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Comparing Models of
the Non-Extensional Typed A-Calculus

R. Hoofman*
Department of Mathematics and Computer Science
University of Amsterdam

Abstract

In this paper we compare “powerset models” of the non-extensional
typed lambda calculus. We show that the choice of a certain minimal
interpretation (with respect to a certain class of interpretations) of
the type-constructor = yields models with a mazimal theory (in that
class).

1 Introduction

As opposed to extensional lambda calculi, which require the interpretation
of abstracted terms (within isomorphism) to be functions, non-extensional
calculi allow a large degree of freedom in the choice of their models. This
is already apparent for the untyped non-extensional lambda calculus. For
example, the standard interpretation of a lambda abstracted term in a set-
theoretical model like Engeler’s graph model is as follows

Az.t], = {(X,b) | b € [t]yx/e), X finite}.
However, a (related) interpretation

P, = {(X,Y) | Y C [thxsap X, Y finite},

*raymond@fwi.uva.nl



would be equally justifiable (see e.g. [4]).

Similarly, in the typed non-extensional lambda calculus, there is in gen-
eral no canonical choice for the interpretation of the type ¢ = 7. This can
be illustrated by considering the category Pow of powersets and continuous
functions, which supports various interpretations of the typed lambda calcu-
lus. For example, the above two untyped models are solutions of the recursive
equation D = (D = D) in Pow, where we interpret = in the first case as

PA =, PB="P{(X,b)| X C A finite,b € B},
and in the second as
PA =, PB="P{X,Y)| X C A finite,Y C B finite}.

Several questions arise concerning the canonicity of the various interpre-
tations and their associated lambda-theories. In this paper we consider, as
a particular case study, interpretations of the non-extensional typed lambda
calculus in the category Pow. We show that the interpretation =, mentioned
above is minimal for the class of linear interpretations (i.e., interpretations in
which the application operator preserves arbitrary lubs in its first argument).
As a consequence, the theory of =, is mazimal among the theories of linear
interpretations (theorem 25).

2 Preliminaries

Let C be a full subcategory of the category Dcpo of directed complete par-
tial orders (dcpo’s) and continuous (i.e., directed lub preserving) functions.
Given objects D, E € C, their function space [D, E] (consisting of the con-
tinuous functions D — E ordered pointwise) is a dcpo but need not be an
object in C. Hence we are interested in “approximations” of the function
space in C, or, more formally, in objects D = E € C having [D,E] as a
retract. In detail, such a retract is given by the following items:

o a continuous function e : (D = F) x D — E,

¢ a continuous function R : [D, E] = (D = E),



satisfying the requirement

In case C C Dcpo, the category-theoretically notion of a semi-exponent
in C exactly corresponds to the above notion of an object approximating a
function space. Recall the following definition from [2, 3].

Definition 1 Let C be a category with finite products and D, E € C objects.
A semi-exponent of D, E is an object D = E € C together with

o anarrowe: (D= FE)xD —E inC,

o an arrow A(f): D' - (D = E) in C,
for each continuous f : D' x D — E,

satisfying the requirements
1. €0 (A(f) x id),
2. Aeo (f xid)).

Proposition 2 For C C Dcpo, there is a bijective correspondence in C be-
tween semi-exponents and objects having function spaces as retracts.

Proof: Given a semi-exponent D = F, there is a retraction between D = E
and [D, E] given by e = ¢ and

R(f)=A(RQ1x D3 D E)).

The other way round, an object D = E having the function space [D, E] as
a retract gives rise to a semi-exponent with e = e and for f: D' x D — E,

A(f)(d) = R(f(d,-)).
It is easily checked that the above defines the required bijection. |
Recall that a weak cartesian closed structure ([2, 3]) on a category C as-

signs to each pair of objects D, E € C a semi-exponent D = E. By the
above proposition, a weak cartesian closed structure on a category C C Dcpo
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chooses an “approximation” in C of the function space [D, E] for each pair
D,E e C.

The main example in this paper of a subcategory C C Dcpo which is not
closed under function spaces is the category Pow of powersets (ordered by
subset inclusion) and continuous functions. As the following example shows
however, we can define various kinds of semi-exponents in Pow.

Example 3 Define semi-exponents =,,, =, and =g for a set S on Pow
as follows:

o PA =, PB=P{(X,b)| X C A finite,b € B},
dez = {b|3I(X,b) € ¢(X C z)},
R(f) = {(X,b) | be F(X), X finite).

o PA=, PB=P{X,Y)| X C A finite Y C B finite},
poz =U{Y | 3(X,Y) € ¢(X C )},
R(f)={(X,Y)|Y C f(X),X,Y finite}.

o PA=s PB=P{(X,b)| X C A finite,b € B} U S),
gox = {b | 3(X,b) € (X C z)},
R(f)={(X,b) |be f(X),X finite} US.

Many more semi-exponents exist in Pow. As we will see later on, the semi-
exponent D =,, E is minimal for a certain class of semi-exponents in the
sense that it is a retract of each member D = E of that class. Intuitively,
the semi-exponent =, gives a best approximation (with respect to the class)
of the function space in Pow.

The full subcategory Alg C Dcpo of algebraic dcpo’s provides a further
example of a category lacking function spaces. Recall that an element z € D
is compact iff for each directed subset S C D, ¢ <V .S implies Iy € S(z <
y). A dcpo D is algebraic iff for each ¢ € D the set of compact elements
below z is directed and has z as least upperbound. It is well-known that for
algebraic dcpo’s D, E the function space [D, E] need not be algebraic. Semi-
exponents, however, can easily be found in Alg. For example, for algebraic
dcpo’s D, E € Alg take

o D=ty E=P{f: D — E| f continuous},
o gez = V{f(z) | f € ¢},



o R(f)={c]|c< f & c compact},

where a function D — FE is compact iff it is compact as an element of the
dcpo [D, E]. Note that the subcategory Pow C Alg is closed under the semi-
exponent = fyp.

3 Models of the Typed Lambda Calculus

For each weak cartesian closed structure (=, e, R) on a full subcategory C C
Dcpo, we define an interpretation of the typed lambda calculus (with a base
type o). First, fix an object D € C. Then, assign to each type o an object
D? e C as follows:

o D°=D,
o Da'=>1' —_ Da = DT.

An environment pis a function Var — U, D? (where Var is the set of (typed)
variables) satisfying the requirement p(z?) € D?. By p[d/xz] we denote the
environment equal to p except that it yields d for z. For each lambda term
t” and each environment p, we define an element [t], € D by the following
inductive clauses:

© [St]p = [s]p.[t]p’
o [Azt], = R([t],_/a)

where [t] ;_,,, is the (continuous) function given by [t] ;_/,)(d) = [t] 140y It
is left to the reader to check that the above interpretation is well-defined,
but note that it corresponds to the (general) notion of an interpretation of
the typed lambda calculus in a weak cartesian closed category [2]. We call
D = ({D?},[-]) the interpretation based on D and the semi-exponent =.

As usual we say that D,p = s = t iff [s], = [t], in the interpretation
based on D and =. Furthermore, D |=s = t iff D,p=s = t holds for
all environments p. By general results of [2], all the equalities of the typed
AB-calculus hold in D. Moreover since the 7-rule need not be satisfied, D is
a model of the the non-extensional typed lambda calculus.
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Let the theory Thp denote the set of equalities {s =¢ | D | s =t}. In
this paper we are interested in comparing the theories based on distinguished
weak cartesian closed structures = and =’ on Pow. The following examples
shows that in general these theories need not be the same.

Example 4 Consider PB°7° in the model based on =,,. It is easy to see that
this is equal to PQ and hence that all terms t°=° have identical interpretations
in this model. In particular, (z°7° = Ay°.xzy) holds in the model.

Nezxt consider PP°~° in the model based on =,. A simple calculation
shows that this is equal to P{(0,0)}. Fiz an environment p satisfying p(z°~°) =
(0, then the interpretation of A\y.xy in this environment is {(0,0)}, whereas
the interpretation of © is §. Hence (z°7° = Ay.zy) does not hold in the
model.

4 The Semi-Exponent =, is Minimal

In this section we show that each linear semi-exponent in Pow “contains” the
semi-exponent =,,. First, a semi-exponent PA = P B in Pow is called linear
iff the associated function e : (PA = PB) x PA — PB preserves arbitrary
lubs in its first argument, ie., (US)ez = Ugcs(doxz). All semi-exponents
mentioned till now are linear. Here are two examples of non-linear semi-
exponents.

Example 5 Think of PA = PB as a set of automatons which take input
from PA and yield output in PB. Fach automaton ¢ is determined by a
set of instructions of the form (X,b) (“on input X yield output b”) and can
furthermore be switched on or off. Accordingly, we define

o PA =4u PB=P{(X,b) | X C A finite,b € B} U{on}),

o goxz = {b|3I(X,b) € (X C z) & on € ¢},

o R(f)={(X,b) | be f(X),X finite} U {on}.
Note that each function f is represented by an enabled automaton.
Example 6 Fiz an element a € A. Define

o PA=,PB=PA= PB,



o ¢ez={b|3(X,b) € §(X Cz & (X U{a},b) € 9)},
o R(f) = Rn(f)-

Second, we introduce the notion of elementary members of a semi-exponent
(on Pow).

Definition 7 For a continuous function f : PA — PB define [f] € PA =,
PB by
[f1={(X,b) | be f(X) & u(X, f,b)},

where

WX, f D) e (Y CX&be f(Y) =Y = X).
For an arbitrary ¢ € PA = PB, we write [@] for [f,] (where fs(z) = poz).

Proposition 8 The operator [-] satisfies the following items:

1. [floz = f(z) (ice., “If] represents 1),
2. f < g & |g] finite = [f] finite.

We leave the (simple) proof of this proposition to the reader.
Recall that a continuous function f : PA — PB is compact iff f is
compact as an element of the dcpo [PA, PB].

Proposition 9 If f is compact, then [f] is a finite set.

Proof: Suppose that [f] is an infinite set. Theset S = {f, | ¢ C [f] & ¢ finite}
is directed and has f as lub. However, by proposition 8.2 the function f is
not below any element in S, and hence f is not compact. |

The other way round,
Proposition 10 If ¢ CPA =, PB is finite, then f4 is compact.

Proof: Suppose that fy < US with S directed, then gez = fy(z) C
US(z) = Uges g(z) for all z. Hence if (X,b) € ¢, then b € ¢#eX and
there exists g% € S such that b € ¢g*¥(X). By assumption the set
{g*? | (X,b) € ¢} is finite and hence has upperbound (say) g € S. For
arbitrary = and b € fs(z) we have b € ¢ez, hence I(X,b) € ¢(X C z) and
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be gXh(X) C g(X) C g(z). We conclude that fs < g. n

From the above two proposition follows:
Corollary 11 The continuous function f is compact iff [f] is a finite set.

In general, the (analogue of) proposition 10 need not hold for an arbitrary
semi-exponent. We call a semi-exponent PA = PB elementary iff each finite
subset ¢ C PA = PB represents a compact function (i.e., fs is compact).
In other words, a semi-exponent is elementary iff for each finite subset ¢ C
PA = PB we have that [¢] is a finite set. Except for = f,,,, all the examples
of semi-exponents on Pow we have seen are elementary.

For an arbitrary linear semi-exponent =, we call ¢ € PA = PB elemen-
tary iff for all n € ¢ we have that [{n}] is finite. Note that the fact that
[¢] is finite, implies that ¢ is elementary. For finite sets ¢, the reverse of
this implication also holds. In elementary semi-exponents, all elements ¢ are
elementary, and vice-versa.

We now show that the semi-exponent =,, can be embedded in each linear
semi-exponent =>. First we define a function r : (PA = PB) — (PA =

PB) by
r(¢) =l | n € ¢},
where [n] denotes [{n}].
Proposition 12 The function r has the following properties:
1. For all sets V, r(UV) = Ugev 7(9).
2. If ¢ is an elementary finite set, then r(¢) s finite.
3. For arbitrary x, pex = r(¢)e,z.
4. For all continuous functions f, rR(f) C Rn.(f).

Proof: We leave the proofs of 1 and 2 as exercises to the reader and consider
3. Suppose b € gex, then by linearity of e in its first argument and continuity
in its second, there exists a minimal finite X C x and n € ¢ such that
b€ {n}eX. Hence (X,b) € r{n} C r(¢) and b € r(¢)ex. The other way



round, suppose that b € 7(¢)ez, then there exists (X,b) € 7(¢) such that
X C z. Hence, by definition of r, b € pe X C gez.

For the proof of 4, suppose that (X,b) € rR(f), then there exists n €
R(f) such that b € {n}eX. Hence b € R(f)eX, from which it follows that
b € f(X). By definition of R,,, we then have (X,b) € R,,.(f). |

Next we show that there exists a right-inverse s : (PA =,, PB) —» (PA =
PB) for r.

Proposition 13 Suppose PA = PB is a linear semi-exponent, X C PA
finite, and b € B. Then there exists n € |J(PA = PB) such that {n}ex =
{b} if X C z and 0 otherwise. Moreover, if b € f(X), then n € R(f).

Proof: Let g denote the continuous function defined by g(z) = {b} if X C z
and () otherwise. Then there exists n € R(g) such that {n}eX = {b}. It is

easy to see that in fact f{,} = g. Furthermore, for arbitrary f, suppose that
be f(X), then g < f, hence n € R(g) C R(f). [ |

Fix for each (X,b) an element nx; such as given by the above proposi-
tion (there may be many of them), and define

s(¢) = {nxp | (X,b) € ¢}
Note that in the definition of s the axiom of choice is actually needed.

Proposition 14 The function s has the following properties:
1. For all sets V., s(UV) = Ugey 5(9)-

2. If ¢ a finite set, then s(¢) is a finite set.

3. For arbitrary x, de,,z = s(¢p)ex.

4. For all continuous functions f, sR,.(f) C R(f).
5. For all ¢, s(§) is elementary.

Furthermore, we have
Proposition 15 ros =:d

Hence, there exists an application preserving embedding of =, in an arbi-
trary linear semi-exponent on Pow. Informally, we can say that =, is a best
(linear) approximation of the function space in Pow.
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5 The Theory of Linear Semi-Exponents

Fix an arbitrary linear semi-exponent = on Pow and an object PA € Pow.
Let £ = ({L°},[:]) denote the lambda model based on PA and =, while
M = ({M°},{-)) denotes the corresponding model based on =, (hence,
L° = M° = PA). In this section we will show that the theory of L is
included in the theory of M.

To begin with, say that an element ¢ € L7 is hereditary elementary (or
h-elementary) iff

1. o =o0,o0r

2. 0 = 01 = 09, ¢ is elementary, and for all x € L?* we have that =
h-elementary implies ¢ex is h-elementary.

Proposition 16 If¢' C ¢ € L° and ¢ h-elementary, then ¢' is h-elementary.
Moreover, if W C L°, and each ¢ € W s h-elementary, then UW is h-
elementary.

The proof of this proposition is left to the reader (but observe that the
linearity of e is crucial).

We show that the interpretation of the lambda calculus is closed under
the property of h-elementariness. First we need the following lemma.

Lemma 17 For all continuous functions f, R(f) is elementary.

Proof: We have to show that Vn € ¢([n] is finite). By general domain-
theory, the continuous function f is the lub of the directed set of compact
functions below f. Hence R(f) = RV{c | c < f & ¢ compact} = U{R(c) |
¢ < f & c compact} by continuity of R. It follows that for n € R(f) there
exists a compact function ¢ < f such that {n} C R(c). As a consequence we
have that [c] is a finite set and f{,; < c. By proposition 8(2), [n] is a finite
set. u

We say that a L-environment p is h-elementary iff p(z) is h-elementary for
each x.

Proposition 18 If p is h-elementary, then (t), is h-elementary.
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Proof: By induction on ¢t. We consider the case that { = Az.s, then
(t), = R((s)p[-/=))- By the previous lemma, this set is elementary. Fur-
thermore, for a h-elementary S, (t),05 = R((s),[—/2])®S = (5),[s/]), Which is
h-elementary by induction hypothesis. It follows that (A.s), is h-elementary.
|

Observe that, as a consequence of this proposition, interpretations of closed
lambda terms are h-elementary. Intuitively, non h-elementary elements do
not play any role in the semantics.

Next we define a function r? : LY — M? by induction on o as follows:

o r°(¢) =4,
o r777(p) = {(r’(X),c) | A(X,b) € r(¢)(c € r"{b} & X h-elementary)}.

It is easy to see that r? is well-defined (use proposition 12(2)). Further-
more, for each type o the function 77 preserves arbitrary lubs (and hence is
monotone).

Proposition 19 Suppose that x € L? is h-elementary and ¢ € L°=7", then
r7(dex) C r777(¢)e,,77 ().

Proof: The proof is by induction on the type 7. For the basis of the induc-
tion, assume that 7 = 0. If n € r°(¢ez) = gz, then n € r(4)ez by proposi-
tion 12(3). Hence there exists (X,n) € r(¢) such that X C z and hence X
is h-elementary. By the monotonicity of r?, it follows that r?(X) C r?(z).
We have

r°7%(p)e, 7 (z) = {(r7(X),b) | (X,b) € r(¢) & X h-elementary}er(z)
= {b]3(X,b) € r(¢)(r°(X) Cr’(z) & X h-elementary)}

hence n € r77°(¢)e,,r7 ().

For the induction step, assume that 7 = 71 = 75. We now have r™(gez) =
{(r"(Y),c) | 3(Y,b) € r(goz)(c € r{b} & Y h-elementary)}. Suppose that
(r(Y),c) € r"(poz). From (Y,b) € r(¢pez), it follows by monotonicity of r
and proposition 12(3) that (Y, b) € r(r(¢)ex). Hence by linearity of r there
exists d € r(¢)ez such that (Y,b) € r{d}. Furthermore, by definition of e,,,
we find (X, d) € r(¢) satisfying X C z & (V,b) € r{d}. From (Y,b) € r{d},
Y h-elementary and ¢ € r™{b} it follows that (r™(Y),c) € r"=7{d}, while
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from X C z it follows that r?(X) C r?(z) and X h-elementary. If we now
write out
r’7N(@)emr?(z) = {n[3(Z,n) € r77(¢)(Z Cr°(2))}
{n13(2,n) € {(r"(X),€) | 3(X,d) € r(¢)(e € r"{d}
& X h-elementary)}(Z C r7(z))}
= {e|3(X,d) e r(¢)(e € r"{d} & r?(X) C r(z)
& X h-elementary)}

then we see that (r™(Y),c) € r777(¢)e,, 77 (z). |

Proposition 20 For each term t° and h-elementary environment p we have
(8o C [t]rps

where rp(z7) = r7(p(z)).

Proof: By induction on t. The case that ¢ is a variable is trivial. Now

suppose that t = t1t,. We have

% (tita), r7((t1)p0(t2),)
T (t1)p0r7 (b2)
[t1]rp0[t2]r
[t1t2]rp
where the second step is by proposition 19, and the third by the induction
hypothesis.
Next consider the case that t = Az.s. We have
r72(Az.s), = {(r(X),c) | I(X,b) € r(Az.s),(c € r72{b}
& X h-elementary)}
= {(r"(X),0) | 3(X,b) € rR{s)—/a)(c € 7*{b}
& X h-elementary)}
S {{r"(X),¢) | AX,b) € Rm(s)p—/a)(c € r**{b}
& X h-elementary)}

N
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where the last inclusion is by proposition 12(4). Suppose that (7' (X), )
791792 (Az.5),, then from (X, b) € Rn(s) [/« it follows that b € R, (s) -,
(8)p[x/2)- Hence we have

c € r2{b}
S r7(s)px/a)
S [slnotx/a)
= [l (x)/2)
where the third step holds by the induction hypothesis and the fact that X
is h-elementary. It follows that (77 (X),c) € Rm[s]rp[—/2] = [AZ.S]rp. n

Fix an arbitrary left-inverse s of r as in the previous section. We define
a (collection of) function(s) s° running into the opposite direction of 7°. For
each type o, define s : M7 — L? by the following inductive clauses:

s°(¢) = &,
527(¢) = s{(s°(X), ) | I(X,b) € $(c € s™{b})}.

It is easy to see that s7 is well-defined and preserves arbitrary lubs. Further-
more, s7 always yields h-elementary results.

Proposition 21 For all ¢ € M7, s7(¢) is h-elementary.

Proof: By induction to 0. The base of the induction is trivial. For the
induction step, assume that o = o7 = 0. As s7(9) is of the form s(¢) (for
some 1), it clearly is elementary (proposition 14(5)). Furthermore, for an
h-elementary =z € L°*, we have

s?(g)ez = s{(s7(X),¢) | A(X, D) € ¢(c € 57{b})}ez
= {(s"(X),¢) | 3(X,0) € ¢(c € s”{b})}oz
= {c|3(X,b) € ¢(c € s™2{b} & s"*(X) C )}
= U 572 {b}

(X5)€d & 5°1(X)Ca

By the induction hypothesis and proposition 16, it follows that s7(¢)ez is
h-elementary. |

13



Proposition 22 For all o, r°s°(¢) = ¢.

Proof: The proof is by induction to 0. If ¢ = o, then the proposition
trivially holds. If ¢ = 0; = 0, we reason as follows:

r7s7(¢) = {(r"*(X),c) | I(X,d) € rs7(d)(c € r’2{b} & X h-elementary)}
= {(r"(X),0) | 3(X,0) € {(s™(X),e) | AX,d) € ¢(e € s{d})}
(c € r2{b} & X h-elementary)}
{(r1s7(X),c) | 3(X,d) € (b € s72{d} & c € r*2{b})}
(X, 13(X, d) € d(c € 27+ {d})}
= {(X,0)|3(X,d) € 9(c < {d)}
= ¢

Lemma 23 Suppose¢p € M= andz € M?, then s™(¢pe,,z) C s7=7(¢p)es?(x).

Proof: For the sake of convenience, we write ¢ for the set {(s7(X),c) |
(X, b) € ¢(c € s{b})}. Hence s777(¢) = s(3).

The proof is by induction on 7. First assume that ¢ = o. Suppose
that n € s°(ge,z) = Pe,z, then n € {b | I(X,b) € ¢(X C z)}, hence
A(X,n) € (X C z). It follows that (s7(X),n) € ¢ and s7(X) C s7(z).
Hence n € yes7(z) C s(¢)es?(z) = s777(¢p)es?(z).

Next assume that 7 = 71 = 7. Suppose (K, n) € s™(¢ez) = s{(s™(X),¢) |
3(X,b) € poz(c € s™{b})}. Then, by linearity of s, there exists (X,b) € goz
such that (K,n) € s{(s™(X),c)} and ¢ € s™{b}. By definition of application
o, there exists (Y, (X,b)) € ¢ such that Y C z and satisfying the above two
statements. Because

stT{(X,0)} = s{(s"(2),e) | 3(Z,d) € {(X,b)}(e € s™{d})}
{(s7(X),e) | e € s™{b}}

it follows that 3(Y,(X,b)) € ¢(Y Cz & (K,n) € s"7{(X,b)}). Hence

(s°(Y),(K,n)) € ¢ and s°(Y) C s’(z). Finally (K,n) € te,,s°(Y) C

Yons(2) € 8(1)05(z) = 577 ()05° (z). .

= s
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Proposition 24 For each term t° and environment p we have
s°[t]p S (B)sps
where sp(z7) = s7(p(z)).
Proof: The proof is by induction on ¢t. We consider the case that t = Az.s
of type 01 = 02. Then
s?zt], = s{(s(X),c
s{(s"*(X),c

| 3(X, ) € Pzslo(c € s7{b})}

| (X, b) € Bim[s]p(-/z)(c € s7{b}) }
|

I

),€)

( );€)
= s{(s”(X),¢) | 3b € [s]ox/a)(c € s7{b})}
C s{(s™(X),c) | Io(s7{b} C 5*[s]px/z) & c € s7{b})}
C s{(s™(X),c) | c € s”[slix/a1}
C {(8‘” (X),¢) | € € (8)splser(x)/21
= $Rm(8)rp—/a)}
C ( )rol—/21}
= (Az.s),,

Finally we state as our main theorem that the theory of £ is included in
the theory of M.

Theorem 25 For arbitrary lambda terms s,t, we have that L |= s =t im-
plies M |= s =t.

Proof: Suppose that £ |= s = t, then (s), = (t), for all L-environments p.
For an arbitrary M-environment 7, we have

[s]l« = 775[s]x
7((8)sn)
7({t)sr)

N
T

N

where the fourth step holds by proposition 20 and 24. Analogously we can
show that for each M-environment [t], C [s],. It follows that [t], = [s], and
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MEs=t. n

Hence, the theory of =, is mazimal among the theories of the linear semi-
exponents on Pow.

6 Conclusion

In this paper we showed that the theory associated to a linear semi-exponent
(on Pow) always is included in the theory of a particular “minimal” semi-
exponent =,,. Many interesting questions concerning extensions and gener-
alizations of this result remain open.

For example, what can we say about non-linear semi-exponents? The
semi-exponent =, can be embedded in the non-linear semi-exponent =,
from example 5, hence our proof can probably be generalized to these kind
of “pseudo-linear” semi-exponents. However, the semi-exponent =, from
example 6 can in general not be shown to contain =,,.

Further questions concern the exact nature of the theory of the minimal
semi-exponent. Although it clearly does not hold for finite base sets, it
does not seem impossible that the theory based on =, and an infinite base
set PA precisely is the set of provable lambda equations. By the results
of our paper, this would imply that the theory of each elementary linear
semi-exponent (with infinite base set) is complete for AS.

More generally, we can study approximations of function spaces in a sub-
category C C Dcpo (e.g., Alg). Does there always exists a (class of) best
approximation(s) of the function space in C? And what is the relation be-
tween distinguished best approximations of a function space: do they have
to be isomorphic?
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