L=

Institute for Logic, Language and Computation

THE RELATIONAL KNOWLEDGE-BASE INTERPRETATION AND
FEASIBLE THEOREM PROVING FOR INTUITIONISTIC

PROPOSITIONAL LOGIC

Max 1. Kanovich

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-93-21

&3
&3
&3

University of Amsterdam

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

l ‘E Institute for Logic, Language and Computation

THE RELATIONAL KNOWLEDGE-BASE INTERPRETATION AND
FEASIBLE THEOREM PROVING FOR INTUITIONISTIC
PROPOSITIONAL LOGIC

Max 1. Kanovich

Russian Humanities State University
Moscow, Russia

ILLC Prepublications Research partly Supported by the
for Mathematical Logic and Foundations Netherlands Organization for Scientific Research (NWO)
ISSN 0928-3315

Coordinating editor: Dick de Jongh received December 1993

The Relational Knowledge-Base Interpretation
and
Feasible Theorem Proving
for
Intuitionistic Propositional Logic

Max 1. Kanovich
Russian Humanities State University, Moscow, Russia

December 15, 1993

Abstract
The decision problem for Intuitionistic Propositional Logic is
considered:

(i) A computational semantics is introduced for relational knowledge
bases. Our semantics naturally arises from practical experience
of databases and knowledge bases.

It is stated that the corresponding logic coincides exactly with
the intuitionistic one.

(ii) Our methods of proof of the general theorems turn out to be very
useful for designing new efficient algorithms.
In particular, on the basis of a specific Calculus of Tasks
related to this computational interpretation, an efficient prove-
or-disprove algorithm is designed with the following properties:

e For an arbitrary intuitionistic propositional formula, the al-
gorithm runs in linear deterministic space,

e For every reasonable formula, the algorithm runs in rea-
sonable time, despite of the fact that in theory it has an
’exponential’ uniform lower bound.

Note that in view of the PSPACE-completeness of Intuitionis-
tic Propositional Logic an exponential execution time can be
expected in the worst case. But such cases only arise for very
unnatural formulas, i.e., for formulas that even in their best so-
lutions need maximal cross-linking of all their possible subtasks.

Contents
1 Introduction 3
2 What we used to have before 3
2.1 Intuitionistic Propositional Logic as a Logic of Tasks . . 3
2.2 Upper and Lower Bounds for Complexity of Intuitionistic
Propositional Logic 4
3 What we have got now 4
3.1 The precise computational interpretation 4
3.2 Efficient decision algorithms, 5
4 How we got it 5
4.1 From Formulasto Tasks 6
4.2 A formula as a Knowledge base 7
4.3 The formal definition of a Knowledge base 7
4.4 A basic formula as a constraint, or a dependency 9
4.5 What does it mean ’'TO BE FALSE’ 7 10
5 What does it mean ’BEING SOLVABLE’ 7 10
5.1 Relational databases 10
5.2 Four possible versions for ’BEING SOLVABLE’ 11
6 The Calculus of Tasks 16
6.1 The language of the Calculus of Tasks 16
6.2 Axioms for the Calculus of Tasks 17
6.3 Inference Rules for the Calculus of Tasks 17
6.4 Completeness of the Calculus of Tasks 18
6.5 The programmer’s interpretation of the Calculus of Tasks 30
6.6 The Calculus of Tasks is an information preserving calculus . 31
6.7 Kripke models vs. Computational databases 31
7 Complexity of Intuitionistic Propositional Logic 35
7.1 The Algorithm of Analysis and Synthesis 35
7.2 Space Complexity of Intuitionistic Logic 35
7.3 Subtasks and Measure of Unnaturalness 36
7.4 Non-uniform upper bound for Time Complexity 37

7.5 Subtask Interaction vs. Embedding of Subtasks 38

8 Finite vs. Infinite Knowledge Bases 39

9 Conclusion 39

1 Introduction

In this paper we present the detailed proof for the following results on the
complexity and semantics of Intuitionistic Propositional Logic that
have been obtained in [Kanovich87], and delivered also in [Kanovich90,
Kanovich91]:

(1) Intuitionistic Propositional Logic is complete with respect to a
knowledge-base semantics.

(2) Intuitionistic Propositional Logic is recognizable in linear deter-
ministic space.

(3) Intuitionistic Propositional Logic is recognizable in quasi-polynomial
time: the degree of the polynomial is determined by the degree of nat-
urality of formulas under consideration.

2 What we used to have before

Let us observe some problems that have arisen in relation with Intuition-
istic Propositional Logic .

2.1 Intuitionistic Propositional Logic as a Logic of Tasks

Starting with A.Kolmogorov and A.Heyting there were many attempts
to interpret Intuitionistic Propositional Logic as a logic of tasks. S.Kleene
and Ju.Medvedev were probably the first who proposed an explicit for-
malization for Intuitionistic Propositional Logic . Unfortunately, all
known natural formalizations have led to logics that are essentially stronger
than Intuitionistic Propositional Logic . Moreover, for many of them,
e.g. for the propositional logic of Kleene’s realizability, nobody knows
whether these logics are decidable or not.

When I started this study in relation with the problem of so-called pro-
gram synthesis, I (like the most mathematical logicians) was convinced that

the corresponding logic would be stronger than Intuitionistic Proposi-
tional Logic and, probably, undecidable.! It should be noted that most
troubles are originating from implication and disjunction.

2.2 Upper and Lower Bounds for Complexity of Intuitionis-
tic Propositional Logic

’Exponential time.’ It is well-known that Intuitionistic Proposi-
tional Logic is PSPACE-complete [Statman79]. Moreover, we have
a uniform ’exponential’ lower bound, i.e., almost all formulas
may require exponential time to be recognized.

Space of the 4th degree. It follows from results of [Ladner77] that
Intuitionistic Propositional Logic can be solved in space

o(L*),
where L is the size of a formula.

As for the decision complexity, most troubles are originating also from
implication and, especially, disjunction.

3 What we have got now

Let us present our results related to Intuitionistic Propositional Logic

3.1 The precise computational interpretation

In contrast to what I had expected, I failed to construct a ’computational
task’ that requires super-intuitionistic rules.

Moreover, to my surprise, I have been able to prove that Intuitionistic
Propositional Logic is complete under a computational interpretation
related to relational databases.

Justifying this statement, a specific Calculus of Tasks has been in-
vented along with the corresponding Completeness Theorem.

!See comments of G.Mints [Mints83] with respect to the system of automatical program
synthesis PRIZ.

3.2 Efficient decision algorithms

As a matter of fact, just the same Completeness Theorem yields very prac-
tical consequences for running time and space:

Linear deterministic space. = We can recognize Intuitionistic Propo-
sitional Logic in linear deterministic space

o(L).

It should be pointed out that such a space is sufficient for the full set
of intuitionistic connectives.

Quasipolynomial time. = We have established a non-uniform upper
bound for running time:

For a given propositional formula f, we can recognize whether it be-
longs to Intuitionistic Propositional Logic or not, in running time,

approximately,
L’I‘+ 1

where r is the measure of 'unnaturalness’ of formula f:
even in its best solutions f needs cross-linking of, at least, r 'subtasks’.

4 How we got it
Now, I am going to present the main ideas that were used:

e A formula is considered as an entity, or quantity. The domain of
such an entity may be infinite.

e An entity that represents an implication may be considered as an en-
tity of ’functional’ type, a possible value of such a ’functional entity’
should be a program.

e Possible values of all the entities are collected into a database, rela-
tions between the entities are perceived as constraints, or depen-
dencies, for it.

e Justifying a formula means that the corresponding dependency is
satisfied on all ’admissible’ databases.

The following notational conventions are followed throughout this paper:

(I) By letters A, B,C, F, and G
(possibly indexed)
we denote positive literals, or names of ’entities’.

(II) By letters U, V,W, X,Y,and Z
(possibly indexed)
we will denote conjunctions of a number of positive literals.

(III) The ’empty’ conjunction is denoted by Q.

4.1 From Formulas to Tasks

Each propositional formula can easily be rewritten in the following form:
r+2z,

where I' is a multiset consisting of formulas of one of the following three
basic forms:

(a) (X—=Y),
(b) (U—-V)-Y),
() X—->MVYs)) .
Such a Task Sequent I' - Z is perceived as a computational task:

Task: Given all laws and dependencies from I', compute Z.

Example 4.1
Introducing new names F' and G, the propositional formula

fo: ((A&B = C) —» (A — (B — (C)))
can be represented by the following task sequent
Ty -G
where I'y consists of five formulas:

(B—-C)— F),(F&B - C),((A— F) > G),(G&A — F),(A&B — C).

Here

(I1)

The following couple of formulas
(B—=C)—F), (F&B —C)
indicates that F' is the 'name’ of the implication
(B — C).
This couple of formulas
(A= F)—>G), (G&EA— F)

indicates that G is the 'name’ of the implication

(A— F).

4.2 A formula as a Knowledge base

The left side I of a Task Sequent I' - Z contains all informations that can
be used for computing Z and, hence, represents, so to say, a knowledge
base, i.e. the collection of all laws and dependencies related to our problem.

4.3 The formal definition of a Knowledge base

Now, we give a formal definition of a relational knowledge base:

Definition 4.1 A relational knowledge base is a tuple

KB = (Names, Functs, Doms, Deps)

where

(1)

Names = (A1, A, Az, ..., An, ...)

is a recursively enumerable sequence of literals or, in other words,
names of “entities” (or “attributes”).

The set Names is divided into two parts: some entities are declared
as “functional entities”.

Functs is a recursively enumerable set of names of all “functional
entities” together with their finite types:

Definition 4.2 The type of a functional entity F is an expres-
sion of the form

(U—=V).2

(3) Doms is a recursively enumerable sequence of domains of entities from
Names:
the domain of entity A is denoted by Dom(A). 3

For a given X,
Dom(X) is the Cartesian product of domains of all entities from X.

The crucial point of the definition is that, for functional entities,
we require that in order to specify some concrete value of a functional
entity it is not sufficient to give its set-theoretical description; instead,
it is necessary to present a program calculating this function.

Therefore, the domain of a functional entity F' of the type (U — V)
is defined to be the set of all programs mapping Dom(U) into
Dom(V).

(4) Deps is a recursively enumerable set of laws, constraints, dependencies
etc. connected with our problem area.

In this paper Deps consisits of functional, operator and variant depen-
dencies (described below in Section 4.4).,

Example 4.2 (continuing Ezample 4.1)
With I'y we can associate the following knowledge base

KBy = (Namesog, Functsg, Domsg, Depsy)
where
e Namesy = (A,B,C,F,G)
e Functsg consists of two functional entities:

(1) F of the type (B — C) , and
(2) G of the type (A > F) .

?Both U and V must be non-empty. U is called the input-of-functional.
®An empty entity B such that Dom(B) is empty may be considered.

e Depsy is the singleton:
(A&B — C)

With a given knowledge base K B we can associate the multiset of basic
formulas Azioms(K B) as follows:

Definition 4.3 A functional entity F of the type (U — V') is represented
by the set Aziomp consisting of the following two formulas:

(U—=V)—=F), (F&U —-V).
Definition 4.4 By Azioms(KB) we denote union of
(1) the set Deps from KB and

(2) union of the sets Aziomp, for all functional entities F' from K B.

Example 4.3 (continuing Ezample 4.2)
For this K By, we have

Azioms(K By) = Iy.

4.4 A basic formula as a constraint, or a dependency

Each basic formula is considered as a representation of some constraint:

(a) An implication

(X —=Y)

should be perceived as the functional dependency:

“There is a computable function (a functional of higher
type) from Dom(X) into Dom(Y)”. *

(b) An embedded implication
((U->V)->Y)
is treated as the operator dependency
(F—Y)

where F is a functional entity of type (U — V) .

1t should be noted that names of functional entities may be contained in X and Y.

10

(c) An implication along with disjunction
(X = (Y1VY2))
should be taken as the variant dependency:

“For some values of X, the values of Y; can be calculated,

and,
for the rest of the values of X, the values of Y5 can be com-
puted”. 5

4.5 What does it mean ’TO BE FALSE’ ?

We may use an entity B such that Dom(B) is empty, to represent falsity.
Following this idea, negation of U is represented with the help of a
functional entity of the type
(U - B)

where Dom(B) is empty.

5 What does it mean ’BEING SOLVABLE’ ?

5.1 Relational databases

As models for a knowledge base we consider relational databases:
First, define the notion of a “possible state”. We assume that there is a
symbol UNDEF that represents undefinedness.

Definition 5.1
e A recursively enumerable sequence
s= (a1, az, @z, ..., Gn, ...)

where for every n, a, is from Dom(A,,) or is undefined (equals UNDEF),
is called the state of an object.

e Every a, is denoted also by A,(s) and is treated as
“the value of the entity A, in the state s”.

Y; and Y; are called alternatives.

11

o For X = B1&Bs& - - - &B,,,, we will write
X(s) = (B1(s), B2(s), ..., Bm(s)),
if some Bj(s) ts equal to UNDEF we shall take X (s) to be undefined:

X (s) = UNDEF .

Definition 5.2
An arbitrary recursively enumerable set of states is called (an instance

of) a database.

Example 5.1 (continuing Ezample 4.3)
We may consider the following database T' from Table 1.

|A|B[c|[F|G] [A[B|C|F]|G]
1112 p2|q 111]2|p2|¢q
1123 |p3|gs 112|3]|p3|gs
21113 |p3s|gs

(a) (b)
where py and p3 are programs mapping any input
into 2 and 3, respectively,

g2 and g3 are programs mapping any input
into ps and ps, respectively.

Table 1: (a) Database T'. (b) Database T/ 4=1.

5.2 Four possible versions for 'BEING SOLVABLE’

We are interested in instances of databases that are consistent with all
the laws from a given relational knowledge base.
In our definitions we adhere the following

Principle of conservation: @ WHEN THE VALUES OF ENTITIES ARE KEPT
FIXED, ALL THE LAWS MUST BE PRESERVED.

For functional and variant dependencies, this principle holds auto-

matically.

12

As for the operator dependency
(U—-V)-Y),

it can be elaborated as follows:®

For a given database T, when we fix values for the entities from
W, say by setting:
W =w,

we thus truncate our database:

Definition 5.3 Henceforth, by T/w=, we will denote this
truncated database, i.e. the set of all states s from 7" such that

W(s) = w.

Suppose that on the new truncated database the dependency
between U and V becomes functional and there is a program p
such that

V =p(U)

on T/w—y.

According to the operator dependency ((U —» V) —Y) , hav-
ing such a program p, we can compute Y, and, in other words,
the functional dependency (@ — Y) should be satisfied on

T/w=w-

Definition 5.4
For basic dependencies:

(a) We say that a functional dependency
(X =Y)

is satisfied on an instance T if there exists a program g mapping
Dom(X) into Dom(Y) such that, for every state s from T, if X(s)
is defined then Y (s) is defined and

Y (s) = g(X(s))-

Scf. also Corollary 5.1

13

(b) An operator dependency
(U—-V)->Y)

is satisfied on an instance T if, for arbitrary W and a tuple w from
Dom(W), if the functional dependency (U — V) is satisfied on the
truncated database T'/w—, then the functional dependency (@ — Y)
is satisfied on T/w—y. *

(c) A variant dependency
(X = (1 VY?))

is said to be satisfied on an instance T if there exists a program g¢
mapping Dom(X) into the set {1,2}, a program g; mapping Dom(X)
into Dom(Y7), and a program g mapping Dom(X) into Dom(Y>)
such that, for every state s from T, if X (s) is defined then

1. if ¢(X(s)) =1 then Yi(s) is defined and Y7(s) = g1(X (s)),
2. if ¢(X(s)) = 2 then Y3(s) is defined and Y3(s) = g2(X(s)).

(d) We say that an instance T is in full accordance with a functional
entity F of the type (U —» V) if

(I) for every state s from T, if both U(s) and F(s) are defined then
V(s) is defined and®

V(s) = F(s)(U(s)),

(IT) the operator dependency ((U — V') — F) is satisfied on T.

"If we want to ignore this principle of conservation and change this item by
requiring that W instead of being arbitrary be empty , namely,
if we replace this item with the following item:

(b’) For an operator dependency
(U=V)=>Y),

we say that it is satisfied on an instance T in the following case:
if the functional dependency (U — V) is satisfied on T then the functional depen-
dency (@ — V) is also satisfied on T.

then we get a characterization related to modal logics S4 and S5. See also Example 5.2.
8Let us recall that F(s) is a program of the type (U — V)

14

Corollary 5.1 Let a database T be in full accordance with a functional
entity F' of the type (U — V) .
For a given W, let
(W&U = V)

be satisfied on a database T.
Then the functional dependency

(W = F)
is satisfied on the whole T. °

Proof. Let g be a program computing V' from the conjunction W&U on
the whole database T'.

For a given w, on the following truncated database T'/w=,, the depen-
dency between U and V becomes functional, moreover, one can extract a

program p from g such that
vV =pU)

on T'/w=w.
According to Definition 5.4, the dependency (@ — F') is satisfied on
T/w=w, and, having such a program p, we can construct implementation of

FonT/w=y.
Hence, for each w, the value of F' is computed, and the dependency
(W — F) is satisfied on the whole T. |

Definition 5.5 An instance T is called consistent with a knowledge
base KB if

(1) all the dependencies from KB are satisfied on T,

(2) T isin full accordance with every functional entity F' from K B.

Definition 5.6 (Solvability) For a given class of instances K, we say
that a task sequent Azioms(KB) F Z is K-solvable if, for every instance T
from K, if T is consistent with K B, then the functional dependency (@ — Z)

is satisfied on T'.

May be it will be reasonable to insert some example here.

°Tt should be noted that this item is directly correlated with Kleene’s s-m-n
theorem [Rogers67].

15

Example 5.2 (continuing Ezample 5.1)
It seems that the database T from Example 5.1 rejects our valid
formula fy from Example 4.1 because

(1) the dependency (A& B — C) is satisfied on T,
(2) T is in accordance with both functional entities F' and G, but
(3) the dependency (@ — G) is not satisfied on 7.

The point is that there is no full accordance between T and F
because the principle of conservation is violated.
E.g., if we truncate T by setting:

A=1,

then, on the truncated database T'/4—; from Table 1 the relation between
B and C becomes functional and, hence, (@ — F) should be satisfied on
T/ a=1, which is a contradiction.

Theorem 5.1 (Robustness and Completeness) .
Let KB be a finite knowledge base.1®
For every A , let Dom(A) be infinite or empty.!!
Let K be

(a) either the class of all databases, or
(b) the class of all finite databases.

Then, for a given task sequent Azioms(KB) - Z the following sentences
are equivalent pairwise:

(i) Azioms(KB) - Z 1is K-solvable,

(i1) on replacing all computable functions with the corresponding set-theoretical
functions in the definitions related to the concept of consistent databases,
the task Azioms(KB) + Z 1is K-solvable in this new sense,

(i4i) one can construct a program for the task Azioms(KB) \ Z

10Theorem 5.1 is valid for all finite knowledge bases. As for infinite knowledge bases cf.
section 8
1 This hypothesis is essentiall

16

(iv) Axioms(KB) - Z can be derived in the Calculus of Tasks (de-
scribed below).

Proof. It follows from Theorem 6.1 and Theorem 6.2.]

Theorem 5.1 shows that all reasonable definitions are equivalent and
demonstrates that our definition of solvable tasks is very robust and does
not depend on the particular choice of a level of constructivity.

Corollary 5.2 Under the hypotheses of Theorem 5.1, a sequent
Azioms(KB), (0> X))+ 2

ts derivable in the Calculus of Tasks if and only if for every database T'
(from K) that is consistent with KB (saying nothing about (@ — X)),
the functional dependency

(X = 2)

1s satisfied on T'.

6 The Calculus of Tasks

All theorems are based on the Calculus of Tasks that operates with task
sequents.

6.1 The language of the Calculus of Tasks

Let us recall that a task sequent is of the form
r-2z,

where T' is a multiset consisting of formulas of one of the following three
basic forms:

(a) X-Y),
(b) (U—=V)=Y),

(c) X—->MNVYr)) .

17

6.2 Axioms for the Calculus of Tasks

Definition 6.1 For a multiset of formulas I', by Out(T") we denote the set
of all B such that the formula

(@ - B)
is contained in T'.

Definition 6.2 A sequent
r+-2z

is called an axiom if either
(a) Z is contained in Out(I'), or

(b) for some B such that Dom(B) is empty, B is contained in Out(T").

6.3 Inference Rules for the Calculus of Tasks

Let us give the inference rules for the Calculus of Tasks :
rh{@—-Y),{(d—-B)+-2Z

Conjunction: NCESE TN
Composition;: I X=Y), @=B)FZ
P Y T, (X&B—Y), (@5 B)FZ
iti I X-oMVvY,), (@—>B)+FZ
C t :
omposition; Iy (X&B— (\1VYq)), (@ —>B) -2
[, @-U)FV T, @-Y)FZ
Sub :
ubprogram TSV oY) FZ
Branching: I @-Y)+-Z T, (@-Y)F2Z

T, (@ — (Y1 VY2)) +Z

Definition 6.3 A derivation in the Calculus of Tasks is a finite
sequence of task sequents such that each member of it is either an axiom
sequent or the result of application of one of the inference rules to preceding
sequents.

18

6.4 Completeness of the Calculus of Tasks

Theorem 6.1 (Soundness) For a given knowledge base KB 2,

if a task sequent
Azioms(KB) - Z

ts dertvable in the Calculus of Tasks
then this task sequent is solvable in all senses of Theorem 5.1.

Proof. Follows from that all rules of the Calculus of Tasks are correct
with respect to each of our semantics. [|

Theorem 6.2 (Completeness) Let KB be a finite knowledge base and,
for each entity A, let Dom(A) be either infinite or empty.'3

If a task sequent
Azioms(KB) v Zy

s not deriwvable in the Calculus of Tasks , then we can construct a finite
database T such that

o T 1s consistent with KB, but

e (J— Zy) 1is not satisfied on T.
Proof. We construct a refutable database in two steps:
(I) First, we make up a Kripke-like skeleton.

(II) Then, we build up the flesh of computational details on it.

Step 1: From the sequent to a Kripke-like skeleton

Definition 6.4 We say that a sequent S is reduced to a sequent S;
if either

(Inverting the Conjunction rule) S is of the form
T, (> Y&B) F Z,
and S is of the form

Iy @-Y), (@—-B)+-2Z,

or

2 K B may be infinite
13See remarks in Section 6.7

19

(Inverting the Composition; rule) S is of the form
I, (X&B—-Y), @—=>B)+2Z,
and S; is of the form
I (X-Y), ©@—-B)FZ,

or

(Inverting the Composition; rule) S is of the form
I', (X&B - (1VY2)), @—B) -2,
and S7 is of the form
I X-M1VYy)), (@—-B) -2,

or

(Partial inverting the Subprogram rule) S is of the form
I (U=V)-Y)FZ,
and S; is of the form
Iy @-Y)FZ,

and the sequent
r @-U)+rV

is derivable in the Calculus of Tasks .

Definition 6.5 A sequent S is said to be a reduction limit of a se-
quent S if

(a) S can be transformed into S; by means of a finite sequence of reduc-
tions, and

(b) S; cannot be reduced to any sequent.

Lemma 6.1 Let a sequent
L +HZ

be a reduction limit of a sequent

'-2Z.
Then

20

(a) Out(T) C Out(Ty).

(b) If Ty FZ is derivable in the Calculus of Tasks then ' F Z s
also derivable in the Calculus of Tasks .

Definition 6.6 Now we construct a tree of limit sequents as follows:
e The root is claimed to be a reduction limit of the sequent

Azioms(KB) + Z .

e For every vertex v of the form
L, (UT-V)>Y)FZ,

we construct a new son vy of v such that v1 is a reduction limit of the
sequent

L,(@-U)FV.
e For every vertex v of the form
I @—=>MM1VY) -2,
we

(1) select a non-derivable sequent S from the following two se-
quents:

T, (@Y F2Z

and

I, @-Y)+2Z,

(2) then, construct a new son v; of v such that v; is a reduction limit

of S.
Lemma 6.2 (A) Such a tree is to be finite, and

(B) Each vertez of it is not deri»2ble in the Calculus of Tasks .
Proof. It follows from Lemma 6.1.]

Definition 6.7 For a vertex v of the form
r+2z,
the set Out(T') will be also denoted by Out(v).

21

Lemma 6.3 Let vy be a descendant of v. Then
Out(v) C Out(vy).
Proof. It follows from Lemma 6.1. |

Lemma 6.4 For every formula (X —»Y) from Azioms(KB) ,
if X C Out(v) then Y C Out(v). 1

Proof. We use that v is a reduction limit. [|
Lemma 6.5 Let v be of the form
r+-2;.

For every formula (X — (Y1 VY2)) from Azioms(KB) ,
if X C Out(v) then one can find a descendant vy of v such that

(a) vy is of the form
-2,

(b) either Yy or Y3 is contained in Out(vy).

Proof. Suppose that neither Y7 nor Y; are contained in Out(v).

Then a formula of the form (X; — (¥; VY2)) is to be contained in T',
where X is the result of contractions of X. Since v is a reduction limit, X;
must be empty. According to Definition 6.6, there is a son v; of v such
that

(a) w; is of the form T'; F Z; , and
(b) either Y; or Y3 is contained in Out(vy). |
Definition 6.8 We say that a vertex v is good if, for every formula

(X - (1 VY?))

from Azioms(KB) , if X C Out(v) then either Y7 or Y2 is contained in
Out(v).

The following lemma is vital for variant dependencies.

%X C Out(v) means that each B from X is contained in Out(v).

22

Lemma 6.6 For every vertez v of the form

re-=2z,,

one can find a good descendant v, of it such that vy is of the form

i H2;.

Proof. Taking into account Lemma 6.3, by using Lemma 6.5 iteratively,
we can find a required good descendant of v.]

The tree consisting of all good vertices along with the evaluation function

Out represents a refutable Kripke model:

Lemma 6.7 For each vertez v:

(a)

(b)

(c)

For every formula (X - Y) from Azioms(KB) ,
if X C Out(v) then'Y C Out(v).

For every formula (U - V) —=Y) from Azioms(KB) ,
tf, for all good descendants vy of v such that

U c Out(vl)a
V is contained in Out(vy) then Y is contained in Out(v).

For every formula (X — (Y1 VY2)) from Azioms(KB) ,
if X C Out(v) and v is good then either Y7 or Y3 is contained in
Out(v).

Proof.

(a)
(b)

It follows from Lemma 6.4.

Assume that Y is not contained in OQut(v).

Then v is of the form

L, (U->V)=Y)FZ.

Let us consider the son v; of it such that v; is of the form

By Lemma 6.6, there is a good descendant vy of it such that vg is of
the form

T,, (@ U)FV.

For this good vg, we have:

23

e U C Out(vz), but

e Lemma 6.2 implies that V is not contained in Out(vs),
which is a contradiction.

(c) It follows from Definition 6.8. n

Step 2: From the Kripke-like skeleton to a database

Now, we will develop a refutable database.
Without loss of generality, we consider the following case:

e For every simple entity A4,
Dom(A) is either the set of all non-negative numbers or empty.

e For every functional entity A,
Dom(A) is the set of all Godel numbers of all partial recursive func-
tions.

e For every functional entity F' of the type (U - V),
the length of both U and V is equal to 1,

e There is no operator dependencies.

Let
®o, P1, P2y «-vy Pny .-

be a Godel enumeration of all partial recursive functions [Rogers67].

Lemma 6.8 There ezists an increasing primitive recursive function t such
that, for every partial recursive function h, one can realize an integer (a
fixed point) b such that, for all i,v and z,

Pt(b,i,v) (:E) = h(b) 1,7, (U)

Proof. By s-m-n theorem [Rogers67], there is an increasing primitive
recursive function t such that, for all z,i7,v and z,

P(z,i,v) (:l:) = 1/’3(2’ 1,7, :B)

where 13 is a universal function for all ternary partial recursive functions.

24

According to the Kleene’s Recursion Theorem [Rogers67], for every par-
tial recursive function h, we can find b such that, for all 7,v and z,

¢3(ba i: v, I) = h(b) iy v, .’l?)
and, hence,

(pt(b,i,v)(m) = ¢3(b,i,v,z) = h(b’i,v,x)‘

We introduce an auxiliary function Eval by the following:

Definition 6.9

(i) For the root v, we set: 1°

t(z,i,v), if A; € Out(v),
UNDEF otherwise.

Eval(z,i,v) = {

(ii) For a son v; of a vertex v, we set:

t(z,1,v1), if w; is good, and A4; € Out(vy),
Eval(z,i,v1) = and Ewal(z,t,v) = UNDEF ,
Eval(z,t,v), otherwise.

Definition 6.10 All good vertices and the root will be called basic ver-
tices.

Our definitions imply the following

Lemma 6.9 If Eval(z,i,v) is defined then there is a basic ancestor vo of v
such that
Eval(z,1,v) = Eval(z,1,v9) = t(z,1,v).

Definition 6.11 We construct a partial recursive function h such that,
for all z, 4, v and z,

(1) h(z,i,v,O) =7,

SFor simplicity, we ignore the difference between integers and words that represent
finite sequents

25

(2) for each functional entity A; of the type (A; — Ag)
that Eval(z,7,v) is defined, and

for every descendant v; of v that Eval(z, j,v1) is defined,
there is a descendant v2 of v such that

Eval(z,3,v2) = Eval(z,j,v1)

and
h(z,t,v, Eval(z,j,v1)) = Eval(z,k,v2).

Lemma 6.10 For our function h from Definition 6.11, following Lemma 6.8,
we find an integer b such that, for all i,v and z,

Pt(byi,v) ($) = h(b» 1,7, (C)
Let us define an evaluation function eval as follows:

Definition 6.12
For all 7 and v:

eval(i,v) = Eval(b,1,v)

where b is the integer from Lemma 6.10.

Definition 6.13
A state s, is assigned to every vertex v as follows:

sy = (eval(l,v), eval(2,v), eval(3,v), ..., eval(n,v), ...).
Definition 6.14

(i) Let T be the set of all such s,,.

(i1)) For a vertex v, by T, we will denote the set of all states assigned to
descendants of v.

Now, we will enumerate the main peculiarities of our function eval.

Lemma 6.11 (a) If eval(i,v) is defined then A; € Out(v).

(b) For a basic vertez v, if A; € Out(v) then eval(i,v) is defined.

26

(c) If both eval(i,v1) and eval(i,vy) are defined and
Peval(i,vr) = Peval(i,vz)
then there is a basic verter v such that

e v 1s a common ancestor of vi and vs, and

o eval(i,v1) = eval(i,v3) = eval(i,v).

(d) If eval(i,v) s defined and,
for a descendant vy of v, eval(j,vy) is defined
then eval(k,v1) is to be defined and

Peval(imy(eval (G, 1)) = eval(k, u1).
Proof.
(a) It follows from Definition 6.9.
(b) It also follows from Definition 6.9.
(c) Following Lemma 6.9, let v3 be a basic ancestor of v; such that
eval(i,vy) = eval(i,v3) = t(b,1,v3),
and let v4 be a basic ancestor of vy such that
eval(i,vy) = eval(i,v4) = t(b,1,v4).
According to Lemma 6.8 and Definition 6.11,
Peval(i,v1) (0) = Pi(b,is) (0) = h(b,4,v3,0) = v3
and
Peval(ivz) (0) = Pi(b,i,v4)(0) = h(b,4,v4,0) = v4.
Hence,
v3 = v4.

(d) In this item we use the following two lemmas.

Lemma 6.12 For arbitrary W and a tuple w from Dom(W), there ezists
a basic vertez v such that

T/w=w = Ty.

27

Proof. To use induction on the length of W, it is sufficient to consider a
database of the form T/ 4,—q.
Suppose that, for vertices v; and v,

eval(i,v1) = eval(i,v2) = a.
Let v be the most remote basic ancestor of v; such that
eval(i,v) = eval(i,v1) = a
and let v4 be the most remote basic ancestor of v, such that
eval(i,v4) = eval(i,v2) = a.
Item (c) of Lemma 6.11 implies that
v = vy4.
Hence, we can conclude that
T/a;=a C T
On the other hand, from Definition 6.9 follows that

Tv (_: T/Aiza.-

Lemma 6.13 For every formula (X —-Y) from Azioms(KB) ,
the functional dependency (X — YY) 1is satisfied on T.

Proof. For given vertices v; and vz, let X(s,,) be defined and
X(sy,) = X(50,) = .

By Lemma 6.12, there is a basic vertex v such that v is a common ancestor
of v; and vy, and

X(sy) =z

Since X C Out(v), Lemma 6.7 implies that ¥ C Out(v) and, therefore,
Y (s,) is defined and

Y(s0,) =Y (s0,) = Y(50).

28

(d) Going back to point (d) of Lemma 6.11,

let vy be a basic ancestor of v such that
eval(i,v) = eval(z,vg) = t(b,t,vo).

Then, according to Definition 6.11, for some descendant ve of vg, we
have:
eval(j,v2) = eval(j,v1)

and

h(b,1,vq, eval(j,v1)) = eval(k,vs).
Since the formula (A4;&A4; — Ay) is in Azioms(KB) , Lemma 6.13
implies that eval(k,v3) is defined and

eval(k,vy) = eval(k,vy).

According to Lemma 6.8,

Peval(iw)(€Val(F,01)) = Pyp,i,00)(€val(4,v1))
h(b, 1, vo, eval(j,v1))
eval(k,v2)
= eval(k,vy).

Lemma 6.14 For each functional entity A; of the type (A; — Ay) , the
instance T is in full accordance with A;.

Proof. We have to prove the both lines of item (d) in Definition 5.4.

(I
(1)

It follows from item (d) of Lemma 6.11.
Let us examine the operator dependency
((4; = Ag) = A).

For given W and w from Dom (W), suppose that the functional de-
pendency (4; — Ag) is satisfied on the truncated database T'/w =w.

By Lemma 6.12, there exists a basic vertex v such that

T/wew = Tb.

29

Item (b) of Lemma 6.7 shows that 4; € Out(v). Hence, for every state
s from T, we have:

Ai(s) = Ai(s).

We can conclude that the functional dependency (@ — A;) is satisfied
on T'/w=y- |

Lemma 6.15 Let v be a good vertez.
Every variant dependency (X — (Y1 VY2)) from KB is satisfied on the
database T, .

Proof. For a given z from Dom(X), let us examine the instance T,/ x=-
By Lemma 6.12, there exists a good descendant v! of v such that

Tu/X:z = Tvl.

Since X C Out(v?), then either Y] or Y3 is contained in Qut(v!). Therefore,
either (0 — Y1) or (@ — Y3) is satisfied on T,;:. [|

Lemma 6.16 For every good verter v, the instance T, is consistent with
KB.

Proof. It follows from Lemma 6.13, Lemma 6.15 and Lemma 6.14. |
Now, we may complete the proof of the Completeness Theorem 6.2.
Taking into account that the root of our tree is of the form

TFZ,

with the help of Lemma 6.6, we find a good descendant v such that v is
of the form
't -2, .

For this good v,

e Lemma 6.16 implies that the instance T, is consistent with K B, but

e Lemma 6.2 shows that Zj is not contained in Out(v) and the functional
dependency (@ — Zj) is not satisfied on Ty,

And we complete the proof Completeness Theorem 6.2. |

30

6.5 The programmer’s interpretation of the Calculus of Tasks

Each inference rule can be perceived as a formalization of a constructive
step in a natural reasoning related to solving tasks:

(Composition) If a knowledge base contains a dependency
(0 = B)
(that means B is computed) and a dependency
(B—Y)

(that means Y is computed from B) then we can compute Y with the
help of a composition and, therefore, the true law

(®—-Y)
can be added to the knowledge base.

(Subprogram) If, for a functional entity F' of the type (U — V), we
want to add the dependency

(@ — F)

(“a procedure F is implemented”) to the set of laws I, then , in ad-
vance, we must synthesize a subprogram for this F', in other words

solve the subtask
I, @-U) V.

(Branching) If, for a variant dependency
(@ - M VY?)

that means either Y7 or Y» is computed, we are able to solve both

subtasks:
F, (@ — Yl) FZ

and
F, (@-—)Yg) - Z,

then we can solve the main task.

Corollary 6.1 Taking into account what has been said, a program can be
eztracted directly from a derivation in the Calculus of Tasks .

Corollary 6.2 This minimal set of rules of reasoning turns out to cover
all possible rules of reasoning for solving tasks, which could be
thought of on the propositional level.

31

6.6 The Calculus of Tasks is an information preserving cal-
culus

To speed up our search for derivations, we have used the freedom of choice
provided by the following unexpected corollary.

Corollary 6.3 Each of the rules of the Calculus of Tasks preserves all
initial information.
More specifically,

For the Conjunction rule: its conclusion is derivable if and only if
its premise is derivable.

For the Composition; rule: its conclusion is derivable if and only if
1ts premise is derivable.

For the Composition; rule: its conclusion is derivable if and only if
its premise is derivable.

For the Subprogram rule: if its left premise is derivable then its con-
clusion is derivable if and only if its right premise is derivable.

For the Branching rule: its conclusion is derivable if and only if both
its premises are dertvable.

6.7 Kripke models vs. Computational databases

A database that refutes a propositional formula f can be easily transformed
into a Kripke model K that refutes this formula f.

Corollary 6.4 For every task sequent S, S is derivable in the Calculus
of Tasks if and only if S is derivable in Intuitionistic Propositional
Logic .

But there is no straightforward inverse transformation because
such an inverse should ensure the full accordance with all the functional
entities, which is a very strong and tough condition.

In particular, considering self- and cross-referential functional en-
tities and variant dependencies, we cannot do without the Recursion
Theorem and infinite domains.

The following example is related with the problem of unbounded do-
mains.

32

Example 6.1
Let us study the well-known sequent

i -C

where I'; consists of seven formulas:
Formulas | Comments

(F— (B1V By)) ,

((F — B;1) > G1) , | These two formulas represent the
(G1&F — By) , functional G; of the type (F — Bj)
((F — By) = G2) , | These two formulas represent the
(G2&F — B») , functional G2 of the type (F — Bj)
(Gl - C) ’

It should be noted that this sequent is not derivable in Intuitionistic
Propositional Logic .
Similarly to Example 4.2,

Iy = Azioms(KBy)
for the following knowledge base
KB; = (Namesy, Functs;, Doms;, Deps;)
where
e Names; = (B1,B2,C, F,G1,G32)
e Functsy consists of two functional entities:

(1) G of the type (F — Bj) , and
(2) G2 of the type (F — B3) .

e Deps; consists of three formulas:

(F = (B1V B)), (G1—=C), (G2—0C).

Lemma 6.17 Let Dom(F') be a singleton.

If the variant dependency (F — (B1 V By)) 1is satisfied on a database
T then either functional dependency (F — B;) or functional dependency
(F — B3) 1is satisfied on the database T.

33

Corollary 6.5 If Dom(F) is a singleton then this sequent
Azioms(KB;) FC
is to be solvable.

This result can be generalized to demonstrate that there is no uniform
upper bound for domains:

Corollary 6.6 For each integer n, we can construct a knowledge base K B,
such that

e For every A, the set Dom(A) contains at least n elements.
o There is a task sequent of the form
Azioms(KB,) + Z
such that

(i) it is solvable in each of the senses of Theorem 5.1, but

(i) it is not derivable in Intuitionistic Propositional Logic .

The following example shows the combinatorial troubles that have
been circumvented by using a version of the Recursion Theorem repre-
sented in Lemma 6.8.

Example 6.2 (continuing Ezample 6.1)
Now, we consider the sequent

rrc
where I'! is the following set of ten formulas:
Formulas | Comments
Iy, from Example 6.1
((A— F) > F), | Represent the self-reproducible
(F&A — F) , functional F' of the type (4 — F)
(90— A).

It should be also noted that this new sequent is not derivable in Intuition-
istic Propositional Logic .

34

We have that
I'! = Azioms(KB')

for the knowledge base
KB! = (Names', Functs', Doms*, Deps')
where
e Names' = (4, By, Bs,C, F,G1,G5)
e Functs® consists of three functional entities:
(1) Gj of the type (F — By) ,

(2) G2 of the type (F — Bj) , and
(3) F of the type (A — F) .

e Deps! consists of four formulas:

(F— (B1V Bz)), (G1 = C), (G2 = C), (0 — A).

Lemma 6.18 Let a database T be consistent with KB,
If (0 — C) 1s not satisfied on T then there are two states s; and sy in

T such that, for some integers a,p; and p2,

(I) F(s1)=p1,
(II) F(s2) = po,
(III) A(s1) = A(s2) = a,
(IV) ¢p, and ¢p, are different functions,

(V) for these different fixed points p; and ps, the following system of

equations holds:
¢p(a) = p1
(sz(a) = D2

Proof. According Lemma 6.17, there are two states s; and sz such that,
for some integer a and different integers p; and p,

(I) F(s1) is defined and F(s1) = p1,

35

(II) F(sy) is defined and F(s2) = p2,
(III) A(s1) = A(s2) =a.
By item (d) of Definition 5.4, we have:
90171 (a‘) = D1,
Pp2 (a) = Dp2.

7 Complexity of Intuitionistic Propositional Logic

7.1 The Algorithm of Analysis and Synthesis

Let us consider the following algorithm based on the Calculus of Tasks .

Input. A tasksequent S: T'hH Z.

Output. A scheme program for S if S is solvable, or a refutable database,
otherwise.

Method. A derivation of the sequent I' - Z is being searched for.

If this search is successful then, by Corollary 6.1, the derivation is
transformed into the scheme program for S.

Otherwise, the answer is: “S is unsolvable” and the corresponding
refutable database is constructed with the help of Theorem 6.2.

Corollary 7.1 Our algorithm runs correctly on all finite task sequents.

7.2 Space Complexity of Intuitionistic Logic
Theorem 7.1 For a given sequent S, one can

(a) recognize whether S is solvable or not,

(b) construct a minimal scheme program for S,

in deterministic linear space

o(L)

where L is the number of all occurrences of literals in S.

36

Proof. Our algorithm can search for a derivation of the sequent T' - Z
with the help of a depth-first search.

Taking into account Corollary 6.3, for a given sequent I'; F Z; that is
assigned to a vertex of this search tree, the search stack needs to contain no
more than

(1) a number of names of ‘variant’ and ‘operator’ formulas (without rep-
etitions),

(2) the set Out(I';) (without repetitions).

Thus we get a linear bound on the stack size.]

7.3 Subtasks and Measure of Unnaturalness

Taking into account the PSPACE-completeness, all known provers are forced
to perform an exponential search for “almost all” task sequents. In spite
of this, all examples of “bad” tasks are unnatural.

We introduce some level (rank) r to task sequents, so that natural (re-
alistic) tasks have a small level r.

Now let us explain what subtasks are and how they interact.

According to what has been said, in performing a task

r-2z

there may appear subtasks,
e.g. in such cases as follows:

(a) For a functional entity F' of the type (U — V),
we must solve a subtask

L @—-U)FV,
the input of it is the input-of-functional U.

(b) If we use a variant dependency (@ — (Y7 V Y3)) for computing some
Zlv
we have to solve two subtasks

F, (@—-)Yl) }"Zl

and

F, (@—)Yz) f“Zl,

where the inputs of these subtasks are the alternatives Y7 and Y5.

37

In performing the main task, subtasks can interact, namely, we can solve
a subtask provided that values of inputs of some other subtasks are given
in addition. In particular, embedding of subprograms is related to this
phenomenon (Cf. Theorem 7.3).

Definition 7.1 (The degree of subtask interaction)

For a given task sequent S, we say that the degree of subtask inter-
action in S is not greater than r if there is a solution for S such that the
maximal number of subtasks with different inputs which can interact in the
process of this solution does not exceed the integer r. 16

7.4 Non-uniform upper bound for Time Complexity

Theorem 7.2 ([Kanovich87, Kanovich91]) For a given sequent
S: T+Z,

one can

(a) recognize whether S is solvable or not, and

(b) construct a program for S,

in quasipolynomial running time
3r

)

L-n?-m
(rh)?
where L 1s the number of all occurrences of literals in ',
n 1s the number of different literals from I,
m s the total number of different
input-of-functionals and alternatives from T,
r 15 the minimal degree of subtasks interaction
with which S can be solved.

O(

Proof. Due to the limitations of space, I give only the gist of the proof,
the detailed proof will appear in a subsequent paper.

We found it convenient to use the concept of labelled deductive systems
of Dov Gabbay [Gabbay89]. The main idea is to modify the Calculus of
Tasks and to labelize it so that we can control the process of interaction of
those subtasks the inputs of which belong to a certain fixed set.]

In fact, our algorithm runs faster than in Theorem 7.2.

Let us consider small r.

'$Formal definitions are in [Kanovich87, Kanovich91].

38

Corollary 7.2 For all sequents withr = 0 (that corresponds to Horn clauses),
our algorithm runs in linear time.

If the minimal degree of subtasks interaction with which a task can
be solved is equal to 1, we say that this task is solvable with separable
subtasks.

Corollary 7.3 ([DK85]) Our algorithm runs in quadratic time for all
task sequents that can be solved with separable subtasks.

Corollary 7.4 We can solve task sequents with separable subtasks in par-
allel near-linear time.
7.5 Subtask Interaction vs. Embedding of Subtasks

Finally, let Taskpmbedding=r be a set of all tasks for which there exist pro-
grams such that embedding of their subprograms and conditional statements
is not greater than r.

Theorem 7.3 For every r, this class is a proper subclass of the class of
all tasks that are solvable with degree r of subtasks interaction.

On the other hand, Theorem 5.1 implies

Corollary 7.5 For each entity A, let Dom(A) be either infinite or empty.
Then a task T'F Z 1is solvable if and only if it is contained in the

class TaSkEmbeddingzm;

where m is the total number of different input-of-functionals and alternatives

from T,

Theorem 7.4 For a given task sequent S: T' - Z | we can
(a) recognize whether S is solvable or not,
(b) construct a program for S,
in quasipolynomial running time
O(L-n-m")

in linear space

O(L)

where r is the minimal integer such that S is contained in the class Taskgmbedding=r-

39

Theorem 7.5 For everyr, the class Taskpmpedding=r 15 Tunning in parallel
near-linear time.

Summary: Treating task sequents on the basis of our calculus, an
exponential execution time should be expected in the worst case, as is
customary.

But such cases arise for very unnatural tasks that need maximum
cross-linking of all possible subprograms, even in the best programs.

Our prover runs in polynomial time on all natural tasks; the degree of
the polynomial is determined by the minimal depth of interacting of
subtasks that can be achieved in the best solutions for the main task.

8 Finite vs. Infinite Knowledge Bases

It should be pointed out that Theorem 5.1 is valid for all infinite knowl-
edge bases containing no variant dependencies, as well as for many infinite
knowledge bases having such dependencies.

Nevertheless, we can show an infinite knowledge base KB (containing
only a single variant dependency) and a task sequent

S: Azioms(KB) + Z
such that
(1) this S is solvable in each of the senses of Theorem 5.1, but still

(2) there is no program for this S.

9 Conclusion
In conclusion it should be pointed out that

e In fact, our calculus works as a rewriting system,
by means of simplifying tasks and reducing them to equivalent
normal forms.

e On the basis of similar information preserving calculi we can get
algorithms that run in polynomial (and even linear or sub-
quadratic) time also for

40

(1) the membership problem in the theory of relational databases
with functional and multivalued dependencies,

(2) recognizing the validity of Horn formulas in monadic predicate
logic,

(3) flow analysis of “and-or” graphs,

(4) recognizing derivability of formulas of some kind in the classical
and intuitionistic propositional and modal calculi, etc.

Acknowledgements

I would like to thank the participants of Sergei Artemov’s seminar on Log-
ical Methods in Computer Science at the Moscow State University for the
opportunity to develop and clarify our results.

I am greatly indebted to my Dutch colleagues: Johan van Benthem, Jan
van Eijck, Dick de Jongh, Michiel van Lambalgen, Fer-Jan de Vries, Anne
Troelstra and many others from the University of Amsterdam and CWI for
very useful and stimulating discussions.

References

[AHUT6]

[DK85]

[Gabbay89]

(GJI79]

[Jongh68]

[Kanovich87]

A Aho, J.Hopcroft and J.Ullman, The Design and Analysis of
Computer Algorithms, (1976).

A Ja.Dikovskii and M.I.Kanovich, Computational models
with separable subtasks. Proceedings of Academy of Sci. of
USSR, Technical Cybernetics, 5 (1985), 36-60. (Russian)

D.M.Gabbay, Labelled deductive systems. 1st draft Septem-
ber 1989, To appear as a book.

M.R.Garey and D.S.Johnson, Computers and Intractability,
(1979).

D.H.J. de Jongh. Investigations on the intuitionistic proposi-
tional calculus. Ph.D.Thesis, University of Wisconsin, Madi-
son, 1968.

M.I.Kanovich, Quasipolynomial algorithms for recognizing
the satisfiability and derivability of propositional formulas.
Soviet Mathematics Doklady, 34, N 2 (1987), 273-277.

[Kanovich90]

[Kanovich91]

[Ladner77]

[Mints83]

[Mints90]

[Rogers67]

[Statman79)

[Ullman80]

41

M.I.Kanovich, Efficient program synthesis in computational
models. J. Logic Programming, 9, N 2-3 (1990), 159-177.

M.I.Kanovich, Efficient program synthesis: Semantics, Logic,
Complexity. Theoretical Aspects of Computer Software,
TACS’91, Japan, Sendai, 1991, September.

R.Ladner, The computational complexity of provability in sys-
tems of modal propositional logic. SIAM J. Computing, 6
(1977), 467-480.

G.E.Mints and E.Kh.Tyugu, Third All-Union Conference 'Ap-
plication of the Methods of Mathematical Logic’, Proceedings,
Tallinn, (1983), 52-60. (Russian)

G.E.Mints and E.Kh.Tyugu, Propositional logic programming
and the PRIZ system. J. Logic Programming, 9, N 2-3 (1990),
179-193.

H.Rogers, Theory of Recursive Functions and Effective Com-
putability, (1967).

R.Statman, Intuitionistic propositional logic is Polynomial-
Space complete. Theoret. Computer Sci., 9 (1979), 67-72.

J.D.Ullman, Principles of Database Systems, (1980).

The ILLC Prepublication Series

1990 Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar .

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

Lo 02 Ko i R A—

-90-09 Paul Dekker e Scope of Negation in Discourse, towards a Flexible c Montague
LP-90-10 Theo M.V. Janssen Models for Discogurse Markers gile grammar
LP-90-11 Johan van Benthem General Dynamics
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Maarten de Rijke The Modal Logic of Ine(éuality
LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics
ML-90-01 Harold Schellinx Mathematical Logic and Foundations ~ [somorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem
ML-90-03 Yde Venema Relational Games
ML.-90-04 Maarten de Rijke Unary Interpretability Logic
ML-90-05 Domenico Zambella Sequences with Simple Initial Segments
ML.-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the Intea%retabiléty Logic of Finitely Axiomatized Theories
ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Dick de Jongh, Duccio Pianigiani Solution of a Problem of David Guaspari
ML-90-10 Michiel van balgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

CT-90-01 John Tromp, Peter van Emde Boas _ Computation and Complexity Theory - Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osaglu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity in Relativized
eparations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs

CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel Conditional, a case
Other Prffublicatians study in Conditional Rewritin&1

X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+Q;, revised version

X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. ova ndecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic .

1991 LP-91-01Wiebe van der Hoek, Maarten de Rijke L08ic, Semantics and Philosophy of Language Geperalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld %na.tm’c Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does ~ The Semantics of Plural Noun Phrases

LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem }ﬁoﬂg and tlﬁglow of Jnformation

ML-91-01 Yde Venema matical Logic and I"oundations Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic

ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Finite gpe Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML.-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sa.hlr%;'ist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

CT-91-01 Ming Li, Paul M.B. Vitdnyi Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables .
CT-91-03 Ming Li, Paul M.B. Vit4nyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Echlil\]/alence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus .
CT-91-09 Ming Li, Paul M.B. Vitdnyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity

CT-91-10 John Tromp, Paul Vitdnyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Eiiﬂx Spaan Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

CL-91-01 J.C. Scholtes Computational Linguistics Kohonen Feature M:[ps in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retriev

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Disjunction Property of Intermediate Propositional Loﬂ.):s_
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional Logics

X-91-03 V. Yu. Shavrukov Subailfebras of Diagonalizable Alﬁbr_as of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical Theories

