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Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K, ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following
formulae are nicer:

For (K},3)": gn+3(@A(p—fas1(@)—p)—p = ha(p,q),

for (K, K},)*: gnia(@A(pefnan(@)—p = kn(p,q),

with some simpler degenerate cases for the lower numbers:

~“~qA((p—9)—Pp)-p, gA(pg)-Pp, ~gATp-p, “(-qAa-p).

Here gn(q) and fp(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LEfn4+1(q) iff LXKy or L<Kp41. The relevant properties of the gn(q) and fa(q) are:
Fpcfns1(QO8n(qVEns1(Q)

FIPC 8n+3(9)3(gn+2(q)—fn+1(q)) and hence + gn4a(q)(gn+2(q)98n(@VEn+1(q).

3.1 Theorem. If for no ne N, Fpc gn+3(B)A(A—fn41(B))>A)—>A or

F1PC 8n+3(BIA(Afn41(B)) oA, or FipC gn+3(AA((B—fn41(A))—>B)—B or

F1PC 8n+3(A)A(Be->fn41(A))—-B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic coinpleteness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hu(p, q) is exactly provable for
(gn+3(@PA((p—fns1(q))—=p)vpand q.

(b) The formula kxq(p, q) is exactly provable for

(gn+3(@Pr(porfnsr(@))vpand q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»B)—A)—B. Let us write p* for
(CA((p—D)-p))vp. Then p*—>D is equivalent to (CA((p—D)—>p)—>D)A(p—D) and
hence to p—D.

Therefore, (p°*—»D)—p" is equivalent to (p—D)—(CA((p—»D)—-p))vp and hence
implies (p—»D)—p. Thus, CA((p*—>D)—>p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—»D)—p)—p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(p>D))vp. Then p*oD implies p—D as well as D—(Ca(p+>D))vp. The latter
implies D—p. So, CA(p*&D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K, 1,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (KL,9)": gn+3(@A(p—£n+1(@)—>p)—p = hnlp,Q),

for (I}, K}.,1)": 8na(@A(porfni(@)—p = kalp,q),

with some simpler degenerate cases for the lower numbers:

qA((p—9)-p)-p, ~qA(peq)-p, ~gA~p-p, ~(=qAa-p).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff LXKy,
LEfn41(q) iff L Kp or L<Kp41. The relevant properties of the gn(q) and fn(q) are:
Fpcfn1(@)ga(q)vEnn(Q)

FIPC 8n+3(q)gn+2(q)—fn+1(q)) and hence F gn+3(q)Hgn+2(q)-8n(QVEn+1(P)-

3.1 Theorem. If for no ne N, i pc gn+3(BIA((A—-fn4+1(B))>A)—A or

FIPC 8n+3(B)A(A&fn41(B)) A, or F1pc gn+3(AA((B—fn4+1(A))>B)—B or

F1PC 8n+3(A)A(B>fn41(A))—-B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(A((p—fn+1(q))—p))vp and q.

(b) The formula kq(p, q) is exactly provable for

(gn+3(@A(pefns1(@))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—A)—B. Let us write p* for
(CA((p—»D)-p))vp. Then p*-D is equivalent to (CA((p—>D)-p)—D)A(p—D) and
hence to p—D.

Therefore, (p*—D)—p" is equivalent to (p—»D)—(CA((p—>D)—p))vp and hence
implies (p—»D)—p. Thus, CA((p*—D)—-p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—-p)—p changing
the valuation of p to that of (CA((p—»D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—>D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p&>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(peoD))vp. Then p*©D implies p—D as well as D—>(CA(p~D))vp. The latter
implies D—p. So, CA(p"&D) implies p".



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K1 ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K1, )" gns3(@A((pofas1(@)—p)—op = halp,q),

for (KL, K1, )™ gnia(@Aporfnin(@)-p = knlp,q),

with some simpler degenerate cases for the lower numbers:

—~qA((p—q)—=p)-p, ~qA(peg)-p, ~qa~-p-p, ~(=qA-p).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LE fn+1(q) iff LXKp or LXKn41. The relevant properties of the gn(q) and fr(q) are:

F P fnt1(9)8n(q)vEn+1(q)

FIPC 8n+3(q)(8n+2(qQ) >fn+1(q)) and hence F gn43(q)Xgn+2(q)—8n(q)vEn+1(q))-

3.1 Theorem. If for no ne N, +pc gn+3(B)A(A—fn4+1(B))—>A)—A or

FIPC 8n+3(BIA(Afn41(B))—A, or +1pc gn+3(AIA((B—fn41(A))—B)—Bor

FIPC gn+3(A)A(B>fn+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryniski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smorynski, 1973.)

3.2 Theorem. (a) The formula hu(p, q) is exactly provable for
(8n+3(@A((p—fn+1(@)—p))vp and q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(@A(porfna(@))vpand q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—»D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»B)—>A)—-B. Let us write p* for
(CA((p—D)-p))vp. Then p*—D is equivalent to (CA((p—D)—p)—-D)A(p—-D) and
hence to p—D.

Therefore, (p*—>D)—p” is equivalent to (p—>D)—(CA((p—>D)-p))vp and hence
implies (p—D)—p. Thus, CA((p*—D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—»D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»>D)—p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<-D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(poD))vp. Then p*&D implies p—D as well as D—(Ca(p->D))vp. The latter
implies D—p. So, CA(p*©D) implies p°.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K%, K,1,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following
formulae are nicer:

For (K1, 2" gn+3(@A(p—fns1(q)—p)—p = hn(p,q),

for (K, K 9™ 8ra(@Aperfnin(@)—p = kalp,q),

with some simpler degenerate cases for the lower numbers:

=gA((p—9)-p)-p, "gAlpeq)—-p, “qAPp-p, ~(~gA-p).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LE fn41(q) iff LXKp or LXKp41. The relevant properties of the gn(q) and fr(q) are:
FPcfn1(Qga(@VEn+1(Q)

FIPC 8n+3(qQ) X gn+2(q)-fn+1(q)) and hence  gn43(q)¢Hgn+2(q)8n(QVEn+1(q)-

3.1 Theorem. If for no n€ N, Fpc gn+3(B)A(A—fn41(B))—>A)—A or

F1PC gn+3(B)A(AEfn41(B))—>A, or F1pc gn+3(A)A((B—fr4+1(A))—B)—B or

F1PC gn+3(A)A(B>fn41(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(@n+3(PA((p—-fn+1(@))—p))vp and q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(@A(porfnsr(@))vpand q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—»D)-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»B)—A)—B. Let us write p* for
(CA((p—>D)—>p))vp. Then p'—D is equivalent to (CA((p—>D)—p)—D)A(p—D) and
hence to p—D.

Therefore, (p*—D)—p” is equivalent to (p—>D)—(CA((p—>D)—-p))vp and hence
implies (p—»D)—p. Thus, CA((p"—>D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—»D)—p)—p changing
the valuation of p to that of (CA((p—>D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—D)—p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<->D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(pD))vp. Then p*oD implies p—D as well as D—(Ca(p<>D))vp. The latter
implies D—p. So, CA(p*&D) implies p°.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K ! )*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K1, gn+3(@A(p~fns1(@)—p)—p = halp,q),

for (K}, K2, )*: gn3(@A(pofni(@)—p = kn(p, Q),

with some simpler degenerate cases for the lower numbers:

==qA((p—9)—=p)-p, " gA(poqg)-Pp, “qAp-p, (~qAa-p).

Here gn(q) and fa(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LE fn41(q) iff L<Kp or L<Kn+1. The relevant properties of the gn(q) and fn(q) are:
Fpcfn1(9gn(qVEnn(q)

F IPC 8n+3(qQ)8n+2(q) fn+1(q)) and hence F gn3(q)(gn+2(q) 28l vEn+1(q)).

3.1 Theorem. If for no ne N, Fpc gn+3(B)A(A—-fn4+1(B))>A)—>A or

FIPC gn+3BIAN(Afr41(B))—A, or F1pC gn+3(AIA((B—fn4+1(A))—B)-B or

F1PC 8n+3(A)A(B>fn+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smorynski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(8n+3(@A((p—fn+1(@))—-p)vpand q.

(b) The formula kn(p, q) is exactly provable for

(@n+3(PA(porfnsi(@))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»B)—>A)—B. Let us write p* for
(CA((p—»D)—p))vp. Then p*—>D is equivalent to (CA((p—»D)—p)—D)A(p—D) and
hence to p—D.

Therefore, (p'—>D)—p” is equivalent to (p—»D)—(CA((p—>D)—p))vp and hence
implies (p—>D)—p. Thus, CA((p*—>D)—p") implies p°.

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—>D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<~>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(poD))vp. Then p*eD implies p—D as well as D-(Ca(p-D))vp. The latter
implies D—p. So, CA(p*<D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})*and (K}, K 1 ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K1, gn+3(@A((p—fn+1(9)—p)-p = ha(p,g),

for (K}, K}, )" gn+3@A(pefnin(@)-p = ka(p,q),

with some simpler degenerate cases for the lower numbers:

~qA((p—q)-p)-p, "gA(peq)-p, ~gA PP, ~(~qAp).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff LXK,
Lk fn+1(q) iff LXKp or L<Kp4+1. The relevant properties of the gn(q) and fn(q) are:
Fpcfn+1(@)8gn(q)VEn+1(qQ)

FIPC 8n+3(9)(gn+2(q)—fn+1(q)) and hence F gn43(q)Xgn+2(q)—8n(q)VEn+1(9)-

3.1 Theorem. If for no ne N, Fpc gn+3(BIA((A—fn4+1(B))>A)—>A or

F1pC 8n+3(B)A(Aan+1(B»—)AI or kpC 8n+3(A)A((B—>fn+1(A))—>B)—)B or

F1PC 8n+3(A)A(Bfr+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryniski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(@PA((p—fn+1(g))—>p)vp and q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(PA(porfns(@))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—B)—A)—B. Let us write p* for
(CA((p—>D)—p))vp. Then p"—>D is equivalent to (CA((p—D)—-p)—-D)A(p—D) and
hence to p—D.

Therefore, (p*—>D)—p” is equivalent to (p—>D)—(CA((p~>D)—->p))vp and hence
implies (p—D)—p. Thus, CA((p*—>D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—»D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&»D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(poD))vp. Then p*oD implies p—D as well as D—(Ca(p<>D))vp. The latter
implies D—p. So, CA(p*&D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K%, K 1 ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (Kp43)": gn+d@A(p—fns1(9)-p)—p = ha(p, q),

for (K}, K1, )*: gnia(@A(porfns(@)-p = kalp,q),

with some simpler degenerate cases for the lower numbers:

=g (p—9)-p)-p, T qA(pq)-p, ~“qap-3p, ~(~gap).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
Lk fn4+1(q) iff LXKn or L<Kp41. The relevant properties of the gn(q) and fn(q) are:
FpCfn+1(QO8n(qVEn+1(Q)

FIPC 8n+3(q)(8n+2(qQ)—fn+1(q)) and hence F gnia(q)(gn+2(9)>8n(QVEn+1()).

3.1 Theorem. If for no n € N, F1pC gn+3(B)A((A—>fp+1(B))—A)—>A or

FIPC gn+3(BIA(AEfn41(B))—A, or F1pC gn+3(A)A((B—fn4+1(A))—B)—B or

F1PC 8n+3(A)A(B>fn41(A))-B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smorynski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(PA((p—fn+1(@))—p))vp and q.

(b) The formula kn(p, q) is exactly provable for

(8n+3(Q)A(Pan+1(q)))VP and q.

Proof. (a) Actually, we will show in general that CA((p—»D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—>A)—B. Let us write p* for
(CA((p—D)-p))vp. Then p*—D is equivalent to (CA((p—D)—-p)—D)A(p—D) and
hence to p—D. .

Therefore, (p*—D)—p” is equivalent to (p—D)—(CA((p—D)-p))vp and hence
implies (p—>D)—-p. Thus, CA((p'>D)—-p") implies p*.

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—»>D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p&-D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(p>D))vp. Then p*&D implies p—D as well as D—(Ca(p«->D))vp. The latter
implies D—p. So, CA(p"©D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K%, K, ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following
formulae are nicer:

For (K},,9)": 8a+3(@A((p—fn+1(9)-p)—p = ha(p,q),

for (KL, KL, )*: gnsa(@A(perfni1(@)—p = kalp,q),

with some simpler degenerate cases for the lower numbers:

=g (p—=9)—p)-=p, "qA(pqQ)-p, "qAp-p, “(-qA-p).

Here gn(q) and fr(q) are such that, for any 1-variable T-model L, Lk gn(q) iff LXKj,
LEfn+1(q) iff L<Kp or L<Kp+1. The relevant properties of the gn(q) and fn(q) are:

Fpc fn+1(@8n(9)vEn+1(qQ)

FIPC 8n+3(Q)(gn+2(q)=fn+1(q)) and hence F gn43(q)gn+2(P—-8n(q)VEn+1(q).

3.1 Theorem. If for no ne N, Fpc gn+3(B)A((A—fn41(B))—>A)—A or

F1PC 8n+3(B)A(A©fn41(B)) A, or Frpc gn+3(AIA((B—fr41(A))—-B)—-B or

F1PC gn+3(A)A(Be>fn+1(A))—-B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(@n+3(PA((p—fn+1(Q)-p)vp and q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(PA(pe>fni1(q))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—A)—B. Let us write p* for
(CA((p—>D)—p))vp. Then p*—D is equivalent to (CA((p—>D)—p)—>D)A(p—D) and
hence to p—D.

Therefore, (p*—>D)—p" is equivalent to (p—>D)—(CA((p—>D)—p))vp and hence
implies (p—D)—p. Thus, CA((p*—>D)—-p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—-p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—>D)-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p-D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(p>D))vp. Then p*-D implies p—D as well as D—>(Ca(pD))vp. The latter
implies D—p. So, CA(p*&D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K} ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K},3)": gnsas(@A(p—fns1(@)—p)-p = halp,q),

for (Kp, K, )*: gna(@APofnin(@)-p = kalp,q),

with some simpler degenerate cases for the lower numbers:

—~qA((p—q)—-p)-p, “qA(po9)-Pp, ~ga~p-p, (~gA-p).

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
Lk fn4+1(q) iff LXKp or L<Kp41. The relevant properties of the gn(q) and fr(q) are:
Fipcfnn (q)f—)gn(q)vgnn (q)

F IPC 8n+3(q)X(gn+2(q)—fn+1(q)) and hence F gn43(q9)¢gn+2(q)—=8n(q)VEn+1(q)-

3.1 Theorem. If for no ne N, Fp¢ gn+3(B)A(A—-fn41(B))>A)—>A or

F1PC 8n+3(B)A(AEfn11(B))—>A, or Fipc gn+3(A)A((B—fr4+1(A))—>B)—-B or

FIPC gn+3(A)A(B>fr+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryniski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(@A((p—fn+1(@))—p)vp and q.

(b) The formula kn(p, q) is exactly provable for

@n+3(@PA(pfna(@))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—>D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»>B)—A)—B. Let us write p* for
(CA((p—»D)-p))vp. Then p*—>D is equivalent to (CA((p—>D)—-p)—-D)A(p—D) and
hence to p—D.

Therefore, (p*—D)—p" is equivalent to (p—>D)—(CA((p—>D)—-p))vp and hence
implies (p—D)-p. Thus, CA((p*—>D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(pD))vp. Then p*&D implies p—D as well as D—(Ca(p~D))vp. The latter
implies D—p. So, CA(p*©D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K 1 )*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following
formulae are nicer:

For (K, 2" gn+3@A((p—fns1(@)—p)—p = ha(p, @),

for (KL, KL, )*: gnea(@A(pefni1(@)—p = knlp,q),

with some simpler degenerate cases for the lower numbers:

=qA(p—9)—-p)-p, AP 9P, “qap-p, (=gAp).

Here gn(q) and fx(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LE fn4+1(q) iff LXK or LXKn41. The relevant properties of the gn(q) and fa(q) are:
Fpcfn1(@ogn(@)vEn+1(Q)

FIPC 8n+3(@Xgn+2(q)>fn+1(q)) and hence F gn4a(q)>(gn+2(q)—8n(q)VEn+1(q)-

3.1 Theorem. If for no ne N, Fpc gn+3(B)A((A—fn41(B))—>A)—A or

FIpC gn+3(B)A(Afn11(B))—A, or F1pc gn+3(A)A((B—fns1(A))—B)-B or

F1PC 8n+3(A)A(Be>fr4+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryniski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(PAl(p—fn+1(@)—-p)vp and q.

(b) The formula kn(p, q) is exactly provable for

(8n+3(q)/\(P<-)fn+l(q)))Vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)—p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to (A->B)—A)—B. Let us write p* for
(CA((p»D)-p))vp. Then p'—D is equivalent to (CA((p—>D)—-p)—>D)A(p—D) and
hence to p—D.

Therefore, (p*—>D)—p” is equivalent to (p—»D)—(Ca((p—>D)-p))vp and hence
implies (p—D)—p. Thus, CA((p*—D)—-p") implies p°.

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<-D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(p>D))vp. Then p*&D implies p—D as well as D—(Ca(p<>D))vp. The latter
implies D—p. So, CA(p*©D) implies p°.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K, 1 ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following
formulae are nicer:

For (K2, 2" gnis@A((p—>fns1(@)-p)—p = ha(p,q),

for (KL, K}, )" gn3@A(porfns1(@)—p = knlp,q),

with some simpler degenerate cases for the lower numbers:

=g ((p—9)—p)-p, "qa(peq)-p, ~qAp—p, “(-qA-p).

Here gn(q) and f(q) are such that, for any 1-variable T-model L, L gn(q) iff L<Kp,
LEfn+1(q) iff LXK or L<Kp41. The relevant properties of the gn(q) and fr(q) are:
Fipcfn1(9gn(q@)VEn+1(qQ)

FIPC 8n+3(qQ) Xgn+2(q)—fn+1(q)) and hence F gn+3(@ ¢ Hgn+2(q)8n(q)VEn+1(q)).

3.1 Theorem. If for no n€ N, Fpc gn+3(B)A((A—fp41(B))—>A)—A or

FIPC 8n+3(BIA(AEfn41(B)) A, or F1pC gn+3(A)A((B—fn+1(A))—B)—B or

F1PC gn+3(A)A(Bofn4+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smorytiski, 1973.)

3.2 Theorem. (a) The formula hu(p, q) is exactly provable for
(gn+3(@A((p—fns1(g))—-p)vpand q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(@PA(porfnii(@))vpand q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—»D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—>A)—B. Let us write p* for
(CA((p—D)->p))vp. Then p*—D is equivalent to (CA((p—D)—p)—>D)A(p—D) and
hence to p—D.

Therefore, (p*—D)—p" is equivalent to (p—>D)—(CA((p—>D)—p))vp and hence
implies (p—D)—p. Thus, CA((p*—»D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—-p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—D)-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<->D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(pD))vp. Then p*&D implies p—D as well as D—(Ca(p~>D))vp. The latter
implies D—p. So, CA(p"&D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K 1 ,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K},3)*: gna3(@A((p—fn1(9)—p)—p = ha(p,q),

for (K}, K}, 9*: gns3(@A(pfnin(@)-p = kalp,q),

with some simpler degenerate cases for the lower numbers:

~gA(p—9)-p)-p, "qA(Pq)-p, “qAp-P, “(~gA-p).

Here gn(q) and fr(q) are such that, for any 1-variable T-model L, Lk gn(q) iff LXKy,
Lk fn+1(q) iff L<Kp or L<Kn+1. The relevant properties of the gn(q) and fr(q) are:
FpCfni1(9gn(Q@)VEn+1(q)

FIPC 8n+3(q)gn+2(q)—fn+1(q)) and hence F gn3(q)gn+2(q)—>8n(q)VEn+1(Q)-

3.1 Theorem. If for no ne N, I pc gn+3(B)A(A—fn4+1(B))>A)—A or

FIPC gn+3(BIA(Afn41(B))>A, or F1pC gn+3(AA((B—fn4+1(A))—B)—B or

F1PC 8n+3(A)A(B->fn41(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+3(@A((p—fn+1(@))—p)vp and q.

(b) The formula kn(p, q) is exactly provable for

(@n+3(PA(pefna(@)vpand q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—>A)—-B. Let us write p* for
(CA((p—D)-p))vp. Then p*>D is equivalent to (CA((p—>D)—-p)—->D)A(p—D) and
hence to p—D.

Therefore, (p*—>D)—p” is equivalent to (p—>D)—(CA((p—D)—p))vp and hence
implies (p—D)—p. Thus, CA((p*—D)—-p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—»D)—p)—p changing
the valuation of p to that of (CA((p—»>D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)—-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<->D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(p>D))vp. Then p*&D implies p—D as well as D—(Ca(p«->D))vp. The latter
implies D—p. So, CA(p*&D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K, 1,)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K}, )": gn+3(@A((p—fns1(@)—p)—p = hnlp,q),

for (K}, KJ.,9)": 8043 @A(pefns1(@)-p = knlp,q),

with some simpler degenerate cases for the lower numbers:

=g ((p—9)-p)-p, "gA(poq) =P, ~qa-p-3p, ~(-gA-p)-

Here gn(q) and fn(q) are such that, for any 1-variable T-model L, Lk gn(q) iff LXKp,
LEfn41(q) iff LXK or L<Kp41. The relevant properties of the gn(q) and fn(q) are:
Fpcint1(@ogn(q@)VEn+(qQ)

FIPC 8n+3(QHgn+2(q) >fn+1(q)) and hence F gn+3(q)Hgn+2(q) 8n(PVEn+1(q)-

3.1 Theorem. If for no ne N, 1pc gn+3(B)A((A—fn41(B))—>A)—>A or

FIPC 8n+3(BIA(Afn41(B)) oA, or F1pC gn+3(A)A((B—fn41(A))—B)—-B or

F1PC 8n+3(A)A(B&>fn41(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smorynski, 1973.)

3.2 Theorem. (a) The formula hn(p, q) is exactly provable for
(gn+3(@PA((p—fns1(q@)—p)vpand q.

(b) The formula kn(p, q) is exactly provable for

(gn+3(PA(porfnsi(@))vp and g.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—B)—>A)—B. Let us write p* for
(CA((p—>D)—p))vp. Then p*—D is equivalent to (CA((p—D)—-p)—>D)A(p—D) and
hence to p—D.

Therefore, (p*—>D)—p” is equivalent to (p—D)—(CA((p—>D)—p))vp and hence
implies (p—D)—p. Thus, CA((p*—D)-p”) implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—»D)—p)—p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—»D)-p))vp is
actually equivalent to p.

(b) We will show in general that CA(p<>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(pD))vp. Then p D implies p—D as well as D—(Ca(p-D))vp. The latter
implies D—p. So, CA(p*©D) implies p".



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K%, K_.)*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K3, 2" gn+3(@A((p—fns+1(9)—p)=p = halp,q),

for (K%, K2, )*: gnia(@A(perfns1(@)-p = knlp,q),

with some simpler degenerate cases for the lower numbers:

—“=qA((p—9)-p)-p, “qa(peq)-p, “qa~p-p, (=gA-p).

Here gn(q) and fa(q) are such that, for any 1-variable T-model L, Lk gn(q) iff L<Kp,
LEfn41(q) iff LXKp or L<Kp+1. The relevant properties of the gn(q) and fr(q) are:
Fprcfna1(@oga(@VEn+1(q)

FIPC 8n+3(q) X (gn+2(qQ) —fn+1(q)) and hence F gn4a(q)Hgn+2(q) 8@ VEns1(q).

3.1 Theorem. If for no ne N, +pc gn+3(B)A((A—fn41(B))—>A)—A or

FIPC gn+3(BIA(Afn41(B))—A, or +ipc gn+a(A)A(B—fn41(A))—B)—B or

F1PC gn+3(A)A(B->fn+1(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smoryfiski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hn(p, q) is exactly provable for
(gn+3(A((p—fn+1(q))—p))vp and q.

(b) The formula kn(p, q) is exactly provable for

(@n+3(@A(perfnsi(@))vpand q.

Proof. (a) Actually, we will show in general that CA((p—»D)—p)—p where Cand D
do not contain p is exactly provable with the substitution (CA((p—D)—-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—»B)—A)—B. Let us write p* for
(CA((p»D)->p))vp. Then p*—D is equivalent to (CA((p—D)—-p)—-D)A(p—D) and
hence to p—D.

Therefore, (p"—>D)—p” is equivalent to (p—D)—(CA((p—»>D)—-p))vp and hence
implies (p—»D)—p. Thus, CA((p’>D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—-p changing
the valuation of p to that of (CA((p—»D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—D)—p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&>D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p~>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(peoD))vp. Then p*©D implies p—D as well as D—(Ca(p-D))vp. The latter
implies D—p. So, CA(p*<>D) implies p*.



Correction to page 6.

The D-formulae given are incorrect. The following simply replaces all of pages 6
and 7 but the bibliography. To get a generalization of Theorem 1.1 it suffices to
ascribe D-formulae to the T-models (K})* and (K}, K )*. These could be found by
applying a general method (Jankov 1968, de Jongh 1970), but the following

formulae are nicer:

For (K1, 2" gn+3(@A(p—fns+1(q)—-p)-p = ha(p,q),

for (K3, K2, )*: gnsa@A(pofns(@)-p = kalp,q),

with some simpler degenerate cases for the lower numbers:

==qA(p—9q)-p)-p, "gA(p<9)-p, ~qAp-p, “(=gA-p).

Here gn(q) and fa(q) are such that, for any 1-variable T-model L, L gn(q) iff LXKp,
LE fn4+1(q) iff LXKqn or L<Kp+1. The relevant properties of the gn(q) and fr(q) are:
Fpcfna1(Q8n(@Vgna(q)

FIPC 8n+3(Q > (8n+2(qQ) ~fn+1(q)) and hence F gn3(q)Hgn+2(9—8n(@PVEn+1(Q).

3.1 Theorem. If for no ne N, F1pc gn+3(B)A((A—fn+1(B))—>A)—A or

FIPC gn+3(BIAN(Afn41(B)—>A, or +1pc gn+3(AIA(B—fn4+1(A))—>B)-B or

FIPC gn+3(A)A(Bofn41(A))—B, or one of the above degenerate cases is provable in
IPC for A, B, then A and B are independent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA by adjoining the standard
model N to the new root (see Smorynski, 1973). That Theorem 3.1 is in a sense
best possible can be demonstrated by showing that hn(p, q) and kn(p, q) are exactly
provable. (Again this then applies to HA as well, now by the uniform version of
the arithmetic completeness of IPC over HA, see Smoryfiski, 1973.)

3.2 Theorem. (a) The formula hu(p, q) is exactly provable for
(8n+3(@PA((p—fn+1(@)—p))vp and q.

(b) The formula kn(p, q) is exactly provable for

(@n+3(PA(pefnii(@))vp and q.

Proof. (a) Actually, we will show in general that CA((p—D)—p)—p where C and D
do not contain p is exactly provable with the substitution (CA((p—D)-p))vp for p
and the identity for the other variables.



We first show that the required formula is actually provable. We apply the
easily verified IPC-equivalence of A—B to ((A—>B)—A)—B. Let us write p* for
(CA((p—D)-p))vp. Then p*—D is equivalent to (CA((p—>D)—p)->D)A(p—D) and
hence to p—D.

Therefore, (p*—D)—p" is equivalent to (p—>D)—(CA((p—D)—p))vp and hence
implies (p—D)—»p. Thus, CA((p*—D)—p") implies p".

Next we have to show that no stronger formulae are provable. For that it is
sufficient to note that in any Kripke model validating CA((p—D)—p)—p changing
the valuation of p to that of (CA((p—D)—p))vp will leave all forcing relations as
they are. This is obvious, because in any such Kripke model (CA((p—D)—p))vp is
actually equivalent to p.

(b) We will show in general that CA(p&D)—p where C and D do not contain p is
exactly provable with the substitution (CA(p<>D))vp for p and the identity for the
other variables. Obviously, the second part of the proof is the same as in (a), so it is
sufficient to show that the relevant formula is provable. Let us write p* for
(CA(pD))vp. Then p*&D implies p—D as well as D—(Ca(p~>D))vp. The latter
implies D—p. So, CA(p*&D) implies p°.
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Abstract. A definition is given for formulae A, ..., A in some theory T which is
formalized in a propositional calculus S to be (in)dependent with respect to S. It
is shown that, for intuitionistic propositional logic IPC, dependency (with
respect to IPC itself) is decidable. This is an almost immediate consequence of
Pitts' uniform interpolation theorem for IPC. A reasonably simple infinite
sequence of IPC-formulae Fy(p, q) is given such that IPC-formulae A and B are

dependent if and only if at least one of the F(A, B) is provable.

1. Introduction. We denote the intuitionistic propositional calculus by IPC. Let us
call formulae Ay, ..., Ay of some intuitionistic theory T IPC-dependent over T, or
dependent over T for short, if, for some IPC-formula F(py, ..., pn), FTF(A4, ..., Ap),
but ¥1pc F(py, ..., pn)- Otherwise Ay, ..., Aj are called independent. In de Jongh (1982)
the behavior of formulae of one propositional variable in intuitionistic arithmetic
HA was discussed. The main result of that paper was that for arithmetic sentences
A, if ¥ goA7™7A—A and ¥ goT A, then A is independent over HA with respect to
IPC. This result was generalized to formulae. We did not mention the fact that the
result applies to the propositional calculus itself as well.

1.1 Theorem. If ¥pc ""A—A and ¥1pc ™A, then A is independent over IPC.

In fact, the proof in §2 of the article mentioned above applies immediately to
this case. Naturally, for IPC there is no immediate reason to look for a more
constructive proof, as we did for HA in the major part of that paper. A fortiori of
course, the result implies that dependency is decidable for the one variable case: it
can be checked whether an arbitrary formula A is dependent by checking whether
77A—A or 77A is provable. We call theorem 1.1 a minimal provability result: if
anything non-trivial propositional is provable about A, "7A—A or 77A is. The
result leads to a characterization of the monadic propositional functions F for
which there exist A such that exactly + F(A). This result holds for HA as well as for
IPC. To remind the reader of the definition for n propositional variables:

1.2 Definition.
Exactly +F(Ay,...,Ayn) iff FF(A4, ..., Ay) and, for all propositional G, + G(Ay, ..., Ap)
=+ F(py, ..., pn—Gpy, -, Po)-

This leads to the following classification of formulas of one propositional variable
in HA as well as in IPC.



1.3 Theorem. To each formula exactly one of the following cases applies (non-
constructively, of course, in the case of HA),

€)) exactly - A

(II)  exactly - "A

(III)  exactly - A

(IV)  exactly F 77A—A

(V)  exactly - A—>A (A is independent)

Examples exhibiting the five cases in IPC are respectively, (I) p—p, (I) pA™p, (III)
7 p-p, AV) 7p, (V) p.

In this note we will show that for n variables the decidability of dependency is a
consequence of Pitts' uniform interpolation theorem (Pitts, 1992). Moreover, we
will give an analogue for two propositional‘variables of theorem 1.1. A general
analogue for theorem 1.3 seems much harder (see de Jongh-Visser, 1993, however,
for some results). We will not go into that here except for remarking that in the
case of arithmetic there are easy analogues of theorem 1.3 for restricted cases, e.g. if
one restricts oneself to I1J-sentences. In the monadic case we have for H(l’-sentences
A, exactly + A or exactly - 7A, or exactly + "7A—A (i.e., in particular, an l'[(;-
sentence is never an independent one). In the binary case, if not - A, - 7A, - B or
+ 7B, then exactly
F (MMA—SA)A(TTB—B) or
F (A—>B)A(TTA—-A)A(TTB—B) or
F (B=>AA(TTA—-A)A(TB-B) or
F (A<B)A(TTA—A)A(T7B—B). The only non-trivial relationship between 1'[24
sentences is apparently the one of implication, as it is in classical arithmetic. We
thank Albert Visser for many discussions on the subject.

2. Decidability of dependency over IPC. Pitts (1992) proved, among other things,
that, for any IPC-formula A(P,T), there is a formula 37 A(P,T) such that, for any
formula B(P), AP, D)FpcB(P) & 3IT AP, P)Fpe BP)-

Consider the formulae Aj, ..., Ay in the variables ¥. From Pitts' Theorem it
follows that

F (A1opDA- AAREPn)—B(P) & F 3T (A1pDA...A(Anepn)—-B(P).

On the other hand, + BA) & ~ (A1PDA. . A(Ane>pn)—B(P). Hence

N ((A1=pDA...A(Ape>pn)) axiomatizes the propositional theory of Ay, ..., Ax. In
consequence, Ay, ..., Apis independent < + a7 ((A1pDA...A(Ap>pn)), and the
latter is decidable.



One may be of the opininion that A and B would more properly be defined to
be dependent if, for some F, - F(A, B) and, for no G, H such that - G(A) and + H(B),

G(p), H(q)F F(p, @). With this alternative definition e.g. -p and q would be in-
dependent, while under definition 1.2 they are dependent, since =—-p is provable.
(V. Shavrukov suggested this alternative to us.) It will be clear that decidability
follows from the above proof for the alternative definition just as well. It seems to
us that both definitions describe relevant concepts.

It is clear, of course, that, for any propositional logic S for which a uniform
interpolation theorem holds, dependency is decidable for the logic itself. In fact
the uniform interpolation theorem has been proved for the provability logic L by
Shavrukov (1993), completely independently of the result by Pitts and by a
completely different proof. Hence, dependency is decidable for L. Unfortunately,
for most modal logics not even a standard interpolation theorem holds (see e.g.
Maksimova, 1982), so, for many logics a completely different method will have to
be found if one wants to study the problem.

3. A minimal provability result for two variables. We first recall some facts about
Kripke models for intuitionistic propositional logic.
(i) For each A of IPC, if ¥ 1pc A, there is a finite tree-ordered Kripke model
K=<W, <, I > such that K¥ A. (There is no essential reason to restrict oneself to
tree-ordered Kripke models, but these are more easily described.)
(i) We write wT for {w'e WIw<w'}. The model K restricted to wT is called a
generated submodel of K.
(iii) A p-morphism from a Kripke model K=<W, <, I > to a Kripke model
K'=<W',<', I > is a surjection ¢: W—W' such that:

(@) w=w' = d(w)<'d(w')

(b) 6(W)<'o(w') = Iw"2w'(H(W")=d(w))

(c) for all we W and all propositional variables p, ¢(w)IFp < wi-p
It is easily shown then that (c) applies to all formulas.
(iv) A finite tree-ordered Kripke model is called irreducible if all its p-morhic
images to tree-ordered Kripke models are isomorphic. We will call such a model
here T-model for short.
(v) (Jankov 1968, de Jongh 1970) For each T-model K there are formulas Ck and
Dx such that

(@) KeCk, K¥Dk

(b) For each T-model L such that Lk Cx, L is isomorphic to a generated submodel
of K (LxK).

(c) For each T-model L such that L¥Dyg, K<L.



(vi) If we consider a Kripke model for the language consisting of the two
propositional variables p and q, the values of p and q at the root of a model K are
respectively i and j and the generated submodels corresponding to the immediate
successors of the root are Ly,..., Ly, then we denote K by

va\\ //’Lh

ij
Each T-model with a domain of more than one element has such a form with

Ly,..., Ly irreducible and none of the L;j isomorphic to a generated submodel of any
of the others. In case n=1, the root of L1 has a forcing relation distinct from ij. All
finite T-models can be obtained from the four irreducible p-g-models with one-
element domains: 00, 11, 10, 11 by repeatedly adjoining roots with proper

valuations to finite sets of <-incomparable T-models already obtained.

Let us now suppose that we have that ¥ Dx(Aj, Ay). Then in a sense, the model
K is "available" for Aj, Aj, because any counter-model to Dx(Aj, Az) (and such a
model has to exist) has to contain K in its valuations for Aj, A;. Any counter-
examples to formulas which can be given on K or its generated submodels then
give rise to underivable formulas as well.

If we have a finite set of D's which are not derivable for Aj, A,, then we may
also construct models by taking the set of the L's and adjoining a root below them.
If it happens to be the case that the forcing on the root is automatically 00, then the
model thus obtained is a model that gives rise to underivable formulas in its turn.
This is so, if among the old roots at least one value 00 occurs or if both 10 and 01
occur. More exactly, if such a case applies and the model K arises in the
construction from the models Ly, ...,L, and DLl(Al,Az), .ee, DLn(A1,A2), are not
derivable in IPC, then neither is Dx(A1, Ap). In this case we will denote the newly
obtained model by (Ly, ...,Ly)" and say that (Ly, ..., Ly)* has been obtained by rooting
fromLy, ..., Ly

Let us recall the one-variable case.

Ko=1 K;=0

&
I
Q=



And, in general for any n=0, Kp43=

Kn,;\ / K,

0

This means that all K, can be constructed from X={Ky, K1, K>} by the second
method of rooting models. Also, K1 is a generated submodel of K;. The proof of
theorem 1.1 is then actually contained in the above sketch, but then applied to the
1-variable case. |

In the 2-variable case a set X of Kripke-models which is sufficient for the
construction of all models is the set of all T-models with 00 only occurring at the
root. All T-models with 00 occurring at the root can be obtained from X by
repeatedly rooting models, and all other T-models are generated submodels of
models in this set. '

A simpler such set, however, is the following set X':
Let us denote by K}, Ky, preceded by 1 everywhere, i.e. Kn with 0 replaced by 10 and
1 by 11. Similarly K2 will denote Ky, followed by 1 everywhere, i.e. Ky with 0
replaced by 01 and 1 by 11.

i 1 i

K K K
Now take X= {Tnl ne,i=1,2 }U { n\ b 4 IT;GIN, i=1,2}
00 00 €

To show that this set suffices it is sufficient to generate the original set X from X"

by taking generated submodels and rooting them. Take an arbitary member

H‘\\Jj// L.

In general, any T-model with a root 11, 10 or 01 is a Ki. If among the L;j no root 01

of X. If a root of one of the Lj is 11, then that Li=K(1)=K%.

occurs, then all the Li's are K1's and we actually have one of the cases (K1)* or
(I<111’ Kn1+1)+, similarly, if no root 10 occurs. If both 01 and 10 occur on the roots of
the L;, then ij=00 is forced and the model is obtained by rooting the L;, and the L;
themselves are generated submodels of models (K})* and (K}, K} )"



Now to get a generalization of Theorem 1.1 it suffices to ascribe D-formulae to
the T-models (K})* and (K}, K % )*. These could be found by applying a general
method (Jankov 1968, de Jongh 1970), but the following formulae are nicer:
for (KD*: gnia(PAl(p—fns2(@)—p)—p = halp,q)
for (K%, K 2 )*: gnia(@A(p—8n+1(D)—=P)AIP—gn+2()—>P)—p = knlp,q)-

3.1 Theorem. If for no ne N, +1pc gn+2(B)IA((A—fn42(B))—>A)—A or
F1PC 8n+3(BIA(A>gn+1(B)) > AIA((A—gn+2(B))—A)—A, then A and B are indepen-
dent over IPC.

It is to be noted that just as Theorem 1.1 this theorem immediately applies to HA,
since rooting the models is applicable in the case of HA as well by adjoining the
standard model N to the new root (see Smorynski, 1973). That this theorem is in a
sense best possible can be demonstrated by showing that hy(p, q) and kn(p, q) are
exactly provable. (Again this then applies to HA as well, now by the uniform
version of the arithmetic completeness of IPC over HA, see Smorynski, 1973.)

3.2 Theorem. (a) The formula hy(p, q) is exactly provable for
(gn+2(PA((p—fn+2(q))—p))vp and q.

(b) The formula kn(p, q) is exactly provable for
(gn+3(PA(P—=8n+1()—-P)Al(p—gn+2(q)—p)vp and q.

Proof. Actually, we will show in general that

(i) CA((p—»D)—p)—p where C and D do not contain p is exactly provable with the
substitution (CA((p—D)—p))vp for p and the identity for the other variables,

(ii) CA((p—D)—p)A((p—E)—>p)—>p where C,D and E do not contain p is exactly
provable with the substitution (CA((p—D)—p)A((p—E)—p))vp for p and the iden-
tity for the other variables.

Of course, it suffices to prove (ii). We first show that the required formulae are
actually provable. We apply the easily verified IPC-equivalence of A—B to
((A—B)—A)—B. Let us write p* for (CA((p—D)—p)A((p—E)—p)vp.

p —D is equivalent to (CA((p—~E)—p)—(p—D))A(p—D) and hence to p—D.
(p"—D)—p” is equivalent to

(p—D)—={(CA((p—D)—p)A(p—E)—p))vp) and hence implies (p—D)—p.

Similarly (p*—E)—p” implies (p—E)—p. That

CA((p"™>D)—p)A((p*—E)—p") implies p" is now trivial.

Next we have to show that no stronger formulae are provable. For that it is

sufficient to note that in any Kripke model validating



CA((p—>D)—-pIA((p—E)—p)—p changing the valuation of p to that of
(CA((p—D)—»p)A((p—E)—p))vp will leave all forcing relations as they are. This is
obvious, because in any such Kripke model (CA((p—D)—p)A((p—E)—p))vp is

actually equivalent to p.
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