some ¥ € T, (A,{?}) | a[i;Z — @], by 4.7 and monotonicity. Hence A |= [(A}.§ =
7)/plafi; 7 — ;7 — @], so A = [(A\F.§' = §)/p|x[d; § — t;7 — ©]. But then, by monotonicity,
(A, T) | «|u; Z — @), as required.



Next, if p occurs only in «, then o« — 7 is downward monotone in p. Hence VpVy (a0 — )
reduces to a p-free formula by instantiating with AZ.Z = Z as in 4.3. The case that p occurs
only in 7 is entirely analogous. -

How can we apply Lemma 4.8 to obtain reducibility results in ‘real life’ modal formalisms?
85 contains a double answer in the form of the Sahlqvist-van Benthem and Gabbay-Ohlbach-
Simmons algorithms. For readers unable to wait until then, the following is a bare-bones sketch
of how to proceed:

— Translate your modal formula into classical logic, preferably into a formula of the form
VpVy (o — ).

— Perform some cleaning up in the antecedent of the translation to reveal the substitutions
needed. As may be seen from the proof of Lemma 4.8, for continuous a the required
substitution instances are singletons.

— Perform the substitution, and do some cleaning up.

Here are two examples; formulas supplying the substitutions are underlined.

ExXAMPLE. Consider the formula ¢p — Op in ML(C).

— Higher-order translation: Vp (3y (Rzy A p(y)) = Vz (Rzz — p(2))),
— after rewriting: VpVy (RzyAp(y) — Yz (Rzz — p(z))), which has an antecedent continuous

in p, and a consequent upward monotone in p,
— substituting Au.u = y for p reduces this to Vy (Rzy — Vz (Rzz — z = y)).

EXAMPLE. In Venema (1991)’s modal logic of converse and composition, one has a binary
modal operator o based on a ternary relation C. Consider the formula (a o b) — (b o a).
— Higher-order translation: Vab (3yz (Czyz A a(y) A b(2)) = 3y'2' (Czy'2" A b(y') A a(2)).
— after rewriting: YabVyz (Czyz A a(y) A b(z) — Jy'z’ (Czy'2' Ab(y') A a(z')), which has an

antecedent continuous in a, b, and a consequent upward monotone in a, b,
— substituting Au.u = y for a, Au.u = z for b reduces this to Vyz (Czyz — Czzy).

To facilitate locating the right substitution instance it is useful to syntactically characterize the
continuous formulas.

4.9. DEFINITION. Let 8 € Formg[7], and let p be an s-variable. Then 3 is called distributive
in p if it is of the form 37 (p(Z) A B') V v, where 3, 7y are p-free.

An example from PDL: (a)(b*)p translates into Jyz (p(z) A Rezy AV, (R} yz)) — a formula
that is distributive in p.

4.10. THEOREM. Let 8 € Formg[r], and let p be an s-variable. Then (3 is continuous in p iff
[ is equivalent to a formula that is distributive in p.

Proof. T only prove the only-if direction. Let 3 be continuous in p. Let A = (4, T,...) E B[4],
where T interprets p. Then, by continuity and 4.7,

(4, 7T,...) F (35 (p(&) A [(AG. 5 = 2)/plB) V(NG § # z'/')/p]ﬂ) [4].

Let v denote the latter formula. Then « has the required syntactic form. Moreover, as v does
not depend on 2 or %, we have that = 8 — 7; but by the continuity of 8 and 4.7 this can be
strengthened to |= 8 <> v, as required. -

If in VP (o« — ) the antecedent « is distributive in p, then it is continuous in p by Theorem



4.10 — hence the required substitution instance is simply Ad. 4 = ¥, where ¥ is the unique
occurrence p(%) of p in a.

GENERALIZING CONTINUITY: SMALL SUBSETS

The important features of continuous formulas are that their semantic value may be computed
locally (on singletons), and that they are upward monotone. We now generalize from the basic
case by maintaining upward monotonicity but liberalizing local computability to ‘depends only
on small sets;’ after that we replace the latter with ‘depends only on a definable set.’

4.11. DEFINITION. Let 8(%) € Formg[7], and let p be an s-variable. For A a cardinal, 3 is called
A-continuous in p, if for all A = (A,U;¢; Ts, .. .) € Str[r], where |J;c; T; interprets p, and for
all 4 € A, we have 2 |= B[i] iff there is an Iy C I with || < A and (4,U;cp, Ti,--.) = Bld).
Further, B(Z) is called globally A-continuous in p if there is a kK < A such that for all
A= (4,Uier Ti,-.-) € Str[r], and for all % € A, we have 2 |= g[i] iff for some I C I, || < &

and (4, Useg, Tir - ) F= Bl

In Roorda (1993)’s modal approach to Lambek calculus the formula A(p A ¢, p A —¢) translates
into Jyz (CzyzAp(y)Aq(y)Ap(z) A—q(z)). This formula is not continuous in p; it is 3-continuous
in p.

4.12. PROPOSITION. Let 3(Z) € Formg[r], and let p be an s-variable. Then (3 is A-continuous
in p iff for every A we have A = (A, T,...) E B[d] iff for some Ty C T with |Ty| < A,
(Aﬁ]bV') F:ﬁﬁﬂ'

Recall that £ has the Lowenheim-Skolem property down to k if each satisfiable £-formula has a
model of power < k. (The power of a T-structure 2 is defined as |A| in the one-sorted case, and
as y_scr |As| in the many-sorted case.)

We say that B8(p) commutes with unions of non-decreasing chains of sets of length X if for
every a non-decreasing chain of sets { T; }i<x we have A = (4,U;\ Ti, ...) = B[] iff for some
k<A (4, T,...) E Bl

4.13. PROPOSITION. Assume L has the Léwenheim-Skolem property down to A. Let 3 be an
L-formula, and let p be an s-variable. Then B is A-continuous in p iff B commutes with unions
of non-decreasing chains of sets of length A.

Proof. The only if direction: assume { T; },<) is a non-decreasing chain of sets such that
(A,Uica Ts, -..) = BlE], where U;. T; interprets p. By A-continuity this is equivalent to:
for some k < A, (A,Uick Ti,...) = Bld]. As the T;’s form a non-decreasing chain, this is
equivalent to (4, T, ...) = B[], as required.

For the converse, assume that 3 commutes with unions of non-decreasing chains of length A.
Let (A4, T,...) = B[d]. We may assume that |A| < X\. Then T = ;. T;, where To C T; C ---
all have |T;| < A. Hence, (4, T, ...) | Bld], for some x < A, which is sufficient by 4.12.
Conversely, if (4, To,...) E B[@], for some Ty C T with [To| < A, define T; = T (0 < 7 < A).
Then, by the assumption on 8, (4, T,...) = B[E]. A

4.14. PROPOSITION. Assume L is A-compact. Let B € Formg[7], and let p be an s-variable.
Then B is A-continuous in p iff it is globally A-continuous in p.

Proof. T only prove the direction from left to right. If 8 is A-continuous, then

oo\ 3170-~-3?7u-~-</\ p(F) A [\ z*=z7i)/p]ﬁ).

k<A M 1<K 1<K



By compactness there is a kg < A such that

=6 Y 20 (A s a103. V 7= /slp). @

As 3 is upward monotone in p, the implication in (4) must be an equivalence. -

4.15. EXAMPLE. In £, w-continuity and global w-continuity coincide, according to 4.14. Thus,
we need to go beyond L, to find an example of a formula that is w-continuous, but not globally.
In L,,w let B be the statement ‘at most n elements satisfy p’, and put 8 :=\/,, 5. Then S is
w-continuous, but not globally so.

Likewise, in weak second order logic L2, where the relation variables range over finite sets
only, the statement 3¢Vz (¢(z) — p(z)) is locally, but obviously not globally w-continuous.

In the setting of Boolean algebras with operators, the operators f defined by globally w-
continuous formulas are also known as (completely) w-additive ones: f(XU) = L{f(2(T)) :
TCU,|T|<m}, for some m € w (cf. (Henkin 1970)).

4.16. LEMMA. Assume that n(Z) € Formg[7] is upward monotone in p. Let o(Z) € Formg[T]
be globally w-continuous in p. Then VP (a(Z) — n(Z)) reduces to a p-free formula via suitable
instantiations.

Proof. The instances we need here are of the form A\zZ. \,.,,Z = ¥ (n < w), A\Z.Z = Z, and
\Z.Z # Z, depending on whether p occurs both in « and =, only in « or only in 7. The latter
two cases are analogous to the corresponding cases in 4.8. So assume p occurs both in « and .
Let n < w be the upper bound given by global w-continuity. Then the following is universally
valid:

( A Vio.. Vi (07 § = 7)/p)V7 (@) - w(i;‘))) 5 (VpVZ (a— 7r)>.
0<i<n %
This may be seen by using 4.12 and arguing as in 4.8. This suffices. -

To be able to restate 4.16 for arbitrary A > w we need to assume that L is closed under quantifier
strings and disjunctions of arbitrary length < A.

By 4.14 the requirement in 4.16 that a be a globally w-continuous formula may be weakened
to w-continuity whenever £ is Ng-compact.

EXAMPLE. Consider the formula Op A OOp — Op in ML(O).
— Higher-order equivalent:
Vp (3y (Rzy Ap(y)) A3y’ (Rey' A3y" (Ry'y" Ap(y")) = ¥z (Roz — p(2))),
— after rewriting:
VpVyy'y" (Rzy A p(y) A Rzy' ARy'y" Ap(y") = Vz (Rzz — p(2))),

— substituting Au.(u = y V u = y') for p reduces this to

Yyy'y" (Rzy A Rzy' A Ry'y" —Vz (Rzz — (z =y V 2z =1y"))).



ExXAMPLE. Van der Hoek & De Rijke (1992, 1993) study systems of graded modal logic con-
taining modal operators (R);p whose translation reads

dxg ...z (/\Ra::v,'/\ /\ (ilz'i?émj)/\/\P(xi));

i 0<i#j<k i
the latter is clearly not continuous, but it is £ 4+ l-continuous. Consider the graded modal
formula p A (R)rq — (R)o(q A (R)op).

— Higher-order equivalent:

VpgVzg . .. o (p(x) A /\Rmi A /\ (zi # i) A /\ q(z;) —

0<i#j<k
Sy (Rey A q(y) A 3z (Ryz A p(z)))), (5)

which is of the form prescribed by Lemma 4.16,
— substituting Au.u = z for p, and Au. V<4 (u = ;) for g reduces (5) to

Vg ... (/\ Rzxz; A /\(:cz #* .'L‘j) — v Rz;z).
i i#j i<k
4.17. DEFINITION. Let 8 € Formg, [r], and let p be an s-variable. Then 3 is called w-
distributive in p if is built up from p-free formulas and atomic formulas p(Z) using only A,
V and 3.

4.18. THEOREM. Let B € Formg_ [7], and let p be an s-variable. Then B is w-continuous in p
iff it is equivalent to a formula that is w-distributive in p.

Proof. This is immediate from 4.14. -

What about A-continuity for A > w? As with 4.16 more general versions of 4.18 may be obtained
by requiring suitable syntactic closure conditions and using appropriate versions of compactness.

A potentially more interesting issue is this: what are the w-continuous formulas in extensions
of L,,? In the case of L,,, the answer is almost immediate from 4.14: an L,,,-formula is w-
continuous in p iff it is equivalent to a formula constructed from p-free formulas and atomic
formulas p(%) using only A, V/, 3.

As with continuous formulas the characterization result for w-continuous formulas is use-
ful in locating the required substitution instances; they are finite disjunctions of the form

A (V<o (@ = ).

GENERALIZING CONTINUITY: DEFINABLE SUBSETS

The next obvious way to generalize the notion of continuity is to demand that § holds of p not
iff it holds of a singleton in p, but iff it holds of a definable subset of p. In this approach we
fix some set X from which the possible definitions of subsets of p may be taken. As in earlier
cases, both local and global versions are possible.

4.19. DEFINITION. A subset X C A is L-definable in 2 if there is an L-formula y(7; ) and
elements 7 € 2 such that X = {7 : 2 = v[d;#]}. If s is a sort in 7, a subset which is definable
is s-free definable if it has an s-free definition.

The following may be somewhat hard to digest at first. The reward will be considerable, however,
as the following will allow us to obtain reducibility results encompassing and vastly extending
our earlier results.

10



4.20. DEFINITION. Let B(Z) € Form//[7], and let p be an s-variable. Then B(%) is L-definably
continuous in p if for all A = (A, T,...) € Str[r], where T interprets p, and for all 4 € A we
have 2 |= B(%)[] iff for some s-free L-definable subset X, = {7 : A |= v(Z; §)[@f]} of T we

have (4, X,,...) = B(Z)[d].

We call 8(Z) L-definably continuous in p with additional parameters if for all structures
A = (A, T,...) € Str[r], where T interprets p, and for all ¥ € A we have 2 = S[i] iff for
some subset X, = {f : A |= (&;§;7)[@t@]} of T that is s-free and L-definable, we have

(4, Xy,...) = Al

Further, B(Z) is globally L-definably continuous if there is a fized finite stock of L-formulas
Yo(Z; %), - .., Yn(Z;¥) such that for all A = (4, T',...) and % in 4, we have A |= B(Z)[d] iff for
some i (0 <i<n) (A4,{f: A= [Etl},...) | BE)[dL]. A global version of L-definable
continuity with parameters is defined analogously.

4.21. EXAMPLE. Let 8 =Vy (32 (Rzz ARzy) — p(y)); then g is L,,,-definably continuous: 2 =
(A4,T,...) = Blu], where T interprets p, implies (4, { v : 2 |= 3z (Rzz A Rzy)[uv] },...) | Blu];
the converse implication follows from the fact that 8 is monotone in p.

For a first-order formula that is not L, -definably continuous, consider

B=Vy (Rmy — [3z (Ryz A p(2)) A3z (Ryz A —|p(z))]>,

and let A = (N,<,{2n : n € N}), where < interprets R and {2n : n € N} interprets p. Then
2 = B[0]. The only L,.-definable subsets of N (in terms of R, =) are the finite and co-finite
sets. But clearly, for no finite or co-finite subset X of {2n : n € N}, (N, <, X) = g[0].

4.22. PROPOSITION. Let 3(Z) € Formg, [7], and let p be an s-variable. Then

1. B is Lyw-definably continuous in p iff it is globally L, -definably continuous in p, and
2. B is L,,-definably continuous in p with parameters iff it is globally L, -definably contin-
uous in p with parameters.

Proof. 1. We only prove the only-if direction. Let A € Str[r]. By continuity there is an s-free
L-formula v such that A = (4, T,...) = B[] implies that

(A {7 A& )[at)},..) = BE) AVE (v(& ) — p(¥))[d], (6)
and hence
(AT A (@ PE ), ) E DG (Z7)/p16(Z) AVT (1(Z5F) = p(7))[d]-
Let ﬂét,a denote the latter formula. Then 2 |= 8 < By z[i]. So

B« V B ali]-
{(®,4) - A4=p[u] }
By compactness the latter disjunction reduces to a finite one, that is, for some n we have
Foo V (DIw@E /8@ AVE (4@ T) - 5(@),
0<in

where all ;s are s-free L,,,-formulas.
2. This is proved like 1. We replace (6) with

(447 2 @ 5 D laEal ), ) 6@ AV (03 5:2) - p(@)[aal, (7)

11



where 7 is the formula given by the continuity of 3, and the @ are additional parameters. Clearly,
(7) implies that (A, {7 : A = ~(&; 7; Z)[d@td]},...) satisfies

37 (107 7@ 7:)/518(@) A VT (13 7:2) > 5(D)
at 4. Reasoning as before one derives that

=pe \/ 3 (hi(f; 7 2)/PIB(E) AT (v(E 7 5) - p(m)).

0<i<n
This implies that § is globally £,,,-definably continuous with parameters.

4.23. LEMMA. Let 7(Z) € Formg[7]| be upward monotone in p.

1. Assume a(Z) € Formg/[7] is globally L-definably continuous in p. Then VP (a(Z) — n(Z))
reduces to a p-free formula via suitable instantiations.

2. Assume a(Z) € Formp/[1] is globally L-definably continuous in p with additional parame-
ters. Then VpZ (a(Z;Z) — w(Z;Z)) reduces to a p-free formula via suitable instantiations.

Proof. The instantiations needed are of the form AZ.v(Z;¥), where v is a p-free L-formula,
AZ.Z = Z, and M\Z.Z # Z, depending on whether p occurs both in & and 7, only in « or only in
m. 'To see this, assume p occurs both in @ and 7 (the other cases are as before). Let vy (Z; %),
..y Tn(Z; ) be the p-free formulas given by the definable continuity of a. It suffices to show
that

= (A DInED/EE - 1@) - (Y@ - @),

0<i<n
the converse direction being an instantiation. So assume that A = (4, T,...) |= o[i]; then, for
some ¢ we have that (4, X,,,...) = ofd], where X, is the subset of T defined by v; (notation
as in 4.20). This implies (4, Xy,,...) = [AJ.7i(Z; §)/p)aid], and by assumption, (4,X,,,...) =
[AY.v:i(Z; ¥)/p]m[d]; by monotonicity this gives(4, T,...) E «[d].
Next assume « is globally definably continuous with parameters. The instantiations we
need are of the form AZ.v(Z;y;Z), where v is a p-free L-formula, \Z.Z = Z, and A\Z.Z # Z.

— —

Assume that p occurs both in a and in 7, and let vo(Z; ¥; Z), - - -, Tn(&; ¥; Zn) be p-free formulas
witnessing the continuity of a. Reasoning as before we find

= <0/\ VA5 ) 1) (@) + (47 (@@ - =),
This suffices. -

EXAMPLE. As an example, consider the formula O0p — Op in ML(O).

— Higher-order equivalent:
o (Vy (Rey = ¥z (Ryz - p(2))) = Vo (Reo = p(0)),
— after rewriting: Vp (Vyz (Rzy A Ryz — p(z)) — Vv (Rzv — p(v))), whose antecedent is

definably continuous in p with Au. R%2zz as the p-free definition,
— substituting Au. R?zu for p the formula reduces to Vv (Rzv — R2zu), i.e. R is dense.

12



EXAMPLE. In Blackburn & Spaan (1993)’s attribute value logic LEE] with master modality [+]
one has models with a stock of binary relations R; and z |= []p iff for all y with (z,y) € (U; R;)*:
y = ¢. Consider the formula (x)[]p — p.

— Higher-order equivalent:

Vp (ay ((:9) € Ui R)* AVz ((32) € (U B)" = p(2))) = p(a) ).

— after rewriting:

¥p¥y ((2,0) € (UrR) AY2 ((0:2) € (Ui R = p(2) = p(a) ).
where the underlined formula is definably continuous with Au. ((y,u) € (U; Ri)*) as the

p-free definition,
— substituting Au. ((y, u) € (U; R1)*) for p gives

¥y () € U R)” > (,0) € UiR)).

EXAMPLE. Shehtman (1993) uses a progressive operator II in addition to the usual temporal
operators F, P to approximate the meaning of the English progressive: z |= IIp iff

Jz'z" (Rz'z A Raz” AVz (Rz'z A Rzz" — z = p)).

Consider the formula IIp — Fp.

— Higher-order translation:
Vp (Ez'x" (Rz'z A Rzz" AVz (Rz'2 A Rzz" — p(z))) — Jy (Rzy A p(y))) ,
— after rewriting:

VpVz'z" <Rz'w A Rzz" AVz (Rz'z A Rzz" — p(z2)) — Jy (Rzy A p(y))) ,

where the underlined formula is definably continuous with Au. (Rz'u A Ruz"”) as its p-free
definition,
— substituting Au. (Rz'u A Ruz") for p reduces the formula to

vz'z" (Rx'w A Rzz" — Jy (Rzy A Rz'y A Ry:c")).

Despite the somewhat baroque definition of definably continuous formulas, for the definably
continuous first-order formulas an explicit syntactic characterization can be given. As in earlier
cases a form of distributivity is needed.

4.24. DEFINITION. Let 3 € Formg, [7], and let p be an s-variable. Then S is called type 3
distributive in p if it is a disjunction of formulas of the form V7 (58'(¥) — p(¥)) A~y, where 8" and
v are p-free formulas. Also, § is called type 4 distributive in p if it is a disjunction of formulas
of the form 37 (v(%; 2) AVY (B'(¥;Z) — p(¥))), with the same restrictions on 3’ and v as before.

4.25. THEOREM. Let 3 € Formg, [7], and let p be an s-variable. Then
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1. B is definably L, -continuous in p iff it is equivalent to a formula that is type 3 distributive
n p, and

2. B is definably L, -continuous in p with parameters iff it is equivalent to a formula that is
type 4 distributive in p.

Proof. Use the proof of 4.22. -

Observe that if a is type 3 or type 4 distributive, reductions of the kind described in Lemma 4.23
take their substitutions from antecedents  of the Horn-like conditions V4 (3 — p) occurring in
o; the only (possible) difference between the two is that if « is type 4 distributive, 8 is allowed
to contain additional parameters.

To conclude this section, Table 1 summarizes the main points.

semantic substitutions syntactic
property needed form
upward monotonicity N.Z#T positive occurrences
only (4.5)
downward AN.Z=17Z negative occurrences
monotonicity only (4.5)
continuity AZ.Z = §, \Z.Z7 # Z | distributive (4.9)
and \Z.Z =%
w-continuity AZ. V(2 =), w-distributive (4.17)
AZ. T # 7 and
N =1
definable continuity AZ. y(Z; 7) (‘s-free’) type 3 distributive
(4.24)
definable continuity AE.y(Z; §; Z) (‘s-free) type 4 distributive
with parameters (4.24)

Table 1: Forms of continuity.

5 REDUCTION ALGORITHMS

We put our findings of §4 to work. Our input consists of s-universal formulas 3, and the aim is
to reduce such formulas g to (combinations of) formulas of the form

B =Vp (o — 7),

where « satisfies one of the distributivity conditions of §4 for all of its s-variables, and 7 is
positive in all of its s-variables. Given the syntactic form of a the instantiations yielding the
required reduction to an s-free formula can then be read of from 3.

There are several ways of rewriting 3 to 8’. The earliest approaches are due to Sahlqvist
(1975) and Van Benthem (1976, 1983). A recent version can be found in (Sambin & Vaccaro
1989). These approaches all deal with the uni-modal language with a single diamond < and box
O only. They describe a fragment of this language, and show that all formulas in this fragment
reduce to first-order formulas. In addition, Sahlqvist (1975) and Sambin & Vaccaro (1989)
show that whenever the basic modal logic K is extended with axioms taken from this fragment,
the resulting system is axiomatically complete. Kracht (1993) obtains those reducibility and
completeness results in one go as part of a unifying approach towards definability in modal
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logic. Venema (1993) obtains a similar double result for certain modal languages containing
a difference operator D. Finally, Gabbay & Ohlbach (1992) and Simmons (1992) extend the
Sahlgvist-van Benthem algorithm by using Skolem functions; in addition, the latter considers
modal languages with arbitrary many unary modal operators instead of a single one.

In this section we first describe the Sahlgvist-van Benthem algorithm extended to arbitrary
languages; then its limitations are pointed out, and general strategies for disproving reducibility
are sketched. Finally we show how the Gabbay-Ohlbach-Simmons approach overcomes some
but not all of these limitations.

THE SAHLQVIST-VAN BENTHEM ALGORITHM

This is our strategy: we define a class of formulas ¥ and show that every 3 € ¥ can be rewritten
to a combination of formulas of the form VpVy (a(Z; ¥) — 7(Z; J)), where « is type 4 distributive
in P, and 7 is positive in g. We then apply our results from §4 to show that 8 must be reducible.
For the remainder of this subsection we fix a classical vocabulary T and a sort s in 7.

5.1. DEFINITION. (Sahlqvist formulas) We say that 8 € Formg[7] is a simple Sahlquist formula
for s if it is an s-universal formula of the form VpVy (a(Z;7) — n(Z;7)), where « is type 4
distributive in all its s-variables, and 7 is positive in all its s-variables.

The Sahlqvist formulas for s are built up as follows. First, a formula 8 (not containing any
quantifiers binding s-variables) is called an s-block if

— it is negative in all its s-variables, or
— it is type 4 distributive in all its s-variables, or
— it is s-free.

Next, s-antecedents are defined by the rule
az=flag Aoy | a1 Va|Ija,

where (3 is an s-block. Finally, a Sahlquist formula is an s-universal formula of the form V5Vy (%)
where
v 1= Vi (d) — w () | Vi (8(2) = (@) [ A2 [ 71 V2 (8)

where the formation of disjunctions is subject to the condition that 1, v share no s-variables
and no individual variables except for Z, and where « is an s-antecedent, 7 is positive in all its
s-variables, and 9§ is s-free.

What Definition 5.1 boils down to is that (modulo some ‘extras’) a Sahlqvist formula is a formula
of the form VpVy (o — ) where 7 is positive, and in @ no 3 or V occurs in the scope of a V.

5.2. LEMMA. (Rewriting Lemma) Assume that vy is a Sahlquist formula of the form VpVj (o —
m) with a, 7 as in (8). Then vy is equivalent to a conjunction of simple Sahlquist formulas.

Proof. We first give an inductive recipe for rewriting conjunctions -y of Sahlqvist formulas of the
form VpVy (@ — ) to conjunctions of the form

N\ VBV (/\ Bj, — 7Ti>, (9)
i Ji
where the B; are s-blocks and the 7; are positive.

1. if VpVY (37 a« — ) is a conjunct in v, replace it with VpVy§VZ (o — 7);
2. if VpVY (a1 V g — ) is a conjunct in v, replace it with VpVy (a1 — 7) AVPVY (o — 7);
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3. if VPVY (a1 A 3Z ag — ) is a conjunct in -y, replace it with VpVyVZ (a1 A ag — 7);
4. if VpVy (a1 A(ae Vag) — ) is a conjunct in -y, replace it with VpVy ((ag Aae) V (an Aag) —
).

Clearly, every conjunct in <y is equivalent to a formula of the form occurring in the antecedent
of 1-4. It is also clear that the output of this rewriting recipe has the form described in (9).

Next we show how conjunctions < of the form (9) can be rewritten to simple Sahlqvist
formulas. Take any conjunct in +y; it may be assumed to have the form

VpVy (D AN AF — 7), (10)

where D is a conjunction of type 4 distributive formulas, N is a conjunction of negative formulas,
and F is a conjunction of s-free formulas. Now (10) is equivalent to

VpVy (D — 7V -N V =F). (11)

This is a simple Sahlqvist formula, as # V - N V —F is positive in all its s-variables. Repeating
the procedure for all conjuncts in v completes the proof. -

5.3. THEOREM. (The Sahlgvist-van Benthem Algorithm) Assume that B(Z) is (equivalent to)
a Sahlquist formula for s. Then B(Z) reduces to an s-free formula via suitable instantiations.
Moreover, these instantiations can be effectively obtained from ((Z).

Proof. We first prove the result for conjunctions of simple Sahlqvist formulas. Let V3Vy (o — 7)
be such a formula. It is equivalent to a conjunction of formulas of the form

Vpvy (D — =), (12)

where 7' is positive, and D is type 4 distributive in all s-variables. By Lemma 4.23 (12) reduces
to an s-free formula via substitutions that can be read of from D. By Lemma 3.6 the conjunction
of reducible formulas is also reducible.

Next, if VPV vy is a Sahlqvist formula for s, reducibility is obtained by an inductive argument.

— First, Sahlqvist formulas of the form VpV¥§ (o« — 7) are equivalent to conjunctions of simple
Sahlqvist formulas, by the Rewriting Lemma; hence it is reducible to an s-free formula by
the first half of the proof.

— If VpVij v is of the form VpVy (71 Ay2), it rewrites to VEVY 1 AVpVY v2; the latter reduces
to an s-free formula whenever both conjuncts VpVy y; and VpV¥ v, do so (by Lemma 3.6).

— If VpVy vy is of the form VpVyZ (y1 V 72), it rewrites to VpVij 1 V VpZ v, as only formulas
not sharing any bound variables are disjoined; the latter reduces to an s-free formula iff
both disjuncts do (Lemma 3.6).

— If VpV§ 1 is of the form VpVy (6(Z;y) — m); the latter reduces to an s-free formula iff
VpVy v1(y) does (Lemma 3.7).

5.4. REMARK. To recap, the strategy in Theorem 5.3 is to obtain reductions through instan-
tiations. The instances are found by carefully rewriting Sahlqvist formulas into certain combi-
nations of simple Sahlqvist formulas VpVy (@ — 7), and then simply reading them of from the
antecedents a. Detailed examples are provided in §6 below.

Theorem 5.3 takes type 4 distributive formulas as its basic building blocks supplying the
required instantiations. Scaled-down analogues of the Sahlqvist Theorem may be obtained by
taking one of the other syntactic forms occurring in Table 1, as the basic building blocks.
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LIMITATIONS OF THE SAHLQVIST-VAN BENTHEM ALGORITHM

Formulas that are typically excluded from the set of Sahlqvist formulas have implications o — 7
as their matrix with a containing a V3 or V(... V...)-combination. Van Benthem (1983) shows
that these limitations occur even in the weakest language we consider here, ML(<). Below I
will repeat one case (in ML(<)) of non-reducibility due to a forbidden V3-combination. By way
of examples I will show how this case may be used to obtain further non-reducibility results for
arbitrary modal formulas with first-order definable truth definitions, that contain a forbidden
quantification of the form V3.

5.5. PROPOSITION. (Van Benthem (1983)) The (translation of the) McKinsey formula OOp —
<$Op does not reduce to a p-free formula over R, =.

Proof. The higher-order translation of the McKinsey formula reads
Vp (Vyilz (Rzy — (Ryz A p(2))) — Fy'V2 (Rzy' A (Ry'2' — p(z')))). (13)

Non-reducibility is proved by showing that it lacks a first-order equivalent over R, =. To this end
we show that it does not enjoy the Léwenheim-Skolem property. Consider the frame § = (W, R),
where

- W={a,bn,bn,:n €N €{0,1}}U{c:f:N—={0,1}},

— R ={(a,bn), (bn,bn;), (bn;, bp;) : m €N, i € {0,1}} U

{(aa cf)’ (Cfa bnf(n)) :f :N— {0’ 1}}

It may be shown that §, a |= (13). Take a countable elementary subframe §’ of § containing a
and all by, b,,. For some f : N — {0,1}, f is not in §' (as §’ is countable). This f may be used
to refute (13) at @ in §’'. Hence (13) lacks a first-order equivalent.

Now, the strategy for porting the above non-reducibility to arbitrary modal languages in which
all operators have first-order definable patterns, is to code formulas with forbidden quantifier
patterns up into the above example 5.5 using first-order means. Here is an example taken
from unary interpretability logic (De Rijke 1992d). The latter extends provability logic with an
operator I used to simulate the notion of relative interpretability over a given base theory. The
semantics of I is based on a binary relation R and a ternary relation S as follows:

(W,R,S,V),z =1p iff Vy(Rzy — 3z(Szyz A z = p)).

Consider the formula Ip — —I-p whose classical equivalent on frames reads
Vp (VyElz (Rzy — Szyz A p(2)) — Jy'V2' (Rzy' A (Szy'2 — p(z')))), (14)

which is of the form Vp (@ — m) with 7 positive (in p), and « containing a V3-combination.
5.6. PROPOSITION. The formula (14) does not reduce to a p-free formula over R, S.

Proof. Let & = (W,R,S) where § = (W, R) is as in the proof of Proposition 5.5, and S is
defined by

— Vzyz (Szyz +> (Rzy A Ryz)).
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Then &, a = (14) < (13). Hence & = (14). But for &' = (F,S’) with §' as in the proof of
Proposition 5.5, and S’ defined like S above, we must have &' [~ (14), for otherwise § |= (13).
_,

The same strategy shows non-reducibility results for (classical equivalents of) formulas involving
V3-combinations in many other modal languages, with Until, Since-logic as an obvious example.

As to the second kind of forbidden combinations mentioned earlier, viz. configurations V (. ..V
...), Van Benthem (1983) gives a non-reducible formula in ML(<) whose higher-order equivalent
Vp (¢ — 7) contains such a combination in its antecedent . Analogous to the above case of
V3 this example may be used as a tool for establishing non-reducibility results for ‘forbidden
formulas’ in arbitrary modal languages in which all patterns are first-order definable.

THE GABBAY-OHLBACH-SIMMONS ALGORITHM

Unlike the Sahlgvist-van Benthem algorithm the Gabbay-Ohlbach-Simmons algorithm is able
to deal with some cases like (14). By Proposition 5.6 the Gabbay-Ohlbach-Simmons algorithm
cannot reduce (14) to a first-order formula involving only R and S (assuming the algorithm is
sound). To arrive at a p-free equivalent it uses quantification over Skolem functions. Here is an
example. Consider (13) again:

Vp (VyElz (Rzy — Ryz A p(z)) — Jy'Vz' (Rzy' A (Ry'2 — p(z'))))

The antecedent of the matrix of (13), Vy3z (Rzy — Ryz A p(z)) is equivalent to

3fVy (Rzy — Ryf (z,y) A p(f(z,y))-

Thus (13) is equivalent to

¥ (Y0 (Rey = Rof(a,9) A p(f(2,9))) =
y'Vz' (Rzy' A (Ry'2' — p(z')))).
Substituting Au. 3z (Rzz A u = f(z, z)) for p in the above gives

f (o (Roy = Rof(@,)) —
Jy'V2' (Rzy' A (Ry'2' — Fv (Rav A 2’ = f(z, v))))) (15)

A remark is in order: (15) replaces a quantification over unary predicates in (14) with quan-
tification over functions — what has been gained? Besides revealing a link between different
fragments of classical logic that may in itself be of logical interest, such replacements are com-
putationally relevant, as is shown by Gabbay & Ohlbach (1992).

We now present the Gabbay-Ohlbach-Simmons algorithm in analogy with the Sahlqvist-van
Benthem algorithm. First, we need a set of formulas for the algorithm to operate on.

5.7. DEFINITION. (Extended Sahlqvist formulas) We assume that our vocabulary has function
symbols. The type 4 distributive formulas over this vocabulary are defined as in Definition 4.24
— where the arguments of p may now involve function symbols. From these, simple Sahlqvist
formulas and s-blocks are defined as in Definition 5.1.
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To define extended s-antecedents « we consider an intermediate set of formulas o’ generated
by
o =01 Nay | FFd | Vi,

with 8" an s-block such that if 3’ is a type 4 distributive formula, then it should be of the form
3Z (y AVY (B — p)). Then, the eztended s-antecedents are generated by the rule

az=0ld|agAay| a1 Vas|Ija,

where 3 is an s-block. The important restriction here is that no V governs a V. Finally, extended
Sahlquist formulas are generated using extended s-antecedents analogous to (8).

For the poly-modal language ML((a) : a € A) the above definition specifies the same fragment
as the one given by (Simmons 1992). The proof of this claim would require a lengthy and boring
induction, and is therefore omitted.

The Gabbay-Ohlbach-Simmons algorithm extends the Sahlqvist-van Benthem algorithm.
First there is an Extended Rewriting Lemma.

5.8. LEMMA. (Extended Rewriting Lemma) Let 8 = VRVFVG (o = m) be an extended Sahlquist
formula with o an extended s-antecedent and w positive. Then [ is equivalent to a conjunction
of (almost simple) Sahlquist formulas of the form

VEvIvg (A Di — ), (16)

with A\; D; a conjunction of type 4 distributive formulas.

Proof. This is similar to the proof of Lemma 5.2. First we rewrite to a formula as in (16), but
with a conjunction of s-blocks in antecedent position rather than distributive formulas. The
following rewrite instructions need to be added to the stock in 5.2; their purpose is to move
quantifications over functions to the prefix, and to push occurrences of V inside as far as possible
until they ‘reach’ a distributive formula that doesn’t start with a 3-prefix — without breaking
down negative formulas or s-free formulas.

5. if VBVFVi (...VZ (a1 Aag)... — m) is a conjunct in v, replace it with
VRV ( .VZa1 AVZag... > w);
6. if VpVFVY (...VZ3y; ... up ... = ™) is a conjunct in v, replace it with

VRV ( L3 BVEAG D) ). (@ 2) ] s 7r),
for fresh function symbols fi, ..., fn; .
7. if VPVFVY (a1 A 3g as — 7) is a conjunct in v, replace it with VpVf gV (a1 A ag — 7);
8. if VpVfVy(...VZ(6 = O Ap)... = m) is a conjunct in v, replace it with
VvV (...vzw SO AVEG = p)... = w).

The second half of the proof is similar to the second half of 5.2. -
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5.9. THEOREM. (The Gabbay-Ohlbach-Simmons algorithm) Let 7 be a vocabulary with suffi-
ciently many function symbols, and s a sort in 7. Let B(Z) be (equivalent to) an extended
Sahlquist formula for s. Then B(Z) reduces to an s-free formula, possibly involving additional
function symbols, via suitable instantiations. These instantiations can be effectively obtained

from B.

Proof. This is almost the same as the proof of 5.3; the substitutions arising from distributive
formulas involving function symbols of the form V§ (v(Z; ¥) — p(f(Z;7))) are M. 37 (v(Z; §) A

i=f(%y). A

LIMITATIONS OF THE GABBAY-OHLBACH-SIMMONS ALGORITHM

The main gain of extended Sahlqvist formulas over Sahlqvist formulas is that the former allow
V3-combinations. However the extended Sahlqvist formulas still suffer from the restriction on
V(... V...)-combinations. The importance of the restriction is best explained by an example.
Consider Lob’s formula in ML(<¢) O(Op — p) — Op, which translates into

Vp <Vy (Rzy — 3z (Rzz A —p(2)) V p(y)) — Yu (Rzu — p(u)))

on frames. After Skolemization and rewriting this gives

Vpvf3y ((ny = (Raf (5,) A=p(F (2,9))) V p(0)) = Vu (Rou = p(a)) ). (17)

At this point we need to define a substitution to achieve a reduction to a p-free formula. However,
there is no obvious candidate — because of the disjunction occurring in the antecedent of (17). It
seems that to be able to handle cases such as the Lob formula, higher-order functions are needed,
ones that take infinite sequences, or even whole ‘R-trees’ as arguments. On the other hand, it
may be that the Lob formula is not expressible in the Gabbay-Ohlbach-Simmons fragment. I
will leave this for further study.

6 APPLYING THE ALGORITHMS

Section 5 presented the general Sahlqvist-van Benthem and Gabbay-Ohlbach-Simmons algo-
rithms for obtaining reducibility results. To actually apply them to individual modal languages
requires a further detailed analysis of those languages to locate the Sahlqvist fragments. Below
we illustrate this by examining the languages of standard modal logic, D-logic, Since, Until-logic,
as well as the language of Peirce algebras, and infinitary modal languages. Finally, applications
are given to areas other than modal logic, including circumscription.

STANDARD MODAL LOGIC

Formulas of the standard modal language ML(<) translate into a strict subset of the language
of monadic second-order logic. Its Sahlqvist fragment is a strict subset of the general Sahlqvist
fragment of the latter (5.1). To be precise, let the set of Sahlqvist formulas SF(<O) C ML(CO)
be defined by putting x € SF(<) iff it is produced by the following rules

— ¢ == O'p | v | §, where v is negative in all proposition letters occurring in it, and § is
p-free,
—pu=d | A | P1 V| O,
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- xu=v%—=>7|x1Ax2]|x1V x| Ox, where 7 is positive in all its proposition letters, and
V is applied only to formulas x1, x2 that don’t share proposition letters.

When interpreted on frames every x € SF(<) translates into a Sahlqvist formula over a vocab-
ulary with a single binary relation symbol, and unary predicate variables corresponding to the
proposition letters in ML(<). By Theorem 5.3 every element of the Sahlqvist fragment SF (<)
reduces to an s-free formula.

The set of instances needed to reduce every formula in SF(<) is an atomic join semi-
lattice with partial operators, the atoms being the terms denoting singletons, and the operators
correspond to necessitation and are defined on V-free terms only.

Now that we are considering individual modal languages, much more fine-grained issues become
visible than in our general analysis of §§4, 5. As an example, given the Sahlqvist fragment
SF(©) one may strive for an explicit syntactic description.

6.1. DEFINITION. (Kracht 1993) An individual variable v is called inherently universal in «
if either it is free in @, or « is of the form Vz (Rzy — () and v is inherently universal in S.
Inherently existential is defined similarly. A first-order formula « is restricted if it is built using
only restricted quantifiers Vv (Rzv — ...) and Jv (Rzv A ...).

A Sahlquist reduct is a first-order formula over a binary relation symbol R and = that is
equivalent to a positive, restricted formula in which every subformula R'yz contains at least one
inherently universal variable.

6.2. THEOREM. A first-order formula is definable by means of a Sahlquist formula in the stan-
dard modal language ML(O) iff it is a Sahlquist reduct.

Proof. One direction follows from Theorem 5.3. The other one involves a simple but long case
analysis which is too lengthy to be included here. Instead we give an example. Consider the
formula

3z (Rzz AVy(R%zy — Raxy) A Raz). (18)

The idea is to view (18) as being the result of certain substitutions into the translation of a
positive modal formula 7, to extract those substitutions from (18), and to prefix their modal
counterparts as a Sahlqvist antecedent to 7. Here we go:

1. the restricted quantification 3z (Rzz A ... stems from a diamond <&: (.. ;

2. the conjunct Rzz refers back to z, thus calling for a proposition letter p to be true at z,
and z ‘seeing’ p: p = O(OpA..;

3. finally, in Vy (R?zy — Rzy) the antecedent calls for 2 boxes O, and the consequent refers
to ‘being a successor of z’ which calls for a boxed proposition letter being true at z:
pAOg— O(OpAOOg).

Two short remarks: a similar syntactic analysis can be given for the exztended Sahlqvist formulas
as well (Definition 5.7); and recently Hans-Joachim Ohlbach has announced general results on
associating modal equivalents to first-order formulas.

Next, as an application of the Gabbay-Ohlbach-Simmons algorithm in the standard modal lan-
guage, we show that any modal reduction principle reduces to a p-free formula. First, a modal
reduction principle in ML(<®) (mrp) is a modal formula of the form ¥p — $p, where ¥, § are
(possibly empty) sequences of modal operators ¢ and O.

6.3. THEOREM. The Gabbay-Ohlbach-Simmons algorithm reduces every modal reduction prin-
ciple ¥p — $p to a p-free formula.
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Proof. Van Benthem (1983, Theorem 10.8) fully classifies the mrp’s that reduce to a p-free
formula by means of the Sahlqvist-van Benthem algorithm. From this result it follows that the
use of additional function symbols (as in the Gabbay-Ohlbach-Simmons algorithm) is essential.

To prove the theorem it suffices to observe that every mrp translates into an extended
Sahlqvist formula over R, =. To get some feel as to how an arbitrary mrp is reduced to a p-free
formula, it may be instructive to go over the McKinsey axiom OCp — <Op and its higher-order
translation (13) again. -

D-LoaGic

We describe the Sahlqvist fragment SF(O, D) of the modal language ML(<O, D) studied in
(De Rijke 1992b). Put x € SF(<O, D) if it is produced by the following rules:

—¢u=H# ... #,p| v |95, where #, € {O,D}, v is negative in all its proposition letters,
and ¢ is p-free,

— Yu=@ |1 Atha | h1 Vpo | #6, where # € {O, D },
—xu=1vY—>7|x1Ax2|x1VXx2|#x, where 7 is positive in all its proposition letters, V is
applied only to formulas x1, x2 having no proposition letters in common, and # € {0, D }.

Here are examples of Sahlqvist formulas in ML(<O, D) and ML(F, P, D) plus their reductions
to first-order conditions.

EXAMPLE. Consider the ML(<, D)-formula ¢p — Dp.

— Second-order translation: Vp (3y (Rzy A p(y)) — 3z (z # z A p(2))),
— after rewriting: VpVy (Rzy A p(y) — 3z (z # z A p(2))),

— substituting Au.u = y for p reduces this to Vy (Rzy — 3z (z #z Az = y)), or Vy (Rzy —
z #y), or "Rzz.

EXAMPLE. A slightly more complex example: pA—Dp — A-Op, or equivalently, pAEOp — Dp.

— Second-order translation:
¥p (() A 3z (Ryz Ap(:)) = 30 (0 £ 2 Ap(0)),

— after rewriting: VpVyz (p(z) A Ryz A p(z) = Fv (v # z A p(v))),

— substituting Au. (u = z V u = 2) for p reduces this to
Vyz(Ryz = Jv(v#z A (v =2 Vv =2))),
or =3y (Ryz).

EXAMPLE. As a final example in ML(F, P, D), consider Gp V Hp — Dp.

— Higher-order equivalent:

Vp (Vy (Rzy — p(y)) AVy (Ryz = p(y)) = Vy(y #z — p(y))>,

— substituting Au. (Rzu V Ruz) for p reduces this to Vy (z # y — Rzy V Ryz).
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Until, Since-LOGIC

The above definition of the Sahlqvist fragment SF (<) of ML(<) can easily be extended to the
language ML(F', P) of temporal logic with the operators F and P. But the more powerful binary
modal operators Until (whose pattern reads: Apg. 3y (Rzy Ap(y) AVz (Rzz A Rzy — q(2)))) and
Since (Apq.3Jy (Ryz A p(y) AVz (Ryz A Rzz — ¢(z)))) can also be accommodated. To define a
Sahlqvist fragment SF(Until, Since) of the modal language with Until, Since, recall that both
F and P are definable using Until, Since. Let # range over F, P, and # over G, H. Put
X € SF(Until, Since) if it is produced by the following rules

— ¢u=HF...#,p| v|J, where v is negative in all its proposition letters, and ¢ is p-free,
= u= ¢ | Pr Aha | Y1 Vbe | #Y | Until(#1... a1 #mp) | Since(F1. .. #ntb,
#1-- H#mD),

— xu=t%—= 7| x1AXxe]|x1Vxe|#x, where 7 is positive in all its proposition letters, and
V is applied only to formulas 1, x2 having no proposition letters in common.

All formulas in SF(Until, Since) translate into Sahlqvist formulas over R and =; in particular,
the ‘between-ness’ property Jy (Rzy A p(y) AVz (Rzz A Rzy — q(z))) itself is distributive in p
and type 4 distributive in gq. Thus, by Theorem 5.3, every formula in SF(Until, Since) reduces
to a first-order formula.

EXAMPLE. Consider the formula Fp — Until(p, q).

— Higher-order equivalent:
Vpg (3y (Rzy Ap(y)) = 3y’ (Ray' A p(y') AVZ' (Raz' ARy — q(Z')))),

— after rewriting:

VpgVy (Rwy Ap(y) = 3y (Rzy' Ap(y') AV2' (Rzz' ARZ'y' — q(z')))>,

— substituting Au.u = y for p, and Au.u # u for ¢ gives Vy (Rzy — -3z (Rzz A Rzy)).

THE LOGIC OF PEIRCE ALGEBRAS

De Rijke (1993b) uses a two-sorted modal language ML, to axiomatize the representable Peirce
algebras (Brink, Britz & Schmidt 1993). ML, has an operator (-), interpreted using a ternary
relation P, that takes a relation and a set, and returns a set (the Peirce product), and an
operator o, interpreted using a ternary relation C, which is the modal counterpart of relation
composition. One of the axioms is (a o b)p — (a)(b)p, where a, b range over relations, and p
ranges over sets (or propositions).

— Higher-order translation of (a o b)p — (a)(b)p:
Vab¥p (Hyryiyi'zs (P:vsyrzs A Cyrypyy Aa(yy) Ab(yr) A p(zs)> —
vyl o) 2 (Pa:s'urz; A Py.vlvll A a(v)) Ab(v)) A p(z;))),

— after rewriting:

VabVpVy,yly! z (Pa:syrzs A Cyrytyl A a(yl) Ab(yl) Ap(zs) —

JupvLv) 2 (Prsvpzl A Popvlo! A a(v)) A b(v)) A p(zé))) ,
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— substituting Au,. u, = y/. for a, Au,.u, =y, for b, and Aus.us; = 2z, for p reduces this to
(CP2):

Vyrylyl 2 <Pws Yrzs N Cyryryr — Iz (Pzsylzl A Pz, y,'fzs)> .

INFINITARY MODAL LOGIC

So far we have applied our methods mainly to modal logics whose operators have first-order
patterns. But they can be applied equally well beyond the first-order realm. For instance,
they are easily extended to infinitary modal languages such as PDL, where one has multiple
diamonds (a) as well as composition (a;b), union (a U b) and iteration (a*). Because of the
Kleene star * PDL translates into a fragment of £,,., and on frames into II}-conditions over
L. A Sahlgvist fragment for PDL is easily defined, resulting in a set of PDL-formulas
whose IT} (L., .,)-equivalent reduces to a L,,,-formula over R,, ... and =. Here is an example:

[a*]((B)p — (a*)p).

— Higher-order translation:

vy (V(REay) (32 (Ruyz np(2) 3o V(RE) A (o) ) ),

n n

— after rewriting:

VpVuz (V/(REay) A Royz A pz) = 30 \/(REp) A (o)),

n n

— substituting Au.u = z for p reduces this to
vuz (V(R2a) A Buyz =\ (R2p2)).

Our methods apply equally well to modal languages with more explicitly infinitary constructs,
such as arbitrary disjunctions and conjunctions, as in the infinitary basic modal languages
BML(T) of (De Rijke 1993¢). I invite the reader to think up examples for himself.

BEYOND MODAL LOGIC

Applications of 5.3 outside the field of modal logic are easily found. Here are some examples.

First, 5.3 provides us with a scheme for reducing a large class of H{‘H—formulas to n-th
order formulas. To see this, assume that we are working in a fragment without (n + 1)-st order
constant symbols, let s be a sort containing all (n + 1)-st order variables, and let X be any set
of s-free formulas. Then, if x is an (n + 1)-st order formulas that is in fact a Sahlqvist formula
for s, x reduces to an s-free formula, i.e. to an n-th order formula.

Second, the Sahlqvist machinery may be used to remove sorts from a many-sorted (first-
order) theory A. Let s be a sort in the language of A. If all of As axioms are Sahlqvist formulas
for s, then A has an axiomatization using s-free formulas only — by Theorem 5.3.

Third, recall that circumscription is the minimization of predicates subject to restrictions
expressed by first-order formulas that is proposed for the purpose of formalizing non-monotonic
aspects of common sense reasoning (Lifschitz 1985). The general definition of circumscription
involves second-order quantification: circumscription of P with respect to a(P) is

Cire(P,o(P)) = a(P) AVp (a(p> Ay (p(y) = P()) = Yy (P(y) = p(y»),
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or

a(P) A (alp) = ¥4 (PW) = p(1) V 30 (p(a) A-P() ). (19)

The consequent of the matrix of Vp (...) in (19) is positive in p, so by Theorem 5.3 (19) reduces to
a first-order formula whenever a(p) is a p-antecedent (Definition 5.1). As an example, consider
o = Jz Pz. Circ(P,3z Pz) asserts that the extension of P is a minimal non-empty set, that is,
a singleton.

— Circ(P,3z Pz): 3z Px AVp (3z p(z) = Vy (Py — p(y)) V 3y (p(y) A =Py)),
— after rewriting: 3z Pz A VpVz (p(z) — Vy (Py — p(y)) V Iy (p(y) A —Py)),

— substituting Au. u = z for p reduces this to 3zPz AVz (Pz — Yy — y = z).

Lifschitz (1985) presents a ‘small’ Sahlqvist Theorem. He describes a large class of first-order
formulas whose circumscription is first-order; all formulas he gives are Sahlqvist formulas. In
effect, the way Lifschitz show his circumscribed formulas to be equivalent to first-order conditions
is by means of appropriate substitutions.

7 ANOTHER PERSPECTIVE: GLOBAL RESTRICTIONS

In previous sections we obtained reducibility results by isolating ‘reducible’ fragments of a given
modal language. We end this paper by considering certain extreme cases of reducibility where full
languages become reducible, and where our algorithmic approach of earlier sections no longer
work. Below we consider certain global restrictions that yield reducibility results. Natural
candidates include

— restrictions on the possible values of the variables that are up for reduction,
— restrictions on the vocabulary in which those variables live.
— constraints on the structure of models.

We discuss the first two options. The third option is known as relative correspondence theory;
Van Benthem (1983) gives a worked-out example in the standard modal language ML(<), with
the constraint being that the relation R in structures for ML(<) should be transitive.

RESTRICTING VALUES

Nominal Tense Logic (Blackburn 1993b) extends tense logic with the addition of a new sort of
atomic symbols called nominals, whose distinguishing feature is that they are true at exactly one
point in a model. Here we briefly consider the language ML, (<) with the standard diamond,
a collection N of nominals, and no ordinary proposition letters. The standard translation for
ML, (Q) is as usual for =, A, <, while a nominal ¢ has ST(i) = (z; = z), where z; is an
individual variable, and z represents the point of evaluation as usual. For § = (W, R) a frame
of ML, (<), we have that §,w = ¢ iff §,w =V, ... Vz;, ST(¢), for all ¢ € ML, (O); that is:
both on frames and on models ML, (<)-formulas end up as first-order formulas over R.

This observation can be generalized to include sorts of propositional symbols whose truth
depends on sets of at most a fized finite number of objects — on frames formulas of such sorted
modal languages will all reduce to first-order conditions.

Obviously, at this point many options are available for further analysis. For a modal language
whose patterns and connectives all live in a classical logic £, these options are covered by the
following restriction:

for all atomic symbols p: V(p) is definable in L.
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The result is that in any modal language ML satisfying this restriction all formulas reduce to
‘p-free’ L-conditions when interpreted on frames.

The link between the above observations and our results in §§4-5 is best explained by means
of a rather bulky definition.

7.1. DEFINITION. Let T be a classical vocabulary, s a sort in 7. M Ldg )(s) is the set of all
s-universal formulas V7 a, @ € Form[7], satisfying the following implication

9 = (V definable p)a = M E Vpa.

More precisely, for 2 a 7-structure, let W consist of all subsets of the (appropriate) domain
parametrically definable by means of an s-free § € Formg[7],i.e. W= {{u: A |= Bluvi...v,] } :
B € Formg[r], s-free }. Then (VP a) € Mgff)(s) iff for all A

A = VP € Walid] implies 2 |= V7 ofid].

Informally, M gg )(s) contains all s-universal formulas whose truth depends on £-definable parts
of models only. Definition 7.1 generalizes (Van Benthem 1983, Definition 9.14), where a class
Mldef is defined as the set of formulas in ML({) preserved in passing from a general frame
(&, W) with W containing all subsets of the domain parametrically definable by means of a
first-order formula over R, to the underlying frame §.

By an easy argument, if a(p) is type 4 distributive in all s-variables, then V7 « is in M Ld(ef )(s).
&
finite conjunction of formulas of the form [3/p]a, for 8 s-free. It is an open question whether
this implies that « is equivalent to a type 4 distributive formula for s.

Conversely, assuming £ is compact, if V§ a is in M g )(s), it must be equivalent to an (s-free)

RESTRICTING THE LANGUAGE

We now show by way of example how restricting one’s vocabulary may help in boosting re-
ducibility. Here too there are many options. We restrict ourselves to examining what effect the
exclusion of relation symbols (other than =) of arity > 2 has.

For the time being, let £ denote first-order logic, and let T contain only unary predicate
symbols. Our aim is to show that for any o € Form[7], VF a reduces to a p-free (i.e. first-order)
formula over = (assuming it is p-universal). The result is not new — it was probably first proved
by Ackerman (1954), but I believe the proof is.

Fix a € Formg[7]; let po,...,pr—1 be the predicate symbols occurring in «, and let 7 be
the restriction of 7 to these symbols. Let n be the quantifier rank of a.

Let MM = (W, Py,..., Py_1) be a Tp-structure. For X C W, X = X, X! = W\ X. For
s € 2% the s-slot is

w2 =p 0. npiEY,
Let MM = (W, Py, ..., Px_1), M = (W', Py,... P,_;) be T-structures. We write 9t =, MV if
M and M’ satisfy the same first-order sentences over 7 of quantifier rank at most n. For two
sets X, Y we write X =, Y iff |[X| =|Y| < n or |X|,|Y| > n; by extension we put M ~, NV
iff for all s € 2%, W™ =, Wsm/. The important fact is that for any two T4-structures 9, 9V
we have M =, M’ iff M ~,, M’ (cf. for example (Westerstahl 1989, Section 1.7)).

7.2. THEOREM. Let T be a vocabulary containing only unary predicate letters. Let o € Sent[T],
where L denotes first-order logic. Then Vp;y...Vp, a reduces to a first-order formula over =
(provided it is p-universal).
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Proof. By a routine argument ., has finitely many equivalence classes, say M = {91y, ...,
M., } contains a representative of every class. For every 91 € M, define a pure identity formula
B by
) 39| objects, if || < k- n,
Bom = 3> n objects, otherwise.

Define v = Agppeq =B, where M € M. Then |= VFa <» 7. To see this, assume 2 [~ V5 q, ie.
A = (A, Py,...,Pr_1) E —a. Choose M € M with M =, A’'. Then A" = Lo, so A | Boy and
A W~ . And conversely, if 2 }£ v, say 2 = o, then A is ‘large enough’ so that we can define
extensions of the predicates p; in 2l in a way that yields %' = (2, Py,..., Pr_1) ~k.n JM. By
definition 9 £ «, hence A' [~ o, and A FEVPa,

As a consequence of Theorem 7.2, in any modal language whose patterns and connectives are
first-order definable over =, all formulas reduce to pure identity formulas when interpreted on
frames. Examples of modal languages where this applies include

— ML(D), the language of D-logic studied in (De Rijke 1992b),

- ML(A), the language of the universal modality studied by Goranko & Passy (1992),

— the language of (certain versions of) graded modal logic (Van der Hoek & De Rijke 1992),
and other modal languages with modal operators corresponding to first-order definable
generalized quantifiers.

8 CONCLUDING REMARKS

In this paper I have analyzed both the Sahlqvist-van Benthem and Gabbay-Ohlbach-Simmons
algorithms for eliminating certain variables. Semantic and syntactic descriptions were given
of formulas suitable as input for the algorithms. The algorithms themselves were described in
quite general terms, and it was shown how their applications give rise to more fine-grained issues.
Finally, we approached the issue of reducibility from a somewhat different angle by considering
general restrictions that yield reducibility of all formulas of our example languages.

Despite the length of this paper many things had to be left out. What we have achieved,
though, is an exposition of the mathematical core of the Sahlgvist-van Benthem and Gabbay-
Ohlbach-Simmons algorithms, as well as ample demonstration of their methodology and use.

To conclude here are open questions and suggestions for further work.

1. The Gabbay-Ohlbach-Simmons algorithm was unable to deal with L6b’s formula O(Op —
p) — Op, despite the fact that it does have a p-free equivalent (namely well-foundedness).
What further functions need to be assumed present to make an extension of the algorithm
find this equivalent?

2. In the case of the standard modal language ML(<{) can one characterize the Sahlqvist
reducts (Definition 6.1) semantically? It is easy to see that they must be invariant under
generated subframes, disjoint unions, p-morphisms and ultrafilter extensions — but what
else, if anything, is needed to fully characterize the Sahlqvist reducts?

3. It can be shown that for restricted first-order formulas «, VP « is reducible to an s-free
formula iff its is preserved under ultrapowers. What about a result of a more general
nature, at the level of abstraction pursued in this paper?

4. What is the complexity of reducibility? Van Benthem (1983, Theorem 17.10) shows that
the class of first-order formulas in full IT}-logic is not arithmetically definable. And Cha-
grova (1991) shows that the question whether a standard modal formula is first-order
definable, is undecidable. By a simple argument the set of standard modal formulas
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which are first-order definable as a result of the Sahlqvist-van Benthem algorithm, or the
Gabbay-Ohlbach-Simmons algorithm is RE — but is it decidable?

5. Finally, a point that has to do with the fine-structure of correspondence theory. What
can we say constructively about the complexity and shape of the reduced equivalents of
a reducible formula? To be more specific, consider ML(<{). Whereas on models two
individual variables suffice to define the standard translation of any formula as was first
observed by Dov Gabbay, on frames more variables are needed. As an example, transitivity
— modally defined by OCp — Op — needs essentially 3 variables. What, then, is the
connection between the shape of an SF(<)-formula and the number of individual variables
its first-order equivalent on frames needs? Likewise, one may wonder whether it is the case
that if ¢ has modal depth n and a first-order equivalent <, then o must be definable with
quantifier rank at most n; but this is false; GOp — OCOp has depth 2, while its first-
order equivalent is the Church-Rosser property, which has quantifier rank 3. Is there a
reasonable function linking the two notions?
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