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Introduction

In many accounts of Kleene’s realizability, the analogy with the Brouwer-Heyting-Kolmogorov
proof interpretation is stressed. However, if one reads this interpretation (in the case of im-
plication) as: “a proof of an implication A — B is an operation which assigns proofs of B to
proofs of A”, there is a problem with extensionality in the case of nested implications.

A Kleene realizer for (A — B) — C codes an operation which assigns, to codes of operations
for A — B, a realizer for C; but two different codes for the “same” (in some sense) operation
may well be sent to different realizers. :

“Extensional realizability” is a modification of Kleene’s original definition, where a notion
of “z and y are equivalent as realizers of A” is built in; it is then required that realizers of
A — B code operations which send equivalent realizers of A to equivalent realizers of B.

There are at least two ways to do this:

1. One may define, for every formula A, a partial equivalence relation ~4 on the set of
Kleene realizers of A by recursion on A; I say that ¢ r.-realizes A (abbreviated z r. A) if
T ~paT.

2. One may simultaneously define, by recursion on A, the set of realizers of A and an
equivalence relation =4 on that set. I call this notion e-realizability; = e-realizes A
(zed)iff =4

These two ways resemble the two constructions of an extensional type structure out of the
structure HRO of hereditarily recursive operations: giving HROZ and HEO, respectively
(see [Tro 73] for details).
Inductive definitions for the two approaches are presented in section 1. The second approach
was first given by Beeson ([Bee 85]) with an interpretation of Martin-Lof’s Type Theory in mind.
It will be shown that r.- and e-realizability are not equivalent as interpretations of intu-
itionistic arithmetic HA. The proof rests on a lemma which has another interesting corollary:

the open schema
A— Jz(zeA)

is not e-realizable. This failure of ‘idempotency’ of e-realizability makes it impossible to prove
a characterization result of the kind:

HAF3z(ze A) & HA+FF A 1)

(for an axiom or axiom scheme F'), in a straightforward way like Troelstra’s characterization of
Kleene’s realizability ([Tro 71]). For there, he used

HA+FF Ao Jz(zr A) (2)



for arbitrary formulas A, to derive (1) (here F' was the schema ECTy, and ¢ r A means z
realizes A in Kleene’s sense).

However, I shall obtain a characterization of e-realizability over a conservative extension
HA® of HA+Markov’s Principle MP. More precisely, HA has variables « of a new sort, and
I define the notion “o realizes A” for formulas A in the extended language. This definition will
be idempotent for arithmetical formulas (formulas in the language of HA), and we obtain:

HA® + ECT* | A & Ja(a realizes A)
for some scheme ECT® and arithmetical formulas A, as well as:
HA® |- Ja(a realizes A) & HA +MP I Jz(z e A)

In section 2 I turn to proof-theoretical aspects of e-realizability. By a suitable “g-variant”
of e-realizability, a derived rule of HA is obtained which subsumes the well-known Extended
Church’s Rule.

Section 3 deals with toposes generalizing notions of extensional realizability in the same
way as Hyland’s “effective topos” £ff ([Hy 82]) generalizes Kleene’s realizability. The first
description of a topos generalizing e-realizability was given by Pitts ([Pit 81]). I call this topos
Ext and explain some of its internal logic. There is also a topos Ext’ which generalizes r-
realizability. We have a commutative diagram of geometric morphisms between these toposes
of the form:

Ext’

Eff Ext

Eff

In this diagram, j is an open inclusion, i.e. there is a subobject U of 1 in Ext’ such that £ff
is equivalent to the slice topos Ext’/U and j* is, modulo this equivalence, the pullback functor
Ext’ — Ext’/U.

The topos Ext seems rather hard to analyse. However, there is another topos (the construc-
tion of which mirrors the extension HA* of HA in section 1) into which Ext embeds; and this
embedding preserves the logic of all finite types over the natural numbers. This new topos A is
somewhat easier to handle because the construction is similar to that of £ff and several results
about £ff have their counterparts for A; in particular, the results in [RR 90] and [Car 93].
Behind the construction of A there is a generalization of the notion of “partial combinatory
algebra” (pca), called <-pca, which I think may be independently interesting.

1 Definitions and basic properties
In the following definition, the notions ¢ ~4 y,  re A, © =4 y and = e A are defined, for

numbers z,y and arithmetical formulas A. ‘These notions will also be taken as arithmetical
formulas themselves.



I write z @ y for the outcome, if any, of the computation of the z-th Turing machine with
input y; | means “defined” so z ey | is equivalent to 32T(z, y, z) where T is Kleene’s predicate.
(»-)s (-)o, (-)1 are primitive recursive functions such that ((z)o, (z)1) = =, ((z,y))o = = and
(291 =yv.

The notation z r A means that z realizes A in Kleene’s sense, or the formula expressing
this in arithmetic.

Definition 1.1 1. Define for every formula A the formula x ~ 4 y, where z,y are variables
which do not occur in A:

T~vi=syY = T=YAt=3s
z~anBY = (2)o~a W)oA(z)~B (W)
z~avey = ((@)o=(¥)o =0A(2)1 ~a (y¥))V
(()o Z0A(Y)o #OA (z)1 ~B (y)1)
z~paopYy = zr A BAyr A— BA
Vuw' (w~g w' 2 zow~gyeuw)
Tr~ay = VYuo(wrA)
T ovpam) Y = Yn(zenlAyen|Azen ~yn, yen)
z~anam ¥ = (2o = (1)o A (2)1 ~a()o) (W)

Twritexre A forz ~4 .

2. Define simultaneously by recursion on A, the formulas z e A and © =4 y (again, z,y
don’t occur in A):

zet=s = t=s
==Y = Tz=yAt=s
zeANB = (z)peAA(z)1eB
z=arY = (2)o=2a oA (z)1=5Hyh
zeAVB = ((z)o=0A(z)1e A)V ((z)o #0A(z); e B)
e=avBY = ((®)o=(y)o=0A(z)1=4 Y1)V
(=)o # 0 A (4)o £ A ()1 =3 (1)1)
zeA—>B = Vyy'(y=ay s zeylAzey | A
zey=pzey)
=4,y = zeA—>BAyeA— BA
Vw(we A= zoew=pyew)
ze-A = Yw-o(weA)
z=_py = Yw-(weA)
zeVnA(n) = Vn(zen|Azene A(n))
T =vnam) Yy = Yn(zenlAyen|Azen =, yen)
zednA(n) = (z); e A((z)o)
T =304 ¥ = (T)o = (¥)o A (T)1 =a((=)e) (¥)1

Some obvious consequences of definition 1.1 are that ~ 4 and =4 are symmetric and transitive
relations, that ¢ ~4 # implies z r A and that z =4 z is equivalent to z e A.

A difference between the notions z r. A and z e A that presents itself immediately, is in the
clause for implication (from which the one for negation follows). Using classical logic, it is easy
to see that AV —A is e-realizable for sentences A; not so for r.-realizability. Classically again, it
is true that AV AV ——A4 is r.-realizable for any sentence A: if A and —A are not r.-realizable,
then A must be Kleene-realizable, ~_ 4 is the empty relation and ——A is r.-realizable.

We shall see that all three possibilities do in fact occur.

First, let’s record:



Proposition 1.2 (Soundness) HA+ A= HA | Jzy(zr. AAye A)
Proof.A routine induction on HA + A. Examples of this kind of proof abound in [Tro 73]. W

For the next lemma, recall that an almost negative formula is a formula built up from for-
mulas of form Jy(t = s) using only the connectives A, —=,V.

Lemma 1.3 Let, for almost negative formulas A, 1 be the p-term (i.e. a “term” built up
using e, so it is not always defined) from [Tro 73], 3.2.11. Then:

HAFA = s LApare ANthae A

HAF3y(yre AVye A) — A

Proof. Trivial. [ |

Lemma 1.4 The following sentence of HA is neither re- nor e-realizable:
Ve[Vz3y(—~—3zT (e, z,2) = T(e, z,y)) =
FoVeIu(T (v, z,u) A (-—FyT (e, @, y) = T(e,z,U(u))))]

(Here T is Kleene’s predicate, and U the result eztracting function)

Proof.The proof is similar for both realizabilities; I give it for e-realizability. The reasoning is
informal; but can be carried out in HA+MP. Let A denote the sentence in the statement of
the lemma, and suppose for contradiction that w e A. Then w codes a total recursive function.
I remark:

i) If e codes the empty function, then Af.((wee) e f)o is an effective operation of type 2 (i.e.
sends codes for the same total recursive function to the same number), for every code of a
total recursive function will realize Vz3y(——-3zT (e, z, z) = T'(e, z,y)), and these realizers
are equivalent if they code the same function.

ii) If k realizes Ve3y(—~—32T (e, z, z) = T'(e, x,y)), then ((w e €) @ k); realizes the formula
Vedu(T(((we e) o k), z,u) A (-—=IyT (e, z,y) = T(e,z,U(u))))

which is equivalent to an almost negative formula, and therefore holds. So in this case we
always have:

Ve[((wee)ok)ooz | A(==TyT(e,z,y) = T(e,z,(weoe)eok)yez))]

Using the recursion theorem we can find a code e for a partial recursive function of three
variables such that:

( undefined if not T'(n,n,z)
if T(n,n,z):

undefined if ((w e S%(e, k,n)) 8 Az.0)g ez
is undefined

ee (k,n,z) ~ 0 if (weS%(e,k,n)) e Az.0)g ez

is defined and not

T(S3(e, k,n),z,

((w e S%(e, k,n)) o Az.0)o ® z)

| Ul((w e S3(e,k,n)) @ Az.0)g 0 z)] + 1 else

Again some remarks:



iii) If T(n,n,z), then ((w o S¥(e,k,n)) ® Az.0)o ® z is always defined. For if not, 5% (e, k,n)
would code the empty function, and see i)-ii).

iv) If T(n,n, z), then never T(S?(e, k,n), z, ((w ® S (e, k,n)) @ Az.0)o @ z). For were this the
case we would have:

S2(e,k,n) ez

ee(k,n,z)

Ul((w o S%(e,k,n)) ® Az.0)o o z)]
Ul[((w o S%(e,k,n)) e Az.0)g e z)] +1

which is contradictory.

Again using the recursion theorem, with e as just defined, we take a code k for a partial recursive
function of two variables, such that:

ko (na) ~ 0 if not T'(n,n,z)
T (uz.T(S%(e, S}(k,n),n),z, z), Az.0) else

Then Sj (k,n) always realizes
Vzy(=—=32T(S3(e, Si(k,n),n),z,2z) = T(S%(e, Si(k,n),n),z,y))

Furthermore:
If n @ n is undefined then Si(k,n) codes the constant zero function and S%(e, Si(k,n),n) the
empty function, so

((w e Si(e, Si(k,n),n)) @ S{(k,n))o = ((we S7(e, S1(k,n),n)) ¢ Az.0)o

If n e n is defined, say T'(n,n, z), then (see remark ii))
((w o Si(e, S1(k,n),n)) o Si(k,n))o o
is defined, and
T(53(e, S1(k,n),n),z, ((w o S1(e, S (k,n),n)) @ S} (k,n))o o 2)
holds. By remarks iii)-iv) we have that
((w @ S%(e, Si(k,n),n)) ® Az.0)g e =
is defined and not
T(S3(e, S1(k,n),n),z, ((w o Si(e, Si(k,n),n)) ¢ Az.0)o ® )

Therefore in this case:

(e S3(e, S1(k,n),m)) @ S (k,m))o # ((w e S2(e, S (k,n),m)) o Az.0)g

(Note, that both sides are always defined!)
This gives us a decision procedure for the question: “is n e n defined?”, and the contradiction
is obtained. |

Corollary 1.5 r.- and e-realizability are not equivalent.



Proof.For the sentence A of lemma 1.4 we clearly have that ~A is e-realizable. However, the
sentence A is an instance of Church’s Thesis CTgy so Kleene-realizable; it follows that ——A is
r.-realizable. These facts are provable in HA+MP, where MP denotes Markov’s Principle. W

Corollary 1.6 The open schema
B — Jz(z e B)

is not e-realizable.

Proof.Take for B the formula Vz3y(-—32T (e, z,2) = T(e,,y)). Then Jv(v e B) is equivalent
to

FoVeIu(T (v, z,u) A (-—32T (e, z, 2) = T(e,z,U(u)))
and apply lemma 1.4. [ |

As hinted in the Introduction, Corollary 1.6 blocks the way to a straightforward characteri-
zation result for e-realizability. I now present an extension of HA over which e-realizability
can be characterized.

Definition 1.7 The theory HA* is an extension of HA in a 2-sorted language. Variables of
the extra sort are denoted o, 3,7,... There is an exlra non-logical symbol € and the new atomic
formulas are of form t € a and o = 3.

HA®* has the following exira azioms (besides those of HA, and induction for the full ez-
tended language):

1) =—3n(n € a)
2) Vn(-——ne€a—ne€a)
3) Yaf(a=p + Vn(n € a +> n€f))

Vaf(Vnm(n€aAmef +neml)—
4) IWk(k € v & —-—3dn € adm € B(k =nem)))

5) —InVy(y€a+y=n)— InVy(yea+ y=n)
6) Vnm3a(n € a Am € a)

7) YnIaVm(m € a ¢+ m =n)

8) Markov’s Principle: ——3Jy(t = s) — Jy(t = s)

We can (and do) think about the a’s as some sort of sets of numbers; I shall often refer to the
variables « as set variables.

In view of the extensionality axiom 3) and axioms 4) and 7) we may pass to a definitional
extension of HA® and introduce terms {n} and partial terms « @ § with definitions:

ze{n}orz=n
aeflerVneaVme B(nem )
aeflaVn(neaef o —dkeadlepf(n="Fkel))

Note that from 6) and 7) we can derive

Vnm3aVk(k€ a > k=nVk=m)



For, given n and m first pick (by 6)) a 8 with n € 8 Am € . If e is such that

ez ~ n ife=n
- m else

then for o = {e} ® 5 we have
keaeo —(k=nVk=m)ok=nVk=m

This extends to sequences. I shall therefore also use the notation {n,m}.
From now on, I call formulas in which no set variables occur (either free or bound) arith-
metical.

Proposition 1.8 1. HA® is conservative over HA+MP
2. For arithmetical formulas A(z):

HA® + 3aVn € aA(n) = HA+MP + 3nA(n)

Proof Both results follow directly from a translation of HA® into HA, which interprets the
o’s as codes for nonempty finite sets. All axioms of HA®* are valid under this translation, as
well as the axiom Jz(z € a); this gives the second statement at once.

Definition 1.9 (realizability for HA®) Define a realizability notion a r A for formulas A
in the language of HA* not containing the variable o:

art=s = a={t}At=s

arnef = a={n}Aneg

arff=v7 = aCBAB=7y

arAAB = pjar AApjar B

arA—+B = VB(BrA—aeflAaefr B)
ar3nA(n) = 3n(poa={n} Apiar A(n))
ar3BA(B) = 3IB(poa C B Apiar A(B))
arVnA(n) = Vn(ae{n}|Aae{n}r A(n))
arVBA(B) = VB(aeflAaefr A(B))

Here, o C 3 abbreviates Vn(n € a = n € ) and p;a = {Az.(z);} e a fori =0,1; so
z € pia ¢ =~y € a(z = (v)i)
Lemma 1.10 For arithmetical A:
1. HA® FVzy(-~(z=4y) 2 =4 Y)
2. HA® FVo(-—(ar A) 5 ar A)

Proof.The only nontrivial induction step (for 2.; l.is immediate by Markov’s Principle) is
a1 InAn, which is equivalent to

In(poa = {n}) AVn(poa = {n} = prar A(n))

and this is ~—-stable by axiom 5). |



Proposition 1.11 For arithmetical A,
HA®Far A+ Vnme a(n =4 m)
Proof.Induction on A; I do two cases, leaving te others to the reader.

- Let A = BAC; suppose a r A and n,m € a. Then (n);,(m); € pia (i = 0,1) and
since poa r B, pyar C we have (n)o =p (m)o, (n)1 =¢ (m); by induction hypothesis, so
n=4m.

Conversely, suppose Vnm € a(n =4 m) so Ynm € a((n)o = (m)o A (n)1 =¢ (m)1).
Then Vnm € ppa ——(n =g m) so Vnm € poa(n =p m) by lemma 1.10, which gives
poa r B by induction hypothesis. Similarly, pjar C and ar A.

-Let A= B — C. Supposear B — C and n,m € a. Given y,y’ with y =g ¢/, by
induction hypothesis we have that {y,y'} r Bsoney | Aney' L A{ney,ney’} r C so by
induction hypothesis it follows that n € B — C. Similarly, me B —- C and n =p_,c m
follow.

Conversely, if Vnm € a(n =p—,c m) and Br B then e 8 | AVE,l € a8 B(—~—k =¢ 1), so
by lemma 1.10 Vk,! € o @ B(k =¢ ) so by induction hypothesisca eS8 r C;soar B — C.

|
Proposition 1.12 For any A in the language of HA*,
HA*FarAABCa—fBrA
Proof At once. | |
Proposition 1.13 (Soundness for ar A) For any A in the language of HA?,

HA*F A = HA®F 3a(ar A)

Proofln essence, there is nothing new here. To see this, note the following fact: given a set
expression T built up from variables ay,...,a,, the partial application e and pg,p;; consider
the numerical partial term t = Azy -+ z,.T[z1/01,...,Tn/a,] where the x; are new number
variables, the o is now interpreted as Kleene application for numbers, and p; is replaced by (-);.
Then one proves by induction on T

HA®FVoy--an(T 1o {t}eaje---ea, LACT)

Now one forms the terms realizing formulas about just as in the sondness proof for Kleene
realizability, and uses lemma 1.12. |

Definition 1.14 ECT® is the following aziom scheme:
Va(-A(a) = 36B(a, B)) =
To¥a(-A(a) 5 7 o L AZB( o @ C A B(ay 5)))
Proposition 1.15 ECT? is r-realizable, i.e.
HA%*F Ja(ar F)

for any instance F of ECT®



Proof.Of course, the “formulas” ye a | and v e o C 3 are read as
Vnm(n€eyAmea >neml)

and
Vk(-wan S 73m € a(k =ne 'm,) — ke ﬂ)

respectively; the reader is kindly requested to convince himself that there are numbers n and

m such that
HA* FVay(yea le {n}r(yeal))

HA® - Vafy(yea C B o {m}r (veaC §))
Fix these n and m for the rest of the proof. Write

fe Az.((e®z)o)o
Ge Azy.(n,(m,((eez)e0);))

Then I claim that {Ae.(fe, ge)} realizes ECT®.
A verification of this is left to the reader, who may wish to contemplate the following:
er Va(-A(a) = 36B(a,8)) is

Valee o L A(-36(0r A(a)) = V{{(coa) el A
3B[po((eex) @) T B A
pi((e e @) o () r B(a, 5)]})]

On the other hand, writing out

€ r IVa(-A(a) > yea Ll AIB(yea C B AB(a,p)))

one gets
Iv[poe’ C v AVa(pie e a L A(-36(6 r A(a)) =
V¢{(p1€' @) e { L A
po((pie ea)e)ryeal A
38(pop1((pr€' @) @ () r Yo C BA
pip1((p1e’ ® @) o () r B(e,5))}))]
(I apologize) |

Remark. The stronger scheme (and perhaps the one some readers expected to turn up):
Va(-A(a) = 38B(a,B)) = IyVa(-A(a) > ye a L AB(a,y e a))

cannot be realizable: think of the interpretation of the a’s as finite sets. There can be no finite
set a such that for all 3,

BeBlzaef=Lef
(finite sets with such an application are not a partial combinatory algebra; there will be some
remarks around this in section 3)

Proposition 1.16 For arithmetical formulas A,
i) HA®* + ECT* F A & Ja(ar A)
#) HA+MP I Jz(z e A) © HA® + ECTF A



Proof.For i), note that ECT®, together with proposition 1.12 and lemma 1.10, implies for
arithmetical A and B:

Va(ar A—36(Br B)) = 3y(yr (A — B))

which gives the only nontrivial induction step.

For ii), = follows at once, using i) and proposition 1.11; for <= suppose HA® + ECT I A
so HA®  F — A for a finite conjunction F of instances of ECT®. Since F' is realizable by
1.15, from 1.13 we have

HA® + Ja(ar A)

By 1.11 then
HA® F3JavVn € a(ne A)

so by 1.8ii) one gets
HA+MP + 3z(z e A)

This completes the characterization of extensional realizability in a conservative extension of
HA-+MP.

Remarks

1) The following weakening of the scheme ECTy is, in HA®, implied by ECT*:
Ve(-A(z) —» JyB(z,y)) - ~—32Vz(-A(z) o> zez [ AB(z,zez))
I propose the name WECT, (Weak Extended Church’s Thesis) for this scheme.

2) Let us consider (over HA* minus axiom 6) of definition 1.7) the following three axioms
in isolation:

i) Axiom 6): Vnm3a(n € a Am € a)
ii) ECT®
i) Jz(z € «)

It is not hard to see that these three, taken together, are inconsistent. Our realizability
has just i) and ii); if one takes ii) and iii) one derives Va3dn(a = {n}), and one has,
essentially, Kleene’s realizability back.
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2 Extensional g-realizability and Extensional Church’s
Rule

Definition 2.1 (extensional g-realizability) Define simultaneously, by recursion on A, for-
mulas Q a(z) and © X4 @' for z,z' not occurring in A, as follows:

Qt:s(w) = t=s
TXi=s 2 = z=2a' ANt=s
Qans(z) = Qa((z)o) AQB((z)1)
T XAAB 2 = (:I})o =a (w’)o A (a})] B (:L”)l
Qasp(e) = Vyy'(yxay —zeylAcey LA
zeyx<pzey) N A= B
zxXa5p2 = QasB(z)AQasp(z)A
. Vy(Qa(y) > zey <Xpz'oy)
Quya) () = VYn(zen | AQa(n(zen))
T Xyyay) & = Vn(zen Az en | Az en X,y z’ en)
Qaya(y) (e f Q A((=)0) ((2)1)

T X3ya(y) T (@)o = ()0 A (2)1 Xa((2)0) (&)1

Again, x4 is symmetric and transitive, and Q 4(z) is equivalent to ¢ X4 z. It also follows by
an easy induction that
HAF Qa(z)— A (3)

for all formulas A.
Proposition 2.2 (soundness for extensional g-realizability)
HAFA = HAF 32Q4(x)
Proof . As usual. |

Proposition 2.3 Let ¢4 be as in lemma 1.3. Then for almost negative A:
HA Ao al AQa(a)

Proof.Easy. | |
Proposition 2.4 (Extensional Church’s Rule for HA) HA obeys the following rule: if
HA + Ve(Vz3yB(e, z,y) = 32C (e, 2))

for some almost negative formula B, then there is a number n such that:

HAF Ve(neel A
Vif'(Vz(fez L Af'ex | Afez=f oz AB(ez,fozx)) —
(nee)eflA(nee)ef'LA(nee)ef=(nee)ef
AC(e,(neoe)e f)))

Proof.Let A be the formula Ve(Vz3yB(e, z,y) = 32C(e, z); suppose HAF A. By 2.2 and the
numerical existence property for HA, let m be such that HAF Q 4(m). Then

HA FVe(mee ) AVFf'(f XvaayBle,ay) [ — (Mmeoe)e fX3,06, (Mmeoe)e ')

11



IfVz(fexz = f ez AB(e, f ex)) then by 2.3, since B is almost negative,
Az.(f ez, ¢p(e,z, f ®T)) XvaayB(e,o,y) Az (f' ez, p(e,z, f o))

Write this as @ Xve3yB(e,e,y) @' - Then for y = ((mee)ea)o = ((mee)ea),

Qc(ey)(((mee)ea))
By (3),
Cle,y)
Therefore the number n = Aef.y satisfies the proposition. |

Note that the well known Extended Church’s Rule (see [TvD 88]) is a consequence of Ex-
tensional Church’s Rule by letting z and y be dummy variables.

3 Some toposes for extensional realizabilities

In this section I have to assume that the reader is familiar with the elementary concepts of
categorical logic (in particular, the notion of validity of a statement in a topos) and some basic
topos theory. There is by now a wealth of textbooks in the area, but the reader is sure to find
everthing that I use in either [PTJ 77] or [MM 92].

The construction of the toposes below goes via tripos theory, a categorical framework treated
in [HJP 80]. This, and Hyland’s paper on the Effective topos ([Hy 82]) will also be used.

The first two subsections define toposes Ext and Ext’, generalizing e and r.-realizability,
respectively. Some internal logic is explained. Subsection 1 makes no claim at originality; the
material was certainly known to various people ([Hy 82a]), but had never been laid down.

Subsections 3 and 4 describe another topos construction, for a topos A generalizing e-
realizability. It will be seen that Ext is a sheaf subtopos of \A. The construction uses a
generalization of the notion of partial combinatory algebra, called <-pca, which I believe may
be of independent interest. This is defined in subsection 3. Subsection 4, finally, shows how the
categorical results about £ff, obtained in [RR 90] and [Car 93], can be adapted to A.

3.1 Pitts’ topos Ext

The topos Ext, defined by A. Pitts in his thesis ([Pit 81]) although he did not give it a name,
runs on partial equivalence relations on the natural numbers (pers); first, let’s establish some
notation for these.

I find it convenient to denote a per by (A4,~) so A (the domain of (A4, ~)) is a subset of IN
and ~ is an equivalence relation on A. Now let:

(Al,Nl) X (Az,Nz) = ({(a, a') | ae Al,a’ € Az},N) with
(a,a') ~ (b,b') iff a ~; b and a’' ~; V'
(A1, ~1) = (A2,~2) = ({c|Vad' € Aj(a~1a = cean~yced)},~)

with c~ ¢’ if Va € Aj(coa ~; ¢’ 0 a)
(Neexf{c|VneN(cen € A;)}, ~) with
c~c iffforallze X andallneIN,cen~, c'en

[oex(4z,~2)

Yoeex(Az~e) = (Ugex Az ~) with ¢ ~ ¢’ the transitive closure
of the relation 3z € X(c ~; ¢')
(A,6) = A with the minimal equivalence relation
(A,T) = A with the maximal equivalence relation

12



Let PER denote the set of pers. There is a tripos PER(™) on the category of Sets which assigns
to each set X the set PER* of X-indexed families of pers. This is ordered by (writing ¢ and
4 for such families):

¢ F 9 iff there is a number n such that for all # € X, n is in the domain of
o(z) = ¥(z)

This ordering is a Heyting prealgebra: the meet A and Heyting implication — are given respec-
tively by applying the operations x and — between pers pointwise.

For any function f : X — Y the map PER’ : PERY — PERX is a morphism of Heyting
prealgebras (i.e. preserving the propositional structure) that has both adjoints 3f and Vf:

(@) (¥) = 2 f(z)=y P(2)
(V7 () (¥) = ()= ©(2)

I call the topos represented by the tripos PER(_), Ext.

The map m : PER — P(IN) which sends a per to its domain, induces an indexed map
of preorders: PER(™) — P(IN)(=) (P(IN)(-) denotes the tripos underlying the effective topos
Eff). This has both an indexed left and right adjoint, which are induced respectively by
f1, f2 : P(IN) —» PER given by

f1(A) = (4,9)
£2(4)=(4,7T)

Moreover, the indexed left adjoint preserves finite meets; so we have a commutative diagram of
geometric morphisms of triposes

P(IN)(2) _, PER(™)

P(IN)()
inducing geometric morphisms of toposes
£ff : Fxt

= p

&ff

I denote the natural numbers object in each topos by IV; context makes clear in which topos
we are.

Since inverse image functors of geometric morphisms preserve natural numbers objects, N
in Ext is given (up to isomorpism) by (IN,=) with

[n=m]is ({n} N {m},~)
(~ being the unique equivalence relation). From this:

Proposition 3.1 First order arithmetic in Ext is given by e-realizability.

13



Proof.Routine. |

In general, computing the direct image functor ¢, from the given geometric morphism of
triposes is a bit involved (there is a complicated formula for this in [HJP 80]). However we can
simplify in the case of canonically separated objects of Eff (recall that an object (X, =) of £ff
is canonically separated if [z = y] = 0 for different z,y € X).

Proposition 3.2 Let (X, =) be canonically separated in Eff. Then i.(X,=) is isomorphic to
(X, f2(=)).

ProofFirst observe that for sets X,Y, functions f : X —» Y and ¢ € P(IN)X, 7Y (3f(p)) is
isomorphic to If(f5X (¢)) if for all z,z’ € X, y €Y and n,m € IN:

if n € p(z), m € p(z') and f(z) = f(¢') = y then there are z = zy,...,zp41 = 2/,
n = ny,...,np = m with f(z1) = --- = f(or41) and n; € o(z;) N @(Tiy1) for
i=1,....k

Clearly, this condition holds if (X, =) is canonically separated, (Y, =) arbitrary, f is a projection
Y xX =Y and ¢ € P(IN)Y*X is a functional relation representing a morphism (¥, =) — (X, =)
in £ff. So if ¢ € P(IN)Y*X represents a morphism into a canonically separated object (X, =),
¥ *% () represents a morphism in Ext: (Y, fo(=)) = (X, f2(=)).
Now there is a natural isomorphism

K : &1((Z,7(=)),(X,=)) = Ext((Z, =), (X, f2(=)))

for objects (Z,=) of Ext and canonically separated (X,=) in £ff (natural means natural in
(Z,=)), as follows: given F': (Z,7(=)) — (X, =) in Eff, represented by the functional relation
¢, let K(F) be represented by the functional relation fZ** () A [z = z]. It has an inverse L
defined (again, on representing functional relations) as L() = mZ*X(¢):

For, LK ([¢]) is iso to 7 f2(¢) A w(z = z) which is iso to ¢ since 7 f; is the identity and ¢
is strict for the equality n(=); and ¢ - K'L(¢p) is easy; and since both are functional relations,
they are isomorphic.

This proves that ¢, (X, =) must be isomorphic to (X, f2(=)). |

Proposition 3.3 The finite type structure over N in Ext (i.e. the structure built from N and
ezponentials) is given by:

The object of type o has as underlying set the hereditarily effective operations of type
o, and as equality

_ g1 _J {n|n codes a},T) ifa=a
ﬂa-a]]—{ (0,0) else
The type structure of the hereditarily effective operations is defined in [Tro 73].

Proof.This follows from the preceding proposition, combining the following ingredients:

1. the description in [Hy 82] of the finite type objects in £ff, and the fact that they are
canonically separated;

2. the description of N in Ext given above, implying N = i, (N);

3. the fact that ., being the direct image part of a geometric inclusion, preserves exponents.
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I now discuss briefly some principles that can be expressed in the language of the finite type
structure over N (to be precise, the language of the system HAY; again, see [Tro 73] for a
definition). Some definitions:

o Church’s Thesis CT is the axiom
Vf:NNJe: NVz: Ny : N(T(e,z,y) AU(y) = f(z))

expressing in a strong sense that every function from natural numbers to natural numbers
is recursive;

o The axiom of choice for types 0,7, AC; ; is the axiom scheme

Vz:ody:te(z,y) = 3f : 77V : op(z, f(z))

e The scheme of Weak Continuity for Numbers WC-N is:
Vf:NV3z: Nop(f,z) > Vf: N¥3z,y: NVg: NV (fy =gy = ¢(g,2))
where fy = gy abbreviates Vz < y(f(2) = g(2))

e Brouwer’s Principle BP states that all functions from NV to N are continuous:
V¢ NYYVF L N¥3z: NVg: NV (gz = Fz — ¢(g) = ¢(f))

We also consider two weakenings of these axioms:

e WCT (Weak Church’s Thesis) is
Vf:N¥=-3e: NVz: Ny : N(T(e,z,y) AU(y) = f(z))
e WBP (Weak Brouwer’s Principle) is
V¢ NVUVf NV-=3z : NYg: NV (g = Fz = ((g) = (1))

Proposition 3.4 The principles AC, -, WCT and WBP are valid in Ext, but CT, WC-N and
BP fail in it.

Proof.Given a realizer for Vz : o3y : T¢(z,y)we find a code for an operation which sends all
codes of  to codes of one and the same y (because equivalences must be preserved). Thus one
readily sees that AC, . must hold.

The validity of WCT is left to the reader. WBP is a consequence of the Kreisel-Lacombe-
Shoenfield theorem in recursion theory. ,

CT fails since by AC; ¢ it would imply the existence of a { € NV " such that ¢ (f) is a code
for f as recursive function. But this cannot be true for an effective operation (.

AC, . implies that the principles WC-N and BP are equivalent, so it suffices to treat one
of them. For any effective operation of type 2, the Kreisel-Lacombe-Shoenfield theorem gives
us a modulus of continuity for every function, but this can not be done extensionally in codes

(see [Tro 77]).
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3.2 A topos for r.-realizability

I call this topos Ext’ and the construction is very similar to that of Ext. The basic objects are
now pairs (A4, ~) where ~ is a partial equivalence relation on A (let’s call these objects ppers).
The basic operations x, [] and Y are the same as for pers, and — is defined by:

(A1,~1) = (A2,~2) = ({c|Va € Ai(cea € A3)},~) where ¢ ~ ¢ iff Vaa' €
Ai(fa~1ad' =>cean~; d0d)

and the order on PPER* (denoting the set of ppers by PPER) is given by
@ I 4 iff there is n € IN such that for all z € X, n ~ n in p(z) — ¢¥(z)

Analogously to the preceding subsection, there is a tripos PPER(™). Now consider the following
maps:
u: PER — PPER is the inclusion
g1: PPER — PER sends (4,~) to ({a € A|a~a},~)
g2 : P(IN) > PPER sends A to (4, T)
7' : PPER — P(IN) sends (4,~) to A

The pair (g1, u) induces a geometric morphism of triposes:
PPER(™) — PER(

and (g, ') gives rise to one:
P(IN)(-) - PPER(™)

and since g1 g2 = f2, we have a commutative diagram of geometric morphisms of toposes:

Ext’
J r
Eff i Ext

The proof of the following proposition is left to the reader.

Proposition 3.5 First order arithmetic in Ext’ corresponds to r.-realizability.

Proposition 3.6 j: £ff — Ext’ is an open inclusion, i.e. there is a subobject U of 1 in Ext’
such that Eff is equivalent to the slice topos Ext’/U, and j* is, modulo this equivalence, the
pullback functor Ext’ — Ext'/U.

ProofLet U be the object ({*},=) with
[ = +] = (I,0)

Then the slice topos Ext’/U is equivalent to the full subcategory of Ext’ on those objects whose
equalities all have the empty equivalence relation. But it is clear that this is equivalent to £ff,
and that pulling back along U — 1 is the same as forgetting the equivalence relation, which is

7% |
Corollary 3.7 Any statement of higher order arithmetic which holds in Ext’ also holds in Eff.
Proof.For, pullback functors are logical functors. [ |

Corollary 3.8 In Ext’, we have =—CT and ——BP, but instances of WC-N and AC are false.

16



3.3 <-partial combinatory algebras

In the next subsection there will be another topos for e-realizability, into which Ext embeds.
The construction of this topos can be seen as a generalization of the construction of £ff. Because
I think this generalization may be of independent interest, I present it separately.

The point is a generalization of the notion of partial combinatory algebra.

Definition 3.9 A <-pca (<-partial combinatory algebra) is a partially ordered set A together
with a partial binary function (written by juztaposition; ab | means that the pair (a,b) is in the
domain of the function, ab denotes the value), satisfying:

1. Ifab|,d <aand b <b then a't' | and a'd’ < ab
2. There are elements k and s in A such that:

o foralla,be A:kal and kab | and kab < a

o for all a,b,c € A: sa |, sab and, if (ac)(bec) |, then sabc | and sabe < (ac)(be)
We employ the convention of association to the left: so abc abbreviates (ab)c. The partial
binary function is often called application.

Part of the definition of a <-pca (the axioms for the combinators k and s) already appeared
in the manuscript [Acz 80], without any relation to extensional realizability, though.

Examples

1. Given any set A with a partial binary function on it, we may add an element L, introduce
a partial order by just adding L < a for all ¢ € A and extending the application by

la=al =1

Then L serves both as k and as s. <-Pcas like this (with a least element L satisfying
la=al = 1) will be called trivial.

2. Any pca is a <-pca with the discrete order; conversely a <-pca for which the order is
discrete, is a pca iff sabc | implies ac(bc) |.

3. Given a pca A, we may define a <-pca structure on the powerset P(A) as follows: the
order is the inclusion order, and a8 | if and only if for alla € a and b€ 3, ab | in A, in
which case

af ={ab|a € a,be B}

This <-pca is trivial. To make it less trivial, restrict to the nonempty subsets of A. One
can also restrict to the nonempty, finite subsets of A. This is my motivating example.

4. Suppose A is a pca and (P, <) is a linear order with top element T. Order the set A x P
partially by putting
(a,p) < (b,q)if a=bandp<gq

and let (a,p)(b, q) be defined iff ab | in A; in which case

(a’ p) (b> q) = (ab’ min{p, q})
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5. Given a pca A, construct a nontrivial total <-pca into which A embeds, as follows: the
set of A-terms is inductively defined by: every a € A is an A-term, and if v and v are
A-terms, then so is (uv). Now choose elements k, s € A satisfying the combinator axioms,
and define a reduction relation ~» by the clauses:

e (ab) ~ cif, in A, ab is defined and equal to ¢
o If u~ v’ then (vu) ~ (vv') and (uv) ~ (u'v)
¢ ((ku)v)~ u and (((su)v)w) ~ ((uw)(vw))

The reflexive-transitive closure of ~ gives only a preorder on the set of A-terms, so we
have to quotient by an equivalence relation: two A-terms u and v are equivalent iff there
is a sequence

UZ=UL P UL P Upy PV =V AUy = U

Define application by [u][v] = [(uv)]; this is well-defined. A is embedded in this in the
following sense: the embedding I does not preserve application, but if ab is defined then
I(a)I(b) < I(ab). This seems to me the natural notion of “morphism of <-pcas”, but I
won’t pursue this further here.

From the examples it is immediate that a lot of the beautiful (but also sometimes rather bizarre)
theory of pcas is lost in this context: we may have k = s without having every possible identity,
a <-pca may be nontotal without there being a nowhere defined element, every pca may be
embedded in a total <-pca. However, what remains is sufficient for my purposes:

Proposition 3.10 (Combinatory completeness for <-pcas) Let A be a <-pca. For every
term t composed by elements of A, application and the variable z, there is an element [Az.t] in
A such that for all a € A: if tla/z] | then [Az.t]a |, and

[Az.tla < t[a/z]

Proof. The construction of these terms in the usual proof of combinatory completeness for pcas
will do. [ |

In the case of a pca A one can form a category P(A) with objects the subsets of A, and
as morphisms: o — [ those functions f : @« — ( such that for somea € A forallb € a: ab |
and ab = f(b).
For <-pcas A one has to modify this: morphisms are those functions f for which there is a
satisfying for all b € q, '
ab | Aab< f(b)

That this gives a category follows at once by combinatory completeness.
Furthermore:

Proposition 3.11 Given a <-pca A, there is a tripos I(A)(7), where I(A) denotes the set of
downwards closed subsets of A (a € I(A) iff a € @ and o' < a imply o' € a), and I(A)X is
preordered by: ¢ b 1 iff there is a € A such that for all z € X and all b € p(z), ab | and
ab € Y(z).

Proof.The proof for pcas, in [HJP 80], suffices; use combinatory completeness. The same terms
testify all desired entailments. [ |

Note, that if A is trivial in the sense defined above, the tripos I (A)(") is equivalent to the

tripos 2(~) (with the subset order).
Still another definition:
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Definition 3.12 A <-pca A will be said to have the pasting property iff the underlying partial
order has pushouts (i.e. for every a,b € A: if there is ¢ < a,c < b in A, then the join a Vb
ezists in A) and application preserves them in each variable separately (i.e. a(bVb') = abV ab’
and (aV a')b = ab V a'b whenever this is defined).

Proposition 3.13 Let A be a <-pca with the pasting property. Denote by J(A) the set of
those downwards closed subsets of A which are also closed under pushouts. Preorder J(A)* in
the same way as I(A)X. Then J(A)(7) is a tripos, and the inclusion J(A) C I(A) induces a
geometric inclusion of triposes: J(A)(™) — I(A)(D)

A geometric inclusion of triposes is a geometric morphism of triposes for which each counit is an
isomorphism. It was noted in [Pit 81] (and straightforward to check directly), that a geometric
inclusion of triposes gives rise to a geometric inclusion of the represented toposes.

Proof.Left adjoint to the inclusion is of course the map which takes for every downward closed
set, its closure under pushouts. |

3.4 Another topos for e-realizability

The idea for finding a “simpler” topos for e-realizability is as follows: instead of looking at
partial equivalence relations, look at what “generates” them, in a suitable way (this is familiar
practice: e.g. in the theory of locales one often works not with locales but with presentations
of them).

In [vanO 97| the fact is exploited (for an axiomatization of higher order Kleene realizability)
that in the effective topos £ff, there is a surjection A(P(IN))—>Q which classifies (viewing
A(P(IN)) as the objet of =—-closed subsets of N) exactly the inhabited elements of A(P(IN)).

Somehow this highlighted for me the trivial observation that subsets of IN are generated
by singletons under the operation of taking unions. Similarly, partial equivalence relations are
generated by nonempty finite sets under the operations of taking unions and closing under
pushouts.

So let IN be the <-pca of finite, nonempty subsets of IN, as in example 3 of the preceding
subsection. This <-pca clearly has the pasting property. It is clear that there is a bijection

P:PER - J(IN)
(where J(IN) refers to proposition 3.13), sending (A4, ~) to
{aeIN|aC A A Vabe afa~b)}
and that, for pers (Aj,~1) and (42, ~2),
P((A1,~1) = (A2,~2)) = P(A1,~1) = P(Az,~2)
where the — on the right hand side refers to the tripos J(IN)(=).
So PER(7) is the same as J(IN){~) and a subtripos of I(IN)(~), and it is this last tripos and

the topos represented by it, that will be studied a bit in this subsection.
Some logic of the tripos I(IN)(7): define for P,Q € I(IN)

PxQ {a € N |poa € P and p1c € Q}
Po5Q = {acIN|VBeP(aef | and aep € Q)}
P+Q = {aeNN|pya={0}andpaec P}U

{a € N |poa = {1} and pra € Q}

[LexP- = nzex(m——)Pw)
Z::I:EX'P‘c = UmGXPm
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Where pia = {(a); | a € a}.

The preorder I(IN)* has meets p A1) given by Az.p(z) x ¢(z), joins and Heyting implication
similarly given by 4+ and —, and top and bottom elements T = Az.IN, L = Az.0. For maps
f: X =Y, left and right adjoint 3f and Vf to I(N)f are given by

W) = Xie)=y (@)
(Vf(#)() f(z)=y P(T)

The topos represented by I(IN)(~) will be called .A.

Let us first observe that the geometric morphism of triposes PER(™) — P(IN)(~) factors
through the inclusion PER(™) — I(IN)(~) by maps g : I(IN) = P(IN) and f : P(IN) — I(N)
given by

g(P):UPandf(A):{aE]N|a§A}

From the description of finite meets in I(IN)(~) it is immediate that f(~) preserves them. Also,
fAg

From this, it follows that the natural number object N of A can be given as (IN, =)with

|[n=m]]={ {{n}} ifn=m

D else

We also need another object of A: the object N = (IN, =) with
[[a:,@]]:{ {yeN|vCa} fa=p

B else

There is an element relation € = N x N represented by

[neal ={ {{n}} ifnea

@ else

Using this relation € we can interpret the language of HA® (see definition 1.7) in A, letting N
be the sort of the set variables & and N be the sort of the natural numbers. We have:

Proposition 3.14 All the azioms of HA® are valid in A under this interpretation, and more-
over: truth in A of sentences in this language coincides with the realizability notion of defini-
tion 1.9.

Proof.Again, left to the reader. | |
Corollary 3.15 First order arithmetic in A coincides with e-realizability.

So, true first order arithmetic in A is the same as in Ext. I now want to extend this result to
the logic of all finite types over N.

By a straightforward analogy to [Hy 82], there is a geometric inclusion (A,T) : Sets — A.
It is defined in exactly the same way as for £ff, and Sets is ——-sheaves in A.

Consequently, an object of A is separated iff it is isomorphic to an object (X,=) which
has the property that [z = y] = 0 for different z,y € X. Such objects are called canonically
separated.

From now on I identify Ext with the topos represented by the tripos J(IN)(7); the sheafifi-
cation A — Ext is induced by the map J : I(IN) — J(IN) which takes every downwards closed
subset of IN to its closure under pushouts. The internal topology in A to which this gives rise,
is denoted by j.
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Proposition 3.16 Suppose (X,=) is a canonically separated object of A such that [z = z] €
J(IN) for allx € X. Then (X,=) is a j-sheaf.

Proof.The heart of the matter is that if F: ¥ x X — J(IN) represents a morphism: (Y,J(=
)) = (X,J(=)) in Ext and (X, =) is canonically separated in A, then F'is a total relation (for
the equalities J(=)), i.e. J(y = y) = JzF(y,z) is valid in the topos J(IN)(~). Now

[32F(y,2)] =J(|J F(y,2)

zEX

which, since F' is single-valued and (X, =) canonically separated, is equal to |J,cx J(F(y,2)),

which is
U F(y,z)
because F' maps into J(IN). So if we define, for such F', amap F: Y x X = I(IN) b

Fly,2)= |J (I¥ =yl A F(,a")

y' ey

then F' represents a map: (Y,=) = (X,=) in A (check that it is single-valued!). So there
is a natural 1-1 correspondence between maps: (Y,J(=)) — (X,J(=)) in Ext, and maps
(Y,=) = (X,=) in A; which by the Yoneda Lemma proves that (X, =) is a j-sheaf. |

So N is a j-sheaf, and since for any topology the sheaves form an exponential ideal, the fi-
nite type structure over N consists of j-sheaves. The computation of this structure is easy: if
(Y,=) is separated there is an expression for (Y,=)(*>=) completely similar to the one in [Hy
82], and we see:

Proposition 3.17 The finite type structure over N in A is the following: the object of type
o has as underlying set the effective operations of type o, and equality: [« = z] is the set of
those a which consist of codes for ¢, whereas [z = y] is empty for z # y.

Proposition 3.18 The logic of the finite type structure over N in A is the same as that in
Ext.

Proof.The finite type objects in A as defined in the preceding proposition, have the following
properties:

o They are modest, i.e. canonically separated and such that for different z,y, the set [z =
z] N[y =y] is empty;
o The equalities are all closed under pushouts, as well as the relations representing the

evaluation maps.

Now if ¢(z) is a strict predicate for z of type a modest object, and ¢(z) is closed under pushouts,
then Jzp(x) is also closed under pushouts. It is trivial that the property of being closed under
pushouts (for predicates) is preserved under the logical operations —, A,V and V, so there you
are. |

The categorical and logical analysis of .4 can be pushed a lot further, exploiting the analogy
with £ff and what is known for that topos. For example, there is a surjection: A(J(IN))—>$2
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in A, which classifies, viewing A(I(IN)) as the object of =—-closed, downwards closed subsets
of N in A, exactly the inhabited ones; this should be the starting point for the definition of
an “internal realizability” as in [vanO 9?], and an axiomatization (over a suitable expansion of
higher order arithmetic) of an extension of the realizability of definition 1.9. In the expansion
of arithmetic one will need sorts for N and its powers; it would be nice if these could be elim-
inated, i.e. if N would be, in A, definable from higher order arithmetic. I doubt this, but do
not know.

Here I just present an analogy of a characterization of Eff as ezact completion of its category
of projectives, obtained in [RR 90] and also explained in [Car 93]. Both papers start from the
basic result in [CCM 82], which is the construction of the exact completion Eey/ex of a left

exact category E. Let me first explain what is meant. A left exact category is said to be ezact
if

a) For every map f : A — B the coequalizer of the kernel pair of f (i.e. the two projections
A xp A— A) exists;

b) Regular epimorphisms (i.e. those which are coequalizers) are stable under pullback;
c) Equivalence relations are effective, that is: kernel pairs.

A left exact functor between exact categories is called exact if it preserves regular epimorphisms.

If EX denotes the (2-)category of exact categories and exact functors, and LEX is the
category of left exact categories and left exact functors, then the exact completion Fey/ex of
a left exact category FE is its image under the reflection of LEX to EX (the left adjoint to the
inclusion of EX into LEX). It is important to notice that the inclusion of EX into LEX is not
full and faithful, so an exact category is not automatically equivalent to the exact completion
of something. For this to be the case, we need to look at the projective objects of the category:
an object A is projective (One should say: regular projective, but never mind) iff every regular
epimorphism to A has a section.

It turns out that an exact category E is an exact completion if and only if the following two
conditions hold:

i E has enough projectives, which means that for every object A of E there is a projective
object B and a regular epimorphism B——bA;

ii The full subcategory of E on the projective objects is left exact.

([Car 93]) If these conditions are satisfied, F is the exact completion of its category of projec-
tives.

The authors of [RR 90] were able to identify the projectives of £ff and show that £ff is
the exact completion of its category of projectives. This category looks as follows: objects are
surjective functions X —J where X is a set and I C IN; morphisms are commutative diagrams

X — I
I f 19
Y — J

where ¢ : I — J is the restriction to I of a partial recursive function (¢ is uniquely determined
by f since the horizontal maps are surjective). In other words, this category is the full subcate-
gory of the comma category (Sets | P(IN)) on the surjections (P(IN) is the category of subsets
of IN and partial recursive functions).
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Since IN is only a <-pca, the category P(W) (as defined in subsection 3.3) has as maps
f: A= B, those functions f such that for some partial recursive function ¢, for all @ € A and
for all n € o, 1(n) is defined, and

$la] C f(a)
So the full subcategory of (Sets | P(IN)) on the surjective functions looks as follows:

e Objects are surjective functions f : X—b>A from a set X to a subset A of IN;

e Morphisms from f to g : Y—B are functions h : X — Y such that for some partial
recursive function ¢ there is a diagram:

where it is meant that 3 acts on a to give ¥[a] = {¢(n) | n € a}, and the diagram
commutes “up to inclusion”.

The claim is now that this category is the category of projectives in A, that it is left exact and
that A has enough projectives, so that A is the exact completion of this category.
The result is a direct adaptation of the method of [RR 90]. First a lemma:

Lemma 3.19 Every object of A is covered by a separated object.
Proof.Given (X, =), define the object (Q,=) by

Q {(w,a)liex,OlEﬂ:.B:m]l}
[(z,0) = (¥,8)] = {{’YE]NH'QQ} ifzr=yanda=g0

@® otherwise

The reader can check that the function Ku:Q x X — I(IN) given by
Ku((e,a),y) ={v|vC e} x[z=y]
represents a surjection: (Q,=)—>(X,=). |

Proposition 3.20 Call an object (X_,_ =) of A canonically projective if it is canonically sepa-
rated, and for all x € X there is a € IN such that

[e=2]={v|vCa}
Then an object of A is projective if and only if it is isomorphic to a canonically projective object.

It is easily seen that the category of canonically projectives is the same as the full subcategory
of (Sets | P(]l_\I)) on the surjections, as given above. Also, from this description it is obvious
that this is a left exact category: it has products because if [z = z] = {y | ¥ C a} and
ly=y]={y]|vC B} then for (z,y) (in the product) we have

[(z,9) = (z,y)]={v|7 S axp}
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with a x f = {(n,m) | n € a Am € B}; it has equalizers because ——-closed subobjects of
canonically projective objects are canonically projective: in complete analogy to the situation
for £ff (see [Hy 82]), a subobject of (X, =) is =—-closed iff isomorphic to one of form (4,=)
with A C X and = the restriction to A of the equality = on X.

Proof.Suppose X is projective; let Q 5 X be the cover in the proof of lemma 3.19. Then
Q is canonically projective, m has a section ¢, and X is isomorphic to the equalizer of im
and id : @ — Q. Since the canonically projective objects are closed under equalizers, X is
isomorphic to a canonically projective object.

To show the converse, suppose (P, =) canonically projective and

(X,=)—>(P,=)
a surjection, represented by G. By surjectivity, pick a 8 with

pe () (p=rl-[3G(z,p)])

pEP

Let [p=p] ={v| v € ap}. Pick for each p € P a z,, with 5 e ap, € G(zp,p); then the relation

H(p,y) =[p=p] x[y =2,]

is easily seen to represent a section for the given surjection. | |

Of course, the real content of [RR 90] is in their argument that the category of projectives
of £ff is itself a completion: it is the category which results from freely adding nonempty,
recursively indexed coproducts to the category of sets (there are very elucidating remarks con-
cerning this in [Car 93], too).

I do not know whether a similar nice universal property can also be shown for the category
of projectives of A.

What about Ext? Does it have enough projectives? Is it an exact completion? The first
question would be easy to answer if the inclusion Ext— A would preserve epimorphisms. How-
ever:

Proposition 3.21 The inclusion Ext — A does not preserve epis.

Proof.Given the inclusion: Ext— A and the fact that A has enough projectives, this is equiv-
alent to the statement that the inverse image functor of the inclusion does not preserve projec-
tives. So I give a counterexample to this.

Let (X, =) and (Y, =) be the canonically separated objects of A given by:

[z1=21] =[22=22] =1 {0,1}

I[:Eg = 133]] = |I:B4 = 1)4]} =J, {0,2}
[yr=uw]=1{0,1}

Y= {ylyyZay3} and [[y? = y2]] =~L {0:1a2}

[ys =y ] =4 {0,2}

X = {z1,z2,%3,24} and {

I’ve started writing | a for {y | v C a}.
Let f: X — Y be the function: f(z1) = y1, f(z2) = f(23) = y2, f(24) = y3. Then

{Azz} e (| ([z=2]-[f(2) = f(2)])

zeX
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so the predicate F' defined by F(z,y) = [z = 2] A[ f(z) = y] represents a morphism [F] in A.
Now the objects (X, =), (Y,=) and the morphism [F] also live in Ext; and by proposition 3.20
both are projective in \A. But (Y, =), taken as object of Ext (which is the inverse image of itself
as object of \A) is not projective: the map [F] is surjective in Ext (not in \A!) since

|I32’F($,y2) lext = J(F(wzayz) ) F(fva,yz))

which is equal to

+{0,1,2}x { {0,1,2}
So {Az.(z,z)} € Nyeyly = y] = [32F(z,y)]. But of course, [F] cannot have a section in
Ext. |

The above proof clearly indicates what should be the projectives in Ext, since obviously, in the
example, the element y, is the problematic guy. Its existence, the downset of a three-element
set, can be glued together from two downsets of two-element sets by pushout. This suggests
the following definition, which embodies the deep mathematical intuition that an equivalence
relation is generated by sets of “equivalent pairs”.

Definition 3.22 Call an object (X,=) of Ext canonically projective if it is canonically sepa-
rated, and for all x € X there is an o with at most two elements such that

[z=z]=la={y|[vCa}
Lemma 3.23 Every object of Ext is covered by a canonically projective object.
Proof.Given (X, =), let (Q,=) be defined by

Q=A{(z,a)|a€[z==2] and fo < 2}

[0 = @A)l = { 1§ Hzmvende=s

The rest is left to the reader, who just has to keep in mind how an existential quantifier is
interpreted in the tripos J(IN)(7). |

Proposition 3.24 An object of Ext is projective if and only if it is isomorphic to a canonically
projective object.

Proof.This is completely analogous to the proof of proposition 3.20; one uses the canonially
projective cover and one realizes that, if

N (p=rl—J({J G(=p))

pEP zeX

is nonempty and [p = p] is of form | a with ffa < 2, then so is

N(rp=r1- | G(=p)

pEP zeX

nonempty. | |

So Ext does have enough projectives; from the definition of canonically projective however,
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it is clear that this is not closed under products. In fact, if A is the canonically separated
object ({a,b},=) with [a = a] =} {0} and [6 = b] =] {0,1} then one can check that A x A
is not projective in Ext.

It follows, that in Ext, the notions of projective and internally projective (in a topos, an
object @ is called internally projective if the functor (—)@ preserves surjections) do not coincide,
as they do in &ff.

Also, it is questionable whether Ext can be seen as some sort of exact completion. It cannot
be of the form FEy jjex; might it be of form Eey/. 2.7
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